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Statement of Disclaimer 

 

Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the 

course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information 

in this report is done at the risk of the user. These risks may include catastrophic failure of the device or 

infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and 

its staff cannot be held liable for any use or misuse of the project. 
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Executive Summary 

 

The purpose of this Final Project Report is to highlight the work completed by the interdisciplinary 

engineering capstone project for the Insulated Solar Electric Cooker (ISEC) at California Polytechnic 

State University, San Luis Obispo under the supervision of Professor Jim Widmann (Mechanical 

Engineering) and Dr. Peter Schwartz (Physics). Dr. Schwartz, better known as Pete, has been working on 

the project with a team of students for the past five years and is working to integrate the ISEC in 

Ghanaian communities. This project focuses on making the ISEC mass-manufacturable and making the 

transition from biomass cooking to solar cooking as familiar as possible. Our concept chosen is called the 

Sugar Oven, which has been designed to optimize and simplify usage to be an inexpensive and easy 

alternative to biomass cooking. The design we chose will also feature a standardized manufacturing 

process and reduces risk of injury. This report features the calculations for the thermal conductivity and 

thermal battery and addresses the possible risks of diode failure. It also will cover the best materials to 

build the Sugar Oven. Due to the current nature of COVID-19, the planned building, testing, and analysis 

could not be done. This report instead will cover how to build the sugar oven and detailed descriptions of 

the tests that need to be conducted. It will lastly touch base on further research and work that can be done 

in furthering the development of our design.   
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1 Introduction 

 

1.1 Sponsor Background and Needs 
 

To this day, around a third of the world’s population still relies on the usage of biomass fuel for cooking. 

Not only is this a health risk, it directly contributes to the earth’s increasing temperature and 

deforestation. The lack of ventilation in homes and the excessive buildup of carbon and silica emissions 

and particles leads to lung disease. Biomass fuels have been revealed to be linked to low birth weights, 

nutritional deficiency, tuberculosis, and other respiratory illnesses [1].  

 

Pete began working on the ISEC in 2015 with a small group of volunteer students, first learning about the 

development of solar energy and how to effectively cook with it. Since then, its design has been 

developed and studied by volunteer students, physics classes in special problems and independent studies. 

 

1.2 Formal Problem Definition 
 

The goal of the ISEC is to create a clean cooking alternative to biomass cooking, which has been linked to 

long-term health and environmental problems. Despite its development in the past few years, the most 

recent ISEC design lacks a formal bill of materials and lacks a repeatable manufacturing plan. Our project 

focuses on creating an ISEC prototype that can be scaled for manufacturing, is compliant with the 

manufacturing specifications, and remains low-cost for user purchase in Ghana.  

 

These engineering requirements are highlighted in Table 1. 

 

Table 1. Formal Engineering Requirements. 

Spec. 

# 
Parameter Description Requirement or Target Tolerance Risk Compliance 

1 Size of Panel Panel: 47 × 21.3 × 1.4  𝑖𝑛 ±0.005 Medium I, S 

2 Size of Thermal Battery Pot: 12 Ø 𝑥 10 𝑖𝑛 ±0.005 Medium I, S 

3 
Size of Concrete and 

Perlite Insulation 
Pot: 24 Ø 𝑥 18 𝑖𝑛 ±0.005 Medium I, S 

4 Size of Pot Pot: 9.5 Ø 𝑥 11 𝑖𝑛 
±0.005 

 
Medium I, S 

5 Production Cost $160.00 Maximum High S 

6 Power 100 W Maximum High A, T, I, S 

7 
Thermal Contact Heat 

Loss 
< 20 % heat loss Maximum High 

A, T, I, S 

 

8 Insulated <  5% heat loss ±5% High A, T, I, S 

9 Food Safe No contamination None High T, I 

10 Cookability 

The cooking process 

should remain like 

traditional cooking 

methods in Ghana 

±5 min High T, I 
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1.3 Objective and Specification Development 
 

Our objective is to create a robust, mass-manufacturable insulated solar electric cooker (ISEC) capable of 

meeting the needs of a Ghanaian community. The ultimate, long-term goal of the greater project is to 

implement the ISEC into as many developing countries who still use biomass fuel as their main cooking 

method. To boost local economies, all ISECs will be manufactured locally and with as many locally 

sourced parts and supplies as possible. The formal customer requirements prioritize making the transition 

from using a pot over an open flame to using the ISEC as seamless as possible. We aim to create an ISEC 

that allows for a familiar and uncomplicated experience, is intuitive to use, and is easy to clean. 

 

The organizations investing and donating to the project also require that the solar cookers need to be low 

cost for them to be able to be implemented in as many communities as possible. They also require that the 

cookers do not release any harmful emissions. 

 

1.4 Project Management and COVID-19 Adjustments 
 

Fall quarter was dedicated to planning the project and creating a concept for our prototype. It started with 

planning deadlines and deliverables, as well as establishing a timeline for our project. With deadlines set, 

we began brainstorming ideas and eventually narrowing down our design concepts using a Pugh matrix. 

Winter quarter was dedicated to expanding on our chosen concept and evaluating the design. This 

included an in-depth analysis and calculations to evaluate our design and ensure it met the project 

specifications. Near the end of the quarter, we had ordered components and manufactured the electrical 

subsystem, but were unable to complete testing. 

 

Due to COVID-19, Cal Poly’s campus went completely virtual starting in March of 2020 and continuing 

until the end of the school year. During Spring quarter Cal Poly closed its campus and our group did not 

have access to our sponsor’s on-campus lab or the machine shops. This inhibited our group’s ability to 

continue on with manufacturing and testing the prototype. To compensate, we have included in this report 

detailed manufacturing and testing plans to complete the prototype that was designed. Also included are 

suggestions and recommendations to account for potential variations in the resulting product. 
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2 Background 

 

2.1 Existing Products 
 

Currently, no other solar electric cooker on the market utilizes the same phase change technology in 

conjunction with diodes and a PV panel, which makes our ISEC unique. The most common technology 

that models solar electric cooking is made for camping and is used for slow cooking; these devices are not 

designed for long term, everyday use. Such a model is shown in Figure 1 and shows a box model. 

 

 
Figure 1. HowStuffWorks Solar Cooker Box Model. 

 

Pete also works in collaboration with other companies around the world who take a different approach to 

solar cooking – by using parabolas. Two of his contacts are Crosby Menzies, founder of SunFire in South 

Africa, and Ajay Chandak, who founded PRINCE (Promoters, Researchers and Innovators in New and 

Clean Energy) in India. Parabolic cookers reflect and focus the sunlight into one focal point at the bottom 

of the pot. This method of cooking allows the pot to reach temperatures high enough to bake bread and 

fry food [2].  

 

 
Figure 2. Parabolic Solar Cooker manufactured by PRINCE India [3]. 
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Despite the Sugar Oven’s unique design, there are other solar cooking models in the world that partly 

resemble ISEC according to Unger, et al. The design most similar to the mechanical engineering team 

prototype is a Solar Box Cooker with PCM Thermal Storage. This design includes a concentric pot model 

but uses a mixture of nitrite and nitrate salts as the phase change material. The use of erythritol was the 

result of another solar cooking model, Evacuated Tube Solar Cooker with PCM. The difference between 

this model and ISEC prototypes is the use of evacuated tube solar heat, instead of PV panels. The last 

similar model is the Domestic Electric cum Solar Oven, although this model uses technology from the 

solar cooker box model, in which reflective panels are used to increase solar intensity, in conjunction with 

an external electricity source [4]. 

 

2.2 Current State of the Art 
 

In 2017, under Dr. Schwartz’s supervision, a volunteer group of students wrote the publication Insulated 

Solar Electric Cooking - Tomorrow’s Healthy Affordable Stoves. It proposes a cooker where a solar panel 

directly connects to an electric heater with an insulated chamber. The end-product is a $100 prototype that 

was then implemented in Uganda. These preliminary models were organized into three categories: 

barbeque, a concrete thermal storage container, and a boil-and-simmer cooker. After initial testing, one of 

the main discoveries is the need to clamp wires together, as opposed to soldering, to avoid melting during 

cooking. They also discovered that the resistance to the heating element is vital to maximizing its power, 

and that the performance improves if the solar panel can be moved at least once a day to track the sun. 

The initial prototype used the earth and straw as insulation. Other ideas included rooting the cooker in the 

ground to act as a natural insulator, which was quickly prohibited for cultural reasons. The pot was also 

made with stainless steel and incorporated the use of NiCr wire. The final prototype was then brought to 

Ghana. The community disliked the initial appearance and noticed that the solar panels provided 

insufficient power to cook in the evening after returning from working at the farm. They instead used the 

ISEC to slow-cook beans throughout the day and to keep food warm [5]. 

 

Another independent study, conducted by Cal Poly general engineering undergraduate student Matt 

Walker during Winter 2019, addresses using the ISEC as a makeshift oven. He explores the possibilities 

of baking bread by testing for efficiency of energy over time. His work led to the discovery of better 

placement of the diodes, as little heat travels upwards. He also brings up the point of eliminating 

fiberglass as an insulator [6]. This study is also shown in the video “Baking Bread in the sleeved ISEC”, 

as listed in the ISEC research website. During this study, improvements to the diodes and the solar panels 

were also made compliant with its respective factory documentation [7]. The diode factory requirements 

are listed by DC Components Co., Ltd. [8] and the solar panels meet the specifications of Grape Solar [9]. 

The diodes are low-cost, low leakage, and high-performing and are accessible in Ghana. The 

specifications highlight their maximum performance in a graphical manner. The solar panel specifications 

highlight a 5-year warranty, along with clarifying dimensions and electrical usage. 

 

In the paper Hot Diodes! Dirt Cheap Cooking and Electricity for the Global Poor? the proposed design 

eliminates the use of the NiCr wire and adopts the use of heating the ISEC with diodes. This makes the 

usage of electric cooking cost competitive with biomass cooking [10]. 
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Figure 3. Initial Diode Chain Prototype. 

 

Over the summer of 2019, Dr. Schwartz and some of his students visited Ghana to implement their 

newest model of the ISEC. This trip helped the group understand their end-user better and helped with the 

development of the manufacturing process. The group also met with a company that will be 

manufacturing the pots used in the building of the ISEC. The trip also allowed them to test the ISEC in 

the environment they will be used in. 

 

As mentioned before, there have been several iterations of the solar electric cooker under the direction of 

Dr. Schwartz. The previous ISEC iterations can be separated into two categories, with and without 

thermal storage. The first prototype is known as the barbeque model and includes a 5-gallon steel drum, 

surrounded by insulation, inside of a 55-gallon plastic drum. The heater of this model comes from an 

electrically powered burner thermally connected to the lid of the cooking chamber. The next prototype, 

the Concrete Thermal Storage model, utilized solar electricity to heat a concrete block, mainly to be used 

for frying, grilling, and baking. The last prototype that falls within the category of without thermal 

storage, is the Boil and Simmer prototype. This prototype includes an immersion heater, where the 

electrical heater is enclosed in stainless steel tubing and connected to the lid to be placed into the food   

[5]. 

 

The most recent prototype tackles the problem of using the ISEC when there is no sunlight, such as when 

a family is cooking at night. This prototype uses the idea of cooking with phase change thermal storage, 

using the artificial sweetener erythritol as the phase change material (PCM). In addition to our senior 

project, current problems the project group are tackling are the issues with corrosion and finding a high- 

temperature soldering alternative. The first exploration of thermal storage utilized NiCr wire within a 

concrete block. There were many iterations of this specific design, since many of the prototypes resulted 

in a fire [4]. The thermal storage was not improved upon until a mechanical engineering senior project 

group took on the task. This was the point at which erythritol was selected as the PCM for the thermal 

storage. This ISEC prototype utilized a chain of 22 diodes as the heating element immersed in the PCM. 

Our Sugar Oven concept uses this ISEC prototype as the starting point, utilizing diode heating and 

erythritol as the PCM. 
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Figure 4. ISEC Prototype Progression. 

 

Dr. Schwartz is currently overseeing a senior project that is reinvestigating the usage of wire as resistive 

heating instead of diodes as the heating element. They are currently working in conjunction with a group 

in the United Kingdom to optimize the performance in getting power from the solar panel into heating 

food. This Power Optimization Device (POD) was created to maintain the voltage from the solar panel 

throughout the day and extract the maximum current from the panel. This idea was presented to our group 

this quarter by Dr. Schwartz as an alternative to diodes, but it was decided to continue with the diode 

heating element we were already designing due to the length of time allotted for this project and based on 

where the resistive heating project is in the development process. 

 

2.3 Specific Technical Data and List of Applicable Standards 
 

Previous ISEC prototypes do not strictly follow any manufacturing standards. In order to improve upon 

the diode heating element design, our project will be utilizing the IPC J-STD-001 standard for soldering 

and assembling electrical components. This standard provides guidelines for producing high quality 

soldered interconnections. The purpose of this is to increase electrical conductivity between parts and will 

utilize JB Weld to increase thermal conductivity to the PCM, while also highly insulating electrical 

conductivity between the diode leads and the phase change assembly [11].  
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3 Design Development 

 

3.1 Discussion of Conceptual Designs 
 

Conceptual development revolved around the ideals of making the technology “invisible”. Adoption 

issues from previously introduced technology has stemmed from the issue of having to learn to use the 

technology. A possible example of this is having to learn how to operate an iPhone using only one button 

or no buttons. With this guiding principle of “minimally invasive technology” in mind, several concepts 

were developed: The Model 3, the Rice Cooker, the Flange ISEC, and the Sugar Stove, now renamed to 

Sugar Oven.  

 

Model 3 was the working prototype we began our testing with. The detailed sketch of Model 3 shown in 

Figure 5 is the manufactured version, which would have been built out of sheet metal bent into a 

cylindrical shape and welded together. Our prototype was a jury-rigged version consisting of two pots, 

serving as a proof of concept. This mode was not ideal, as usage led to many consumer-adoption issues. 

Primarily, the unwieldiness of a very hot and heavy pot with wires attached made it frustrating to use day 

to day. 

 
Figure 5. Detailed Sketch of the Model 3. 

 

The Rice Cooker concept aims to increase the surface area and heat transfer from the phase change 

material to the pot. This can be observed by the sloping surface of the pot, creating a wok-style pot. 

 

 
Figure 6. Detailed Drawing of the Rice Cooker Concept. 
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The Flange ISEC (shown in Figure 7) is one of the conceptual models developed that was designed to 

remedy this unwieldy design. The PCM portion of the ISEC serves as a base, which a flanged pot then 

locks into. This concept would eliminate the need to dodge wires or lug around a very heavy phase 

change assembly. 

 

 
Figure 7. Detailed Drawing of the Flange ISEC. 

 

The concepts discussed each had pros and cons that were then outlined in a Pugh Matrix (Table 2 in 

Appendix B). After exhausting all possible options, the group decided on a model we call the Sugar Oven 

(formerly known as the Sugar Stove).  

 

3.2 Concept Selection 
 

Ultimately, the concept selected was the sugar stove – although our design now functions more like an 

oven and has a cylindrical design. This design features a heavily insulated phase change assembly, 

referred to frequently as a “thermal battery”. The idea behind this design was to focus on using the 

currently captured heat more efficiently rather than add more power. Insulation was a key factor that had 

not been factored into prior studies. 
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3.3 Supporting Preliminary Analysis 
 

Our preliminary analysis calculations and code can be found in Appendix F, which explains the details 

that support our analysis. The largest part of the analysis is the heat transfer, because the system needs 

enough heat to thoroughly cook a meal. It also needs to direct a majority of the heat through the food to 

cook it. Knowing this, we calculated the energy stored in the erythritol.  

 

After doing this, we needed to consider the ISEC in several state conditions: 

 

1. The Stray Heat Model, which looks at the housing with the battery at 140℃. 

2. The Initial Load Operation Model, which looks at the pot at 15℃.  

3. The Steady State Operation Model, which looks at the pot at 100℃. 

 

The system we want to utilize is too complex to be modeled with the lumped capacitance method, and 

transient analysis would require too many nodes to be accounted for. Instead, by performing state 

analysis, we can “unfold” our battery and analyze the system with one-dimensional heat transfer.  

 

The biggest design challenge in the heat circuit is that we need to reduce the resistances 

(𝑅𝑐𝑜𝑛𝑑,   𝑐𝑜𝑛𝑣,   𝑟𝑎𝑑) to direct heat through the pot. This design can be improved by increasing the 

emissivity of the pot and the heating surfaces of the battery. It may also be improved through the use of 

thermal grease or contact filler on the bottom of the pot.  

 

In this analysis, we will assume the anodized aluminum to maximize 𝜀 (emissivity), which will minimize 

𝑅𝑟𝑎𝑑 . Anodizing the aluminum will be a major manufacturing step. It is also an important consideration 

to have a smoothness tolerance on the inner surface area of the pot to minimize contact resistance 

(𝑅𝑐𝑜𝑛𝑑).  

 

Looking at the expansion and pressure analysis, we created a table that outlines the mass, the maximum 

volume, the change in volume, and the change in pressure of the phase change material and how it 

changes with the number of meals. The maximum pressure is calculated by taking (∆𝑉)(1.5) and using 

this volume as air under the ideal gas law. These calculations showed that the battery will experience 

pressure cycles. To enhance the longevity of the battery, our group decided to add a breather vent to this 

model.  

 

After calculating these numbers, we verified our findings over MATLAB. These verifications can also be 

found in Appendix F.   
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4 Description of the Final Design 

 

4.1 Overall Description and Layout  
 

Our natural design process led us to an ISEC configuration more like an oven, rather than a singular pot. 

There is a lot to be said about what we learned during our time with power tools and cookware, but the 

main lesson was that the focus on manufacturing these ISECs for further testing and experimenting is 

repeatability. Most of the problems we saw from our perspective was the inability to recreate consistent 

prototypes. The final design focuses on two critical design principles:   

 

1. The system must be easy to manufacture consistently. 

2. The system should focus on redirecting heat instead of adding more.  

 

We accomplished the first step by creating a design calculator, CAD models, a manufacturing plan, and a 

testing plan. These steps alone were a lot of progress, because up until this point ISECs had been 

creatively jury-rigged using household pots. This is that very first transition from prototype to true 

manufacturing.  Our MATLAB design script will also be helpful during the manufacturing of this 

prototype, as it can be used to quickly resize geometries and observe what effect changing certain parts of 

the design should have. Unfortunately, due to COVID-19 restrictions, we were unable to refine these 

materials through hands on experience and validate our design calculations script; however, plenty of 

research and thought has been put into revisions of the plan during spring quarter.   

 

The second step is the trickier of the two. All three forms of heat transfer—conduction, convection, and 

radiation—heat transfer through a phase change material, and all three states of matter are present. The 

heat transfer calculations required to fully understand exactly what is going on in the battery are far too 

complex for an undergraduate, instead, we've made engineering assumptions and simplifications (one 

such example is treating the battery as a control volume) to proceed with the best of our abilities. The 

driving design feature to direct heat within the ISEC system is the insulation. Our final design is shown in 

Figure 8. More detailed drawings of the components can also be found in Appendix C.  
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Figure 8. The Sugar Oven Assembly. 

 

4.2 Detailed Design Description 
 

The overall design of the ISEC revolves around 4 subsystems: the electrical system, the thermal battery 

and PCM, the insulation, and the structural system. Details of each subsystem are highlighted in the 

following sections.  

 

4.2.1  The Electrical System 

 

The electrical system has two primary components: the solar panel and a chain of connected diodes acting 

as the heating element for the ISEC. The chain consists of 16 diodes to account for the solar panel voltage 

and for an even voltage drop across each diode. Each diode will be connected to the next using copper 

wire, with the leads then encased in JB Weld; this is in accordance with IPC standards. The diode chain is 

completed with a 2-pole connector set which allows for easy connect/disconnect from the solar panel 

(power source) to the oven. A schematic of the electrical system can be found in Figure 9. 
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Figure 9. ISEC Diode Chain Heating Element Schematic. 

 

4.2.2  PCM 

 

We chose erythritol as the phase change material (PCM) that will be employed for the Sugar Oven ISEC. 

Erythritol has been used as a phase change material in previous iterations of the ISEC and proved to work 

well for the needs of the project. With a melting temperature of around 118°C and a decomposition 

temperature of around 160°C (depending on the grade of erythritol), the diode chain will melt sugar and 

store heat in the PCM [4]. Erythritol is inexpensive and accessible in Ghana, making for it to be ideal for 

the uses of the ISEC team. With the sugar oven design, 13.6 kg of erythritol will be stored in the thermal 

battery along with the diode chain. Erythritol will be poured into the thermal battery through the breather 

vent in the molten state.   

 

4.2.3  Thermal Battery 

 

The thermal battery and pot will both be made of aluminum, a readily available metal in Ghana. Both 

components are cylindrical in shape in order to streamline manufacturing. This allows for both the pot 

and thermal battery to be radius bent to different diameter cylinders which are then welded to base sheets 

cut to the same diameter. The thermal battery also contains a welded top plate containing two threaded 

holes for a breather vent and a plug to contain the wiring of the ISEC.  This is shown in more detail in 

Appendix C.  
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The initial sizing of the battery is key—the mass of the erythritol determines how much extra energy can 

be stored to provide cooking performance past peak solar performance times. After determining the 

amount of energy required to cook one meal of soup (modeled as water for convenience) to be 2.16 MJ, 

this quantity was scaled by a factor of about 5.75 to provide extra power as a measure of safety against 

heat loss.   

Pressure was unaccounted for in previous designs and was the root cause of failure for the previous 

prototypes. The PCM cannot be sealed within the battery due to its own expansion and the expansion of 

air within the battery. A pressure difference of around 440 psi was calculated through thermodynamic 

analysis by modeling the extra air within the battery as an ideal gas and determining its change in pressure 

due to temperature increase. In prior designs this pressure delta sheared the adhesive seal, compromising 

the integrity of the PCM enclosure and ultimately destroying the ISEC due to moisture buildup inside. To 

account for the volumetric expansion of the PCM, erythritol will be filled with enough extra space to 

accommodate this expansion and a breather vent will be installed on top of the battery to allow 

pressurized air to escape.   

 

Heat transfer was a major design absence in previous prototypes. Although heat transfer within the phase 

change was accounted for in prior studies, the ISEC has never been designed to direct the stored energy 

into the pot rather than through the atmosphere. This was one of the major issues that prevented the ISEC 

from working functionally in our prototype trials. Contact resistance, radiation, and insulation were the 

primary considerations within the heat transfer design of the ISEC system. Analysis proves that insulation 

is the driving factor for directing heat through the pot, although other less influential factors such as pot 

and battery geometry have impacts as well. Emphasis on usability of our system led towards a removable 

pot design, as previously the thermal storage had been built into the pot. Although better heat transfer is 

possible with the PCM build into the pot, this design rendered the ISEC frustrating to use and unsuitable 

for cooking. Contact resistance and connecting the pot to the battery thermally are two of the biggest 

inherent challenges within our system. Two methods used to enhance this thermal connectivity will be the 

use of a thermally conductive powder, and the anodization of the heat battery’s internal wall and pot wall. 

Anodization was accounted for within the heat transfer analysis however, the addition of thermally 

conductive powder was not. Ultimately, our heat transfer rates were calculated to a heat loss rate of about 

6.5 watts, initial heat transfer rate of about 15.5 watts to the food, and a steady state heat transfer rate of 

around 9 watts.    

 

Anodizing aluminum increases its emissivity, allowing it to radiate more heat across the air gap between 

the battery anchor wall and the pot wall. This reduces heat transfer resistance as the modes of heat 

transfer between these surfaces are primarily radiation and convection. However, the convention through 

the air has been modelled as conduction through a thin fluid for convenience and accuracy. Anodization 

must occur after the components have been shaped, as cold rolling aluminum after applying a surface 

finish may diminish the quality of the finish.   

 

Instead of applying a thermal grease, which would increase heat transfer through the bottom of the battery 

anchor and the bottom of the pot, thermally conductive powders were elected to be used for their 

functionality. Thermal grease would get messy and need to be reapplied carefully, potentially introducing 

contaminants into the battery cavity with every insertion of the pot. Thermal powders will be less messy 

while providing similar heat transfer enhancements and can be easily replenished by pouring more in if 

necessary. This avoids the high risk of burns that reapplying thermal grease has. Two thermal powders are 

currently being considered. Aluminum nitride is our thermal powder of choice, as it has a thermal 



ENGR 459-461 Interdisciplinary Senior Design Project Fall/Winter/Spring 2019-2020 

22 

 

conductivity coefficient 285 𝑊/(𝑚 ∙ 𝐾) [12]. Zinc oxide is our secondary thermal powder as it is water 

insoluble (should moisture accumulation within the ISEC system become an issue) but only has a thermal 

conductivity of 60 𝑊/(𝑚 ∙ 𝐾) [13].     

 

4.2.4  Insulation and Structure 

 

There will be three main components of insulation for the Sugar Oven: an outer layer of insulation made 

of a perlite and concrete mixture to enclose the entire system, a top layer of the same material to cover the 

top of the thermal battery, and a layer of fiberglass between the insulation and thermal battery. Fiberglass 

has been used in previous models of the ISEC, and with a thermal conductivity of 0.0525 𝑊/(𝑚 ∙ 𝐾) it is 

highly insulating. Fiberglass is not a food-safe material; however, this was not addressed in previous 

models of the ISEC. The Sugar Oven addresses this issue by enclosing the fiberglass between two 

exterior layers of perlite concrete insulation. Perlite concrete mixture is another insulating material with a 

3:2 concrete perlite mixture, the thermal conductivity is 0.53 𝐾 ∙ 𝑊/(𝑚 ∙ 𝑘) [14]. The thermal 

conductivity decreases with a larger perlite to concrete ratio, but in turn decreases the compressive 

strength of the material. With the ability to pour the perlite/concrete mixture, a mold will be made and 

reused to streamline manufacturing. All these materials are inexpensive and readily available in Ghana 

which allows for them to fit the scope of the project.  The last important consideration of our design was 

the outside temperature of the ISEC system.  Analysis shows that in an atmospheric temperature of 30°C 

(86°F), the outside temperature will only reach about 32°C. The overall dimensions of the ISEC are 

convenient for use, standing approximately 3.1 feet tall and 3.3 feet wide. 

 

4.3 Cost Breakdown  
 

One of the fundamental design requirements that governs the project is the need for the ISEC to be low-

cost. Each component was specifically chosen to minimize cost while still maintaining functionality of 

the system. All components and cost of components are detailed in Appendix D. Also included is a 

breakdown of scaled cost. The purpose of the scaled cost is to estimate the cost of these components if 

purchased at a large scale, in order to mass produce the ISEC and minimize cost. All cost analysis was 

done through the groups own research as well as information given from Pete and other members of the 

ISEC team. The cost of the aluminum sheet metal is yet to be determined; this is soon to change by 

contacting a distributer of sheet metal in Ghana. The current estimated cost of aluminum and erythritol 

was determined through research done on market prices of both in Ghana. These are the primary costs of 

the ISEC, so it is critical that a distributor is found for each to minimize price.   

 

Much of the primary cost of the ISEC comes with the solar panel, which alone is $100 USD. The specific 

goal of the group was to have the components of the ISEC cost less than $100 without the solar panel, 

since this was already available to us courtesy of the larger ISEC team. The total prototype cost without 

the solar panel is $316.45. We acknowledge that this initial prototype cost does not meet the requirement 

of cost, but after a cost analysis, the ISEC at-cost would be $99.76. Both cost breakdowns can be found in 

Appendix D. 

 

  



ENGR 459-461 Interdisciplinary Senior Design Project Fall/Winter/Spring 2019-2020 

23 

 

4.4 Special Safety, Maintenance, and Repair Considerations 
 

Safety considerations were deliberated throughout the duration of the project, adjusting the scope and 

design considerably. Appendix K details the safety checklist employed while designing the ISEC, and 

Appendix H details the product user guide and maintenance of the Sugar Oven. A primary factor of 

concern for the ISEC group is food safety. With fiberglass involved in the insulation of the system, it 

became critical to not allow it to interface with the pot or contact the food within the pot. This was 

considered in the design by enclosing the fiberglass in two exterior layers of insulation made of a perlite 

and fiberglass mixture. A second safety concern for the ISEC is the heating of the ISEC. The ISEC is 

expected to reach extremely high temperatures, which can possibly burn users. To ensure that this does 

not happen, the thermal battery which contains the heating elements of the system will not be exposed to 

users. The pot that fits into the thermal battery will also have handles along the side which are made for 

users to carry. A third safety concern involves the high pressure within the thermal battery. The thermal 

battery contains erythritol that expands as it melts, causing a large pressure differential within the battery. 

To deal with that, the thermal battery contains a breather vent along the top of the ISEC to release excess 

pressure if needed. Lastly, the ISEC is a large metal and concrete fixture, which makes for it to be heavy 

to move. The ISEC is designed to stay in a fixed area and will have precautions that if it does need to get 

lifted, a group of people will be required to carry it.   

 

Along with safety considerations, there are few assembly considerations that have been considered when 

designing the ISEC. Repair can easily be addressed by swapping batteries of ISEC systems. Each 

subsystem can be replaced under technician rework with quick field repairs being made on a component 

level. The diode chain has been the source of failure on previous models of the ISEC, so in this model 

adjustments were made. The diodes chosen for the Sugar Oven were specifically chosen to work within 

their manufactured specification. Along with this, the manufacturing of the diode chain has been 

streamlined to make sure the diodes are getting properly connected as to minimize risk of failure. This 

process includes connecting the leads of the diodes using copper wire, soldering the leads together, and 

JB welding them to enclose them from the outside environment. This process should minimize the 

corrosion issue that the diodes previously had, as well as make for the diodes to have minimal modes of 

failure. If the diodes are to fail, the entire system would not need to be replaced, although the thermal 

battery would need to. The aluminum from the thermal battery can be reused for future ISECs, and all the 

other components of the system can be maintained for future use. If the perlite/concrete mixture insulation 

were to fail on the ISEC, a mold will be available to make another mixture at little cost and with relative 

ease.   
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5 Product Realization 

 

5.1 Manufacturing Process Information (MPI) 
 

Because our group was unable to build a prototype, pictures of most processes will not be provided. The 

MPI will cover plans for building all the subsystems together. Anything marked with an asterisk (*) will 

require additional design development. The battery build would also be outsourced to an external 

manufacturing company.  

 

5.1.1 Pot 

 

Dimensions: 1. Cylinder 

a. length = 6.75 inches 

b. radius = 4.725 inches 
2. Sheet Metal Disc 

a. radius = 4.725 inches 

Instructions: 1. Sheet metal aluminum will be cold rolled into a cylinder with the 

given dimensions.  
2. The cylinder will be placed into an anodizing bath* to increase its 

emissivity on the external side.  

3. The cylinder will then be JB welded toa sheet metal disk via a 
fixture*, which creates the pot shape.  

4. Locking grooves will be cut into the top of the pot using an oxygen 

torch.  

 

5.1.2 Battery 

 

Battery Top 

Dimensions: 1. Aluminum Disc 

a. thickness = 0.5 inches 
b. inner radius = 4.75 inches 

c. outer radius = 6.75 inches 

2. Inner Disc 
a. thickness = 0.5 inches 

b. radius = 4.709 inches 

c. radius (protruding keys) = 4.735 inches 

3. 37/64 drill bit  
4. 3/8 NPT 

5. 18 thread/inch  

Instructions: 1. Aluminum disc will be drilled & face milled to create a disc-shaped 
ring with the given dimensions.  

2. The smaller disc should be placed aside for pot-lid shaping. 

3. Holes will be drilled and tapped for the breather vent.  
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Anchor 

Dimensions: 1. Sheet Metal Aluminum 

a. length = 7.25 inches 

b. radius = 4.734 inches 

2. Cylinder 
a. radius = 4.734 

Instructions: 1. Cylinder will be JB welded together down seam via fixture*. 

2. The cylinder will be placed in an anodizing bath* to increase its 
emissivity (internal side). 

3. The cylinder will then be JB welded to a sheet metal disk via 

fixture* to complete the anchor. 

Case 

Dimensions: 1. Sheet Metal Cylinder 

a. length = 10.5 inches 

b. radius = 6.766 inches 
2. Sheet Metal Disk Fixture 

a. radius = 6.766 inches 

Instructions: 1. Sheet metal aluminum will be cold rolled to a cylinder. 
2. Cylinder will be JB welded together down seam via fixture*. 

3. The cylinder will then be JB welded to a sheet metal disk via 

fixture* to complete the battery case.  
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Battery Composition 

Instructions: 1. Anchor will be JB welded to the internal circumference of the 

battery top via fixture*. 

2. Electrical connector will be threaded through the wire plug hole.  

3. Electrical system will be soldered to plug leads. 
4. Battery case will be welded to the external circumference of the 

battery top. 

5. Battery will be filled with OEM erythritol through the breather vent 
hole.   

6. Install breather vent.   

7. Erythritol should be heat cycled once. 
8. After ensuring proper function of the battery, the wire plug hole can 

be sealed with JB weld. 

9. Heat cycle battery once more to ensure proper function. 

 

 

5.1.3  Pot Lid  

 

Dimensions: 1. radius = 4.709 inches 

2. protruding keys of radius = 4.735 inches 

Instructions: 1. The smaller disc from the battery top should be placed aside for pot-
lid shaping.   

 

5.1.4  Housing 

 

The housing contains three parts: the wall, the roof, and the lid. The concrete solution numbers used are 

based off the literature review Effect of expanded perlite on the mechanical properties and thermal 

conductivity of lightweight concrete, published in ScienceDirect in 2011 [14]. 

 

Housing Wall 

Details: 1. Concrete Mixture 

a. 40% perlite 

b. 0.55 water and concrete mixture 
2. Dimensions 

a. internal radius = 18 inches 

b. external radius = 20 inches 
c. 1 inch thickness along inside of walls 

d. height = 36 inches 

e. bottom thickness = 2 inches 
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Instructions: 1. Mix concrete solution.  
2. Pour into proper molds. 

3. Let set.  

4. Presoak perlite in water for 30 minutes.  

5. Set in mold for 24 hours.  
6. Remove from molds.  

7. Fill with fiberglass insulation. 

Housing Roof 

Details: 1. 40% perlite 

2. 0.55 water/concrete mixture 

3. Dimensions 
a. internal radius = 8 inches 

b. external radius = 20 inches 

c. thickness = 2 inches 

Instructions: 1. Mix concrete solution.  
2. Pour into proper molds. 

3. Let set.  

4. Presoak perlite in water for 30 minutes.  
5. Set in mold for 24 hours.  

6. Remove from molds.  

Housing Lid 

Details: 1. 40% perlite 
2. 0.55 water/concrete mixture 

3. Dimensions 

a. radius = 8 inches 
b. thickness = 2 inches 

Instructions: 1. Mix concrete solution.  

2. Pour into proper molds. 
3. Let set.  

4. Presoak perlite in water for 30 minutes.  

5. Set in mold for 24 hours.  

6. Remove from molds. 
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5.2 Electrical Process Information 

 

The electrical process information is composed of just the diode chain.  

5.2.1 The Diode Chain 

 

Details: 1. 16 diodes 
2. copper wire 

a. 2 inches in between each diode 

b. 30 inches for one diode chain 

Instructions: 1. Bend both stems of each diode outwards at a right angle.  

2. Affix the diodes to helping hands, overlapping the bent parts to 

create a chain.  
3. Begin wrapping the overlapping stems with the copper wire.  

4. Pay special attention to keep the wrapping as tight as possible. 

5. Solder the wire to the diode leads. 

6. Apply a thick layer of JB Weld to encase the solder, wire, and diode 
leads. The JB Weld should not come into contact with the plastic 

diode casing. 

Pictures:  

       

Figure 10. Diode Chain Configuration. 

 

5.2.2.  Attaching the Solar Panel to the ISEC 

Details: 1. solder 

2. 15-amp push and connector set 

Instructions: 1. Solder the leads to the connector plug.  

2. Plug the ISEC into the solar panel.  
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5.3 How the Prototype Might Differ from the Planned Design  
 

The sugar oven meets most of the engineering requirements set, but there is possibility that the design and 

the prototype may not fully translate from idea into fruition.  

 

5.3.1  Recommendations for Future Manufacturing of the Design 

 

Should the prototype differ from the planned design, our group has some suggestions as to what to try for 

improvements.  

 

1. Changing the number of diodes used in the model.  

2. Changing the type of wire used to wrap the connecting diodes. 

3. Should cold rolling the sheet metal for the pots be difficult, the group suggests looking into 

buying pre-rolled metal tubing for the pot instead.  

a. Finding the tubing may be difficult, but it would eliminate a manufacturing step and 

would make the process easier.  

 

5.3.2  Cost Estimation for Future Production 

 

As mentioned in section 4.3, the estimated cost at scale would be significantly reduced to $99.76 without 

the solar panel. Once the prototype is finalized and ready for manufacturing, items will be available to 

purchase at scale which will significantly reduce the price.   
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6 Design Verification and Testing 

 

The following test plans are what would have been conducted during Spring Quarter, had the project 

taken place in-person. Unfortunately, due to the pandemic, no building phase nor Design Verification or 

Testing could be done. The goal of these tests is to validate the sub sections and the entire system. The 

test dates, results, and who performed the tests are all to be determined.  

 

Testing for the ISEC sugar oven will be divided into four stages: detailed design, architectural design, 

system testing, and acceptance testing. Detailed design testing will be a testing of each individual 

component. This means a testing of diodes, phase change material, and thermal connectivity from the 

thermal battery to the pot. These tests will be run in an insulated environment, using thermocouples to 

measure heat dispersion. The next stage of testing is the architectural design, which is a test of individual 

systems of the ISEC Sugar Oven. This is a test of the subassemblies within the ISEC. This includes a test 

of the thermal battery as a system, as well as testing the efficacy of the insulation. The system test will be 

a test working with all components to see how effectively it cooks a meal. Finally, an acceptance test will 

be done, bringing the finished product to Ghana, and seeing how it would be accepted within society. All 

these tests have a specific acceptance criterion, describing how specifications will be met by the tests, as 

well as how the tests will be run. These are all described in the Design Verification Plan and Report 

(DVPR) in Appendix I.   

 

6.1 Diode Validation Testing 

 

Purpose: Test how long it takes for diode chain connected to a voltage source can 
reach temperature (140°C). Test by having a thermocouple on the body of a 

diode on the diode chain assuming a uniform temperature along the chain 

while the voltage source outputs voltage of 100 W solar panel at solar noon 
(18V). 

Scope: The goal of this test is to find time for diode to reach 140°C in order to melt 

the erythritol using a 100 W solar panel. Preparation of diode chain is of 

primary importance to the procedure. Being able to maintain thermal 
connection without failure has been an issue with previous ISEC models. 

Equipment: 1. Square Diodes: BYV10X-600PQ 

2. Copper Wire 
3. JB Weld 

4. Solder 

5. Voltage source 
6. Resistive Wire (10 gauge) 

7. Fiberglass insulation 

8. Thermocouple 

9. Thermocouple Data Acquisition System 
10. Plyers 

11. Helping Hands 

Hazards: Electronics, High Heat 
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PPE 

Requirements: 

1. Safety Goggles 
2. Heat Resistant Gloves 

Facility:  ISEC LAB in Building 52 

Procedure: 1. Bend each diode lead in half 90 degrees away from body of diode 

using small plyers 
2. Connect two diodes to helping hands, align bent leads to be parallel 

and overlapping so that one lead is sitting above another 

3. Wrap copper wire around the overlapping leads, making sure that it 
is tight enough so that the leads are fixated with a copper wire 

coiling around it. 

4. Solder copper wire and leads together, making sure to use proper 
soldering technique 

5. After soldering, apply JB weld to leads as to make a permanent 

thermal connection. 

6. Repeat steps to connect 20 diodes in series 
7. Solder resistive wire to each end of the diode chain 

8. Connect resistive wire to diode chain, attaching the other end to 

voltage source 
9. Heat Tape thermocouple to body of a single diode (assuming 

uniform distribution of heat) 

10. Place diode chain in fiberglass insulation 

11. Set Voltage Source to 18 V 
12. Track time it takes for thermocouple to reach 140°C 

13. Map thermocouple on excel to find heating profile of diodes. 

Results: 1. Pass Criteria: 
a. Diode reaches 140°C in less than 3 hours 

2. Fail Criteria 

a. Diodes do not reach 140°C  
b. Diodes fail to heat up 

3. Number of samples to test: 

a. 3 Diode chains 

 

6.2 Phase Change Material Validation Test (PCM) Validation Test 
 

Purpose: Test melting temperature of chosen grade of Erythritol by placing it inside 

of fully assembled thermal battery with diodes as the heating source. 

Thermocouple probe with thermocouples at three different levels to be 
placed inside of thermal battery from hole in top plate. Test time it takes for 

all erythritol to melt while fully enclosed in fiberglass. 
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Scope: The goal of this test is multifaceted: 
1. Find time it takes for this specific grade of erythritol to fully phase 

change into liquid 

2. Each thermocouple will be at a different level in the thermal 

battery; top; middle; and bottom.  
a. The purpose of this is to be able to quantify the heating 

profile, and understanding the amount of time it takes for 

each level to phase change into a liquid.  
3. Utilize data collected to report efficacy of use of erythritol in 

Thermal Battery 

Equipment: 1. Thermocouples Probe 
2. Thermocouple Data Acquisition System (DAQ) 

3. Thermal Battery 

4. Voltage Source 

5. Stopwatch 
6. Gorilla Tape 

7. Fiberglass insulation 

Hazards: High Temperatures 

PPE 

Requirements: 

1. Safety Goggles 

2. Heat Resistant Gloves 

Facility:  ISEC LAB in Building 52, 111e 

Procedure: 1. Pour 13.6 kg of crystallized erythritol into thermal battery through 
hole in top of thermal plate 

2. Secure thermocouple probe inside of thermal battery through hole 

in top plate, secure with Gorilla Tape 
3. Turn on data Thermocouple data acquisition system, making sure to 

record start time 

4. Plug in thermal battery to voltage source set to 18V.  
5. Track thermocouples, mark time it takes for erythritol to reach 

140°C 

6. Once erythritol has fully melted, turn off voltage source, track time 

it takes for erythritol to solidify.  
7. Map each thermocouple probe level on Temperature vs. Time plots, 

mapping important parameters (Time each point takes to boil, peak 

temperature, time to completely crystallize, time of phase change) 
8. Use data from each point to map entire heating profile of thermal 

battery, mapping differences in important parameters (as listed 

above). 



ENGR 459-461 Interdisciplinary Senior Design Project Fall/Winter/Spring 2019-2020 

33 

 

Results: 1. Pass Criteria: 
a. Have all PCM melted in no more than 3 hours 

2. Fail Criteria: 

a. PCM doesn’t melt at 140°C 

b. PCM take more than 3 hours to fully melt 
3. Number of Samples:  

a. 3 trials 

 

6.3 Diode Fatigue Test 
 

Purpose: The purpose of this test is to test for failure points of diode chain by having 

it connected to power source, consistently heating for three 12-hour 

sessions. This will validate whether there are any short-term failures that 

can be avoided while running the ISEC, having the diodes ran to spec. 

Scope: Heating Element Testing 

Equipment: 1. Diode Chain 

2. Voltage Source 
3. Fiberglass insulation 

4. Thermocouple 

5. Thermocouple DAQ 
6. Heat Resistant Tape 

7. Resistive wire (10 gauge) 

Hazards: High Temperature 

PPE 

Requirements: 

1. Safety Goggles 
2. Heat Resistant Gloves 

Facility:  ISEC room (D-13) in Building 52 

Procedure: 1. Tape thermocouple to body of a single diode on the chain 
2. Plug in thermocouple to DAQ 

3. Fully Enclose Diode chain in fiberglass insulation 

4. Connect Diode chain with resistive wire attached to voltage source 
at 18V 

5. Have diode chain continuously heating for 12 hours, checking on it 

periodically (every hour) 

6. Map thermocouple on excel to find heating profile of thermal 
battery. 

7. Repeat Steps 1-6 three times 



ENGR 459-461 Interdisciplinary Senior Design Project Fall/Winter/Spring 2019-2020 

34 

 

Results: 1. Pass Criteria:  
a. Diode chain successfully heats after 36 hours of running 

consistently 

2. Fail Criteria: 

a. Diode chain fails at some point during testing  
3. Number of Samples: 

a. Three chains 

b. Nine 12-hour sessions total 

 

6.4 Thermal Battery Fatigue Sub-System Validation Test 
 

Purpose: The purpose of this test is to validate the efficacy of the thermal battery sub-

system of the ISEC. This test will be performed by testing time for pot 

interface of the thermal battery to reach 140°C with a thermocouple. One 
has reached 140°C, pour room temperature water into pot. Record time to 

boil water. The entire system will be enclosed in fiberglass and attached to a 

solar panel as a power source. 

Scope: The thermal battery is the source of heat for the ISEC and is critical to be 

able to reach a high enough temperature to boil water. The purpose of this 

test is to validate the thermal battery as a proper energy source of the ISEC 
system 

Equipment: 1. Thermal battery 

2. Thermocouple (waterproof) 

3. Thermocouple Data Acquisition System (DAQ) 
4. Heat Resistant Tape 

5. Solar Panel 

6. Fiberglass insulation 
7. Perlite/Concrete insulation 

Hazards: High Temperature 

PPE 

Requirements: 

1. Safety Goggles  
2. Heat Resistant Gloves 

Facility:  Outside of ISEC lab (Baker Lawn) 
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Procedure: 1. Tape thermocouple to pot interface of thermal battery 
2. Connect thermocouple to DAQ 

3. Connect lead wires from thermal battery to solar panel 

4. Place thermal battery while fully enclosed in fiberglass insulation, 

inside of Perlite/Concrete insulation 
5. Face solar panel facing the sun in order to get proper current to 

thermal battery. 

6. Log time it takes to have thermocouple reach 140°C. 
7. Pour room temperature water into pot interface, filling it 1/2 

capacity. 

8. Log time taken to boil water 
9. Map thermocouple on excel to find heating profile of thermal 

battery. 

Results: 1. Pass Criteria: 

a. Ability for Pot interface to reach 140°C in ample time (<
6 ℎ𝑜𝑢𝑟𝑠) 

b. Ability for water to boil 

2. Fail Criteria: 
a. Inability for pot interface to reach 140°C 

b. Inability to boil water 

3. Number of Samples to Test 

a. A single thermal battery 
b. Three repetitions of test 
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6.5 ISEC System Test 
 

Purpose: Working with all components, including pot, insulation, thermal battery to 

test to see if cooker effectively cooks vegetables and stews commonly eaten 

in Ghana. Failure test, see if can effectively cook in a reasonable time 
without failure. 

Scope: Entire ISEC system 

Equipment: 1. ISEC  
a. Thermal Battery 

b. Fiberglass Insulation 

c. Pot 

d. Pot Lid 
e. Concrete/Perlite Insulation 

f. Solar Panel 

2. Vegetable Stew 
3. Stopwatch 

4. Thermometer 

Hazards: High Temperature 

PPE 

Requirements: 

1. Safety Goggles 

2. Heat Resistant Gloves 

Facility:  Outside of ISEC lab (Baker Lawn) 

Procedure: 1. Fully enclose Thermal Battery inside fiberglass and perlite/concrete 
insulation 

2. Place perlite/concrete pot lid on top of thermal battery as to store 

heat in pot interface  
3. After designated time (predetermined by Thermal Battery 

Subsystem Test) confirm that pot interface of thermal battery has 

reached 140°C by removing pot lid and confirming pot interface 
temperature with a thermometer 

4. After temperature has been confirmed place pot with stew into pot 

interface, making sure to place lid on top of the pot.  

5. Periodically check on stew in 30-minute intervals, being sure to 
only remove pot lid and fiberglass insulation only momentarily 

6. Note time taken for stew to fully cook 
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Results: 1. Pass Criteria: 
a. Stew cooks with no issues. 

2. Fail Criteria: 

a. Stew fails to cook. 

b. Pot fails to increase in temperature. 
c. Thermal Battery fails to heat up 

3. Number of samples to test: 

a. A single ISEC assembly 
b. Three repetitions of test 
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7 Conclusions and Recommendations 

 

The ISEC Sugar Oven has been designed to optimize and simplify usage to be a cheap alternative to 

biomass cooking in Ghana. Our design minimizes cost, optimizes usability, streamlines manufacturing, as 

well as reduces risk. Some of the main factors that have been investigated as possible sources of failure 

have been thermal conductivity of pot and thermal battery and risk of diode failure. Thermal conductivity 

has been addressed through calculations located in Appendix F. After further analysis and calculations, it 

has been concluded that to ensure maximum thermal conductivity, a thermally conductive powder will 

need to be used to interface the pot and thermal battery. Aluminum nitride fits this specification and will 

be used in the initial prototype of the Sugar Oven. Additionally, making the outer layer of insulation 

larger in diameter will allow for more fiberglass to be included between the thermal battery and outer 

insulation. This maintains large transfer ratios, which will in turn maximize thermal conductivity.  

 

7.1 Actions to Continue Our Project 
 

Because of the pandemic, our group was unable to confirm the validity of our design with prototype 

testing this quarter. As it stands, the sugar oven design meets most of the requirements set at the 

beginning of the year.  At the end of the fall quarter, the proposed design developed into a stationary 

oven, instead of a stove that can be carried. Because of this, the weight requirement for the prototype as a 

whole was changed to apply just to the removable pot. This requirement then became negligible after the 

change was made. The one requirement we missed was the cost of the prototype, which initially will be 

high but would be cheaper if the design is mass manufactured. This estimated cost also was based on if 

the team had to buy all the materials needed from scratch, when in reality the larger ISEC team has many 

of the mentioned parts.  

 

Since we were unable to build and test a prototype, should there be any testing failures, possible 

alternatives to the proposed design could include adjusting the number of diodes used in the heating 

system or changing the wire used to wrap and connect the diodes in the diode chain. We would also 

recommend looking into using metal tubing for the pot and thermal battery to eliminate one step in the 

manufacturing process.  

 

As our senior project comes to an end, we want to recommend what steps could be taken to continue our 

project and we want to highlight what the larger ISEC team plans to do in the future. With our prototype 

design ideas, the team can build the proposed prototype and test its subsystems and the final assembly.  

 

7.2 ISEC as a Whole 
 

The whole ISEC project will also continue to be actively worked on by a group of volunteers to 

understand how technology can best be applied to developing countries in an interdisciplinary setting, 

revisit resistive heating elements, implement the ISEC into other developing countries across the world, 

and collaborate with non-profits.   
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10 Appendix B: QFD and Decision Matrices 

 
Table 2. Pugh matrix, showing the evaluation of concepts compared to the Model 3 datum.

 
 

Table 2 shows the Pugh matrix made in deciding between the different model ideas. Each model was 

compared to the Model 3, or current design of the ISEC with the design requirements given. If the 

alternative for certain criteria was predicted to be better than the current condition, it was given a positive 

score; if it was predicted to be worse, it was given a negative score; and if it was predicted to be the same 

as the Model 3, it was given a neutral (0) score. Positive scores are highlighted in red, negative scores are 

highlighted in green, and neutral scores were left white or grey.  

 

Table 3. Quality Function Deployment (QFD).

 

 
 

Table 3 shows the Quality Function Deployment, or the QFD. This shows the correlation strength 

between the end-user and the engineering requirements given.  
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11 Appendix C: Final Drawings 

 

 
Figure 11. Bill of Materials (BOM). 

 

 
Figure 12. Thermal Battery. 
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Figure 13. Thermal Battery Base. 

 

 
Figure 14. Top Plate of Thermal Battery. 
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Figure 15. Thermal Battery Outer Cylinder. 

 

 
Figure 16. Pot Interface Base, Scale 1:4. 
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Figure 17. Pot Interface Cylinder. 

 

 
Figure 18. Pot Cylinder. 
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Figure 19. Pot Base. 

 

Figures 11 through 19 show the full assembly and its subcomponents of the Sugar Oven.   
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12 Appendix D: List of Vendors, Contact Information, and Pricing 

 

Tables 4 and 5 highlight the raw materials we are planning on using in our model. The cost analysis has 

been updated since Winter Quarter based on suppliers and calculated quantity amounts, but the estimated 

cost at scale remains the same. 

 

Table 4. Bill of Materials, List Form. 

Vendor Item Part Number Qty. Cost/Quantity Total Cost 

Amazon Erythritol Sweetener Granular (2.5 lb. / 40 oz) none 1 $             14.99 $      14.99 

Amazon JB Weld 8281 (10 oz) none 1 $             14.79 $      14.79 

DigiKey Diode Standard 600V 10A Through Hole BYV10X-600PQ  16 $               0.41 $        6.48 

Grainger Loose Absorbent, Universal, Perlite, 8 gal. PLP900-1 1 $             19.90 $      19.90 

Grape Solar High Efficiency Polycrystalline Photovoltaic Module GS-STAR-100W 1 $           100.00 $    100.00 

Lowes QUIKRETE 90-lb High Strength Concrete Mix none 1 $               4.10 $        4.10 

McMaster-Carr Multipurpose 6061 Aluminum Sheet (48" x 48“) 89015K126  1 $             88.33 $      88.33 

McMaster-Carr Multipurpose 6061 Aluminum, 10" Diameter 1610t68  1 $             61.12 $      61.12 

McMaster-Carr Breather Vent 9833k23  1 $               2.44 $        2.44 

McMaster-Carr Push-In Connector Set, 2 Poles, 15 Amps 9193t12  1 $             17.27 $      17.27 

McMaster-Carr Fiberglass Insulation 9346k38  2 $             40.08 $      80.16 

McMaster-Carr Copper Wire, 1/4 lb. Spool, 0.020" Diameter 8873K22 1 $               6.87 $        6.87 

  Total  $            370.30 $     416.45 

 

 

Table 5. Cost Analysis from Winter Quarter. 

Item Cost (in USD) Estimated Cost at Scale 

Diode Chain 11.40 4.50 

Aluminum Sheet Metal TBD, ~60.00 TBD, ~30.00 

Perlite 16.00 4.00 

Concrete 4.10 2.00 

Erythritol TBD, ~1 kg. for 10.00 TBD, ~1 kg for 4.48 

JB Weld 5.00 2.00 

Fiberglass Insulation 15.00 2.50 

Breather Plug 2.44 1.00 

SUBTOTAL 233.94 99.76 

Solar Panel 80.00 60.00 

TOTAL 310.94 159.76 

 

  

https://www.amazon.com/Erythritol-Sweetener-Granular-Diabetics-Substitute/dp/B07CVLT43T/ref=sr_1_1_sspa?crid=1E3M8MKRFGEHR&dchild=1&keywords=erythritol%2Bsweetener&qid=1591233963&sprefix=ery%2Caps%2C227&sr=8-1-spons&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzM0hBR0w2TUQxQUpHJmVuY3J5cHRlZElkPUEwNzk2Mjk1MjFGSElaRTMyMElTVCZlbmNyeXB0ZWRBZElkPUEwMTI0NzE0MUdVRTBQR1E4TllEVyZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU&th=1
https://www.amazon.com/J-B-Weld-8265S-Cold-Weld-Reinforced/dp/B014OVHAOY/ref=asc_df_B0006O1ICE/?tag=hyprod-20&linkCode=df0&hvadid=198093606370&hvpos=&hvnetw=g&hvrand=14161641073843626599&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1014232&hvtargid=pla-320192516391&th=1
https://www.lowes.com/pd/QUIKRETE-90-lb-High-Strength-Concrete-Mix/3014643?cm_mmc=shp-_-c-_-prd-_-lbm-_-google-_-lia-_-210-_-masonrybaggedgoodsrepair-_-3014643-_-0&store_code=2730&placeholder=null&gclid=EAIaIQobChMIqY_xodny5wIVUr7ACh0PewjPEAQYASABEgJSVPD_BwE&gclsrc=aw.ds
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Figure 20. Indented Bill of Materials. 

 

Figure 19 displays the indented bill of materials.   
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13 Appendix E: Vendor Supplied Content Specifications and Data Sheets 

 

The following sheets outline the vendor supplied content specifications for all the components. The sheets 

are in the order that they are listed in the Bill of Materials table, except for the QUIKRETE 90-lb High 

Strength Concrete Mix Specification Sheet.  

 

 
 

QUIKRETE 90-lb High Strength Concrete Mix Specification Sheet 
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14 Appendix F: Detailed Supporting Analysis 

 

The following pages in Appendix F detail the heat transfer calculations made for this design.  
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The following pages show the calculations run through MATLAB and its results.  

 

  



ENGR 459-461 Interdisciplinary Senior Design Project Fall/Winter/Spring 2019-2020 

73 

 

 

  



ENGR 459-461 Interdisciplinary Senior Design Project Fall/Winter/Spring 2019-2020 

74 

 

  



ENGR 459-461 Interdisciplinary Senior Design Project Fall/Winter/Spring 2019-2020 

75 

 

15 Appendix G: Gantt Chart 

 

Appendix G shows the Gantt Chart for the project. The chart outlines the projected timeline and 

milestones for the project. The Gantt Chart was heavily modified and updated after the senior project 

class went virtual amid the pandemic.  
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16 Appendix H: Product Guide for User 

 

16.1 Using the Sugar Oven 
 

1. The local Sugar Oven installation technician will place the solar panel for optimum sunlight and 

help place the Sugar Oven within the home. 

a. Note that should the Sugar Oven ever need to be moved, multiple people will need to 

assist as the Sugar Oven will be very heavy. 

2. Connect the power connector from the solar panel to the plug from the Sugar Oven in the house. 

3. To cut of power to the Sugar Oven and stop heat from being produced, unplug the connector 

between the Sugar Oven and the solar panel.  

a. Do not try to disconnect from any other point along the Sugar Oven or solar panel and 

only disconnect at the connection point. 

4. The Sugar Oven will take approximately 3 hours to heat up to 140C.  

a. While there is a connector plug to allow for the ability to cut off power to the oven, the 

intention is to leave it on and running consistently so that the erythritol can absorb the 

heat throughout the day and be hot and ready when it is time to cook. 

 

16.2 Safety Considerations 
 

1. Fiberglass in between two exterior layers of insulation made of a perlite and fiberglass mixture.  

2. The thermal battery which contains the heating elements of the system will not be exposed to 

users to avoid the risk of burns.  

a. The pot that fits into the thermal battery will also have handles along the side which are 

made for users to carry.  

b. For cleaning, the pot should be removed with heat-resistant gloves or cloth.  

3. The thermal battery contains erythritol that expands as it melts, causing a large pressure 

differential within the battery.  

a. To deal with that, the thermal battery contains a breather vent along the top of the ISEC 

to release excess pressure if needed.  

4. The ISEC is designed to stay in a fixed area and will have precautions that if it does need to get 

lifted, a group of people will be required to carry it.   
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16.3 Repair Considerations 
 

1. Should the Sugar Oven stop heating food, repair can easily be addressed by swapping batteries of 

the subsystems.  

a. Each subsystem can be replaced under technician rework with quick field repairs being 

made on a component level. Depending on where the user is located, contact information 

for these technicians would be provided upon distribution. 

b. The diode chain has been the source of failure on previous models of the ISEC, so in this 

model, adjustments were made. These specific diodes were specifically chosen to work 

within their manufactured specification.  

c. The manufacturing of the diode chain has been streamlined to make sure the diodes are 

getting properly connected as to minimize risk of failure. 

d. The aluminum from the thermal battery can be reused for future ISECs, and all the other 

components of the system can be maintained for future use.  

2. If the perlite concrete mixture insulation were to fail on the ISEC, a mold will be available to 

make another mixture at little cost and with relative ease. 
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17 Appendix I: Design Verification Plan and Report 

 

Table 6. DVPR. 

Item 

No. 

Clause 

Reference 
Test Description Acceptance Criteria Quantity 

Detailed Design and Concept Verification (Type A) 
1 Heating 

Element 

20 Diodes, test how long it takes to get to 

temperature (140°C) while enclosed in an insulator 

(Fiberglass). Test by having a thermocouple on the 

body of the resistive heating assuming a uniform 

temperature along the element 

Heat up to temperature 

in no longer than 3 

hours with no failure 

would be considered a 

pass 

3 test 

samples 

2 Phase 

Change 

Material 

test melting temperature by putting thermocouples 

on inside of container carrying roughly same volume 

as the thermal battery will have. Record temperature 

of phase change and other set points using specific 

grade of erythritol 

Find important points in 

temperature with 

erythritol, be able to use 

information for future 

desi 

3 test 

samples 

3 Thermal 
Contact 

test thermal connection between pot and thermal 
battery to see heat transfer. Have thermocouple on 

inside of pot filled with water as well as on outside 

cylinder of thermal battery. Test temperature 

difference against time, as well as time to boil water 

Find thermal contact of 
pot. If takes longer than 

3 hours to boil water, 

fail 

4 test 
samples 

Architectural Design and Design Verification (Type B) 
4 Heating 

Element 

diodes at 3 Amps under 150°C along with phase 

change material (erythritol). Test how long it takes 

to get to temperature (140°C) while enclosed in 
aluminum thermal battery with insulator 

(Fiberglass). Test by having a thermocouple on the 

cylindrical body of the thermal battery assuming a 

uniform temperature along the battery. Also look for 

possible failures, although this was verified in 

previous studies. 

Find if thermal battery 

reaches temperature 

properly, no longer than 
3 hours with no failure 

would be considered a 

pass 

1 test 

sample 

5 Thermal 

Battery 

The purpose of this test is to validate the efficacy of 

the thermal battery sub-system of the ISEC. This test 

will be performed by testing time for pot interface of 

the thermal battery to reach 140°C with a 

thermocouple. One has reached 140°C, pour room 

temperature water into pot. Record time to boil 

water the entire system will be enclosed in fiberglass 
and attached to a solar panel as a power source. 

Test to see the heat 

differential between the 

thermal battery and 

outside of insulation. 

1 test 

sample 

each 

treatment 

System and Acceptance Test and Product Verification (Type C) 
6 Sugar 

Oven 

Test entire system: working with all components, 

including pot, test to see if cooker effectively cooks 

vegetables and stews commonly eaten in Ghana. 

Failure test, see if can effectively cook in a 

reasonable time without failure. 

To see if there are any 

points of failure before 

acceptance test 

3 test 

samples 

each 

treatment 
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18 Appendix J: Material Engineering Properties 

 

The tables in Appendix J show the Material Engineering Properties for all elements mentioned in the 

design analysis verification. 

Table 7. Material Engineering Properties for Erythritol, Aluminum, Fiberglass Insulation, Perlite and Concrete 

Mixture, Air, and Water. 

Erythritol 

Melting Temperature [Tm] 120 [⁰C] 

Enthalpy [hm]  345 [J/g] 

Specific Heat (solid) [Cp,s] 1.38 [J/g*K] 

Specific Heat (liquid) [Cp,l] 2.76 [J/g*K] 

Thermal Conductivity(solid) [λs] 0.733 [W/m*K] 

Thermal Conductivity (liquid) [λl] 0.326 [W/m*K] 

Density(solid) [ρs] 1.48 [g/cm3] 

Density(liquid) [ρl] 1.30 [g/cm3] 

Aluminum 

Thermal Conduct Resistance [kal] 1.50 [m2*K/W] 

Thermal Convection Resistance [hal] 2.75 [m2*K/W] 

Insulation 

Thermal Conductivity [kins] 0.0525 [W/m*K] 

(20%) Pearlite (80%) Concrete Mixture 

Thermal Conductivity [kwall] 0.8 [W/m*K] 

Air 

Thermal Connectivity [hair] 10 [W/m2K] 

Density (20⁰C) [ρair] 1.225 [kg/m3] 

Density (25⁰C) [ρair,c] 1.204 [kg/m3] 

Density (140⁰C) [ρair,h] 0.8338 [kg/m3] 

Molar Mass [MMair] 28.965 [kg/mol] 

Atmospheric Gas Constant [GCair] 287.05 [J/kg*K] 

H2O 

Thermal Connectivity [hal] 20 [m2*K/W] 
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19 Appendix K: Safety Checklist 

 

Table 8 shows the Safety Check List for the ISEC. As shown, each specification is indicated on the right. 

For certain items on the checklist, we have provided appropriate comments.  

 
Table 8. Safety Checklist. 

Y N Checklist Item 

✓ 
 

Will any part of the design create hazardous revolving, reciprocating, running, shearing, punching, 

pressing, squeezing, drawing, cutting, rolling, mixing or similar action, including pinch points and sheer 

points? 

Comments: pinch points when inserting stove 

 
✓ Can any of the design undergo high acceleration / decelerations? 

 
✓ Will the system have any large moving masses or large forces? 

 
✓ Will the system produce a projectile? 

 
✓ Would it be possible for the system to fall under gravity creating injury? 

 
✓ Will a user be exposed to overhanging weights as part of the design? 

 
✓ Will the system have sharp edges? 

✓ 
 

Will all the electrical systems be properly grounded? 

 
✓ Will there be any large batteries or electrical voltage in the system above 40 V either AC or DC? 

✓ 
 

Will there be any stored energy in the system such as batteries, flywheels, hanging weights, or 
pressurized fluids? 

Comments: pressurized fluids (erythritol) 

✓ 
 

Will there be any explosive or flammable liquids, gases, dust fuel part of the system? 

Comments: insulation (fiberglass) 

 
✓ Will the user of the design be required to exert any abnormal effort or physical posture during the use of 

the design? 

 
✓ Can the system generate high levels of noise? 

✓ 
 

Will the device/system be exposed to extreme environmental conditions such as fog, humidity, cold, high 

temperatures, etc.…? 

Comments: high temperatures 

✓ 
 

Will the system be easier to use safely rather than unsafely? 

✓ 
 

Will there be any other potential hazards not listed above? If yes, please explain. 
Comments: any user contact points could be extremely hot; moving the device could be a hazard 

because it is heavy 

 


