

Dual Axis Solar Panel Tracker

by

Javier Harrison, Xavier Lugue, Nick Wolfe

Senior Project

ELECTRICAL ENGINEERING DEPARTMENT
California Polytechnic State University

San Luis Obispo
June 2020

1

Table of Contents

Abstract 5

Chapter 1: Introduction 6

Chapter 2: Customer Needs, Requirements, and Specifications 7
Customer Needs 7
Requirements and Specifications 7

Chapter 3: Functional Decomposition (Level 0 and Level 1) 9
Dual Axis Solar Tracker Level 0 Block Diagram 9
Dual Axis Solar Tracker Level 1 Block Diagram: Microprocessor 10
Dual Axis Solar Tracker Level 1 Block Diagram: Actuator 11
Dual Axis Solar Tracker Level 1 Block Diagram: LCD Display 11

Chapter 4: Project Planning 13
Gantt Charts 13
Cost Estimates 14

Chapter 5: Design 15
Motor Driver 16
Sensor Selection 17
Board Selection 17
Algorithm 17

Chapter 6: Construction 19
System Structure 19
Mode Operations 19
Magnetic Encoders 19
Actuators 19
Sensors 19

Chapter 7: Testing 21
RELAY_INIT() & SET_RELAY() 21
photoresistors() 21
set_mode() 22
readAngle() 22
modeDisplays() 23
set_day() 24
set_time() 26
pyranometer() 27
check_mode() 27

2

menu() and menu_loop() 27
solar_path() 29
main() 33
Final Project Schematic 34

Chapter 8: Conclusions and Recommendations 35
References 36
Appendices 38

A. Senior Project Analysis 38
B. Parts List 42
C. Function Listing 43
D. Senior Project Code 44

3

List of Tables and Figures
Tables Page

1. Dual Axis Solar Tracker Requirements and Specifications 8
2. Dual Axis Solar Tracker Level 0 Block Diagram Parameters 9
3. Dual Axis Solar Tracker Level I Block Diagram: Microprocessor Parameters 10
4. Dual Axis Solar Tracker Level I Block Diagram: Actuator Parameters 11
5. Dual Axis Solar Tracker Level I Block Diagram: LCD Display Parameters 11
6. Estimated Parts and Labor Cost 14
7. Motor Driver Operation 17

Figures
1. Dual Axis Solar Tracker Level 0 Block Diagram 9
2. Dual Axis Solar Tracker Level I Block Diagram: Microprocessor 10
3. Dual Axis Solar Tracker Level I Block Diagram: Actuator 11
4. Dual Axis Solar Tracker Level I Block Diagram: LCD Display 11
5. Dual Axis Solar Tracker Level I Block Diagram 12
6. EE460 Gantt Chart 13
7. EE461 Gantt Chart 13
8. EE462 Gantt Chart 13
9. Solar Photovoltaic System 15
10. First Motor Driver Layout 16
11. Final Motor Driver Layout 16
12. Sensors on Solar Panel 18
13. Photoresistors Flow Diagram 21
14. Set Mode Function Flow Diagram 22
15. Read Angle Function Flow Diagram 23
16. Mode Displays Function Flow Diagram 24
17. Set Day Function Flow Diagram 25
18. Set Time Function Flow Diagram 26
19. Menu Loop Function Flow Diagram 28
20. Solar Coordinate Vector Diagram 30
21. Normal Vector Diagram 31
22. East-West Tilt Angle Perspective Diagram 31
23. Main Flow Diagram 33
24. Completed Wiring Diagram 34

4

Dual Axis Solar Panel Tracker

Javier Harrison
Xavier Lugue
Nick Wolfe
EE 460-07

EE 461/462 Dale Dolan
1. I agree to supervise this senior project. ______
2. The specifications are [1]-[2]:
☐ Implementation Free—Describes what project should
do, not how.
☐ Bounded—Identify project boundaries, scope, and
context
☐ Complete—Include all the requirements identified by
the customer, as well as those needed to define the project.
☐ Unambiguous—Concisely state one clear meaning.
☐ Verifiable—A test can prove if system meets
specification.
☐ Traceable—Each engineering specification serves at
least one marketing requirement.

ADVISORS: Please initial above, if you agree to supervise this senior project. Also, please check the
applicable boxes above. Comment below, if requirements or specifications require revision.

Abstract
Photovoltaic systems generate more energy when orthogonally facing the sun where solar cells

absorb the most light. By creating an effective, autonomous solar tracking system, the developed solar
panels consistently generate maximum energy while using less power. Dual axis solar trackers surpass
single axis trackers in energy generation, however, their cost and reliability provide a significant
drawback. This project develops different algorithmic implementations designed to provide optimal and
efficient behavior for photovoltaic systems. These algorithms adjust the solar panel’s position
appropriately with the sun’s location, weather conditions, and selected operating modes. The solar
tracking system’s operations include latitudinal axis capability , longitudinal axis capability , dual axis
capability, manual or demo mode, and a reset mode setting the panels flat parallel to the ground.

5

Chapter 1: Introduction
After the discovery of the photovoltaic effect in 1839, it wasn’t until 1954 when the first

silicon-based solar cell was created [12]. These solar cells are the building blocks which almost all
modern solar panels are made of today. As solar panels are slowly becoming more efficient, they are also
becoming more viable for both residential and commercial use as a renewable energy source. By seeking
to improve the overall design of photovoltaic systems, the world could slowly transition towards cleaner
energy sources such as solar energy. The overall objective of this project is to improve solar panel energy
generation and efficiency by designing multiple algorithms for a pre-existing solar module with dual axis
control. The completed system will be used for performance comparison against several dual axis and
single axis designs.

With the technological advances to dual axis solar trackers, different operational methods have
been developed to improve solar energy generation. Different solar tracking techniques rely on image
processing like Kee-Hoon and Sung-Bae’s Bayesian functions [1] while others operate on feedback from
sensors or some tracking systems that operate without any feedback like Sabran and Fajardo’s heliotropic
sensorless approach [5]. Using influence from past implementations, this project aims at developing
algorithms suitable for various weather conditions and yielding more energy generation.

6

Chapter 2: Customer Needs, Requirements, and Specifications
Customer Needs

Solar tracker consumers purchase single axis solar tracking panels because the price lessens compared to
dual axis tracking. The energy transferred through the dual axis system lingers slightly above the single
axis’ energy generation. For a valid dual axis investment, the algorithm constructed must merit significant
optimization considering various weather patterns and conditions. Day-to-day adaptability potentially
separates the two technologies. Increasing the energy production becomes vital for profit. Regarding
price, the customer would prefer the system to sell inexpensively. Improved energy generation hits a
threshold despite advancement in tracking, so decreasing the tracker’s production cost makes it more
affordable. A price decrease and electrical generation improvements would make it a competitor against
single axis tracking.

The solar tracker consumers energy so minimizing the power consumption plays an important role.
Everytime the solar tracker realigns and faces the sun, the energy generated exhibits electrical and
mechanical energy loss as movement. The customer benefits from a balance between the tracker’s duty
cycle considering the tradeoff amidst the controller’s generation and consumption.

The customer requests reliable performance. Being a dual axis tracker, the system provides a range of
motion so the movement must not realign at random. Whatever the solar trackers initial position on the
axes, the panels must visibly rotate in the direction of the sun. The dual axis’ fluid movement allows for
reductions in motion. The customer wants the ability to switch between mode functionality. If the sun
frequently aligns with one axis, it reasons to change to the matching axis. The consumer can choose to
move the panels or leave them in a set position. Multiple modes allow for different accommodations and
volatility.

Requirements and Specifications

To design an effective system, certain customer requirements must be met. First, the system must have
high energy generation. Given the added complexity and dual axis tracking system cost versus other
solutions, there must be sufficient energy generation gain justifying extra costs. The tracking system must
reliably and durably endure exposure to the elements. The tracking unit should be resilient enough to
continue use through the solar panel’s lifespan. The appropriately matched hardware running the system
minimizes the cost. The tracking system enhances user experience with selectable modes. This allows the
end user performance control, engaging them with the system. Finally, the tracking control system
consumes the least power possible, thus maximizing the efficiency and increasing profits.

7

Table 1. Dual Axis Solar Tracker Requirements and Specifications

Marketing
Requirements

Engineering
Specifications

Justification

1 Dual axis algorithm generates 5-7% more
average energy per year than the single-axis
algorithm

Through research this is the average gain
in energy generation when going from
single to dual-axis tracking.

3 Operates using an inexpensive
microcontroller and sensors under $200

It would not be cost effective to use a
microcontroller with more power or
features than required.

4, 6 Operates as a dual axis, single axis
(longitudinal or latitudinal), or manual
system

User able to operate system differently
based on their need or situation

1, 5 Minimizes actuator activation while
maintaining high power generation.
Compares data samples between 15 degrees
every hour

Trade-off between power generation
versus power consumption needs to be
maximized

2, 6 Incorporates different tracking algorithms
for sunny, cloudy, and partially cloudy
days

Sunlight diffuses differently with cloud
density and coverage. Some algorithms
may outperform in certain weather

3, 5, 7 Interface displays voltage, current, power,
or average energy within two decimals
places

The screen will provide all the numeral
information, and less buttons makes
functionality easier.

Marketing Requirements
1. High Energy Generation
2. Weather Adaptable
3. Low Cost
4. Multi-mode Operation
5. Low Power Consumption
6. Multiple Algorithms
7. Simple User Interface

The requirements and specifications table format derives from [1], Chapter 3.

8

Chapter 3: Functional Decomposition (Level 0 and Level 1)

Figure 1. Dual Axis Solar Tracker Level 0 Block Diagram

Table 2. Dual Axis Solar Tracker Level 0 Block Diagram Parameters

MODULE SOLAR TRACKING SYSTEM

INPUTS SUN POSITION DATA: 0V TO 5V RANGE
SYSTEM POWER: 12V DC
USER INPUT: VARIES SUN TRACKING ALGORITHM OR MODE

OUTPUTS PANEL POSITION DATA: 0V TO 3.3V RANGE
GUI DATA: DISPLAYS CURRENT MODE AND POWER GENERATION

FUNCTIONALITY THE SOLAR TRACKING SYSTEM OBTAINS DATA TRACING THE SUN’S POSITION.
THROUGH ALGORITHMS, THE DATA BECOMES USEFUL COORDINATES DEMONSTRATED
AS THE PANEL POSITION DATA. THE PANEL POSITION DATA CONVERTS ACTUATOR
MOVEMENT TO LONGITUDINAL AND/OR LATITUDINAL ROTATION SO THE SYSTEM STAYS
ALIGNED WITH THE SUN. GUI DATA DISPLAYS PRACTICAL INFORMATION REGARDING
THE ENERGY GENERATION. THE USER INPUT CHANGES THE TRACKING ALGORITHM.

9

Figure 2. Dual Axis Solar Tracker Level I Block Diagram: Microprocessor

Table 3. Dual Axis Solar Tracker Level I Block Diagram: Microprocessor Parameters

MODULE MICROPROCESSOR

INPUTS SOLAR SENSORS: ANALOG VOLTAGE SIGNAL
VOLTAGE SENSOR: 0 TO 5V ANALOG SIGNAL
CURRENT SENSOR: 0 TO 5V ANALOG SIGNAL
BUTTONS: GPIO VOLTAGE
SYSTEM POWER: 9V DC
CLOCK: INTERNAL CLOCK RUNNING AT LOWEST FREQUENCY

OUTPUTS ACTUATOR 1 POSITION VOLTAGE: 0V TO 3.3V RANGE
ACTUATOR 2 POSITION VOLTAGE: 0V TO 3.3V RANGE
I2C: DATA TO OPERATE DISPLAY

FUNCTIONALITY THE MICROPROCESSOR CONTROLS THE MOVEMENT OF THE SOLAR PANEL. IT USES
SENSORS TO INDICATE THE POSITION THAT BEST OBTAINS THE MOST ENERGY FROM THE
SUN. IT CONTROLS HOW OFTEN THE ACTUATORS MOVE, AND SENDS DATA TO THE LCD
DISPLAY.

10

Figure 3. Dual Axis Solar Tracker Level I Block Diagram: Actuator

Table 4. Dual Axis Solar Tracker Level I Block Diagram: Actuator Parameters

MODULE ACTUATOR

INPUTS M+: MOTOR EXTEND SIGNAL
M-: MOTOR RETRACT SIGNAL

OUTPUTS MECHANICAL MOVEMENT (EXTENDING OR RETRACTING)

FUNCTIONALITY THE ACTUATORS ROTATE THE SOLAR PANEL TO THE POSITION GIVEN FROM THE
MICROPROCESSOR’S DATA POINTS.

Figure 4. Dual Axis Solar Tracker Level I Block Diagram: LCD Display

Table 5. Dual Axis Tracker Level I Block Diagram: LCD Display Parameters

MODULE LCD DISPLAY

INPUTS LCD COMMAND: 8-BIT BUS
POWER: 5V DC

OUTPUTS INFORMATION: TEXT ON SCREEN

FUNCTIONALITY THE LCD DISPLAY CONVEYS MESSAGES TO THE USER TO COMMUNICATE
FUNCTIONALITY OF THE SYSTEM. IT TAKES THE DATA OBTAINED FROM THE
MICROPROCESSOR AND DISPLAYS IMPORTANT INFORMATION LIKE THE MODE, VOLTAGE
READINGS, POWER GENERATION OR AVERAGE ENERGY.

11

Figure 5. Dual Axis Solar Tracker Level I Block Diagram

The level 0 diagram illustrated the solar tracker’s function. The utilized sensors convert the solar’s
position into tangible data. The actuators move the solar panels in the direction where there’s greater
energy generation due to the data obtained by sensors and translated to an appropriate amount by the
microprocessor. The three subsystems creating the solar tracker are the actuators, display, and
microprocessor excluding the solar panel.

The signals above stem from information obtained through datasheets. The Actuator has two input
controlling the mechanism’s extension and retraction. The actuator has optional hall sensors in the
subsystem, but they are not utilized in this project. The microprocessor controls the display through 8-bits
that instruct the device to perform different actions. The LCD calls for five volts to operate it.

12

Chapter 4: Project Planning

Figure 6. EE460 Gantt Chart

Figure 7. EE461 Gantt Chart

Figure 8. EE462 Gantt Chart

13

Table 6. Estimated Parts and Labor Cost

Part Part Number / Model Part Cost Quantity Total

Microcontroller MSP432P401R $19.99 1 $19.99

Solar Sensors SUF268J001 $11.15 4 $44.60

LCD Screen EA SER161-ENLWK $80 1 $80

Buttons PB6B2HS7M1CAL00 $5.60 6 $33.60

Enclosure $15 1 $15

Mounting Hardware $10 N/A $10

Wires $40 N/A $40

Parts Total $243.19

Labor

3 hours per week per
person

 Estimated
$75k per year

 $11,250

Total Cost $11,493.54

stimated P arts Cost E = 6

cost + 4cost + cost a m b
stimated P arts Cost E = 6

$218.19 + 4 × $243.54 + $350
stimated P arts Cost 257.05E = $

The components listed in the table above show the parts that will be essential to the project. The listed
products are not final since different or more sensors may be required throughout the course of the
project. The microcontroller was chosen due to the lower cost and familiarity with the functionality. The
worst case scenario number for buttons was six. Four sensors for each corner of the solar panels. With
three of us available to work on the project, we allowed each person to work a minimum of three hours
every week, so there would be nine hours total each week for the project.

14

Chapter 5: Design

The Dual Axis Solar Tracker was a project before, so the device was readily available. The solar system
of the panel includes two inverters and two charge controllers with one 12V battery storage system. Prior
to designing, records were searched for prior information regarding the design of the tracking system.
Through observation and tracing wires, the following schematic was created to understand the system.

Figure 9. Solar Photovoltaic System

The system is powered by a 12V Deep Cycle Lead Acid battery. The battery was wired to the bottom of
the frame with two junction boxes. Inside the junction boxes were two bus bars, one for the positive
terminal and another for the negative terminal of the components. The junction box allows for easier
connection. The unit had a cooling system which will not be integrated as part of this project. The
inverters lead to an encasing with four outlets, two which power the fans, and another two free 120VAC
outlet plugs. Another box with female banana plugs functions as the main junction to connect the solar
charger, battery, and solar panel. Many switches were connected to a board in an enclosure box, and the
fans and one linear actuator, with manual switching, were operational.

15

Motor Driver
Two designs were made for the subsystem that controls the linear actuators. The first design proved to be
more complex.

Figure 10. First Motor Driver Layout

The first design was intended to make use of the two H-bridges that were used by the group before. As
seen in Figure 10, the design required the H-Bridges and multiple relays which defeated the purpose of
the H-Bridge. The coil (Pin 7 and Pin 8) that would change the direction of the relays would require at
least 8V to trigger the switch and at max 3V to return to the original, positive direction. The battery was
the only device that could reach both the required operation voltages demanded by the H-bridge, however,
additional relays or switches would be required to control the directions of the actuators. This design was
not feasible due to the lack of zero state operation; the linear actuators would constantly move in one
direction without a second relay. A microprossing board that has a GPIO of 8V would be the alternative
to avoid additional components.

Figure 11. Final Motor Driver Layout

The final design requires less parts than the initial design. Although the H-bridge that was used prior
could not be salvaged, four relays total will be sufficient to control the motors with the microprocessing
unit. The relays operate at 10A and 250V, so it meets the specification brought up by the battery and the
actuators. The relays are adequate for MPUs because they can be controlled with a 3.3V or 5V

16

input/output signal. With the relays, each actuator is controlled by two signals. When they are both low,
the actuator is not moving (zero state). The one and zero combination that allows the motor to match the
terminals of the battery is the positive direction, and the combination with opposite terminals is the
negative direction. Two relays are required for each linear actuator.

Table 7. Motor Driver Operation

State Relay 1 Input Relay 2 Input

ZeroState (LOW) 0 0

Positive Direction 1 0

Negative Direction 0 1

ZeroState (HIGH) 1 1

Sensor Selection
Materials used previously from the prior group included a pyranometer and a magnetic encoder. For
sensing the position of the sun, these two devices prove useful. The magnetic encoder is apt for measuring
the angle of the panels. The device is connected directly to the rotating rod of the linear actuator. With
algorithms, it can be used to relocate previous positions that held the highest irradiance or energy
absorption through the sensors for sampling intervals. The pyranometer will be useful for adapting to
weather conditions and finding the angle with the highest irradiance.

The new additions for the solar tracking system include light sensitive devices. These devices are
photoresistors and photodiodes. These devices essentially behave similarly, but the photodiode induces
current whereas the photoresistor decreases in resistance thus indirectly proportional to current. These
elements will be encapsulated so the sensors react accordingly to shading. The photodiode has more range
with an incidence angle of 80 degreed max whereas the photoresistor can be less sensitive.

Board Selection
Due to familiarity, the choice of microcontroller units was between the MSP432R or the Arduino Mega.
The MSP has more capability and flexibility in terms of programming, but the Arduino proved to be
easier to implement. Both boards operate with 3.3V and 5V pins. The Arduino Mega has a total of 54
digital pins and 16 analog pins. Although the Arduino has one clock, built in functions will allow for
delays and counting clock cycles. If interrupts were required, the Arduino Mega has a limit of 5 interrupt
pins.

Algorithm
The algorithms developed for this project rely heavily on the sensors. One, however, will be based on
calculating the sun path for the following day. A sensor will be required to track the required angle of the
panels to follow the azimuth of the sun.

17

The basic algorithms are derived from the sensors, but they would be looped to operate at the conditions
of weather at which they operate best. The photoresistor and photodiodes will have similar functioning
algorithms since they both have the encasing to reduce incoming sunlight. Four photoresistors are
mounted onto a small structure along the sides of the solar panel. Depending on the orientation of the
panel in relation to the sun, a shadow might be cast on a photoresistor. This will increase the resistance
thus decreasing the current. One or both of the relays will be tripped, turning on the actuator that will
move the panel opposite of the shadow casted. This motion will continue until the relay is turned off
under the condition that both of the photoresistors are within the same value or, in other words, not
shaded. Depending on the interval of time or angle that the panel is allowed to increment, the motors will
run until it is perpendicular then continue finding the maximum point of energy generation with the next
axis. Since the gradient of motion is not sensitive because the sun is moving slowly, it is not necessary to
track both axises at the same time. Instead, they will be reiterated an n-number of times until the sensor
finds the minimum angle of incidence. The photodiode will be set up in the same manner as the
photoresistor, but they will be separate around the solar panel rather than being close together.

Figure 12. Sensors on Solar Panels

The pyranometer will be on the same plane as the solar panel, but will be only one side. Attached to the
frame is a metal plate where the Apogee pyranometer was mounted previously, which will be used for
mounting again. The pyranometer will be used as a sole sensor to track the sun. Once we accumulate a
reasonable amount of data to distinguish the data from cloudy days to that of sunny days, the pyranometer
will be capable of switching the algorithm to detect cloudy or rainy days. For this case, we will allow the
panel to be parallel to the ground to catch the maximum amount of irradiance bouncing from the clouds in
all directions. Besides the weather detection, it will be used to move about a radius of the original position
and store the position with the highest irradiance. Once the samples are taken, the panel will set the
actuator to the angles of the stored position. It will wait a certain interval of time then continue the same
process.
The last algorithm will be based on a formula that calculates the sun path that the solar tracker will be
able to follow. The magnetic encoder is essential for this algorithm since it will dictate the angles of the
actuator that correlate to the azimuth. It will follow the calculated azimuth angle. It might be paired with
the pyranometer if it corrects the tracking.

18

Chapter 6: Construction
System Structure
The mechanical structure of the project, which was decided to be kept as it were, was completed by
previous senior project groups. One actuator controls the North-South direction of the solar panel while
the other actuator controls the East-West direction. The actuators’ arms extend and contract to push and
pull the panel which rotate along bearing-supported metal rods connected to the supporting frame. The
panel itself is supported by an aluminum frame that is both lightweight and durable. The bottom of the
structure is placed on caster wheels to allow repositioning and transportation of the entire structure. Both
charge controllers and both inverters are mounted to a plastic side panel of the frame itself. The 12 V
battery is located beneath the frame and mounted to the bottom of the structure. A latched box serves as
the designated housing for the smaller electrical components of the system as well as a secondary box
containing four 120 V outlets from the inverters.

Mode Operations
The different modes will be selected using a series of buttons to navigate through the menu displayed on
the LCD screen. The screen will display the various operating modes, the ability to select and change
modes, and various important input/output metrics. The manual mode of the system will be a set of
buttons to manually move the panel in both directions on either of its axes. This could possibly be used
for demonstration purposes as the sun does not move noticeably fast as well as situations in which setting
a fixed tilt angle would be needed. The sensor tracking modes are discussed below under sensors.

Magnetic Encoders
The magnetic encodes which will be used to measure the tilt angle on either axis are mounted directly to
the metal bar and bearings in which the panels rotate. In previous designs of the project, there were two
magnetic encoders, one for each axis, but as of taking on this project there was only one left which had
become damaged and unusable. Two new encoders will be used for verifying tilt angles through a 10-bit
serial data signal to the microcontroller, and will be used for implementing the astrological tracking
method.

Actuators
The two actuators which were used in previous iterations of the project are still in working order and will
continue to be used for this project, but if the budget allows, may be replaced. The actuators work while
being powered by a positive or negative 12 V signal which will cause them to extend or contract,
respectively. This motion will push or pull the panel to rotate along either of its axes.

Sensors
The construction of the photoresistor structure prototype was made using pieces of cardboard and glue to
form a rectangular box that is 3 times longer than it is wide. On each side panel of the box, a photoresistor
was mounted far enough from the front face of the box (the side which will face the sun), to cause shading
when misaligned with the light source. The final structure will be 3-D printed, encase the circuit to protect
from the environments, and mounted to the frame

19

The structure of the photodiodes will differ slightly from the photoresistor structure as the diode sensors
face perpendicular to the circuit board compared to the photoresistors which face parallel. Additionally, as
these sensors are much more precise and sensitive, shading will not need to be used as in the photoresistor
case. Their mounting structures and encasings will also be 3-D printed for protection and durability.

The Apogee pyranometer is a prebuilt sensor with its own protective casing and simply will be mounted
to the frame without the need of additional construction.

20

Chapter 7: Testing
With the start of a new quarter, COVID-19 changed the structure classes at Cal Poly. Students were not
permitted to be on campus, and the buildings were closed for the entire quarter. During the first few
weeks of Spring 2020, the plan was to finish constructing the system and begin testing. Because the
buildings were closed and the dual axis tracker is located in the back of Engineering East, the project was

not accessible. Configuring the project was limited to
testing the functions and subsystems individually
until they could be integrated together. With the
virus, ordering parts resulted in delayed shipping
which slowed down the construction and testing. In
this chapter, the purpose of each function will be
explained and the software diagrams will be included.

For the construction of the Arduino code, it is
important to note that the value of many variables
interchange. Because values of variables change,
repetitive variables need to be declared in the
beginning of the code so it is defined as a global
variable. If variables were defined within the
functions, the scope of variables would not allow the
values to carry or they would be reinitialized.

RELAY_INIT() & SET_RELAYS(STATUS_1,
STATUS_2, STATUS_3, STATUS_4)
These functions are short but essential to reduce the
lines of code. It allows the relays to be initialized in
the void_setup(). It labels all the relays as outputs.
The SET_RELAYS takes the input, which can be
written as ON or OFF, and writes these signals to the
relays. It allows multiple relays to be set with one line
of instruction.

photoresistor()
This function covers one of the main algorithms for
finding the optimal position perpendicular to the sun.
It reads the input from four photoresistors. These
photoresistors are placed on each surface around a
rectangular box. Depending on the angle that the box
faces the sun, one or two of the photoresistors will be
shaded. The photoresistor that produces less voltage
due to shading will cause the relay to correspond to

Figure 13. Photoresistors Flow
 Diagram

21

the opposite direction to move the actuator in the direction that brings the solar panel towards the sun. In
the code, it is omitted, but the set_mode() function should follow each if statement in order to correctly
apply the mode that the dual axis was set to operate. One new actuator was bought to test the code at
home. The actuator was tested for one set of directions then the counterparts. The relay shines a LED
when it is activated, but the actuator is connected to see if it moved in the proper direction.

set_mode()
The variable mode is used as a flag or indicator to keep track of the operation of the actuators, whether
one or both are on. This function uses a switch-case to set the relays that should be on depending on the
mode. For photoresistors(), the function operates both actuators by default, so a delay is used for this
case. Manual mode has its own functions, so a delay is put in place of it. For the single axis case, the
directions that are not being used are both set off. This function would be better to test with two actuators.
It had not been tested properly since one set of directions was only able to be tested at once. Testing both
actuators would be better, because there may be subtle drifts in the other direction for the single axis cases
due to the set_mode() being a few lines of code after the function initializing both axises.

Figure 14. Set Mode Function Flow Diagram

readAngle()
This function reads the data coming into the magnetic encoder and returns an integer. When the CS signal
on the magnetic encoder is set LOW, the program toggles the CLK signal twelve times. With each
iteration, it reads the digital pin D0 of the magnetic encoder. As it cycles the clock, each bit is shifted until
the for loop is finished giving the encoder data. The strange thing about the encoder is that the model
number and the datasheet specify it as a 10-bit encoder, but it behaves as a 12-bit encoder according to the

22

code. The part has two models, a 10-bit and 12-bit model. Using the Serial Print, the numbers being
generated were debugged. The ten bit versions of the code were unsuccessful, so the code was generated
as if it were the 12-bit encoder. The CS is set back HIGH to stop the encoder from reading.

Figure 15. Read Angle Function Flow Diagram

modeDisplays()
This function was created to provide a neutral or stand-by screen with information that may be useful for
the user. For the dual axis mode, the readAngle() function is used to get the readings from the magnetic
encoders. The angle according to the magnetic encoder is displayed on the LCD. For the single axis
tracking, “SINGLE AXIS” with the appropriate direction is displayed on the first line. The second line
displays the angle measured within a range from 0 to 359. Depending on the orientation desired, this can
be changed to display a range from -179 to 179, but the variable type would have to be changed. At the
moment, it is written with an unsigned variable type, so subtracting by 180 would display a number
greater than the scope (e.g. 216). For the Manual mode, submenus display the buttons to press to move the
actuators. The first menu allows you to move the actuator from north to south, BACK would be towards
the north. FORWARD would be towards the south. Pressing enter would bring the user to the next screen,
there the actuator that controls east to west can be adjusted. BACK is east and FORWARD is west.
Pressing ENTER would take the user back to the main menu sequence. Both the algorithms are disabled
to leave the solar panel in place.

23

Figure 16. Mode Displays Function Flow Diagram

set_day()
For the solar path algorithm, it is important to be able to set the day, so the user is not stuck with the
wrong position. This function allows for the day to be set for the sun path. The sun path algorithm would,
in change, track the sun based on the info given. This function waits on three inputs for the hundreds,
tens, and ones place. It only takes numbers from 001-365. Starting from the hundreds, FORWARD
increments the number. BACK and MENU do nothing. ENTER would continue to the next place. The
function rewrites the data in the variable, n.

24

Figure 17. Set Day Function Flow Diagram

25

set_time()
This function works in the similar fashion to set_day, but it waits on four button presses. It changes the
hour_w variable. It can range from 00:00-23:59. FORWARD and ENTER are the only inputs. Both these
functions were tested by using the LCD. The buttons were pressed and the edge cases were set so the
numbers did not go outside the established range.

Figure 18. Set Time Function Flow Diagram

26

pyranometer()
The analog pin corresponding to the pyranometer is read. The number obtained would range from 0-1024.
This number must be multiplied by the sensitivity declared by the datasheet. An important note, the
ground of the battery and the signal ground must be tied to accurately obtain the values. Upon testing, the
pyranometer did not react to changes of light from flashlights and surrounding sunlight. A multimeter was
used to read the voltage across the signal ground, but it would read around 10 millivolts.

check_mode ()
This function is a simple if-else statement. It keeps track of the MODE button. Before the menu()
function was integrated, it was supposed to serve as a way to change which actuator was on. As the
project continued, this function was no longer needed since there was another function dedicated to
changing the mode.

menu() and menu_loop()
Originally this function was made using a switch-case statement with varying menu values. This made it
easier to format the different menu options by content. The inputs button would make the menus change
from one screen to another. The code, however, did not manage to properly clear the LCD without
making it loop within the function. Testing the LCD, the words showed up, but the flash dimmed the
screen. It was too noticeable so the code was restructured to use while loops. This function allows for the
main to be short. This function controls the modes and algorithms and allows for the actuators to be
controlled.

27

Figure 19. Menu Loop Function Flow Diagram

28

solar_path()
This function executes the dual axis solar tracking method using calculated solar coordinates which are
defined by an altitude angle, 𝞪, and an azimuth angle, φ. Equations for calculating solar coordinates and
converting clock time to solar time from Renewable and Efficient Electric Power Systems by Gilbert M.
Masters:

Due to the mechanical design of the preexisting solar panel system, its rotational axes differ from that of
the rotational axes in calculations. Azimuth angle (φ) rotates about the z-axis and altitude angle (𝛂)
determines the z-component of the vector that points towards the sun. The solar panel system utilizes a
North-South angle (σ) and an East-West angle (τ) that rotates about the axis tilted σ degrees away from
the -x axis. In order to account for this discrepancy, a conversion from 𝛂 and φ to σ and τ was needed.

29

Figure 20. Solar Coordinate Vector Diagram

The vector towards the sun, Vs, is defined by its x, y, and z components:

30

Figure 21. Normal Vector Diagram

Figure 22. East-West Tilt Angle Perspective Diagram

31

When facing the panel, V1 represents the center to the top edge of the solar panel and V2 represents the
center to the left edge of the panel. Together they define the plane of the panel and their cross product
determines the normal vector that points towards the direction of the sun. V1 and V2 vectors defined by
their x, y, and z components:

Normal vector is calculated by:

Setting n equal to Vs and solving for σ and τ:

With a calculated altitude and azimuth, σ and τ can be determined to point towards the Sun’s position
which is measured by the encoders.

32

main()
This function relies on all the previous functions. Using these functions allowed the code to be short. The
check_time() function is first in the loop to check the elapsed time between readings. This function is
limited to one minute, so it relies heavily on the loop running under two minutes max. The
modeDisplays() is required to display the proper home menu that gives the angle measurement readings.
From there an if-else statement is written to operate the actuators depending on the algorithm set. One
statement is constantly waiting to see if the MODE button is pressed to open the menu.

Figure 23. Main Flow Diagram

33

Final Project Schematic
The final schematic of the Dual Axis Tracker used four buttons, two magnetic encoders, an LCD screen,
four 200Ω resistors, a potentiometer, a pyranometer, a 12V Battery, four photoresistors, and four relays.
The potentiometer must be adjusted so the characters on the Liquid Crystal Display can be seen.

Figure 24. Completed Wiring Diagram

34

Chapter 8: Conclusion and Recommendations
With the shift in circumstance due to COVID-19, the project is not as complete as it could have been if
classes were not virtual during the spring quarter. The focus during the spring quarter, in regards to
testing, was functionality. The behavior of the tracker was difficult to observe visually without the
tracking system. The individual functions, along with the main(), work as desired, but improvements can
be made. The biggest concerns are the function pertaining to the sun path algorithm. This function, due to
all the math, would stall the program run time. As long as it does not take more than a minute to loop
back to the main function, no problems would reside.

The entire dual axis still needs to be constructed to properly test the dual axis tracker. From the testing,
we are only sure that the tracker reacts as it should to the sensors, so diagnostics would still need to be
made. The references that are considered as zero would need to be tweaked. For the encoders, in example,
the numbers that are read depend on the position that the encoders are mounted onto the shaft. It can be
shifted mechanically or by subtracting within the Arduino code. With the sensors provided, more
algorithms can be made by combining different components to increase the effectiveness of the tracker.

Apart from all the diagnostics that can be made, the project can be taken further by documenting the
energy production of the different algorithms. This would allow the effectiveness of the algorithms to be
measured with tangible data. Additional modifications or test cases would be able to be constructed in
forms of actuator running times. At the moment, the actuators would be constantly running which would
decrease energy generation since power would be lost when sampling.

Regarding the project, we were successful in constructing two different solar tracking algorithms. The
solar tracking system has an interface that allows the user to change the settings. There are four different
modes, and two different algorithms. Additional settings were added to allow the user to fix the time and
day of the tracking system in case it were to reset. We were not successful in writing a third algorithm that
incorporated the pyranometer with the solar path function. The pyranometer was not functioning as
expected and there was not sufficient time to order a new one. The algorithms would require additional
code to be weather adaptable, but as of now, that is not the case. With the change in circumstance, we
were able to complete the basic requirements for the solar tracker to be built.

35

References

1. K. Kee-Hoon and C. Sung-Bae, “An efficient concentrative photovoltaic solar system with
Bayesian selection of optimal solar tracking algorithms,” Applied Soft Computing, Vol 83,
October. 2019. DOI: 10.1016/j.asoc.2019.105618

2. A. Ashi, A. A. Joudeh, M. Shafeey, B. H. Sababha and S. N. Istehkam, “A PV Solar Tracking

System: Design, Implementation and Algorithm Evaluation” presented at the 5th International
Conference on Information and Communication Systems. ICICS. 1-3 April, 2014. DOI:
10.1109/IACS.2014.6841948.

3. S. Seme, G. Štumberger and J. Voršič, "Maximum Efficiency Trajectories of a Two-Axis Sun

Tracking System Determined Considering Tracking System Consumption," in IEEE Transactions
on Power Electronics, vol. 26, no. 4, pp. 1280-1290, April 2011.

4. M. Mirdanies and R. P. Saputra, “Dual-axis solar tracking system: A combined astronomical

estimation and visual feedback” presented at International Conference on Sustainable Energy
Engineering and Application (ICSEEA), Jakarta, Indonesia, 3-5 Oct, 2016. DOI:
10.1109/ICSEEA.2016.7873573

5. R. U. Sabran and A. C. Fajardo, “Sunflower Inspired Solar Tracking Strategy: A Sensorless

Approach for Maximizing Photovoltaic Panel Energy Generation” presented at IEEE 10th
International Conference on Humanoid, Nanotechnology, Information
Technology,Communication and Control, Environment and Management (HNICEM), Baguio
City, Philippines, Philippines, 29 Nov.-2 Dec. 2018. DOI: 10.1109/HNICEM.2018.8666379.

6. Z. Judkins, “Photovoltaic Assembly for Use in Diffuse Weather Conditions and Related

Methods,” U.S. Patent 8,455,806, June 4, 2013

7. PA-04 Datasheet, Progressive Automation, Arlington, WA, USA. 2019. Accessed: October 21,
2019. [Online]. Available:
https://cdn.shopify.com/s/files/1/0061/7735/7891/files/PA-04.pdf?9652

8. E20-435-COM Datasheet, SunPower Corporation, San Jose, CA. 2017. Accessed: October 21,

2019. [Online]. Available:
https://us.sunpower.com/sites/default/files/media-library/data-sheets/sunpower-e-series-commerci
al-solar-panels-e20-435-com-datasheet-521912-revb_1.pdf

36

https://ieeexplore.ieee.org/document/5685573
https://ieeexplore.ieee.org/document/5685573
https://cdn.shopify.com/s/files/1/0061/7735/7891/files/PA-04.pdf?9652
https://us.sunpower.com/sites/default/files/media-library/data-sheets/sunpower-e-series-commercial-solar-panels-e20-435-com-datasheet-521912-revb_1.pdf
https://us.sunpower.com/sites/default/files/media-library/data-sheets/sunpower-e-series-commercial-solar-panels-e20-435-com-datasheet-521912-revb_1.pdf

9. TSM-DE14A(II) Datasheet, Trina Solar Limited, Changzhou, China. 2017. Accessed: October

21, 2019. [Online]. Available:
https://static.trinasolar.com/sites/default/files/EN_TSM_DE14A_II_Tallmaxplus_B_2017_web.p
df

10. Solanki, Chetan Singh. Solar photovoltaics: fundamentals, technologies and applications. PHI
Learning Pvt. Ltd., 2015.

11. United States Department of Energy. Office of Energy Efficiency and Renewable Energy. “The

History of Solar”. Accessed November 12th, 2019. [Online]. Available:
https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf

12. Masters, Gilbert M. Renewable and Efficient Electric Power Systems. Hoboken, New Jersey.

John Wiley & Sons, Inc. 2004.

13. AEAT-6010/6012 Magnetic Encoder Datasheet, Avago Technologies, California, United States.
August 12, 2011. Accessed: March 12, 2020. [Online]. Available:
https://docs.broadcom.com/doc/AV02-0188EN

14. SP-212-215 Pyranometer, Apogee Instruments Inc, Utah, California, United States. January 2019.
Accessed: April 26, 2020. [Online]. Available:
https://www.apogeeinstruments.com/content/SP-212-215-manual.pdf

37

https://static.trinasolar.com/sites/default/files/EN_TSM_DE14A_II_Tallmaxplus_B_2017_web.pdf
https://static.trinasolar.com/sites/default/files/EN_TSM_DE14A_II_Tallmaxplus_B_2017_web.pdf
https://docs.broadcom.com/doc/AV02-0188EN
https://www.apogeeinstruments.com/content/SP-212-215-manual.pdf

APPENDIX A - ANALYSIS OF SENIOR PROJECT DESIGN EE 460-07
Project Title: Dual Axis Solar Panel Tracker
Student’s Name: Javier Harrison, Xavier Lugue, Nick Wolfe
Student’s Signature:
Advisor’s Name: Dale Dolan
Advisor’s Initials:
Date:

• 1. Summary of Functional Requirements
The overall function of the project is to create an algorithm that maximizes a dual axis

solar tracker’s energy generation as efficiently as possible. The project builds off a preexisting
dual axis solar panel module and utilizes a microcontroller and sensors to implement the
algorithm. Generally, solar panels generate maximum energy when orthogonally facing the sun.
The algorithm tracks the sun while taking into account weather conditions and adjusts the solar
panel’s position accordingly.

• 2. Primary Constraints

A prominent challenge this project faces is in finding a dual axis tracking system that
proves to be a feasible upgrade over single axis tracking. Since there is generally a small increase
in efficiency between these two methods, the system must be optimized at every stage. Another
challenge facing this project is developing the ideal tracking algorithm. Research must be done
to decide whether GPS, light sensors, or a combination of the two are the most efficient.

• 3. Economic

Economic impact of this system affects a variety of capitals. Technicians would have to
be trained to install and maintain the system; though we are unsure at this time if it would be
feasible to maintain our own team versus offering training to existing solar installation
companies. While a tracking system is a larger upfront investment than a stationary one, the
gains in efficiency will help overcome this. There would also have to be investments in facilities
in which to manufacture this system and house an administration and research team. This facility
would need to be equipped with the necessary tools and machines for the production of this
system. Since our system relies on purchasing “off the shelf” components and assembling them,
the natural capital needed for production could vary depending on the suppliers we choose for
each component.

The original cost of components was estimated at $243.19. This estimate includes the
microcontroller, sensors, user interface peripherals, and miscellaneous components necessary to
the project which are all listed in the Table III of the report. Additional equipment not listed
include access to a computer to program the microcontroller, tools for mounting components,
and tools for wiring components. Other than the profit made by selling this dual axis solar

38

tracker system, those who use it will also profit. According to a study from the International
Journal of Engineering and Technology, on average a dual axis solar tracker is close to 82%
more efficient than a fixed-tilt solar panel. Based on the average energy generation of a solar
panel per year to be approximately 500 kWh, the efficiency increase of a dual axis tracker, and
the average cost of electricity per kWh in the U.S, customers could save $50 per year per panel.

This product could emerge towards the end of June 2020 after the completion of this
project. When referring to the algorithm designed in the project, it could last indefinitely. The
photovoltaic system however may last years. The required maintenance and operation costs of
the product would be occasional cleaning of the system as well as replacement of damaged or
faulty components. The original development time was estimated at a minimum of 100 hours per
person in a group of three engineering students or three quarters at Cal Poly. (See Figures II,III,
and IV above). At the end of the project, it will most likely be kept as a displayable project for
the Electrical Engineering Department at Cal Poly.

• 4. If manufactured on a commercial basis:

The cost of the solar tracking system estimates around $243.19. Depending on the
amount of wires and enclosure cost, the number may reduce or increase. Table III shows the
major component and hardware cost. With the cost of the actuators, each at a cost of $149, the
total price per unit increases to $541.19. The purchase price would be $1000 for a single solar
tracking system. The profit from each purchase would be $458.91. Based on an estimated 2,000
sales per year, the net profit per year would be $917,820. The estimated operating cost for the
user per year would be likely less than $20 per year per panel in order to clean and maintain each
panel.

• 5. Environmental

The environmental impact of our dual axis tracking system includes all the usual
nonrenewable natural resources that are required to manufacture solar panels, namely silicon and
copper. Additional resources are required to make the tracking system; this includes metals for
the actuators as well as more silicon and other compounds for the tracking system itself. This
adds up to increases the required materials to deploy a panel. However, due to the increased
efficiency of a tracking system versus a stationary system, less land can be used to produce the
same amount of energy. This reduction in space needed for solar production could lessen the
impact solar farms have on the local habitat.

• 6. Manufacturability

The only proprietary aspect of our system is the tracking algorithm we program onto the
microcontroller, all other components are sourced from various suppliers. Suitable suppliers
must be chosen by comparing aspects such as cost, efficiency, and manufacturing capacity.
When items are mass produced there are inevitable flaws in manufacturing, because of this a

39

quality control system must be implemented . The probability is faulty equipment is low, but
with every sensor added to benefit the tracking system; the chance of faulty parts increases but
would still be low in scale. The microprocessors produced require the software to be preinstalled.

• 7. Sustainability

The core of this system is to improve the sustainability of our society's consumption. As
stated in the Manufacturing section, all the hardware for our system is to be sourced from other
manufacturers. To ensure our system reflects our desire for sustainability we must analyze the
manufacturing processes and business practices used by suppliers when we are choosing where
to buy our components. The design and components of our system will ensure the longest
possible lifespan of the system. The system will also be designed to allow the consumer to
upgrade the solar cell that is mounted on the tracking unit, this will help reduce waste.

• 8. Ethical.

Ethical implications of our system may arise in the deployment of our system. A large
scale deployment of our system would generate a large amount of power, which could be
hazardous if not executed properly. Because of this we must acknowledge the IEEE Code of
Ethics which states: “to maintain and improve our technical competence and to undertake
technological tasks for others only if qualified by training or experience, or after full disclosure
of pertinent limitations.” To uphold this rule we will ensure that any persons that are tasked with
installing our system have the proper training to safely complete their task.

We must also strive to be as transparent about the advantages of our system as possible.
Dual axis tracking systems have proven to be inherently hard to justify versus their single axis
counterparts; because of this our system may not be the ideal system for every consumer.
Keeping the Golden Rule in mind, we should not deceive the public and be sure to only publish
accurate and clear information about our system’s efficiency and reliability.

• 9. Health and Safety

If the tracking mechanism were to malfunction and move quicker than intended, the
actuators can possibly hit someone with the solar panels. Because the solar panels and actuators
are heavy, the slow speed, big mass is enough to hurt someone.

The solar panel produces current that may shock anyone who makes modifications to the
tracking system. Any exposed wires can potentially shock or burn anyone who comes in contact,
which results in injury or death. Exposed wires or circuitry run risk with rain that can cause
electrocution.

The photovoltaic system must be grounded properly to avoid conduction in metals that do
not belong in the circuit. If a loose wire were to come in contact with a metal object outside the
circuit, the metal begins to have a potential voltage when the system is conducting. Conduction
can result in a fire or electrocution.

40

• 10. Social and Political

Solar energy is growing, so there have been more policies that subsidize the production
of solar panels. In regards to manufacturing, the lowering cost of solar panels would allow for
increased solar panel production. Solar tracking would be more applicable for commercial or
industrial practices. In a mass produce scale, the solar tracker would be used for mass energy
production. If the algorithms produce more energy than an immobile solar panel, more energy
can be distributed to a load consuming the energy. In residential use, the owner would benefit
from lowered energy bills from their electrical provider and make money if the extra electricity
is sent back to the grid.

Solar energy provides a cleaner method of generating energy. The most pollution
generated comes from the manufacturing of the solar panel. The lifetime of pollution would be
constrained to the manufacturing span of the use lifetime. Compared with other sources of
energy, the amount of pollution continues through the span of the medium. If the solar tracker
were used to produce a solar farm, job opportunities with diagnosing errors or tracking
maintenance creates regular jobs for people.

• 11. Development

During the course of this project, learning how solar panels and photovoltaic systems in
general worked was a new concept. In order to fully understand the components and the system
as a whole, new techniques such as finding credible research was essential. As electrical
engineering students, bridging the connection between mechanical and electrical systems was
seldom experienced and required learning new analysis techniques. In addition to learning new
technical skills over the course of this project, new techniques involving time management,
project planning, and technical writing were necessary for the development of this project.

41

APPENDIX B - PARTS LIST
● 4 Resistors (200Ω)
● 4 Buttons
● 1 12 V Lithium Deep Cycle Battery
● 1 Apogee Pyranometer Model SP-215
● 2 AEAT-6010/6012 Magnetic Encoder
● 1 QAPASS 1602A Liquid Crystal Display
● 1 Potentiometer
● 2 Linear Actuators
● 2 SONGOL SRD-05VDC-SL-C Relays
● 4 KY-018 Photoresistors

42

APPENDIX C - FUNCTION LIST
RELAY_INIT()
SET_RELAY()
photoresistors()
set_mode()
readAngle()
modeDisplays()
set_day()
set_time()
pyranometer()
check_mode()
menu()
menu_loop()
solar_path()
main()

43

APPENDIX D - SENIOR PROJECT CODE

● #include <Wire.h>

● #include <Keypad.h>

● #include <LiquidCrystal_I2C.h>

● #include <LiquidCrystal.h>

●

● // Define Digital Inputs

● #define ON 0

● #define OFF 1

● #define RELAY_NORTH 50

● #define RELAY_SOUTH 51

● #define RELAY_EAST 52

● #define RELAY_WEST 53

● #define MODE 46

● #define ENTER 45

● #define BACK 47

● #define FORWARD 44

● #define LCD_RW 10

● #define LCD_RS 11

● #define LCD_EN 12

● #define MAG_NS 20

● #define MAG_CLK_NS 22

● #define MAG_CS_NS 24

● #define MAG_EW 21

● #define MAG_CLK_EW 23

● #define MAG_CS_EW 25

● #define BIT4 30

● #define BIT5 31

● #define BIT6 32

● #define BIT7 33

● #define Pyrano 3

● // Define Analog Inputs

● #define PhotoD1 A5

● #define PhotoD2 A6

● #define PhotoD3 A7

● #define PhotoD4 A8

● #define SENSOR_NORTH A0

● #define SENSOR_SOUTH A1

● #define SENSOR_EAST A2

● #define SENSOR_WEST A3

● //Variables

● unsigned long onemin = 60000;

● unsigned long previousMill = 0;

● unsigned long currentMill = 0;

● unsigned long time = 0;

● unsigned long actuator_runtime = 100;

● unsigned int DO_NS = 0;

● unsigned int DO_EW = 0;

44

● int input = 0;

● int mode = 0;

● int back = 0;

● int menu = 0;

● int algorithm = 0;

● int half_period_microS = 50;

● int data[10];

● int NSEW[4] = {0, 0, 0, 0};

● int NORTH = 0;

● int SOUTH = 0;

● int EAST = 0;

● int WEST = 0;

● int NS = 0;

● int EW = 0;

● int n = 1;

● float hour_w = 0;

● LiquidCrystal lcd(LCD_RS, LCD_EN, BIT4, BIT5, BIT6, BIT7);

●

● double lat = 35.2828;

● double longitude = 120.6596;

● double decl;

● //double hour_w;

● double B = 0;

● double E = 0;

● double ST = 0;

● float ha_deg = 0;

● float alt_deg = 0;

● float az_deg = 0;

● float az_deg_corrected;

● float NS_tilt_deg = 0;

● float EW_tilt_deg = 0;

● double conv = PI/180; //convert degrees to radians

●

● void setup() {

● // Configure Inputs and Outputs

●

● // Serial.begin(115200);

●

● pinMode(MODE, INPUT);

● pinMode(ENTER, INPUT);

● pinMode(BACK, INPUT);

● pinMode(FORWARD, INPUT);

● pinMode(SENSOR_NORTH,INPUT);

● pinMode(SENSOR_SOUTH,INPUT);

● pinMode(SENSOR_WEST,INPUT);

● pinMode(SENSOR_EAST,INPUT);

● pinMode(Pyrano,INPUT);

● pinMode(PhotoD1,INPUT);

● pinMode(PhotoD2,INPUT);

45

● pinMode(PhotoD3,INPUT);

● pinMode(PhotoD4,INPUT);

● pinMode(MAG_NS,INPUT);

● pinMode(MAG_CLK_NS, OUTPUT);

● pinMode(MAG_CS_NS, OUTPUT);

● pinMode(MAG_EW, INPUT);

● pinMode(MAG_CLK_EW, OUTPUT);

● pinMode(MAG_CS_EW, OUTPUT);

● pinMode(LCD_RW, OUTPUT);

● pinMode(LCD_RS, OUTPUT);

● pinMode(LCD_EN, OUTPUT);

● pinMode(BIT4, OUTPUT);

● pinMode(BIT5, OUTPUT);

● pinMode(BIT6, OUTPUT);

● pinMode(BIT7, OUTPUT);

● digitalWrite(23, HIGH);

● digitalWrite(22, HIGH);

● RELAY_INIT(); //initialize relay

● lcd.begin(16,2);

● }

●

● void loop() {

● //modify MODE with switch/case

● check_time();

● // check_mode();

● modeDisplays();

● if (digitalRead(MODE) == HIGH){

● menu = 1;

● menu_loop();

● }

● if (algorithm == 0){

● photoresistor();

● }

● else if (algorithm == 1){

● solarpath();

● }

● }

●

● //void manual_Relay_NS(){

● //if (digitalRead(FORWARD) == HIGH){

● // digitalWrite(RELAY_SOUTH, HIGH);}

● //else{

● // digitalWrite(RELAY_SOUTH, LOW);}

● //if (digitalRead(BACK) == HIGH){

● // digitalWrite(RELAY_NORTH, HIGH);}

● // else{

● // digitalWrite(RELAY_NORTH, LOW);}

● //}

● //

46

● //void manual_Relay_EW(){

● //if (digitalRead(FORWARD) == HIGH){

● // digitalWrite(RELAY_WEST, HIGH);}

● //else{

● // digitalWrite(RELAY_WEST, LOW);}

● //if (digitalRead(BACK) == HIGH){

● // digitalWrite(RELAY_EAST, HIGH);}

● //else{

● // digitalWrite(RELAY_EAST, LOW);}

● //}

●

● void RELAY_INIT(void) {

● pinMode(RELAY_NORTH, OUTPUT);

● pinMode(RELAY_SOUTH, OUTPUT);

● pinMode(RELAY_EAST, OUTPUT);

● pinMode(RELAY_WEST, OUTPUT);

● SET_RELAYS(OFF, OFF, OFF, OFF);

● }

●

● void SET_RELAYS(unsigned char STATUS_1, unsigned char STATUS_2, unsigned char

STATUS_3, unsigned char STATUS_4) {

● digitalWrite(RELAY_NORTH, STATUS_1);

● digitalWrite(RELAY_SOUTH, STATUS_2);

● digitalWrite(RELAY_EAST, STATUS_3);

● digitalWrite(RELAY_WEST, STATUS_4);

● }

●

● void photoresistor(void){

● NORTH = analogRead(SENSOR_NORTH); //read sensors

● SOUTH = analogRead(SENSOR_SOUTH);

● EAST = analogRead(SENSOR_EAST);

● WEST = analogRead(SENSOR_WEST);

●

● NS = (NORTH+ 7)-(SOUTH - 6); //compare sensors with calibration

● EW = (EAST + 25)-(WEST -25);

●

● if ((NORTH > 900) && (SOUTH > 900) && (EAST > 900) && (WEST > 900)) { //turn relays

off when too dark

● SET_RELAYS(OFF, OFF, OFF, OFF);

● }

● else if (NS > 20 && EW > 20) { //SE

● SET_RELAYS(OFF, ON, ON, OFF);

● }

● else if (NS < -20 && EW < -20) { //NW

● SET_RELAYS(ON, OFF, OFF, ON);

● }

● else if (NS > 20 && EW < -20) { //SW

● SET_RELAYS(OFF, ON, OFF, ON);

● }

47

● else if (NS < -20 && EW > 20) { //NE

● SET_RELAYS(ON, OFF, ON, OFF);

● }

● else if (NS > 20) { //S

● SET_RELAYS(OFF, ON, OFF, OFF);

● }

● else if (NS < -20) { //N

● SET_RELAYS(ON, OFF, OFF, OFF);

● }

● else if (EW > 20) { //E

● SET_RELAYS(OFF, OFF, ON, OFF);

● }

● else if (EW < -20) { //W

● SET_RELAYS(OFF, OFF, OFF, ON);

● }

● else {

● SET_RELAYS(OFF, OFF, OFF, OFF); //Balanced

● }

● delay(500); //wait 0.5 seconds

● }

●

● void check_time(){

● unsigned long currentMill = millis();

● unsigned long elapse = currentMill - previousMill;

● if (elapse > onemin){

● previousMill = currentMill;

● hour_w = hour_w + 0.0166666667;

● }

● else{

● hour_w = hour_w;}

● if (hour_w > 24){

● n = n + 1;

● hour_w = 0;

● }

● if (n > 365){

● n = 0;

● }

● }

●

● void set_day(){

● lcd.clear();

● int hund_stat = 1;

● int ten_stat = 1;

● int one_stat = 1;

● int hundreds = 0;

● int tens = 0;

● int ones = 1;

● lcd.setCursor(0,0);

● lcd.print("USE 001-365");

48

● lcd.setCursor(0,1);

● lcd.cursor();

● lcd.print("DAY: " + String(hundreds)+String(tens)+String(ones));

● lcd.setCursor(5,1);

● lcd.blink();

● while (hund_stat > 0){

● delay(125);

● if (digitalRead(FORWARD)== HIGH){

● if (hundreds <= 2){

● hundreds = hundreds + 1;

● }

● else{

● hundreds = 0;}

● lcd.setCursor(0,1);

● lcd.print("DAY: " + String(hundreds)+String(tens)+String(ones));

● lcd.setCursor(5,1);

● }

● else if (digitalRead(ENTER) == HIGH){

● lcd.setCursor(6,1);

● lcd.blink();

● hund_stat = 0;

● }

● // else if (digitalRead(BACK == HIGH)){

● // lcd.setCursor(0,1);

● // lcd.print("DAY: " + String(n));

● // break;

● // }

● }

● while (ten_stat > 0){

● delay(125);

● if (digitalRead(FORWARD)== HIGH){

● if (hundreds <= 2){

● if (tens <= 8){

● tens = tens + 1;}

● else{

● tens = 0;

● }

● }

● else{

● if (tens <= 5){

● tens = tens + 1;}

● else{

● tens = 0;

● }

● }

● lcd.setCursor(0,1);

● lcd.print("DAY: " + String(hundreds)+String(tens)+String(ones));

● lcd.setCursor(6,1);

● }

49

● else if (digitalRead(ENTER) == HIGH){

● lcd.setCursor(7,1);

● lcd.blink();

● ten_stat = 0;

● }

● // else if (digitalRead(BACK == HIGH)){

● // lcd.setCursor(0,1);

● // lcd.print("DAY: " + String(n));

● // break;

● // }

● }

● while (one_stat > 0){

● delay(200);

● if (digitalRead(FORWARD)== HIGH){

● if (hundreds == 3){

● if (tens <= 5){

● if (ones <= 8){

● ones = ones + 1;

● }

● else{

● ones = 0;

● }

● }

● else{

● if (ones <= 4){

● ones = ones + 1;

● }

● else{

● ones = 0;

● }

● }

● }

● else{

● if (ones <= 8){

● ones = ones + 1;}

● else{

● ones = 0;

● }

● }

● lcd.setCursor(0,1);

● lcd.print("DAY: " + String(hundreds)+String(tens)+String(ones));

● lcd.setCursor(7,1);

● }

● else if (digitalRead(ENTER) == HIGH){

● lcd.setCursor(8,1);

● lcd.blink();

● one_stat = 0;

● }

● // else if (digitalRead(BACK == HIGH)){

50

● // lcd.setCursor(0,1);

● // lcd.print("DAY: " + String(n));

● // break;

● // }

● }

● n = hundreds*100 + tens*10 + ones;

● lcd.clear();

● lcd.noBlink();

● delay(500);

● }

●

● void set_time(){

● int tens_hr_stat = 1;

● int ones_hr_stat = 1;

● int tens_min_stat = 1;

● int ones_min_stat = 1;

● int tens_hr = 0;

● int ones_hr = 0;

● int tens_min = 0;

● int ones_min = 0;

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("USE 00:00-23:59");

● lcd.setCursor(0,1);

● lcd.print("TIME: " +

String(tens_hr)+String(ones_hr)+":"+String(tens_min)+String(ones_min));

● lcd.setCursor(6,1);

● lcd.blink();

● while (tens_hr_stat > 0){

● delay(125);

● if (digitalRead(FORWARD)== HIGH){

● if (tens_hr <= 1){

● tens_hr = tens_hr + 1;}

● else{

● tens_hr = 0;

● }

● lcd.setCursor(0,1);

● lcd.print("TIME: " +

String(tens_hr)+String(ones_hr)+":"+String(tens_min)+String(ones_min));

● lcd.setCursor(6,1);

● }

● else if (digitalRead(ENTER) == HIGH){

● lcd.setCursor(7,1);

● lcd.blink();

● tens_hr_stat = 0;

● }

● // else if (digitalRead(BACK == HIGH)){

● // lcd.print("TIME: " + String(hour_w));

● // break;

51

● // }

● }

● while (ones_hr_stat > 0){

● delay(125);

● if (digitalRead(FORWARD)== HIGH){

● if (tens_hr == 2){

● if (ones_hr <= 2){

● ones_hr = ones_hr + 1;

● }

● else{

● ones_hr = 0;

● }

● }

● else{

● if (ones_hr <= 9){

● ones_hr = ones_hr + 1;}

● else{

● ones_hr = 0;

● }

● }

● lcd.setCursor(0,1);

● lcd.print("TIME: " +

String(tens_hr)+String(ones_hr)+":"+String(tens_min)+String(ones_min));

● lcd.setCursor(7,1);

● }

● else if (digitalRead(ENTER) == HIGH){

● lcd.setCursor(9,1);

● lcd.blink();

● ones_hr_stat = 0;

● }

● // else if (digitalRead(BACK == HIGH)){

● // lcd.print("TIME: " + String(hour_w));

● // break;

● // }

● }

● while (tens_min_stat > 0){

● delay(125);

● if (digitalRead(FORWARD)== HIGH){

● if (tens_min <= 4){

● tens_min = tens_min + 1;}

● else{

● tens_min = 0;

● }

● lcd.setCursor(0,1);

● lcd.print("TIME: " +

String(tens_hr)+String(ones_hr)+":"+String(tens_min)+String(ones_min));

● lcd.setCursor(9,1);

● }

● else if (digitalRead(ENTER) == HIGH){

52

● lcd.setCursor(10,1);

● lcd.blink();

● tens_min_stat = 0;

● }

● // else if (digitalRead(BACK == HIGH)){

● // lcd.print("TIME: " + String(hour_w));

● // break;

● // }

● }

● while (ones_min_stat > 0){

● delay(200);

● if (digitalRead(FORWARD)== HIGH){

● if (ones_min <= 8){

● ones_min = ones_min + 1;}

● else{

● ones_min = 0;

● }

● lcd.setCursor(0,1);

● lcd.print("TIME: " + String(tens_hr)+String(ones_hr)+ ":" +

String(tens_min)+String(ones_min));

● lcd.setCursor(10,1);

● }

● else if (digitalRead(ENTER) == HIGH){

● lcd.setCursor(11,1);

● lcd.blink();

● ones_min_stat = 0;

● }

● // else if (digitalRead(BACK == HIGH)){

● // lcd.print("TIME: " + String(hour_w));

● // break;

● // }

● }

● lcd.clear();

● delay(500);

● hour_w = tens_hr*10+ones_hr+(tens_min*10+ones_min)*0.0166666667;

● lcd.noBlink();

● }

●

● void set_mode(){

● switch(mode){

● case 0: //Dual Axis

● delayMicroseconds(1);

● case 1: //Single Axis (NS)

● digitalWrite(RELAY_EAST, LOW);

● digitalWrite(RELAY_WEST, LOW);

● case 2: //Single Axis (EW)

● digitalWrite(RELAY_NORTH, LOW);

● digitalWrite(RELAY_SOUTH, LOW);

● case 3: //Manual Mode

53

● delayMicroseconds(1);

● }

● delay(2);

● }

●

● unsigned int readAngle_NS(){

● DO_NS = 0;

● digitalWrite(MAG_CS_NS, LOW);

● delayMicroseconds(1); //Waiting for Tclkfe

●

● //Passing 12 times, from 0 to 11

● for(int x=0; x<12; x++){

● digitalWrite(MAG_CLK_NS, LOW);

● delayMicroseconds(1); //Tclk/2

● digitalWrite(MAG_CLK_NS, HIGH);

● delayMicroseconds(1); //Tdo valid, like Tclk/2

● DO_NS = (DO_NS << 1) | digitalRead(MAG_NS); //shift MSB left and pass the pin

state

● }

● digitalWrite(MAG_CS_NS, HIGH); //deselects the encoder from reading

● DO_NS = DO_NS * 0.0879;

● // Serial.println(DO_NS);

● return DO_NS;

● delayMicroseconds(1);

● }

●

● unsigned int readAngle_EW(){

● DO_EW = 0;

● digitalWrite(MAG_CS_EW, LOW);

● delayMicroseconds(1); //Tclkfe delay

●

● //Passing 12 times, from 0 to 11

● for(int x=0; x<12; x++){

● digitalWrite(MAG_CLK_EW, LOW);

● delayMicroseconds(1); //Tclk/2

● digitalWrite(MAG_CLK_EW, HIGH);

● delayMicroseconds(1); //Tdo valid, like Tclk/2

● DO_EW = (DO_EW << 1) | digitalRead(MAG_EW); //shift MSB left and pass the pin

state

● }

● digitalWrite(MAG_CS_EW, HIGH); //deselects the encoder from reading

● DO_EW = DO_EW * 0.0879;

● // Serial.println(DO_EW);

● return DO_EW;

● delayMicroseconds(1); //Tcs delay

● }

●

● void solarpath(){

● // Solar Coordinate and Solar Time Calculations

54

● decl = 23.45*sin((360/365)*(n-81)*conv);

● B = (360/364)*(n-91);

● E = 9.87*sin(2*B*conv)-7.53*cos(B*conv)-1.5*sin(B*conv);

● ST = hour_w + (4/60)*(120-longitude) + E/60;

● ha_deg = 15*(12 - ST);

● alt_deg =

asin(cos(lat*conv)*cos(decl*conv)*cos(ha_deg*conv)+sin(lat*conv)*sin(decl*conv))*(1/c

onv);

● az_deg = asin((cos(decl*conv)*sin(ha_deg*conv))/cos(alt_deg*conv))*(1/conv);

● az_deg_corrected = az_deg;

●

● // Corrects for proper azimuth

● if(cos(ha_deg*conv) < tan(decl*conv)/tan(lat*conv)) {

● az_deg_corrected = 180 - az_deg;

● }

● if(az_deg_corrected > 180){

● az_deg_corrected = -180 - az_deg;

● }

●

● EW_tilt_deg = asin(cos(alt_deg*conv)*sin(az_deg_corrected*conv))*(1/conv);

● NS_tilt_deg = acos(sin(alt_deg*conv)/cos(EW_tilt_deg*conv))*(1/conv);

●

● //Move the Relays According to Solar Path

● if (readAngle_NS() < NS_tilt_deg){

● while(readAngle_NS() < NS_tilt_deg){

● SET_RELAYS(ON, OFF, OFF, OFF);

● }

● }

● else{

● while(readAngle_NS() > NS_tilt_deg){

● SET_RELAYS(OFF, ON, OFF, OFF);

● }

● }

●

● if (readAngle_EW() < EW_tilt_deg){

● while(readAngle_EW() < EW_tilt_deg){

● SET_RELAYS(OFF, OFF, OFF, ON);

● }

● }

● else{

● while(readAngle_EW() > EW_tilt_deg){

● SET_RELAYS(OFF, OFF, ON, OFF);

● }

● }

● }

●

● int pyranometer(){

● int irr = analogRead(Pyrano);

● int irradiance = irr;

55

● return irradiance;

● }

●

● void check_mode(){

● if (digitalRead(MODE) == HIGH){

● if (mode == 3){

● mode = 0;

● }

● else{

● mode = mode + 1;

● }

● }

● delay(50);

● }

●

● void modeDisplays(){

● if (mode == 0){

● int EW_tilt = readAngle_EW();

● int NS_tilt = readAngle_NS();

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("NS Tilt: " + String(NS_tilt));

● lcd.setCursor(0,1);

● lcd.print("EW Tilt: " + String(EW_tilt));

● }

● else if (mode == 1){

● int NS_tilt = readAngle_NS();

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("SINGLE AXIS (NS)");

● lcd.setCursor(0,1);

● lcd.print("NS Tilt: " + String(NS_tilt));

● }

● else if (mode == 2){

● int EW_tilt = readAngle_EW();

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("SINGLE AXIS (EW)");

● lcd.setCursor(0,1);

● lcd.print("EW Tilt: " + String(EW_tilt));

● }

● else if (mode == 3){

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("Manual: N to S");

● lcd.setCursor(0,1);

● lcd.print(" <-(N) (S)->");

● menu = 12;

● while (menu == 12){

56

● delay(200);

● if (digitalRead(FORWARD)){

● SET_RELAYS(OFF, ON, OFF, OFF);

● }

● else if (digitalRead(BACK)){

● SET_RELAYS(ON, OFF, OFF, OFF);

● }

● else{

● SET_RELAYS(OFF, OFF, OFF, OFF);

● }

● if (digitalRead(ENTER)){

● menu = 13;

● SET_RELAYS(OFF, OFF, OFF, OFF);

● }

● }

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("Manual: E to W");

● lcd.setCursor(0,1);

● lcd.print(" <- (E) (W)->");

● while (menu > 0){

● delay(200);

● if (digitalRead(FORWARD)){

● SET_RELAYS(OFF, OFF, OFF, ON);

● }

● else if (digitalRead(BACK)){

● SET_RELAYS(OFF, OFF, ON, OFF);

● }

● else{

● SET_RELAYS(OFF, OFF, OFF, OFF);

● }

● if (digitalRead(ENTER)){

● menu = 0;

● SET_RELAYS(OFF, OFF, OFF, OFF);

● }

● }

● }

● }

●

● void menu_screen(){

● while (menu > 0){

● switch (menu){

● case 1: //Mode

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print(" -- Settings -- ");

● lcd.setCursor(0,1);

● lcd.print("MODE SELECT");

● if (digitalRead(BACK) == HIGH){

57

● menu = 0;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 2; //Algorithm

● break;

● }

● else if (digitalRead(ENTER)){

● menu = 5; //Dual Axis

● break;

● }

● case 2: //Algorithm

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print(" -- Settings -- ");

● lcd.setCursor(0,1);

● lcd.print("ALGORITHM SELECT");

● if (digitalRead(BACK) == HIGH){

● menu = 0;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 3; //Date

● break;

● }

● else if (digitalRead(ENTER)){

● menu = 9; //Photoresistors

● break;

● }

● case 3: //Day

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print(" -- Settings -- ");

● lcd.setCursor(0,1);

● lcd.print("DATE SELECT");

● if (digitalRead(BACK) == HIGH){

● menu = 0;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 4; //Time

● break;

● }

● else if (digitalRead(ENTER)){

● set_day();

● menu = 0;

● break;

● }

● case 4: //Time

58

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print(" -- Settings -- ");

● lcd.setCursor(0,1);

● lcd.print("TIME SELECT");

● if (digitalRead(BACK) == HIGH){

● menu = 0;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 1; //Mode

● break;

● }

● else if (digitalRead(ENTER)){

● set_time();

● menu = 0;

● break;

● }

● case 5: //Dual Axis

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("MODE SELECT");

● lcd.setCursor(0,1);

● lcd.print("DUAL AXIS");

● if (digitalRead(BACK) == HIGH){

● menu = 1;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 6; //Single Axis

● break;

● }

● else if (digitalRead(ENTER)){

● mode = 0;

● menu = 0;

● break;

● }

● case 6: //Single(NS)

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("MODE SELECT");

● lcd.setCursor(0,1);

● lcd.print("SINGLE (NS)");

● if (digitalRead(BACK) == HIGH){

● menu = 1;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 7; //Single (EW)

59

● break;

● }

● else if (digitalRead(ENTER)){

● mode = 1;

● menu = 0;

● break;

● }

● case 7: //Single (EW)

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("MODE SELECT");

● lcd.setCursor(0,1);

● lcd.print("SINGLE (EW)");

● if (digitalRead(BACK) == HIGH){

● menu = 1;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 8; //Manual

● break;

● }

● else if (digitalRead(ENTER)){

● mode = 2;

● menu = 0;

● break;

● }

● case 8: //Manual

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("MODE SELECT");

● lcd.setCursor(0,1);

● lcd.print("MANUAL");

● if (digitalRead(BACK) == HIGH){

● menu = 1;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 5; //Manual

● }

● else if (digitalRead(ENTER)){

● mode = 3;

● modeDisplays();

● mode = 0;

● menu = 0;

● break;

● }

● case 9: //Photoresistor

● lcd.clear();

● lcd.setCursor(0,0);

60

● lcd.print("ALGORITHM SELECT");

● lcd.setCursor(0,1);

● lcd.print("PHOTORESISTORS");

● if (digitalRead(BACK) == HIGH){

● menu = 2;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 10; //SunPath

● }

● else if (digitalRead(ENTER)){

● algorithm = 0;

● menu = 0;

● break;

● }

● case 10: //SunPath

● lcd.clear();

● lcd.setCursor(0,0);

● lcd.print("ALGORITHM SELECT");

● lcd.setCursor(0,1);

● lcd.print("SUNPATH");

● if (digitalRead(BACK) == HIGH){

● menu = 2;

● break;

● }

● else if (digitalRead(FORWARD)){

● menu = 9; //Photoresistors

● }

● else if (digitalRead(ENTER)){

● algorithm = 1;

● menu = 0;

● break;

● }

● case 0:

● break;

● }

● }

● }

●

● void menu_loop(){

● menu = 1;

● lcd.clear();

● while (menu == 1){

● lcd.setCursor(0,0);

● lcd.print(" -- Settings -- ");

● lcd.setCursor(0,1);

● lcd.print("MODE SELECT");

● delay(200);

● if (digitalRead(BACK) == HIGH){

61

● menu = 0;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 2; //Algorithm

● lcd.clear();

● while (menu == 2){

● lcd.setCursor(0,0);

● lcd.print(" -- Settings -- ");

● lcd.setCursor(0,1);

● lcd.print("ALGORITHM SELECT");

● delay(150);

● if (digitalRead(BACK) == HIGH){

● menu = 0;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 3; //Date

● lcd.clear();

● while(menu == 3){

● lcd.setCursor(0,0);

● lcd.print(" -- Settings -- ");

● lcd.setCursor(0,1);

● lcd.print("DATE SELECT");

● delay(200);

● if (digitalRead(BACK) == HIGH){

● menu = 0;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 4; //Time

● lcd.clear();

● while (menu == 4){

● lcd.setCursor(0,0);

● lcd.print(" -- Settings -- ");

● lcd.setCursor(0,1);

● lcd.print("TIME SELECT");

● delay(200);

● if (digitalRead(BACK) == HIGH){

● menu = 0;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 1; //Mode

● lcd.clear();

● }

● else if (digitalRead(ENTER)){

● set_time();

● menu = 0;

62

● lcd.clear();

● }

● }

● }

● else if (digitalRead(ENTER)){

● set_day();

● menu = 0;

● lcd.clear();

● }

● }

● }

● else if (digitalRead(ENTER)){

● menu = 9; //Photoresistors

● lcd.clear();

● while (menu == 9){

● lcd.setCursor(0,0);

● lcd.print("ALGORITHM SELECT");

● lcd.setCursor(0,1);

● lcd.print("PHOTORESISTORS");

● delay(200);

● if (digitalRead(BACK) == HIGH){

● menu = 2;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 10; //SunPath

● lcd.clear();

● while (menu == 10){

● lcd.setCursor(0,0);

● lcd.print("ALGORITHM SELECT");

● lcd.setCursor(0,1);

● lcd.print("SUNPATH");

● delay(200);

● if (digitalRead(BACK) == HIGH){

● menu = 2;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 9; //Photoresistors

● lcd.clear();

● }

● else if (digitalRead(ENTER)){

● algorithm = 1;

● menu = 0;

● lcd.clear();

● }

● }

● }

● else if (digitalRead(ENTER)){

63

● algorithm = 0;

● menu = 0;

● lcd.clear();

● }

● }

● }

● }

● }

● else if (digitalRead(ENTER)){

● menu = 5; //Dual Axis

● lcd.clear();

● while (menu == 5){

● lcd.setCursor(0,0);

● lcd.print("MODE SELECT");

● lcd.setCursor(0,1);

● lcd.print("DUAL AXIS");

● delay(200);

● if (digitalRead(BACK) == HIGH){

● menu = 1;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 6; //Single Axis

● lcd.clear();

● while (menu == 6){

● lcd.setCursor(0,0);

● lcd.print("MODE SELECT");

● lcd.setCursor(0,1);

● lcd.print("SINGLE (NS)");

● delay(200);

● if (digitalRead(BACK) == HIGH){

● menu = 1;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 7; //Single (EW)

● lcd.clear();

● while (menu == 7){

● lcd.setCursor(0,0);

● lcd.print("MODE SELECT");

● lcd.setCursor(0,1);

● lcd.print("SINGLE (EW)");

● delay(200);

● if (digitalRead(BACK) == HIGH){

● menu = 1;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 8; //Manual

64

● lcd.clear();

● while (menu == 8){

● lcd.setCursor(0,0);

● lcd.print("MODE SELECT");

● lcd.setCursor(0,1);

● lcd.print("MANUAL");

● delay(200);

● if (digitalRead(BACK) == HIGH){

● menu = 1;

● lcd.clear();

● }

● else if (digitalRead(FORWARD)){

● menu = 5; //Manual

● lcd.clear();

● }

● else if (digitalRead(ENTER)){

● mode = 3;

● modeDisplays();

● mode = 0;

● menu = 0;

● algorithm = 3;

● lcd.clear();

● }

● }

● }

● else if (digitalRead(ENTER)){

● mode = 2;

● menu = 0;

● lcd.clear();

● }

● }

● }

● else if (digitalRead(ENTER)){

● mode = 1;

● menu = 0;

● lcd.clear();

● }

● }

● }

● else if (digitalRead(ENTER)){

● mode = 0;

● menu = 0;

● lcd.clear();

● }

● }

● }

● }

● lcd.clear();

● }

65

66

