
OTTER Debugger

A Senior Project Report

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Engineering

By

Keefe Johnson

June 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/334994732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This project is a debugger and programmer for the OTTER CPU, the implementation of

the RISC-V ISA used by Cal Poly to teach computer architecture and assembly language in

CPE 233/333 and usually implemented on the Basys3 FPGA development board. With this tool,

students can quickly program their OTTER with a new/revised RISC-V program binary without

resynthesizing the entire FPGA design. They can then use the debugger from a PC to

pause/continue/single-step execution and set breakpoints, while inspecting and modifying

register and memory contents. This enables real-time debugging of OTTER projects involving

custom hardware such as a keyboard and VGA monitor, previously unavailable to students.

Future work will integrate this debugger with GDB to enable powerful debugging within a

graphical IDE.

1

Table of Contents
Introduction 3

Stakeholders 3
Deliverables 5
Outcomes 5

Background 6

Design 9
Constraints 9
Hardware Taps 10

Signal Naming Convention 11
Component Operation Injection 12
OTTER Control Unit FSM 12

Serial Protocol 13
Synchronization 14
Message Validation 14
Commands 15

Hardware Module 17
Serial Transceiver 18
State Machine 19
Register Numbers 22

PC Application 22
Raw Serial Configuration 23
Modularity 24

User Interface 26
Command Line Arguments 26
Commands 27

Integration 28
Component Wrappers 30
State Machine Modifications 33

Demonstration 35

Completed Deliverables 43

Future Work 43
GDB Integration 43
Adapting to Pipelined OTTER 44

2

References 47

Introduction

The OTTER Debugger is a tool for students of CPE 233 (Computer Design and

Assembly Language Programming) to enhance their learning experience with implementing the

RISC-V ISA in their CPU and writing low-level code to run on it. It consists of an HDL module to

be integrated into their OTTER CPU, and a Linux app to run on a PC, which interface with each

other via a serial connection. It is typically used for an OTTER implemented in an FPGA on a

development board like the Basys3. It provides the student the ability to quickly update the

program memory in their OTTER from a binary on the PC, without resynthesizing and

reprogramming the FPGA. And it enables them to debug machine code running on their

OTTER, by single-stepping, setting breakpoints, and reading/writing registers and memory. It

can also help them debug their hardware design to some extent.

Stakeholders

The project has two primary groups of stakeholders: CPE 233 students, and CPE 233

instructors. Both benefit from this OTTER debugger, and both are likely to contribute to the

project’s future development as well.

Students will benefit from being able to debug RISC-V code on their OTTER from a

software perspective on their PC, when completing assembly language assignment and when

developing their own end-of-course project. They will also save a significant amount of time

each time they revise a program to be run on their OTTER, as the debugger is able to stream a

program binary into the OTTER’s memory in seconds. Without the debugger, it can take 5-10

3

minutes to resynthesize the entire OTTER, because the initial memory contents are treated as

source code by the HDL synthesizer.

Students will be the ones to use the provided instructions to integrate the debugger

module into their own implementation of the OTTER. The instructions should be sufficiently

thorough to enable successful integration, while supporting their learning about digital hardware

design.

The project also has room for enhancement, especially integration with GDB, and one or

more students may choose to take on future development as part of a class project or senior

project. Thus, the project documentation should describe how the design decisions build a

foundation for that future development, and how GDB can work with this foundation.

Instructors may choose to make integration of this debugger one of the class

assignments. Thus it is helpful to provide a reference integration implementation for testing and

analysis purposes. This should not be made public, but made available only to instructors, so

students aren’t tempted to copy parts of the reference OTTER implementation as they

implement their own OTTER.

The project also might be useful for automating the process of grading students’

assembly language assignments. Instructors could develop scripts to automatically load a

student’s code into an OTTER, run it, and inspect the results in registers and memory. This

scripting capability is beyond the scope of the current development cycle, but future

development of the project may make this possible.

Deliverables

The primary deliverables are the debugger module written in SystemVerilog and the

PC-side debugger app written in C. These will be publicly hosted on GitHub. Another deliverable

4

is the instructions for integrating the debugger module into the OTTER. This will be provided in

the design and integration sections of this report. And for instructors, the final deliverable is a

reference integration/implementation of the debugger module into an OTTER, which will be

tested to ensure all debugger functions work properly. This will be privately hosted on GitHub

and access will be provided to any Cal Poly instructor upon request.

Outcomes

With this debugger, CPE 233 students will be able to more quickly run assembly code on

their OTTER. They will also be able to debug such code running on their OTTER, including

real-time interaction with any custom hardware attached to their OTTER such as a keyboard or

VGA monitor. This interaction with custom hardware is a unique capability that isn’t possible

with the Spike RISC-V simulator nor with HDL simulation.

This debugger will provide a foundation for future development of the project to interface

the PC-side app with GDB. This will enable students to use a popular debugging tool (GDB) to

visualize the execution of RISC-V assembly or C code on their own OTTER. They will likely also

be able to use graphical IDEs to do the same with a more modern interface.

Background

Debuggers exist for most computer systems, as they are a nearly indispensable tool for

software development. They generally provide a programmer the ability to pause execution of

their code on demand or when execution reaches a specific point, step one instruction or source

code line at a time, and inspect and even modify memory and register contents. Some systems

use debuggers that run within an operating system, while others are debugged on bare-bones

5

hardware. GDB is a popular and versatile open-source debugger that is designed to work on

and with a variety of computer platforms. It is modular and uses well-defined interfaces to

connect to other software. Through those interfaces, GDB can be extended to work with a

variety of hardware and communicate via a variety of physical connections. While GDB’s core

provides a text console user interface, it can also be integrated on the user interface side with

graphical IDEs to provide a more rich and convenient user interface. Figure 1 illustrates how

GDB interfaces with hardware and user interfaces, with the highlighted blocks representing the

deliverables of the project’s current development cycle

Figure 1 - how GDB interfaces with hardware and user interfaces

GDB can be broken down into two main components: GDB client and GDB server. Most

programmers are familiar with using GDB as a single application, in which case both the server

and client components operate in one integrated program. But it’s also possible to connect the

6

GDB client to a remote GDB server over a network connection (which may be routed over an

actual network or simply within localhost), in which case the two components communicate with

each other using the Remote Serial Protocol (RSP). This is illustrated in figure 1 by a GDB

server running on Linux. This protocol is also used to connect the GDB client to other

applications that can interface with other hardware that GDB itself doesn’t know how to connect

to. One such popular application is OpenOCD, which primarily interfaces with hardware via a

physical JTAG connection. OpenOCD is also capable of interfacing with Spike, a RISC-V

simulator, via another network connection. In both cases, the GDB client sees OpenOCD as a

GDB server providing a standard interface to the hardware (physical or simulated).

The future goal of the OTTER debugger (OD), is for the OD app to similarly interface

with the GDB client. Although the current project development cycle won’t provide that interface

yet, design decisions were made with that future integration in mind. In the meantime, the OD

app will provide its own text console user interface.

Extending OpenOCD directly was considered, but it was decided to develop the OD app

independently from OpenOCD. The primary use case of this debugger is for CPE 233 students

who use the Basys3 FPGA development board to implement their OTTER. Since the most

convenient connection between the PC and the Basys3 board is a standard serial port

encapsulated in the USB protocol, the simplest way to interface with the OD module in the

OTTER is to design the OD app to use that serial connection directly. Attempting to use JTAG

would require both implementing the JTAG protocol in hardware (separate from the JTAG

connection that is used to program the FPGA), and using a special cable to connect that JTAG

interface (likely through the PMOD port) to an adapter connected to the PC.

Before this OTTER debugger, students had two main options for debugging

RISC-V/OTTER code. They could run their code in a RISC-V simulator such as Spike, but they

7

would not be able to debug interaction with any custom hardware attached to their OTTER,

such as LEDs, switches, or a VGA monitor, and any flaws in their hardware design would be

missed. Or they could run their OTTER and RISC-V code in a Verilog simulator, but simulation

of custom hardware (especially VGA or keyboard) would be limited and inspection/modification

of registers and memory could be cumbersome.

Design

Constraints

The project design was influenced significantly by three primary goals: provide a system

that students can use in the early stages of implementing their OTTER, make its integration with

their OTTER intuitive, straightforward, and low-level, and build a foundation for future integration

with GDB.

There are two main approaches to how debuggers interact with the hardware. On a

typical x86 PC, debuggers such as GDB work within an environment that has an operating

system. They usually set code breakpoints by replacing an instruction with an invalid opcode to

trigger an interrupt. Then they read/write memory and registers by executing standard CPU

instructions. In other words, software is used to debug software. The other main approach is to

tap into the underlying hardware, and read/write memory and registers via an out-of-band

hardware interface, often JTAG.

Because students of CPE 233 aren’t running an operating system on their OTTER, and

they usually don’t add interrupt support until later in the course, this project adopted the second

approach. They also may want to begin using this debugger before their implementation is

8

proven correct. As students implement their OTTER, they start with the core functionality,

namely memory, registers, program counter, ALU, and FSM. At this point, they begin debugging

their implementation to find mistakes in the ALU, instruction decoder, and other components. If

the debugger worked by executing instructions on the OTTER to read/write memory/registers,

any flaws in the OTTER would confound the debugging attempt.

So by implementing the debugger with direct low-level taps into the relevant

components, and keeping all debugging control flow in the dedicated already-proven module

and app, the debugger is usable earlier on. And the approach is more intuitive for the students,

as they see the direct connection between the debugger and the components being

read/written.

The project ultimately aims to build a foundation for future integration with GDB, the

popular open-source debugger. GDB is designed in a modular fashion, with any hardware

integration (GDB server) separate from the user interface (GDB client), and with a well-defined

communication protocol between the two. The next step after this project is to expand the

PC-side app to communicate via GDB’s client/server protocol so students can run GDB or a

graphical interface on top of it, and have it interface with the OTTER through the PC-side app.

Thus, the choices made in this project regarding which functionality it provides (e.g. read one

register, change the program counter, set a breakpoint, etc) were made after researching the

GDB protocol and the minimum functionality it requires to work on any hardware.

Hardware Taps

The OD module is designed to have direct low-level read/write access to nearly all of the

OTTER’s state. This includes every synchronous component: program counter (PC), register file

(RF), control/status registers (CSR), memory (MEM), and control unit state machine (CU FSM).

9

At least while the OTTER is paused, it is able to temporarily override anything the OTTER would

normally be doing with the non-FSM components. This is done through “taps,” which pass

through normal operations when not activated, but give precedence to operations from the

debugger when activated.

Note that currently, the OD module will use the taps to process commands even when

the OTTER is not paused, though doing so would cause any normal operations to be lost. It

expects the OD app to avoid doing so.

The use of these distinct taps keeps the block diagram simple. They minimize the

apparent complexity, and help the student focus on the OTTER architecture during the design

process. The student can simply ignore the taps when working on the OTTER implementation,

as the taps don’t impact normal operation until the debugger activates them, generally during a

pause.

See the integration section of this report for diagrams of how the taps affect component

operation.

Signal Naming Convention

For consistency, all the taps use the same signal naming convention, even though the

original OTTER design uses different names for the same functionality from one component to

the next (e.g. the PC’s ld, the RF’s en, and the MEM’s memWrite all perform the same function).

The convention, derived from that of many Xilinx modules, is as follows:

● tap_en (debugger to component): activate the tap, suppressing normal operations and

allowing the debugger to read or write the register/memory

● tap_we (debugger to component): if the tap is activated, perform a write from the

debugger rather than a read

10

● tap_addr (debugger to component): if the component stores multiple values, the

address/index/ID of the location within the component, otherwise omitted (e.g. PC)

● tap_din (debugger to component): the data to write to the component at the given

address (if applicable), if the tap is activated (en) and we is asserted

● tap_dout (component to debugger): the data read from the component from the given

address (if applicable), which is arbitrary if the tap is not activated

Component Operation Injection

Operations are injected through the taps by muxing the relevant input signals based on

the taps en signal. When tap_en is asserted, the underlying component gets its write-enable,

address, and data-in signals from the debugger through the tap signals, rather than from the

normal data/control path. When the tap is enabled, any normal operation is ignored. The

tap_dout signal is generally routed directly to the component’s normal output. Thus when the

tap is not active, data from other addresses will likely appear on this signal, but the debugger

ignores it unless it has activated the tap to intentionally read or write.

There are a couple variations to note however. The OTTER is designed with

synchronous-read memory, so for the memory component, tap_dout is meaningful the cycle

after the tap is activated, even if the tap is deactivated after a single cycle. And for the program

counter (PC), the debugger needs to continually monitor the internal next-pc value for matching

against breakpoints. So an additional signal, tap_next, is included for the PC, and always

presents what the PC’s output (and tap_dout) will become after the next clock edge.

11

OTTER Control Unit FSM

The debugger needs to be able to reset the rest of the OTTER, including the FSM, and

pause the FSM between instructions. For the reset, the debugger sits between any external

reset signal (e.g. a board button) and the rest of the OTTER. It passes through any external

reset, but additionally asserts reset upon request from the OD app.

For pausing, the debugger can assert the cu_pause signal at any time. But the OTTER

FSM will only respond to that at appropriate times, namely right before directing a fetch. The

OTTER FSM generally cycles through the fetch, execute, and (for memory loads only) write

back states. Before proceeding to the next fetch (or if being reset), it first checks if an interrupt is

pending, and if so, goes to the interrupt state for one cycle, during which it jumps the PC to the

ISR. The FSM doesn’t let the debugger pause the OTTER between an instruction and a

jump-to-ISR. This is intended to avoid the situation where the OD app thinks a particular

instruction is about to (fetch and) execute, but actually a jump-to-ISR is about to happen first.

Instead, pausing is allowed only after any jump-to-ISR. The goal is for all the OTTER’s state

during a pause, to always represent the state it will be in during the following fetch (after

unpaused). Thus, no changes in other parts of the OTTER (e.g. registers, PC, etc) should

change on the FSM’s transition from paused to fetch.

The FSM gives feedback on its state to the debugger in the form of the paused and

pausable signals. The paused signal is high if and only if the FSM is in the paused state. The

pausable signal is high in the cycle before the FSM would transition to the fetch state if pause

isn’t asserted. Note that if a jump-to-ISR (INTER state) is coming first, pausable is not asserted,

but if a transition to the paused state is about to occur, pausable remains high. However, once

12

in the paused state, pausable is held low, as this helps the debugger avoid getting stuck when

paused on a hardware breakpoint.

Serial Protocol

The OD app and OD module communicate with each other via standard serial. This

protocol was chosen because the Basys3 FPGA development boards provide tunneling of a

virtual serial port on the PC to RX/TX pins in the FPGA accessible to the logic. By using this, no

additional cabling or adapters are needed to operate the debugger. The most common settings

were chosen: 1 start bit, 8 data bits, no parity bits, and 1 stop bit. And although the debugger

module can be easily configured for an arbitrary speed via a parameter, 115,200 baud was

chosen for the default speed. Since each byte takes 10 bits including start and stop, it is

possible to transfer data at 11,520 KB/s.

Synchronization

To simplify the protocol and avoid any possible race conditions, it was decided to have

the OD app initiate all communication, with the OD module only sending data in response to app

commands. Also, all communication is done in 32-bit word chunks, as this OTTER configuration

operates on 32-bit values for most things, such as addresses, register contents, and most

memory accesses.

However, the serial protocol operates one byte at a time, so if the app or PC

malfunctions, it’s possible for only 1, 2, or 3 bytes to be sent. If the app were then restarted, new

words would be treated as part of two words. So a timeout is implemented. If less than a full

word is received by the module, and a full second of silence elapses, the partial word is

discarded. If the same happens to the app, it simply emits an error and quits. Similarly, if 2

13

seconds of silence elapse in the middle of a multi-word command or data stream, the module

responds with an error and returns to the idle state.

Message Validation

In early testing, data corruption happened sporadically, often related to certain bytes or

combinations of bytes sent over the serial port. It was ultimately discovered that there were

numerous settings on the PC side, that defaulted to mangling data in various ways, such as

translating newlines between Unix and Windows style, treating certain bytes or combinations

thereof as control codes, echoing data received, etc. These issues differed on different systems,

such as Mac vs Linux vs WSL in Windows.

So to make the protocol more robust, and avoid seemingly random symptoms, a

validation scheme was applied to the OD module/app protocol. All command codes are 3 bytes

long with a checksum (a simple XOR of the 3 bytes) as the 4th byte. All commands are echoed

back to the app so the app knows the command was successfully received. And all subsequent

data transferred, such as command arguments or data in either direction, is also run through a

checksum algorithm (a simple XOR of all words). The module sends back the total checksum of

all data transferred in either direction, as a single word, at the end of the full exchange for that

command. The app verifies that it received the expected echo and correct checksum, and

reports a communication failure to the user otherwise.

Commands

All commands adhere to the following format of data exchange:

● The app sends the command word to the module. (cmd)

● The module replies back with an echo of the command. (echo)

14

● The app sends any command arguments to the module. (args)

● The app sends any data destined for the OTTER. (wdata)

● The module sends any response data to the app. (rdata)

● If the expected number of words were sent and received, and if the command

involved more than just the command word and its echo, then the module

finalizes the exchange by sending the checksum of all data transferred in either

direction since the command echo. (cksum)

The following commands are currently implemented:

● RESET_ON: put the OTTER into the reset state (memory can still be written)

○ no args, no wdata, no rdata

● RESET_OFF: take the OTTER out of the reset state

○ no args, no wdata, no rdata

● WRITE_MEM_RANGE: write multiple words to sequential memory locations

starting at the specified address

○ args = {addr, num_words}, wdata = 1+ words, no rdata

● PAUSE: put the OTTER into the paused state (can be combined with reset to

pause upon release of reset) after completing the in-process instruction and/or

jump-to-ISR

○ no args, no wdata, no rdata

● STEP: proceed to execute the one instruction currently paused at, and return to

the paused state (after any pending jump-to-ISR), or just pause if not already

○ no args, no wdata, no rdata

● CONTINUE: unpause the OTTER, resuming continuous execution

○ no args, no wdata, no rdata

15

● STATUS: report the pause and reset conditions (any possible combination of

these two conditions can occur)

○ no args, no wdata, rdata = {bit1: pause, bit0: reset}

● READ_MEM: read a single word from memory

○ args = {addr}, no wdata, rdata = 1 word

● WRITE_MEM: write a single word to memory

○ args = {addr}, wdata = 1 word, no rdata

● READ_REG: read a single word from a register (PC, RF, or CSR)

○ args = {addr}, no wdata, rdata = 1 word

● WRITE_REG: write a single word to a register (PC, RF, or CSR)

○ args = {addr}, wdata = 1 word, no rdata

● SET_HW_BREAK: set a hardware breakpoint, where execution should pause

○ args = {index}, wdata = {addr}, no rdata

● CLR_HW_BREAK: clear a hardware breakpoint

○ args = {index}, no wdata, no rdata

Hardware Module

The OD module interfaces between the OTTER and the PC, using the taps to observe

and manipulate the OTTER in response to serial protocol commands from the PC. Major

components of the module include the serial transceiver (uart_*), a state machine, a timeout

counter, a set of hardware breakpoint registers and comparators, address and index registers

for tracking memory/register addresses and breakpoint indices, persistent pause and reset

signals (flip-flops), a register tap splitter for merging the PC, RF, and CSRs into a single register

space, and a checksum accumulator.

16

Some characteristics of the module are parameterized. Since the serial transceiver

needs to operate at a specific speed, but the OD module can’t independently determine the

frequency of its clock signal, there is a parameter that the OTTER must use to inform the OD

module of its clock speed. This is passed along to the serial transceiver so it can count the

appropriate number of clock cycles between bits sent and received over the serial lines.

The baud and timeout parameters determine the timing of serial communication. The

baud rate must match between the OD module and the OD app. The timeouts don’t need to

match between the module and app, but should be set to high enough values to allow for

temporal hiccups in the stream of bytes and words from the PC, while minimizing the chance

that a quick restart of the app after a communication glitch will result in misunderstanding

between the module and app.

Another parameter is the number of hardware breakpoint registers/comparators to infer.

If this is changed, the corresponding macro in the OD app should also be changed to match.

The number of breakpoints is a tradeoff between the potential desire for the user (or GDB) to

activate many simultaneous breakpoints, and the resource requirements of a register and

comparator for each, as well as the gate fanout for connecting one next-PC signal to multiple

comparators.

It is important to keep in mind that these parameters have default values in the debugger

module, but can be overridden in the parent module (the OTTER) at the point of instantiation.

While it is nice to be able to customize the module without touching its source code, one must

be careful to not later assume the default values specified in the module source are still in

effect.

17

Serial Transceiver

One of the more complex parts of the module is the serial transceiver. Compared to the

system clock speed, serial bits are very slow and span a large number of system clock cycles. If

a raw physical serial connection is being used (rather than a virtual one through USB where the

signal is already cleaned up), the edges of the signals on the serial lines can be noisy. Thus a

serial transceiver should attempt to avoid the noise by either oversampling or simply seeking the

temporal center of the bits based on the first edge of the start bit.

As sending and receiving serial communication is widespread among hardware designs,

it was decided to not implement this from scratch but obtain a polished implementation from

another developer. Modules for sending and receiving at the byte level were obtained from

nandland.com (see the references section of this report). These modules (uart_rx and uart_tx)

signal to their parents when one byte has been completely received or sent. Additional modules

to operate at the word level (uart_rx_word and uart_tx_word) were then developed on top of the

byte-level transceiver, to notify the OD module only when an entire word has been sent or

received.

While it is generally a good idea to reset all of a system’s state when the reset signal is

asserted, an exception was made for the serial transceiver. If the OTTER were reset by an

external trigger like a board button, while any serial communication was in progress (as would

likely happen if the user were to externally reset the board during an active debugging session),

then including the serial transceiver in the reset would result in it getting out of sync with what bit

of a byte was currently being sent or received. So the external reset signal was intentionally not

routed into byte-level parts of the serial transceiver. This way, if an external reset occurs

18

mid-byte, it will still be able to finish sending or receiving the entire byte and stay in sync with

the OD app.

State Machine

The OD module’s state machine sequences responses to and operations in support of

commands received from the app. It spends most of its time in the idle state, the only state in

which it accepts commands. Once a valid command is received, it begins waiting for arguments,

or data as appropriate for the command. If the timeout expires (2 seconds by default) without

the module having received the expected words for the command, an error code is sent back to

the app, and the FSM returns to the idle state. The FSM also ensures that the serial transmit

line is free before initiating transmission of another word. There is no timeout for sending

because the serial transceiver simply sends the bits in order without any means of pausing or

confirming receipt, thus the FSM won’t hang waiting to send.

The following commands are currently supported. This is the same list of commands as

above in the serial protocol section, but detailing how the module implements the commands:

● RESET_ON: sets the mcu_reset persistent signal (stays set until RESET_OFF is

received)

○ no args, no wdata, no rdata

● RESET_OFF: clears the mcu_reset persistent signal (stays cleared until

RESET_ON is received)

○ no args, no wdata, no rdata

● WRITE_MEM_RANGE: after receiving the starting address and number of

words, keeps the memory tap active while writing the subsequent words from the

app to sequential memory addresses

19

○ args = {addr, num_words}, wdata = 1+ words, no rdata

● PAUSE: sets the cu_pause persistent signal (stays set until STEP or CONTINUE

is received) and waits for the FSM to enter the paused state before echoing the

command

○ no args, no wdata, no rdata

● STEP: briefly clears cu_pause (for one clock cycle), sets it again (stays set until

STEP or CONTINUE is received), and waits for the FSM to reenter the paused

state before echoing the command

○ no args, no wdata, no rdata

● CONTINUE: clears the cu_pause persistent signal (stays cleared until PAUSE is

received or a hardware breakpoint is hit)

○ no args, no wdata, no rdata

● STATUS: reports the state of the mcu_reset and cu_pause persistent signals to

the app

○ no args, no wdata, rdata = {bit1: pause, bit0: reset}

● READ_MEM: activates the memory tap to read a single word from the specified

address in memory, waits one cycle for the data to arrive from memory, and

sends it to the app

○ args = {addr}, no wdata, rdata = 1 word

● WRITE_MEM: receives a single word from the app and activates the memory tap

to write it to the specified address in memory

○ args = {addr}, wdata = 1 word, no rdata

● READ_REG: activates one of the register taps to read a single word from the

specified register (address determines PC, RF, or CSR), and sends it to the app

20

○ args = {addr}, no wdata, rdata = 1 word

● WRITE_REG: receives a single word from the app and writes it to the specified

register (address determines PC, RF, or CSR)

○ args = {addr}, wdata = 1 word, no rdata

● SET_HW_BREAK: sets the specified (by index) hardware breakpoint to the given

address and activates it, which triggers a pause if and when the program counter

changes to the address

○ args = {index}, wdata = {addr}, no rdata

● CLR_HW_BREAK: deactivates the specified (by index) hardware breakpoint

○ args = {index}, no wdata, no rdata

Register Numbers

The OTTER debugger considers the program counter (PC), general purpose registers

(RF), and control/status registers to all be just registers in a broad sense, with unique numbers

to distinguish them. This mimics the behavior of Spike when attached through OpenOCD to

GDB. The module routes tap activations and operation details to the appropriate component’s

tap based on the register number. The register numbers are translated as follows:

● 0-31: RF

● 32: PC

● 65-4160: CSR (register number = CSR # + 65)

● others: undefined behavior

The 4 CSRs currently implemented in the reference OTTER are as follows, though more

can be added to the OTTER without any revision to the debugger, as the OD module simply

subtracts 65 and passes it on to the CSR component.

21

● mstatus: CSR 0x300 (768), OD register number 833

● mie: CSR 0x304 (772), OD register number 837

● mtvec: CSR 0x305 (773), OD register number 838

● mepc: CSR 0x341 (833), OD register number 898

PC Application

The OD app bridges the gap between the user (or GDB client in the future) and the

hardware. It communicates with the OD module using the serial protocol, programs the OTTER

on startup, and optionally enters an interactive debug mode where the user can use all the

commands that the OD module supports (see the user interface section of this report).

Raw Serial Configuration

The app needs unfiltered unmodified access to the serial port, as communication with

the OD module uses a binary protocol with no regard for the nuances of newlines in various

operating systems or cursor/formatting control codes. It was a bit of a challenge determining all

of the necessary flags for configuring the Linux serial driver (through the tcsetattr library call) to

simply pass all bytes along unmodified. By default, the driver does special stuff when certain

control codes are sent over the line. It also sometimes echoes data received, and/or translates

newlines between Unix and Windows style.

At one point, random fuzzing was performed with the hardware simply calculating and

echoing a checksum of all data received. When the checksum didn’t match, subsets of the

random data were retried until the exact byte sequence that was being mangled was identified.

What was sufficient on one system turned out to be insufficient on another, but after a few

iterations, it appears that all such issues have been resolved. The article from Michael Sweet at

22

the University of Minnesota was invaluable in tracking down some of the remaining

configuration flags.

In case the app is being used on a system on which other serial apps expect all the

default behavior, the app saves all the serial configuration on startup, and registers a Ctrl-C

signal handler and an exit handler so it gets a chance to restore the serial configuration before

the app exits.

Modularity

The app is written with many small functions, building up from simply sending or

receiving a word, to waiting for timeouts and expecting certain responses, to handing all

communication for a specific OD command. This will make future development easier, when

higher-level functions are written to translate GDB commands to sequences of OD commands.

At the lowest level, the send_word and recv_word functions ensure that an entire word is

sent or received, handling error cases, incomplete transmission, and user interrupts (Ctrl-C).

They rely on the serial configuration at app startup for specifying how much time is allowed

between bytes and how many bytes it waits for. The termios article from unixwiz.net was helpful

in understanding how timeouts vs minimum bytes can be balanced.

The wait_readable function deals with any timeouts between the words of a command

exchange. This allows for a longer time between words than between bytes. The OD

module-app protocol always transfers whole words at a time, but there could theoretically be

small delays between words for certain commands that wait for some action to occur or

complete before proceeding.

The expect_* functions help higher-level functions streamline handling of the protocol.

For example, expect_word is used when receiving from the module and only one response is

23

correct, such as the correct checksum or matching command echo. The expect_any_word

function simply encapsulates the timeout handling, while not restricting the response to a

particular word, and the expect_timeout function could be useful in the future if needed to

ensure the line is idle at startup or after a command.

Checksums are used on all communication, so there is a macro (APPLY_CMD_CKSUM)

for applying the checksum to command codes, and a function (verify_checksum) for verifying

that the correct checksum is received from the module at the end of a command exchange. A

global variable is used to accumulate the checksum on all data sent or received after the

command echo.

For long-running commands such as WRITE_MEM_RANGE which is used for

programming the OTTER (writing a program binary to instruction memory) at app startup or on

request, the function flush_and_show_progress is used to provide feedback to the user on the

completion percentage.

Built upon that foundation, there are functions for each of the OD commands as follows:

● RESET_ON: enter_reset_state

● RESET_OFF: exit_reset_state

● WRITE_MEM_RANGE: write_mem_range, which is factored into a few other

unmentioned functions

● PAUSE: set_paused_status

● STEP: single_step

● CONTINUE: clear_paused_status

● STATUS: get_status

● READ_MEM: read_mem

● WRITE_MEM: write_mem

24

● READ_REG: read_reg

● WRITE_REG: write_reg

● SET_HW_BREAK: set_hw_breakpoint

● CLR_HW_BREAK: clear_hw_breakpoint

User Interface

In lieu of future GDB integration, a barebones user interface is provided by the OD app.

It simply enables the user to issue all of the above-mentioned commands through their

respective functions. The app always programs the OTTER on startup by using

write_mem_range to send the contents of a binary file, after putting the OTTER into reset with

enter_reset_state. Then if the user opts for debug mode, it pauses the OTTER

(set_paused_status) before releasing the reset (exit_reset_state) so execution pauses at the

written program’s first instruction. If not using debug mode, the OTTER is released from reset

without pausing, useful for simply running a program on the OTTER that was compiled on the

PC.

Command Line Arguments

When running the OD app, the user must specify a binary file to program the OTTER

with, as the first command-line argument.

The user must also specify the serial port to use as the second argument. On Linux,

virtual serial ports routed over USB (as is the case for the Basys3 board), are usually named like

“/dev/ttyS1” where the number 1 may differ. No auto-select feature is offered, but the OD

protocol is sufficiently rigid that it is obvious if a non-OD serial device is specified; the command

echo or data checksum will make it clear to the app whether it’s talking to the OD module. One

25

should keep in mind that the Basys3 provides two virtual serial ports, one for configuring the

FPGA (used by Vivado to write a bitstream) and the other for communicating with logic in the

FPGA (the OTTER).

If the word “DEBUG” (all caps) is given as the third argument, the interactive debug

mode is entered. Otherwise, the app exits after simply programming the OTTER.

Commands

Once in interactive debug mode, the app uses the readline library to provide a featureful

command prompt, including history accessible by the up and down keys and filename

completion with the tab key. Developers need to have the libreadline-dev (for Ubuntu, might

differ for other distros) package installed when compiling the OD app.

Commands can be given by their full name or by their first 1 or 2 letters as detailed

below. Arguments (if any) are separated by spaces. Numbers can be provided in hex (0x prefix),

octal (0 prefix), or decimal (no prefix). The list of commands and their usage, as well as some

notes, can be obtained by entering “help” or “h” at the prompt. Enter “quit” or “q” to exit the app.

● RESET_ON: reset or r

● RESET_OFF: unreset or u

● WRITE_MEM_RANGE: wfile or wf

● PAUSE: pause or p

● STEP: step or s

● CONTINUE: continue or c

● STATUS: status or st

● READ_MEM: rmem or rm

● WRITE_MEM: wmem or wm

26

● READ_REG: rreg or rr

● WRITE_REG: wreg or wr

● SET_HW_BREAK: bset or bs

● CLR_HW_BREAK: bclear or bc

It is important to remember that because the OD module can only send data to the app

in direct response to a command from the app, the app will not receive a notification when a

breakpoint is hit. The user currently must periodically check the OTTER’s status with the status

command. In the future, this could be improved by having the app poll the module in the

background, so the app can remain responsive for an on-demand pause command while also

notifying the user if the OTTER pauses at a breakpoint.

Integration

Integration of the OTTER debugger module into an OTTER requires a number of steps:

instantiating the module in the OTTER’s main module, inserting the debugger into the reset

signal path, rerouting the IO address and data output signals through the memory module,

adding serial receive and transmit signals and routing them to the top-level module, creating

wrapper modules around the tapped components, modifying the FSM to include a paused state

and related signals, and connecting everything with appropriate signals. Figure 2 shows a

high-level diagram of a completed integration. Further details follow.

27

Figure 2 - high-level block diagram

(credit to Joseph Callenes for original diagram in black)

Instantiating the debugger in the main module is straightforward for students at this

point. The reset signal needs to be rerouted though, so the debugger can cause a reset of the

CPU both on demand and in response to the original reset signal (e.g. a button on the board).

One way to achieve this is to just rename the main module’s RST input to EXT_RST, and leave

all other references to RST as is. The desired result is that the external reset signal is only

routed to the debugger’s rst input, and all other components (e.g. PC, CSR, FSM) are reset only

by the debugger’s mcu_reset output.

28

Before adding the wrapper around the memory module, route the IO address and data

output signals through the memory module so that the debugger can access external

memory-mapped devices through the memory system. This can be accomplished by adding

IOBUS_ADDR and IOBUS_OUT outputs to the memory module, assigned to the addr2 and

din2 inputs respectively within the memory module. Then adjust the routing in the main module

accordingly.

To connect the debugger to the PC-side app via standard serial, add a RX input and a

TX output to the OTTER’s main module, and route them to the debugger. Also route them

through the external top-level module appropriately and update the constraints to connect them

to the RS-232 signals on the Basys3.

The signals shown in figure 2 that have arrowheads at both ends represent groups of

signals, some in one direction and some in the other. Signals should be created in the OTTER’s

main module to link the ports on the debugger to the appropriate components, for example

linking rf_addr and rf_dout on the debugger module to tap_addr and tap_dout respectively on

the RF module’s wrapper (see next section), and linking cu_pause and cu_paused on the

debugger module to pause and paused respectively on the CU FSM module.

Component Wrappers

The debugger needs to be able to inject read and write operations to the program

counter (PC), general register file (RF), control/status register file (CSR), and memory system

(MEM). If it is desired to avoid modifying those four modules directly, wrappers can be added

around them as illustrated in figures 3-6. The instantiations of the four modules should then be

updated in the OTTER’s main module to refer to the wrappers. Then connect all the tap signals

from the debugger to the wrappers.

29

Figure 3 - wrapper for PC

Figure 4 - wrapper for RF

30

Figure 5 - wrapper for CSR

31

Figure 6 - wrapper for MEM

State Machine Modifications

A new paused state (PAUSED) should be added to the OTTER’s FSM, which should

come before the fetch state but after the interrupt-jump state (INTER). Figure 7 shows the

resulting state diagram in a simplified form. Details on outputs such as pcWrite, regWrite, etc

are omitted since students usually work out those details as an assignment. No changes to

those should be necessary for the debugger integration. However note that it is critical that the

PC updates to the new address (from which the next instruction will be fetched) on the transition

to the paused state, not on the transition from the paused state to the fetch state. The same

32

applies to any other action taken between instructions, such as writing to a register. While

paused, the debugger expects that all registers (including CSR and PC) and memory are as

they will be during the following fetch.

Figure 7 - modified state diagram

This form of state diagram, with intermediary points between states, may be unfamiliar to

students. Those points (the small solid black circles) are not states. They are just a more

intuitive representation of the numerous possible transitions between states. For example, there

is a transition from EXEC to PAUSED that occurs if load is false, int is false, and pause is true.

33

And if that transition is to occur on the next clock edge, the pausable signal (a Mealy output)

should be asserted. Similarly, there is a transition from WB to INTER that occurs if int is true,

regardless of load or pause, and in such a case, pausable should not be asserted.

Note that load is a shortcut for the current instruction opcode being a load instruction, in

which case, the writeback (WB) is needed to finish the instruction before proceeding. The

pausable signal, which is routed to the debugger, should only be asserted when the FSM would

consider the pause signal, which is only right before a fetch (unless about to pause). The

interruptible signal is not routed outside the FSM, but may be helpful internally. Note that

interrupt-jumps take precedence over pausing, to avoid the debugger thinking an instruction is

about to fetch and execute while actually a jump to the ISR would occur first.

Demonstration

Figures 8-17 show operation of the OD app connected to the reference OTTER

integration, running in Ubuntu within WSL1 on Windows 10. Figure 8 shows the usage page. In

figure 9, the OTTER is simply programmed with the test_all program, after which the program is

running on the board as normal. The board switches 2, 1 and 0 are set to up, up, and down

respectively, so the tests run at human-readable speed and any errors will cause the test suite

to pause with an error code. In figure 10, the OTTER is programmed again but this time debug

mode is entered, and the OTTER is initially placed in the pause state at the first instruction

before prompting for commands. The various combinations of pause and reset are then

demonstrated.

In figure 11, OTTER memory is written in bulk from a file, then written, read, and reread

individually. Memory access is not permitted when the OTTER is running normally, as activating

34

the memory tap would cause normal memory operations to be ignored briefly. In figure 12,

various registers are read, written, and reread, namely t0 (OD register 5), the program counter

(OD register 32), and mtvec (OD register 838). Register access is not permitted when the

OTTER is running normally, for the same reason as for memory access. Note that some

registers are unwritable (e.g. mtvec) while the OTTER is in reset; writes in such a case simply

fail silently because the hardware reset overrides those writes to keep the registers in a desired

initial state.

The app keeps a cached copy of the OTTER’s status, updating it when status-changing

commands complete. However keep in mind that the app currently doesn’t know if a breakpoint

is hit, so it may think the OTTER is running when it’s actually paused, hence the suggestion for

the user to request a status check. Unfortunately, if the OTTER were reset by an external signal

(e.g. a board button), the app would not be aware if it was now running while the app’s last

knowledge was that it was paused. Future development of the app could add a status check

before every command, at the expense of more serial traffic.

Figure 14 demonstrates a simple debugging session over a couple lines of the test_all

program highlighted in figure 13 (from an independent text editor viewing the program.dump for

test_all). At each instance in the screenshot where the status (st) command was run twice in a

row, there was a gap of time between, during which the lights on the board were watched until

they stopped changing. The second status command confirmed that execution had actually

paused. After each time the OTTER paused, the program counter was read (register 32), and

when relevant, the next machine instruction was read from memory at the corresponding

address.

Elaborating on figure 14, while the test_all program is running on the OTTER, a

breakpoint is set at the first of those lines (the addi instruction). When the OTTER eventually

35

pauses at that instruction address, the value in ra (register 1) is checked, the OTTER is

single-stepped through the addi, and ra is checked again to confirm that it changed to the

desired value. Before executing the following lw instruction, t5 (register 30) and the memory that

the lw will target are read. After single-stepping through the lw, t5 is read again to confirm that it

changed to the value in memory. Then the first breakpoint is cleared and two others are set for

other points in test_all. Since test_all loops through all tests repeatedly, it is expected that the

two new breakpoints will be hit repeatedly in alternating order. Continuing the OTTER a few

times confirms that the first breakpoint is no longer active and the two new ones are hit as

expected. When GDB integration is complete, this process will be simpler and the appropriate

lines of the test_all code will be displayed automatically in GDB as execution is paused or

breakpoints are hit.

Finally, figures 15-17 demonstrate reading and writing custom hardware attached to the

OTTER from the debugger, specifically the switches and 7-segment display respectively on the

Basys3 board. Note that in some OTTER wrapper implementations, including the reference one

currently, the 7-segment display is write-only, and reads will always return 0.

36

Figure 8 - usage page

Figure 9 - programming only

Figure 10 - programming and debugging, testing reset/pause status combinations

37

Figure 11 - reading and writing memory

Figure 12 - reading and writing registers

38

Figure 13 - section of test_all to be debugged, displayed in an external editor

39

Figure 14 - debugging session including single stepping and breakpoints

40

Figure 15 - before reading and writing devices

Figure 16 - reading and writing devices

Figure 17 - after reading and writing devices

41

Completed Deliverables

● OD module and app:

https://github.com/KeefeJ/otter_debugger

● Integration instructions:

See the integration section above, and review the design section as needed.

● Reference integration/implementation:

Cal Poly instructors can email Keefe at keefejohnson@gmail.com for access.

Future Work

GDB Integration

As has been explained, this OTTER debugger was designed from the beginning with

GDB integration in mind as the ultimate goal. It should be possible to complete this integration

by adding to the PC-side app (OD app) some networking and RSP parsing code, without

making any changes to the hardware (OD module) or the serial protocol between the app and

hardware. Future developers should refer to the web pages linked in the references section of

this report for information on implementing the GDB server protocol (RSP) in the OD app,

specifically the page at embecosm.com and the GDB remote protocol/stub pages at

sourceware.org. The embecosm.com article will be especially helpful, as it includes

message-flow diagrams for various GDB commands and scenarios.

42

https://github.com/KeefeJ/otter_debugger
mailto:keefejohnson@gmail.com

It is expected that one command from the GDB client will result in the OD app issuing

multiple commands in sequence to the OD module, as the OD module implements just the

fundamental building blocks that GDB relies on. For example, GDB’s “g” command, which reads

all general registers, will likely translate to 33 individual READ_REG commands to the OD

module, the 32 general registers and the program counter (register 33).

OD app will also likely need to respond to GDB client’s request for processor

information, with an XML-formatted list of general and special (CSR) registers. This would not

necessarily involve any communication with OD module, unless the project is expanded to

support multiple variations of RISC-V, such as the floating-point extension or 64-bit

configuration, in which case it may be desirable to query OD module for its build info.

There is one design aspect that will be a bit tricky to build upon: that OD module never

initiates communication but always only responds to the OD app. When GDB sends the

continue command, it expects no response until the hardware pauses again (i.e. due to a

breakpoint). However, the OD module will respond right away confirming that execution has

continued, and will not inform the OD app when it pauses. The OD app will need to poll the OD

module with the status command, and only reply to GDB when the status indicated paused.

Adapting to Pipelined OTTER

In CPE 333, students make major changes to the OTTER architecture to pipeline it.

Students that enjoyed using the debugger in CPE 233 may want to continue doing so in CPE

333 as well. But the pipelined architecture may significantly complicate debugger integration, as

multiple instructions are in progress at a time. Memory writes occur one cycle earlier than

register writes, so if the pipeline is paused by the debugger, the overall state (of registers and

43

memory) will not always cleanly represent the state between two instructions from the ISA

perspective.

Also, the current state of the program counter would be multiple cycles out of sync with

the state of registers and memory from the ISA perspective. Although it could report the

program counter as previously recorded and passed along the pipeline stages to the final stage,

the memory vs registers out-of-sync issue is harder to work around.

One approach may be to simply pause the fetch stage and let the pipeline empty out,

whenever the debugger requests a pause. This has the benefit of ensuring everything is at a

consistent state from the ISA perspective, as if each instruction had been executed one at a

time. However, this introduces the chance of exposing mistakes in the student’s implementation

of pipeline stalls/squashes, especially if they only designed it for the specific combinations of

instructions that could occur without a debugger.

In addition, in CPE 333, the OTTER’s memory system is extended to handle caching,

requiring the architecture to handle memory operations taking a variable number of clock cycles.

A signaling protocol has been developed to handle such variable-latency memory (VLM)

operations, and adapting the debugger to that protocol for the memory module shouldn’t be very

difficult. The debugger’s FSM currently assumes that a memory operation will always complete

the cycle after initiation, but the feedback from the VLM protocol could be easily used to hold the

debugger’s FSM in a waiting state until the operation is complete.

With the addition of caching in CPE 333, the debugger’s bulk memory write function,

when used for rewriting the program memory of the OTTER (which is the same memory as for

data), can cause caches to get out-of-sync with each other and with the underlying memory.

The debugger currently routes all memory operations through the second memory port, the one

used for load/store instructions. However, if the two ports are separately cached, the other port’s

44

cache will not necessarily be aware of the changes. One solution would be to implement a

cache coherency protocol, however that may be beyond the intended scope of the class, at

least for student implementations. Another solution would be to add a signal to the caches to

make them do pass-through writes when the operation comes from the debugger, to keep

cache 2 and the underlying memory coherent for debugger writes, and add a flush signal to

cache 1 to make it coherent with underlying memory after all debugger writes are complete.

45

References

http://openocd.org/documentation/

https://riscv.org/software-tools/riscv-gdb/

https://riscv.org/specifications/debug-specification/

https://www.youtube.com/watch?v=_mRLFrdzSN4

https://github.com/riscv/riscv-isa-sim#debugging-with-gdb

https://www.embecosm.com/appnotes/ean4/embecosm-howto-rsp-server-ean4-issue-2.html

https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html

https://sourceware.org/gdb/onlinedocs/gdb/Remote-Stub.html

https://www.gnu.org/software/libc/manual/html_node/Noncanon-Example.html

https://www.cmrr.umn.edu/~strupp/serial.html

http://unixwiz.net/techtips/termios-vmin-vtime.html

https://www.nandland.com/vhdl/modules/module-uart-serial-port-rs232.html

https://ibex-core.readthedocs.io/en/latest/cs_registers.html

https://sourceware.org/gdb/wiki/GDB%20Front%20Ends

https://github.com/riscv/riscv-isa-sim/blob/master/README.md

http://openocd.org/doc/html/GDB-and-OpenOCD.html

46

http://openocd.org/documentation/
https://riscv.org/software-tools/riscv-gdb/
https://riscv.org/specifications/debug-specification/
https://www.youtube.com/watch?v=_mRLFrdzSN4
https://github.com/riscv/riscv-isa-sim#debugging-with-gdb
https://www.embecosm.com/appnotes/ean4/embecosm-howto-rsp-server-ean4-issue-2.html
https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html
https://sourceware.org/gdb/onlinedocs/gdb/Remote-Stub.html
https://www.gnu.org/software/libc/manual/html_node/Noncanon-Example.html
https://www.cmrr.umn.edu/~strupp/serial.html
http://unixwiz.net/techtips/termios-vmin-vtime.html
https://www.nandland.com/vhdl/modules/module-uart-serial-port-rs232.html
https://ibex-core.readthedocs.io/en/latest/cs_registers.html
https://sourceware.org/gdb/wiki/GDB%20Front%20Ends
https://github.com/riscv/riscv-isa-sim/blob/master/README.md
http://openocd.org/doc/html/GDB-and-OpenOCD.html

