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Abstract 

This project is a debugger and programmer for the OTTER CPU, the implementation of 

the RISC-V ISA used by Cal Poly to teach computer architecture and assembly language in 

CPE 233/333 and usually implemented on the Basys3 FPGA development board. With this tool, 

students can quickly program their OTTER with a new/revised RISC-V program binary without 

resynthesizing the entire FPGA design. They can then use the debugger from a PC to 

pause/continue/single-step execution and set breakpoints, while inspecting and modifying 

register and memory contents. This enables real-time debugging of OTTER projects involving 

custom hardware such as a keyboard and VGA monitor, previously unavailable to students. 

Future work will integrate this debugger with GDB to enable powerful debugging within a 

graphical IDE. 
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References 47 

Introduction 

The OTTER Debugger is a tool for students of CPE 233 (Computer Design and 

Assembly Language Programming) to enhance their learning experience with implementing the 

RISC-V ISA in their CPU and writing low-level code to run on it. It consists of an HDL module to 

be integrated into their OTTER CPU, and a Linux app to run on a PC, which interface with each 

other via a serial connection. It is typically used for an OTTER implemented in an FPGA on a 

development board like the Basys3. It provides the student the ability to quickly update the 

program memory in their OTTER from a binary on the PC, without resynthesizing and 

reprogramming the FPGA. And it enables them to debug machine code running on their 

OTTER, by single-stepping, setting breakpoints, and reading/writing registers and memory. It 

can also help them debug their hardware design to some extent. 

Stakeholders 

The project has two primary groups of stakeholders: CPE 233 students, and CPE 233 

instructors. Both benefit from this OTTER debugger, and both are likely to contribute to the 

project’s future development as well. 

Students will benefit from being able to debug RISC-V code on their OTTER from a 

software perspective on their PC, when completing assembly language assignment and when 

developing their own end-of-course project. They will also save a significant amount of time 

each time they revise a program to be run on their OTTER, as the debugger is able to stream a 

program binary into the OTTER’s memory in seconds. Without the debugger, it can take 5-10 

3 



minutes to resynthesize the entire OTTER, because the initial memory contents are treated as 

source code by the HDL synthesizer. 

Students will be the ones to use the provided instructions to integrate the debugger 

module into their own implementation of the OTTER. The instructions should be sufficiently 

thorough to enable successful integration, while supporting their learning about digital hardware 

design. 

The project also has room for enhancement, especially integration with GDB, and one or 

more students may choose to take on future development as part of a class project or senior 

project. Thus, the project documentation should describe how the design decisions build a 

foundation for that future development, and how GDB can work with this foundation. 

Instructors may choose to make integration of this debugger one of the class 

assignments. Thus it is helpful to provide a reference integration implementation for testing and 

analysis purposes. This should not be made public, but made available only to instructors, so 

students aren’t tempted to copy parts of the reference OTTER implementation as they 

implement their own OTTER. 

The project also might be useful for automating the process of grading students’ 

assembly language assignments. Instructors could develop scripts to automatically load a 

student’s code into an OTTER, run it, and inspect the results in registers and memory. This 

scripting capability is beyond the scope of the current development cycle, but future 

development of the project may make this possible. 

Deliverables 

The primary deliverables are the debugger module written in SystemVerilog and the 

PC-side debugger app written in C. These will be publicly hosted on GitHub. Another deliverable 
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is the instructions for integrating the debugger module into the OTTER. This will be provided in 

the design and integration sections of this report. And for instructors, the final deliverable is a 

reference integration/implementation of the debugger module into an OTTER, which will be 

tested to ensure all debugger functions work properly. This will be privately hosted on GitHub 

and access will be provided to any Cal Poly instructor upon request. 

Outcomes 

With this debugger, CPE 233 students will be able to more quickly run assembly code on 

their OTTER. They will also be able to debug such code running on their OTTER, including 

real-time interaction with any custom hardware attached to their OTTER such as a keyboard or 

VGA monitor. This interaction with custom hardware is a unique capability that isn’t possible 

with the Spike RISC-V simulator nor with HDL simulation. 

This debugger will provide a foundation for future development of the project to interface 

the PC-side app with GDB. This will enable students to use a popular debugging tool (GDB) to 

visualize the execution of RISC-V assembly or C code on their own OTTER. They will likely also 

be able to use graphical IDEs to do the same with a more modern interface. 

Background 

Debuggers exist for most computer systems, as they are a nearly indispensable tool for 

software development. They generally provide a programmer the ability to pause execution of 

their code on demand or when execution reaches a specific point, step one instruction or source 

code line at a time, and inspect and even modify memory and register contents. Some systems 

use debuggers that run within an operating system, while others are debugged on bare-bones 
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hardware. GDB is a popular and versatile open-source debugger that is designed to work on 

and with a variety of computer platforms. It is modular and uses well-defined interfaces to 

connect to other software. Through those interfaces, GDB can be extended to work with a 

variety of hardware and communicate via a variety of physical connections. While GDB’s core 

provides a text console user interface, it can also be integrated on the user interface side with 

graphical IDEs to provide a more rich and convenient user interface. Figure 1 illustrates how 

GDB interfaces with hardware and user interfaces, with the highlighted blocks representing the 

deliverables of the project’s current development cycle 

 

Figure 1 - how GDB interfaces with hardware and user interfaces 

GDB can be broken down into two main components: GDB client and GDB server. Most 

programmers are familiar with using GDB as a single application, in which case both the server 

and client components operate in one integrated program. But it’s also possible to connect the 
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GDB client to a remote GDB server over a network connection (which may be routed over an 

actual network or simply within localhost), in which case the two components communicate with 

each other using the Remote Serial Protocol (RSP). This is illustrated in figure 1 by a GDB 

server running on Linux. This protocol is also used to connect the GDB client to other 

applications that can interface with other hardware that GDB itself doesn’t know how to connect 

to. One such popular application is OpenOCD, which primarily interfaces with hardware via a 

physical JTAG connection. OpenOCD is also capable of interfacing with Spike, a RISC-V 

simulator, via another network connection. In both cases, the GDB client sees OpenOCD as a 

GDB server providing a standard interface to the hardware (physical or simulated). 

The future goal of the OTTER debugger (OD), is for the OD app to similarly interface 

with the GDB client. Although the current project development cycle won’t provide that interface 

yet, design decisions were made with that future integration in mind. In the meantime, the OD 

app will provide its own text console user interface. 

Extending OpenOCD directly was considered, but it was decided to develop the OD app 

independently from OpenOCD. The primary use case of this debugger is for CPE 233 students 

who use the Basys3 FPGA development board to implement their OTTER. Since the most 

convenient connection between the PC and the Basys3 board is a standard serial port 

encapsulated in the USB protocol, the simplest way to interface with the OD module in the 

OTTER is to design the OD app to use that serial connection directly. Attempting to use JTAG 

would require both implementing the JTAG protocol in hardware (separate from the JTAG 

connection that is used to program the FPGA), and using a special cable to connect that JTAG 

interface (likely through the PMOD port) to an adapter connected to the PC. 

Before this OTTER debugger, students had two main options for debugging 

RISC-V/OTTER code. They could run their code in a RISC-V simulator such as Spike, but they 

7 



would not be able to debug interaction with any custom hardware attached to their OTTER, 

such as LEDs, switches, or a VGA monitor, and any flaws in their hardware design would be 

missed. Or they could run their OTTER and RISC-V code in a Verilog simulator, but simulation 

of custom hardware (especially VGA or keyboard) would be limited and inspection/modification 

of registers and memory could be cumbersome. 

Design 

Constraints 

The project design was influenced significantly by three primary goals: provide a system 

that students can use in the early stages of implementing their OTTER, make its integration with 

their OTTER intuitive, straightforward, and low-level, and build a foundation for future integration 

with GDB. 

There are two main approaches to how debuggers interact with the hardware. On a 

typical x86 PC, debuggers such as GDB work within an environment that has an operating 

system. They usually set code breakpoints by replacing an instruction with an invalid opcode to 

trigger an interrupt. Then they read/write memory and registers by executing standard CPU 

instructions. In other words, software is used to debug software. The other main approach is to 

tap into the underlying hardware, and read/write memory and registers via an out-of-band 

hardware interface, often JTAG. 

Because students of CPE 233 aren’t running an operating system on their OTTER, and 

they usually don’t add interrupt support until later in the course, this project adopted the second 

approach. They also may want to begin using this debugger before their implementation is 
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proven correct. As students implement their OTTER, they start with the core functionality, 

namely memory, registers, program counter, ALU, and FSM. At this point, they begin debugging 

their implementation to find mistakes in the ALU, instruction decoder, and other components. If 

the debugger worked by executing instructions on the OTTER to read/write memory/registers, 

any flaws in the OTTER would confound the debugging attempt. 

So by implementing the debugger with direct low-level taps into the relevant 

components, and keeping all debugging control flow in the dedicated already-proven module 

and app, the debugger is usable earlier on. And the approach is more intuitive for the students, 

as they see the direct connection between the debugger and the components being 

read/written. 

The project ultimately aims to build a foundation for future integration with GDB, the 

popular open-source debugger. GDB is designed in a modular fashion, with any hardware 

integration (GDB server) separate from the user interface (GDB client), and with a well-defined 

communication protocol between the two. The next step after this project is to expand the 

PC-side app to communicate via GDB’s client/server protocol so students can run GDB or a 

graphical interface on top of it, and have it interface with the OTTER through the PC-side app. 

Thus, the choices made in this project regarding which functionality it provides (e.g. read one 

register, change the program counter, set a breakpoint, etc) were made after researching the 

GDB protocol and the minimum functionality it requires to work on any hardware. 

Hardware Taps 

The OD module is designed to have direct low-level read/write access to nearly all of the 

OTTER’s state. This includes every synchronous component: program counter (PC), register file 

(RF), control/status registers (CSR), memory (MEM), and control unit state machine (CU FSM). 
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At least while the OTTER is paused, it is able to temporarily override anything the OTTER would 

normally be doing with the non-FSM components. This is done through “taps,” which pass 

through normal operations when not activated, but give precedence to operations from the 

debugger when activated. 

Note that currently, the OD module will use the taps to process commands even when 

the OTTER is not paused, though doing so would cause any normal operations to be lost. It 

expects the OD app to avoid doing so. 

The use of these distinct taps keeps the block diagram simple. They minimize the 

apparent complexity, and help the student focus on the OTTER architecture during the design 

process. The student can simply ignore the taps when working on the OTTER implementation, 

as the taps don’t impact normal operation until the debugger activates them, generally during a 

pause. 

See the integration section of this report for diagrams of how the taps affect component 

operation. 

Signal Naming Convention 

For consistency, all the taps use the same signal naming convention, even though the 

original OTTER design uses different names for the same functionality from one component to 

the next (e.g. the PC’s ld, the RF’s en, and the MEM’s memWrite all perform the same function). 

The convention, derived from that of many Xilinx modules, is as follows: 

● tap_en (debugger to component): activate the tap, suppressing normal operations and 

allowing the debugger to read or write the register/memory 

● tap_we (debugger to component): if the tap is activated, perform a write from the 

debugger rather than a read 
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● tap_addr (debugger to component): if the component stores multiple values, the 

address/index/ID of the location within the component, otherwise omitted (e.g. PC) 

● tap_din (debugger to component): the data to write to the component at the given 

address (if applicable), if the tap is activated (en) and we is asserted 

● tap_dout (component to debugger): the data read from the component from the given 

address (if applicable), which is arbitrary if the tap is not activated 

Component Operation Injection 

Operations are injected through the taps by muxing the relevant input signals based on 

the taps en signal. When tap_en is asserted, the underlying component gets its write-enable, 

address, and data-in signals from the debugger through the tap signals, rather than from the 

normal data/control path. When the tap is enabled, any normal operation is ignored. The 

tap_dout signal is generally routed directly to the component’s normal output. Thus when the 

tap is not active, data from other addresses will likely appear on this signal, but the debugger 

ignores it unless it has activated the tap to intentionally read or write. 

There are a couple variations to note however. The OTTER is designed with 

synchronous-read memory, so for the memory component, tap_dout is meaningful the cycle 

after the tap is activated, even if the tap is deactivated after a single cycle. And for the program 

counter (PC), the debugger needs to continually monitor the internal next-pc value for matching 

against breakpoints. So an additional signal, tap_next, is included for the PC, and always 

presents what the PC’s output (and tap_dout) will become after the next clock edge. 
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OTTER Control Unit FSM 

The debugger needs to be able to reset the rest of the OTTER, including the FSM, and 

pause the FSM between instructions. For the reset, the debugger sits between any external 

reset signal (e.g. a board button) and the rest of the OTTER. It passes through any external 

reset, but additionally asserts reset upon request from the OD app. 

For pausing, the debugger can assert the cu_pause signal at any time. But the OTTER 

FSM will only respond to that at appropriate times, namely right before directing a fetch. The 

OTTER FSM generally cycles through the fetch, execute, and (for memory loads only) write 

back states. Before proceeding to the next fetch (or if being reset), it first checks if an interrupt is 

pending, and if so, goes to the interrupt state for one cycle, during which it jumps the PC to the 

ISR. The FSM doesn’t let the debugger pause the OTTER between an instruction and a 

jump-to-ISR. This is intended to avoid the situation where the OD app thinks a particular 

instruction is about to (fetch and) execute, but actually a jump-to-ISR is about to happen first. 

Instead, pausing is allowed only after any jump-to-ISR. The goal is for all the OTTER’s state 

during a pause, to always represent the state it will be in during the following fetch (after 

unpaused). Thus, no changes in other parts of the OTTER (e.g. registers, PC, etc) should 

change on the FSM’s transition from paused to fetch. 

The FSM gives feedback on its state to the debugger in the form of the paused and 

pausable signals. The paused signal is high if and only if the FSM is in the paused state. The 

pausable signal is high in the cycle before the FSM would transition to the fetch state if pause 

isn’t asserted. Note that if a jump-to-ISR (INTER state) is coming first, pausable is not asserted, 

but if a transition to the paused state is about to occur, pausable remains high. However, once 
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in the paused state, pausable is held low, as this helps the debugger avoid getting stuck when 

paused on a hardware breakpoint. 

Serial Protocol 

The OD app and OD module communicate with each other via standard serial. This 

protocol was chosen because the Basys3 FPGA development boards provide tunneling of a 

virtual serial port on the PC to RX/TX pins in the FPGA accessible to the logic. By using this, no 

additional cabling or adapters are needed to operate the debugger. The most common settings 

were chosen: 1 start bit, 8 data bits, no parity bits, and 1 stop bit. And although the debugger 

module can be easily configured for an arbitrary speed via a parameter, 115,200 baud was 

chosen for the default speed. Since each byte takes 10 bits including start and stop, it is 

possible to transfer data at 11,520 KB/s. 

Synchronization 

To simplify the protocol and avoid any possible race conditions, it was decided to have 

the OD app initiate all communication, with the OD module only sending data in response to app 

commands. Also, all communication is done in 32-bit word chunks, as this OTTER configuration 

operates on 32-bit values for most things, such as addresses, register contents, and most 

memory accesses. 

However, the serial protocol operates one byte at a time, so if the app or PC 

malfunctions, it’s possible for only 1, 2, or 3 bytes to be sent. If the app were then restarted, new 

words would be treated as part of two words. So a timeout is implemented. If less than a full 

word is received by the module, and a full second of silence elapses, the partial word is 

discarded. If the same happens to the app, it simply emits an error and quits. Similarly, if 2 
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seconds of silence elapse in the middle of a multi-word command or data stream, the module 

responds with an error and returns to the idle state. 

Message Validation 

In early testing, data corruption happened sporadically, often related to certain bytes or 

combinations of bytes sent over the serial port. It was ultimately discovered that there were 

numerous settings on the PC side, that defaulted to mangling data in various ways, such as 

translating newlines between Unix and Windows style, treating certain bytes or combinations 

thereof as control codes, echoing data received, etc. These issues differed on different systems, 

such as Mac vs Linux vs WSL in Windows. 

So to make the protocol more robust, and avoid seemingly random symptoms, a 

validation scheme was applied to the OD module/app protocol. All command codes are 3 bytes 

long with a checksum (a simple XOR of the 3 bytes) as the 4th byte. All commands are echoed 

back to the app so the app knows the command was successfully received. And all subsequent 

data transferred, such as command arguments or data in either direction, is also run through a 

checksum algorithm (a simple XOR of all words). The module sends back the total checksum of 

all data transferred in either direction, as a single word, at the end of the full exchange for that 

command. The app verifies that it received the expected echo and correct checksum, and 

reports a communication failure to the user otherwise. 

Commands 

All commands adhere to the following format of data exchange: 

● The app sends the command word to the module. (cmd) 

● The module replies back with an echo of the command. (echo) 
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● The app sends any command arguments to the module. (args) 

● The app sends any data destined for the OTTER. (wdata) 

● The module sends any response data to the app. (rdata) 

● If the expected number of words were sent and received, and if the command 

involved more than just the command word and its echo, then the module 

finalizes the exchange by sending the checksum of all data transferred in either 

direction since the command echo. (cksum) 

The following commands are currently implemented: 

● RESET_ON: put the OTTER into the reset state (memory can still be written) 

○ no args, no wdata, no rdata 

● RESET_OFF: take the OTTER out of the reset state 

○ no args, no wdata, no rdata 

● WRITE_MEM_RANGE: write multiple words to sequential memory locations 

starting at the specified address 

○ args = {addr, num_words}, wdata = 1+ words, no rdata 

● PAUSE: put the OTTER into the paused state (can be combined with reset to 

pause upon release of reset) after completing the in-process instruction and/or 

jump-to-ISR 

○ no args, no wdata, no rdata  

● STEP: proceed to execute the one instruction currently paused at, and return to 

the paused state (after any pending jump-to-ISR), or just pause if not already 

○ no args, no wdata, no rdata  

● CONTINUE: unpause the OTTER, resuming continuous execution 

○ no args, no wdata, no rdata 
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● STATUS: report the pause and reset conditions (any possible combination of 

these two conditions can occur) 

○ no args, no wdata, rdata = {bit1: pause, bit0: reset} 

● READ_MEM: read a single word from memory 

○ args = {addr}, no wdata, rdata = 1 word 

● WRITE_MEM: write a single word to memory 

○ args = {addr}, wdata = 1 word, no rdata 

● READ_REG: read a single word from a register (PC, RF, or CSR) 

○ args = {addr}, no wdata, rdata = 1 word 

● WRITE_REG: write a single word to a register (PC, RF, or CSR) 

○ args = {addr}, wdata = 1 word, no rdata 

● SET_HW_BREAK: set a hardware breakpoint, where execution should pause 

○ args = {index}, wdata = {addr}, no rdata 

● CLR_HW_BREAK: clear a hardware breakpoint 

○ args = {index}, no wdata, no rdata 

Hardware Module 

The OD module interfaces between the OTTER and the PC, using the taps to observe 

and manipulate the OTTER in response to serial protocol commands from the PC. Major 

components of the module include the serial transceiver (uart_*), a state machine, a timeout 

counter, a set of hardware breakpoint registers and comparators, address and index registers 

for tracking memory/register addresses and breakpoint indices, persistent pause and reset 

signals (flip-flops), a register tap splitter for merging the PC, RF, and CSRs into a single register 

space, and a checksum accumulator. 
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Some characteristics of the module are parameterized. Since the serial transceiver 

needs to operate at a specific speed, but the OD module can’t independently determine the 

frequency of its clock signal, there is a parameter that the OTTER must use to inform the OD 

module of its clock speed. This is passed along to the serial transceiver so it can count the 

appropriate number of clock cycles between bits sent and received over the serial lines. 

The baud and timeout parameters determine the timing of serial communication. The 

baud rate must match between the OD module and the OD app. The timeouts don’t need to 

match between the module and app, but should be set to high enough values to allow for 

temporal hiccups in the stream of bytes and words from the PC, while minimizing the chance 

that a quick restart of the app after a communication glitch will result in misunderstanding 

between the module and app. 

Another parameter is the number of hardware breakpoint registers/comparators to infer. 

If this is changed, the corresponding macro in the OD app should also be changed to match. 

The number of breakpoints is a tradeoff between the potential desire for the user (or GDB) to 

activate many simultaneous breakpoints, and the resource requirements of a register and 

comparator for each, as well as the gate fanout for connecting one next-PC signal to multiple 

comparators. 

It is important to keep in mind that these parameters have default values in the debugger 

module, but can be overridden in the parent module (the OTTER) at the point of instantiation. 

While it is nice to be able to customize the module without touching its source code, one must 

be careful to not later assume the default values specified in the module source are still in 

effect. 
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Serial Transceiver 

One of the more complex parts of the module is the serial transceiver. Compared to the 

system clock speed, serial bits are very slow and span a large number of system clock cycles. If 

a raw physical serial connection is being used (rather than a virtual one through USB where the 

signal is already cleaned up), the edges of the signals on the serial lines can be noisy. Thus a 

serial transceiver should attempt to avoid the noise by either oversampling or simply seeking the 

temporal center of the bits based on the first edge of the start bit. 

As sending and receiving serial communication is widespread among hardware designs, 

it was decided to not implement this from scratch but obtain a polished implementation from 

another developer. Modules for sending and receiving at the byte level were obtained from 

nandland.com (see the references section of this report). These modules (uart_rx and uart_tx) 

signal to their parents when one byte has been completely received or sent. Additional modules 

to operate at the word level (uart_rx_word and uart_tx_word) were then developed on top of the 

byte-level transceiver, to notify the OD module only when an entire word has been sent or 

received. 

While it is generally a good idea to reset all of a system’s state when the reset signal is 

asserted, an exception was made for the serial transceiver. If the OTTER were reset by an 

external trigger like a board button, while any serial communication was in progress (as would 

likely happen if the user were to externally reset the board during an active debugging session), 

then including the serial transceiver in the reset would result in it getting out of sync with what bit 

of a byte was currently being sent or received. So the external reset signal was intentionally not 

routed into byte-level parts of the serial transceiver. This way, if an external reset occurs 
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mid-byte, it will still be able to finish sending or receiving the entire byte and stay in sync with 

the OD app. 

State Machine 

The OD module’s state machine sequences responses to and operations in support of 

commands received from the app. It spends most of its time in the idle state, the only state in 

which it accepts commands. Once a valid command is received, it begins waiting for arguments, 

or data as appropriate for the command. If the timeout expires (2 seconds by default) without 

the module having received the expected words for the command, an error code is sent back to 

the app, and the FSM returns to the idle state. The FSM also ensures that the serial transmit 

line is free before initiating transmission of another word. There is no timeout for sending 

because the serial transceiver simply sends the bits in order without any means of pausing or 

confirming receipt, thus the FSM won’t hang waiting to send. 

The following commands are currently supported. This is the same list of commands as 

above in the serial protocol section, but detailing how the module implements the commands: 

● RESET_ON: sets the mcu_reset persistent signal (stays set until RESET_OFF is 

received) 

○ no args, no wdata, no rdata 

● RESET_OFF: clears the mcu_reset persistent signal (stays cleared until 

RESET_ON is received) 

○ no args, no wdata, no rdata 

● WRITE_MEM_RANGE: after receiving the starting address and number of 

words, keeps the memory tap active while writing the subsequent words from the 

app to sequential memory addresses 
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○ args = {addr, num_words}, wdata = 1+ words, no rdata 

● PAUSE: sets the cu_pause persistent signal (stays set until STEP or CONTINUE 

is received) and waits for the FSM to enter the paused state before echoing the 

command 

○ no args, no wdata, no rdata 

● STEP: briefly clears cu_pause (for one clock cycle), sets it again (stays set until 

STEP or CONTINUE is received), and waits for the FSM to reenter the paused 

state before echoing the command 

○ no args, no wdata, no rdata  

● CONTINUE: clears the cu_pause persistent signal (stays cleared until PAUSE is 

received or a hardware breakpoint is hit) 

○ no args, no wdata, no rdata 

● STATUS: reports the state of the mcu_reset and cu_pause persistent signals to 

the app 

○ no args, no wdata, rdata = {bit1: pause, bit0: reset} 

● READ_MEM: activates the memory tap to read a single word from the specified 

address in memory, waits one cycle for the data to arrive from memory, and 

sends it to the app 

○ args = {addr}, no wdata, rdata = 1 word 

● WRITE_MEM: receives a single word from the app and activates the memory tap 

to write it to the specified address in memory 

○ args = {addr}, wdata = 1 word, no rdata 

● READ_REG: activates one of the register taps to read a single word from the 

specified register (address determines PC, RF, or CSR), and sends it to the app 
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○ args = {addr}, no wdata, rdata = 1 word 

● WRITE_REG: receives a single word from the app and writes it to the specified 

register (address determines PC, RF, or CSR) 

○ args = {addr}, wdata = 1 word, no rdata 

● SET_HW_BREAK: sets the specified (by index) hardware breakpoint to the given 

address and activates it, which triggers a pause if and when the program counter 

changes to the address 

○ args = {index}, wdata = {addr}, no rdata 

● CLR_HW_BREAK: deactivates the specified (by index) hardware breakpoint 

○ args = {index}, no wdata, no rdata 

Register Numbers 

The OTTER debugger considers the program counter (PC), general purpose registers 

(RF), and control/status registers to all be just registers in a broad sense, with unique numbers 

to distinguish them. This mimics the behavior of Spike when attached through OpenOCD to 

GDB. The module routes tap activations and operation details to the appropriate component’s 

tap based on the register number. The register numbers are translated as follows: 

● 0-31: RF 

● 32: PC 

● 65-4160: CSR (register number = CSR # + 65) 

● others: undefined behavior 

The 4 CSRs currently implemented in the reference OTTER are as follows, though more 

can be added to the OTTER without any revision to the debugger, as the OD module simply 

subtracts 65 and passes it on to the CSR component. 
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● mstatus: CSR 0x300 (768), OD register number 833 

● mie: CSR 0x304 (772), OD register number 837 

● mtvec: CSR 0x305 (773), OD register number 838 

● mepc: CSR 0x341 (833), OD register number 898 

PC Application 

The OD app bridges the gap between the user (or GDB client in the future) and the 

hardware. It communicates with the OD module using the serial protocol, programs the OTTER 

on startup, and optionally enters an interactive debug mode where the user can use all the 

commands that the OD module supports (see the user interface section of this report). 

Raw Serial Configuration 

The app needs unfiltered unmodified access to the serial port, as communication with 

the OD module uses a binary protocol with no regard for the nuances of newlines in various 

operating systems or cursor/formatting control codes. It was a bit of a challenge determining all 

of the necessary flags for configuring the Linux serial driver (through the tcsetattr library call) to 

simply pass all bytes along unmodified. By default, the driver does special stuff when certain 

control codes are sent over the line. It also sometimes echoes data received, and/or translates 

newlines between Unix and Windows style. 

At one point, random fuzzing was performed with the hardware simply calculating and 

echoing a checksum of all data received. When the checksum didn’t match, subsets of the 

random data were retried until the exact byte sequence that was being mangled was identified. 

What was sufficient on one system turned out to be insufficient on another, but after a few 

iterations, it appears that all such issues have been resolved. The article from Michael Sweet at 
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the University of Minnesota was invaluable in tracking down some of the remaining 

configuration flags. 

In case the app is being used on a system on which other serial apps expect all the 

default behavior, the app saves all the serial configuration on startup, and registers a Ctrl-C 

signal handler and an exit handler so it gets a chance to restore the serial configuration before 

the app exits. 

Modularity 

The app is written with many small functions, building up from simply sending or 

receiving a word, to waiting for timeouts and expecting certain responses, to handing all 

communication for a specific OD command. This will make future development easier, when 

higher-level functions are written to translate GDB commands to sequences of OD commands. 

At the lowest level, the send_word and recv_word functions ensure that an entire word is 

sent or received, handling error cases, incomplete transmission, and user interrupts (Ctrl-C). 

They rely on the serial configuration at app startup for specifying how much time is allowed 

between bytes and how many bytes it waits for. The termios article from unixwiz.net was helpful 

in understanding how timeouts vs minimum bytes can be balanced. 

The wait_readable function deals with any timeouts between the words of a command 

exchange. This allows for a longer time between words than between bytes. The OD 

module-app protocol always transfers whole words at a time, but there could theoretically be 

small delays between words for certain commands that wait for some action to occur or 

complete before proceeding. 

The expect_* functions help higher-level functions streamline handling of the protocol. 

For example, expect_word is used when receiving from the module and only one response is 
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correct, such as the correct checksum or matching command echo. The expect_any_word 

function simply encapsulates the timeout handling, while not restricting the response to a 

particular word, and the expect_timeout function could be useful in the future if needed to 

ensure the line is idle at startup or after a command. 

Checksums are used on all communication, so there is a macro (APPLY_CMD_CKSUM) 

for applying the checksum to command codes, and a function (verify_checksum) for verifying 

that the correct checksum is received from the module at the end of a command exchange. A 

global variable is used to accumulate the checksum on all data sent or received after the 

command echo. 

For long-running commands such as WRITE_MEM_RANGE which is used for 

programming the OTTER (writing a program binary to instruction memory) at app startup or on 

request, the function flush_and_show_progress is used to provide feedback to the user on the 

completion percentage. 

Built upon that foundation, there are functions for each of the OD commands as follows: 

● RESET_ON: enter_reset_state 

● RESET_OFF: exit_reset_state 

● WRITE_MEM_RANGE: write_mem_range, which is factored into a few other 

unmentioned functions 

● PAUSE: set_paused_status 

● STEP: single_step 

● CONTINUE: clear_paused_status 

● STATUS: get_status 

● READ_MEM: read_mem 

● WRITE_MEM: write_mem 
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● READ_REG: read_reg 

● WRITE_REG: write_reg 

● SET_HW_BREAK: set_hw_breakpoint 

● CLR_HW_BREAK: clear_hw_breakpoint 

User Interface 

In lieu of future GDB integration, a barebones user interface is provided by the OD app. 

It simply enables the user to issue all of the above-mentioned commands through their 

respective functions. The app always programs the OTTER on startup by using 

write_mem_range to send the contents of a binary file, after putting the OTTER into reset with 

enter_reset_state. Then if the user opts for debug mode, it pauses the OTTER 

(set_paused_status) before releasing the reset (exit_reset_state) so execution pauses at the 

written program’s first instruction. If not using debug mode, the OTTER is released from reset 

without pausing, useful for simply running a program on the OTTER that was compiled on the 

PC. 

Command Line Arguments 

When running the OD app, the user must specify a binary file to program the OTTER 

with, as the first command-line argument. 

The user must also specify the serial port to use as the second argument. On Linux, 

virtual serial ports routed over USB (as is the case for the Basys3 board), are usually named like 

“/dev/ttyS1” where the number 1 may differ. No auto-select feature is offered, but the OD 

protocol is sufficiently rigid that it is obvious if a non-OD serial device is specified; the command 

echo or data checksum will make it clear to the app whether it’s talking to the OD module. One 
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should keep in mind that the Basys3 provides two virtual serial ports, one for configuring the 

FPGA (used by Vivado to write a bitstream) and the other for communicating with logic in the 

FPGA (the OTTER). 

If the word “DEBUG” (all caps) is given as the third argument, the interactive debug 

mode is entered. Otherwise, the app exits after simply programming the OTTER. 

Commands 

Once in interactive debug mode, the app uses the readline library to provide a featureful 

command prompt, including history accessible by the up and down keys and filename 

completion with the tab key. Developers need to have the libreadline-dev (for Ubuntu, might 

differ for other distros) package installed when compiling the OD app. 

Commands can be given by their full name or by their first 1 or 2 letters as detailed 

below. Arguments (if any) are separated by spaces. Numbers can be provided in hex (0x prefix), 

octal (0 prefix), or decimal (no prefix). The list of commands and their usage, as well as some 

notes, can be obtained by entering “help” or “h” at the prompt. Enter “quit” or “q” to exit the app. 

● RESET_ON: reset or r 

● RESET_OFF: unreset or u 

● WRITE_MEM_RANGE: wfile or wf 

● PAUSE: pause or p 

● STEP: step or s 

● CONTINUE: continue or c 

● STATUS: status or st 

● READ_MEM: rmem or rm 

● WRITE_MEM: wmem or wm 
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● READ_REG: rreg or rr 

● WRITE_REG: wreg or wr 

● SET_HW_BREAK: bset or bs 

● CLR_HW_BREAK: bclear or bc 

It is important to remember that because the OD module can only send data to the app 

in direct response to a command from the app, the app will not receive a notification when a 

breakpoint is hit. The user currently must periodically check the OTTER’s status with the status 

command. In the future, this could be improved by having the app poll the module in the 

background, so the app can remain responsive for an on-demand pause command while also 

notifying the user if the OTTER pauses at a breakpoint. 

Integration 

Integration of the OTTER debugger module into an OTTER requires a number of steps: 

instantiating the module in the OTTER’s main module, inserting the debugger into the reset 

signal path, rerouting the IO address and data output signals through the memory module, 

adding serial receive and transmit signals and routing them to the top-level module, creating 

wrapper modules around the tapped components, modifying the FSM to include a paused state 

and related signals, and connecting everything with appropriate signals. Figure 2 shows a 

high-level diagram of a completed integration. Further details follow. 
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Figure 2 - high-level block diagram 

(credit to Joseph Callenes for original diagram in black) 

Instantiating the debugger in the main module is straightforward for students at this 

point. The reset signal needs to be rerouted though, so the debugger can cause a reset of the 

CPU both on demand and in response to the original reset signal (e.g. a button on the board). 

One way to achieve this is to just rename the main module’s RST input to EXT_RST, and leave 

all other references to RST as is. The desired result is that the external reset signal is only 

routed to the debugger’s rst input, and all other components (e.g. PC, CSR, FSM) are reset only 

by the debugger’s mcu_reset output. 
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Before adding the wrapper around the memory module, route the IO address and data 

output signals through the memory module so that the debugger can access external 

memory-mapped devices through the memory system. This can be accomplished by adding 

IOBUS_ADDR and IOBUS_OUT outputs to the memory module, assigned to the addr2 and 

din2 inputs respectively within the memory module. Then adjust the routing in the main module 

accordingly. 

To connect the debugger to the PC-side app via standard serial, add a RX input and a 

TX output to the OTTER’s main module, and route them to the debugger. Also route them 

through the external top-level module appropriately and update the constraints to connect them 

to the RS-232 signals on the Basys3. 

The signals shown in figure 2 that have arrowheads at both ends represent groups of 

signals, some in one direction and some in the other. Signals should be created in the OTTER’s 

main module to link the ports on the debugger to the appropriate components, for example 

linking rf_addr and rf_dout on the debugger module to tap_addr and tap_dout respectively on 

the RF module’s wrapper (see next section), and linking cu_pause and cu_paused on the 

debugger module to pause and paused respectively on the CU FSM module. 

Component Wrappers 

The debugger needs to be able to inject read and write operations to the program 

counter (PC), general register file (RF), control/status register file (CSR), and memory system 

(MEM). If it is desired to avoid modifying those four modules directly, wrappers can be added 

around them as illustrated in figures 3-6. The instantiations of the four modules should then be 

updated in the OTTER’s main module to refer to the wrappers. Then connect all the tap signals 

from the debugger to the wrappers. 
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Figure 3 - wrapper for PC 

 

Figure 4 - wrapper for RF 
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Figure 5 - wrapper for CSR 
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Figure 6 - wrapper for MEM 

State Machine Modifications 

A new paused state (PAUSED) should be added to the OTTER’s FSM, which should 

come before the fetch state but after the interrupt-jump state (INTER). Figure 7 shows the 

resulting state diagram in a simplified form. Details on outputs such as pcWrite, regWrite, etc 

are omitted since students usually work out those details as an assignment. No changes to 

those should be necessary for the debugger integration. However note that it is critical that the 

PC updates to the new address (from which the next instruction will be fetched) on the transition 

to the paused state, not on the transition from the paused state to the fetch state. The same 
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applies to any other action taken between instructions, such as writing to a register. While 

paused, the debugger expects that all registers (including CSR and PC) and memory are as 

they will be during the following fetch. 

 

Figure 7 - modified state diagram 

This form of state diagram, with intermediary points between states, may be unfamiliar to 

students. Those points (the small solid black circles) are not states. They are just a more 

intuitive representation of the numerous possible transitions between states. For example, there 

is a transition from EXEC to PAUSED that occurs if load is false, int is false, and pause is true. 
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And if that transition is to occur on the next clock edge, the pausable signal (a Mealy output) 

should be asserted. Similarly, there is a transition from WB to INTER that occurs if int is true, 

regardless of load or pause, and in such a case, pausable should not be asserted. 

Note that load is a shortcut for the current instruction opcode being a load instruction, in 

which case, the writeback (WB) is needed to finish the instruction before proceeding. The 

pausable signal, which is routed to the debugger, should only be asserted when the FSM would 

consider the pause signal, which is only right before a fetch (unless about to pause). The 

interruptible signal is not routed outside the FSM, but may be helpful internally. Note that 

interrupt-jumps take precedence over pausing, to avoid the debugger thinking an instruction is 

about to fetch and execute while actually a jump to the ISR would occur first. 

Demonstration 

Figures 8-17 show operation of the OD app connected to the reference OTTER 

integration, running in Ubuntu within WSL1 on Windows 10. Figure 8 shows the usage page. In 

figure 9, the OTTER is simply programmed with the test_all program, after which the program is 

running on the board as normal. The board switches 2, 1 and 0 are set to up, up, and down 

respectively, so the tests run at human-readable speed and any errors will cause the test suite 

to pause with an error code. In figure 10, the OTTER is programmed again but this time debug 

mode is entered, and the OTTER is initially placed in the pause state at the first instruction 

before prompting for commands. The various combinations of pause and reset are then 

demonstrated. 

In figure 11, OTTER memory is written in bulk from a file, then written, read, and reread 

individually. Memory access is not permitted when the OTTER is running normally, as activating 
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the memory tap would cause normal memory operations to be ignored briefly. In figure 12, 

various registers are read, written, and reread, namely t0 (OD register 5), the program counter 

(OD register 32), and mtvec (OD register 838). Register access is not permitted when the 

OTTER is running normally, for the same reason as for memory access. Note that some 

registers are unwritable (e.g. mtvec) while the OTTER is in reset; writes in such a case simply 

fail silently because the hardware reset overrides those writes to keep the registers in a desired 

initial state. 

The app keeps a cached copy of the OTTER’s status, updating it when status-changing 

commands complete. However keep in mind that the app currently doesn’t know if a breakpoint 

is hit, so it may think the OTTER is running when it’s actually paused, hence the suggestion for 

the user to request a status check. Unfortunately, if the OTTER were reset by an external signal 

(e.g. a board button), the app would not be aware if it was now running while the app’s last 

knowledge was that it was paused. Future development of the app could add a status check 

before every command, at the expense of more serial traffic. 

Figure 14 demonstrates a simple debugging session over a couple lines of the test_all 

program highlighted in figure 13 (from an independent text editor viewing the program.dump for 

test_all). At each instance in the screenshot where the status (st) command was run twice in a 

row, there was a gap of time between, during which the lights on the board were watched until 

they stopped changing. The second status command confirmed that execution had actually 

paused. After each time the OTTER paused, the program counter was read (register 32), and 

when relevant, the next machine instruction was read from memory at the corresponding 

address. 

Elaborating on figure 14, while the test_all program is running on the OTTER, a 

breakpoint is set at the first of those lines (the addi instruction). When the OTTER eventually 
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pauses at that instruction address, the value in ra (register 1) is checked, the OTTER is 

single-stepped through the addi, and ra is checked again to confirm that it changed to the 

desired value. Before executing the following lw instruction, t5 (register 30) and the memory that 

the lw will target are read. After single-stepping through the lw, t5 is read again to confirm that it 

changed to the value in memory. Then the first breakpoint is cleared and two others are set for 

other points in test_all. Since test_all loops through all tests repeatedly, it is expected that the 

two new breakpoints will be hit repeatedly in alternating order. Continuing the OTTER a few 

times confirms that the first breakpoint is no longer active and the two new ones are hit as 

expected. When GDB integration is complete, this process will be simpler and the appropriate 

lines of the test_all code will be displayed automatically in GDB as execution is paused or 

breakpoints are hit. 

Finally, figures 15-17 demonstrate reading and writing custom hardware attached to the 

OTTER from the debugger, specifically the switches and 7-segment display respectively on the 

Basys3 board. Note that in some OTTER wrapper implementations, including the reference one 

currently, the 7-segment display is write-only, and reads will always return 0. 
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Figure 8 - usage page 

 

 

 

Figure 9 - programming only 

 

Figure 10 - programming and debugging, testing reset/pause status combinations 
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Figure 11 - reading and writing memory 

 

Figure 12 - reading and writing registers 
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Figure 13 - section of test_all to be debugged, displayed in an external editor 
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Figure 14 - debugging session including single stepping and breakpoints 
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Figure 15 - before reading and writing devices 

 

Figure 16 - reading and writing devices 

 

Figure 17 - after reading and writing devices 
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Completed Deliverables 

● OD module and app: 

https://github.com/KeefeJ/otter_debugger 

● Integration instructions: 

See the integration section above, and review the design section as needed. 

● Reference integration/implementation: 

Cal Poly instructors can email Keefe at keefejohnson@gmail.com for access. 

Future Work 

GDB Integration 

As has been explained, this OTTER debugger was designed from the beginning with 

GDB integration in mind as the ultimate goal. It should be possible to complete this integration 

by adding to the PC-side app (OD app) some networking and RSP parsing code, without 

making any changes to the hardware (OD module) or the serial protocol between the app and 

hardware. Future developers should refer to the web pages linked in the references section of 

this report for information on implementing the GDB server protocol (RSP) in the OD app, 

specifically the page at embecosm.com and the GDB remote protocol/stub pages at 

sourceware.org. The embecosm.com article will be especially helpful, as it includes 

message-flow diagrams for various GDB commands and scenarios. 
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It is expected that one command from the GDB client will result in the OD app issuing 

multiple commands in sequence to the OD module, as the OD module implements just the 

fundamental building blocks that GDB relies on. For example, GDB’s “g” command, which reads 

all general registers, will likely translate to 33 individual READ_REG commands to the OD 

module, the 32 general registers and the program counter (register 33). 

OD app will also likely need to respond to GDB client’s request for processor 

information, with an XML-formatted list of general and special (CSR) registers. This would not 

necessarily involve any communication with OD module, unless the project is expanded to 

support multiple variations of RISC-V, such as the floating-point extension or 64-bit 

configuration, in which case it may be desirable to query OD module for its build info. 

There is one design aspect that will be a bit tricky to build upon: that OD module never 

initiates communication but always only responds to the OD app. When GDB sends the 

continue command, it expects no response until the hardware pauses again (i.e. due to a 

breakpoint). However, the OD module will respond right away confirming that execution has 

continued, and will not inform the OD app when it pauses. The OD app will need to poll the OD 

module with the status command, and only reply to GDB when the status indicated paused. 

Adapting to Pipelined OTTER 

In CPE 333, students make major changes to the OTTER architecture to pipeline it. 

Students that enjoyed using the debugger in CPE 233 may want to continue doing so in CPE 

333 as well. But the pipelined architecture may significantly complicate debugger integration, as 

multiple instructions are in progress at a time. Memory writes occur one cycle earlier than 

register writes, so if the pipeline is paused by the debugger, the overall state (of registers and 
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memory) will not always cleanly represent the state between two instructions from the ISA 

perspective. 

Also, the current state of the program counter would be multiple cycles out of sync with 

the state of registers and memory from the ISA perspective. Although it could report the 

program counter as previously recorded and passed along the pipeline stages to the final stage, 

the memory vs registers out-of-sync issue is harder to work around. 

One approach may be to simply pause the fetch stage and let the pipeline empty out, 

whenever the debugger requests a pause. This has the benefit of ensuring everything is at a 

consistent state from the ISA perspective, as if each instruction had been executed one at a 

time. However, this introduces the chance of exposing mistakes in the student’s implementation 

of pipeline stalls/squashes, especially if they only designed it for the specific combinations of 

instructions that could occur without a debugger. 

In addition, in CPE 333, the OTTER’s memory system is extended to handle caching, 

requiring the architecture to handle memory operations taking a variable number of clock cycles. 

A signaling protocol has been developed to handle such variable-latency memory (VLM) 

operations, and adapting the debugger to that protocol for the memory module shouldn’t be very 

difficult. The debugger’s FSM currently assumes that a memory operation will always complete 

the cycle after initiation, but the feedback from the VLM protocol could be easily used to hold the 

debugger’s FSM in a waiting state until the operation is complete. 

With the addition of caching in CPE 333, the debugger’s bulk memory write function, 

when used for rewriting the program memory of the OTTER (which is the same memory as for 

data), can cause caches to get out-of-sync with each other and with the underlying memory. 

The debugger currently routes all memory operations through the second memory port, the one 

used for load/store instructions. However, if the two ports are separately cached, the other port’s 
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cache will not necessarily be aware of the changes. One solution would be to implement a 

cache coherency protocol, however that may be beyond the intended scope of the class, at 

least for student implementations. Another solution would be to add a signal to the caches to 

make them do pass-through writes when the operation comes from the debugger, to keep 

cache 2 and the underlying memory coherent for debugger writes, and add a flush signal to 

cache 1 to make it coherent with underlying memory after all debugger writes are complete. 
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