

Sweep-N-Go 3.0

By

Maria Pieroni

Senior Project

ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University

San Luis Obispo

2020

i

TABLE OF CONTENTS

Section Page

Table of Contents ... i

Lists of Tables and Figures ... ii

Abstract .. iv

I. Introduction ..1

II. Requirements and Specifications ...2

III. Functional Decomposition ...7

IV. Project Planning ...11

V. Design ..13

VI. User Experience Implementation ...16

VII. Instrument Connectivity Implementation ..30

VIII. Testing..37

IX. Conclusions ..44

References ..47

Appendices

A. Senior Project Analysis ..49

ii

LISTS OF TABLES AND FIGURES

Table Page

Table 1: Sweep-N-Go 3.0 Requirements and Specifications .. 3

Table 2: Sweep-N-Go 3.0 Deliverables .. 5

Table 3: Level 0 Block Diagram Function Table ... 7

Table 4: Level 1 Block Diagram Function Table ... 9

Table 5: Cost Estimates .. 12

Figures

Figure 1: Level 0 Block Diagram ... 7

Figure 2: Level 1 Block Diagram ... 9

Figure 3: Gannt Chart ... 11

Figure 4: Bench Connections .. 13

Figure 5: Example LabVIEW Code .. 14

Figure 6: Sweep-N-Go 2.0 Design Structure .. 14

Figure 7: Sweep-N-Go 3.0 Design Structure .. 15

Figure 8: Sweep-N-Go 2.0 Step 1 UI.. 16

Figure 9: Sweep-N-Go 2.0 Step 2 UI.. 17

Figure 10: Sweep-N-Go 3.0 Step 1 UI.. 17

Figure 11: Sweep-N-Go 3.0 Step 2 UI.. 18

Figure 12: Sweep-N-Go 2.0 Step 3 UI.. 19

Figure 13: Sweep-N-Go 2.0 Step 4 UI.. 20

Figure 14: Sweep-N-Go 3.0 Step 3 UI.. 20

Figure 15: Sweep-N-Go 3.0 "Instruments Connected" Tab ... 21

Figure 16: Sweep-N-Go 3.0 "Debug Panel" Tab .. 21

Figure 17: GUI DIfference 2.0 vs 3.0 ... 22

Figure 18: Increment Sweep Logic "Calculate_Voltage.vi" ... 23

Figure 19: Update X and Y axis Menus.. 24

Figure 20: INIT_DROP_MENU.vi .. 25

Figure 21: Empty Drop Menu Check.. 25

Figure 22: Create Timestamp File Name .. 27

Figure 23: Append Data to File .. 27

Figure 24: Sweep-N-Go 2.0 Write to File .. 28

Figure 25: Get_Data_From_File.vi ... 28

Figure 26: LabVIEW Code Queries Instrument Addresses .. 30

Figure 27: FIND_VISA_ADDRESS.VI ... 30

Figure 28: WRITE_GPIB VI .. 31

Figure 29: IDN_QUERY .. 31

Figure 30:Bench 9 User Interface ... 32

Figure 31: Rigol Multimeter Identification... 33

Figure 32: Sweep-N-Go 2.0 VISA_open.vi .. 34

iii

Figure 33:CHECK_OPEN_ERROR.vi... 34

Figure 34: Instrument Connectivity Error Message.. 35

Figure 35: HIDE_UNCONNECTED.vi ... 35

Figure 36: grey_out.vi ... 36

Figure 37:Update Agilent VISA Address ... 36

Figure 38: Diode Connected Circuit ... 37

Figure 39: JFET Connected Circuit .. 37

Figure 40: Diode Data Saved CSV File .. 38

Figure 41: Diode Characteristics .. 39

Figure 42: JFET Characteristics.. 40

Figure 43:NI MAX Debugging Interface ... 41

Figure 44: VISA Test Panel Agilent Power Supply ... 42

Figure 45: VISA Test Panel Fluke Multimeter ... 42

Figure 46:Revised Gannt Chart .. 45

iv

ABSTRACT

This project improves the current performance of the Sweep-N-Go LabVIEW program used in

Cal Poly electrical engineering laboratories. Sweep-N-Go expedites the laboratory data

collection process through automated testing. The new version of the program (Sweep-N-Go

Version 3.0) reduces user debugging time, improves sustainability, increases efficiency, and

considers all new lab bench equipment. Sweep-N-Go Version 3.0 includes an enhanced

Graphical User Interface (GUI) to optimize user-efficiency and user-friendliness according to

student survey feedback. To further achieve usability, this program has been well documented

online, outlining LabVIEW functions, such as how to open the program in LabVIEW, how to run

an executable command, and which parameters to set in the GUI. The Sweep-N-Go LabVIEW

program interfaces with all instruments on standard Cal Poly electrical engineering lab benches

through both USB and GPIB communication. After users run the program, they have the

capability to capture and graph collected data and export the data to a CSV file for further

analysis.

1

CHAPTER 1

Introduction:

 The custom-designed LabVIEW software program known as “Sweep-N-Go” (Version

2.0), previously installed on electrical engineering laboratory computers at Cal Poly, simplifies

and expedites the data collection process utilized in electrical engineering laboratories [13]. The

software program implements automated testing protocols and tools, thereby increasing the

efficiency and accuracy of the data collection process. Generally, automated testing tools

perform repetitive tasks that people would otherwise complete manually. While slower and less

accurate, manual testing can provide certain benefits by allowing students time manipulating the

data. This can help students draw insights that they might miss otherwise if they used automated

data collection [11]. This concern should not negatively impact the use of Sweep-N-Go,

however, since Cal Poly students have several lab courses throughout their four-year EE

curriculum providing them with multiple opportunities to gain experience manually inputting

data and gaining this experience. Additionally, the lab experiments requiring the use of Sweep-

N-Go often do so, because the assignments require the collection of large amounts of data over

long periods of time to limit the changes in the circuit due to external factors (heat, magnetic

waves, noise from jumper cables, etc.). Manual entry of large data sets can take too much time to

implement and compromise data integrity.

 Student exposure to Sweep-N-Go not only enhances the data collection process, but it

also introduces the student to an important product market. Exposure to automated testing makes

student education more representative of the current industry. According to a PR Newswire

article, the automated test industry will be worth $28.8 billion dollars in 2024 [12]. Sweep-N-Go

aims to provide students with an understanding of new circuit concepts in laboratories via

automated testing. For this reason, Sweep-N-Go requires students to select the instruments and

input the values over which to sweep. In this setup, students do not merely press a button after

making relevant circuit connections that says, “take data for EE 346 lab 3”. Students experience

the capabilities of the lab equipment and the speed at which instruments collect data from the

creation of a standardized test.

The current version of the Sweep-N-Go program communicates with the following

laboratory instruments: an oscilloscope, power supply, source meter, multimeter, and a

waveform generator. The user inputs the parameters from which she wants to collect data (such

as changing the input voltage from 0 to 10 volts in 0.5 V steps). The program automatically

controls the instruments, stores the data in a file and displays the data in a graphical format [1].

For labs requiring significant data collection and analysis, this program can greatly reduce the

time needed for students to compete the lab.

That said, however, the current version of Sweep-N-Go often leaves students and

professors frustrated and wanting more. Student complaints include reference to several

programming bugs, causing the user to restart the program and try again. Furthermore, several

students complained about the lack of an intuitive Graphical User Interface (GUI) [3] in Sweep-

N-Go, noting confusion when trying to navigate the program for the first time. Finally, the

program stores collected data in Excel, which requires tabular analysis – an unnecessary two-step

approach requiring additional time to process analytical efforts. This project aims to reduce user

frustrations and create a program that provides a more efficient data analysis process.

2

This project intends to create a durable, user-friendly update to the Sweep-N-Go program

(Version 2.0) with minimal programming bugs. The updated version of Sweep-N-Go includes an

intuitive Graphical User Interface and a detailed user guide. Additionally, the developer designed

the program with proper coding documentation practices allowing other developers to easily

make future changes. Overall, Sweep-N-Go 3.0 aims to introduce students to a functional

automated testing system and enhance learning in Cal Poly labs by improving students’ and

professors’ experiences with the program. These customers of the program express several

concerns and requests which drive the purpose of improving the existing Sweep-N-Go code.

3

CHAPTER 2

Customer Needs Assessment

Sweep-N-Go 3.0 users (customers) include Cal Poly electrical/computer engineering

students and faculty. To explore customer needs, I asked electrical engineering students what

frustrates them about the current version of Sweep-N-Go. They reported frustration with

debugging issues related to equipment or code errors that cause the system to fail. Furthermore,

the customers identified a need for an improved, more intuitive user interface. Students also

reported a desire for the program to sweep through the data more quickly and for the program to

save data more easily in a table/Excel document for streamlined interpretation. Faculty also

expressed a need for a more consistent working version of Sweep-N-Go. They identified a need

to debug the system as it relates to GPIB addresses (communication with lab equipment) and

expressed similar frustrations as students regarding the lack of a user-friendly interface and user

guidance. Faculty members experience stress since students look to their professors for solutions

and repeatedly ask faculty for assistance fixing the same Sweep-N-Go problems in every lab

section.

Circumstantial Customer Needs Assessment

An additional customer needs due to the coronavirus pandemic includes remote lab

access and data collection. Sweep-N-Go facilitates this need even though that was not the

original purpose of improving it. After a lab instructor builds and connects a circuit, students

could run Sweep-N-Go and collect data points to analyze and gain understanding of the circuit.

Sweep-N-Go could also serve to take just one data measurement even though it facilitates a

larger data collection set. This could allow students to still interact with the laboratory equipment

remotely and have the Cal Poly “learn by doing” experience during the pandemic.

Requirements and Specifications

 The customer needs specified above determine the following marketing requirements in

Table 1. Several instruments on the bench determine the speed and limitations of the program [6-

10]. The program uses the Agilent Oscilloscope exclusively as a voltmeter for Sweep-N-Go

functionalities. Furthermore, each laboratory computer does not consistently map the same GPIB

addresses for each instrument causing additional hurdles. Since efficiency vitally impacts the

marketability of the project, it follows the program must run without causing further debugging

frustrations. The engineering specifications follow in Table I from the abstract with additional

details.

Table 1: Sweep-N-Go 3.0 Requirements and Specifications

Marketing

Requirements

Engineering

Specifications
Justification

7 Program sets all voltage and current

outputs to 0 after a sweep concludes.

To ensure that the instruments

stop powering the relevant circuit,

the program sets these values to

4

output voltage and current to 0

after sweep completes.

7 Program sets all voltage and current

outputs to 0, when a sweep gets

interrupted.

In case of a malfunction or error,

the code stops powering the

circuit. This avoids unnecessary

potential danger.

5 Sweep-N-Go 3.0 interfaces with at least

the following instruments using the

indicated GPIB addresses [13]:

 Instrument GPIB Address

Fluke 8840A DMM 1

Agilent E3640A DC Power Supply 5

Agilent 54622A Oscilloscope 7

Agilent 33120A Function Generator 10

Agilent 34401A DMM 22

Keithley 2400 SourceMeter 24

Laboratory computers generally

configure these intruements with

these specific GPIB addresses for

the program to work. If any of

addresses change, the program

fails to communicate with the

instruments on the bench causing

the program to malfunction.

1, 2 EE/CPE students can complete setup of

software in under 10 minutes.

Several students say that they

spend entire lab periods trying to

get Sweep-N-Go to work. This

specification implies students

could figure out the usage of the

program significantly faster.

2, 5 Allow for communication with new lab

equipment (Rigol DP832 DC Power

Supply and Keysight MSO-X 2022A

InfiniVision Scope) [14], [6] using USB.

Since the EE department

purchased new equipment for

select lab benches, Sweep-N-Go

must account for these new

instruments. This requirement

ensures all students have access

to a working program.

3 No components need to be purchased

for project completion.

Any project considers costs and

affordability important factors

because this determines the

success of selling the product to

customers. Because Cal Poly

already pays for LabVIEW, this

project does not cost anything to

make and is free for student use.

Labor constitutes the only cost of

the project.

1, 2 Collected data from the sweep outputs as

a CSV (comma separated values) file

with only relevant data.

This allows the user to graph the

data in Excel or find exact points

of interest.

5

1, 2 The information needed to use the

program (User Guide) is documented

and available online.

Since most students do not have

familiarity with LabVIEW, the

documentation of the process to

open and run the program helps

students efficiently set up the

program and collect data without

frustration.

1, 6, 9 Failure rate of the program (need for the

program to be restarted) less than 5%.

Since the solution to several bugs

in the current software requires

restarting the program, the new

version aims to ensure fewer bugs

and a higher performance rate.

9 All instruments powered before starting

the program.

Since two-thirds of the

instruments on a high-speed

GPIB daisy chain connection

must be powered, students must

power all instruments on the

bench to assure this does not

interfere with the program’s

performance.

6, 4 Increase programming comments

currently in code by 50%.

To further help future students

and professors make changes to

the program, the code contains

well-documented and

understandable comments.

Marketing Requirements

1. User Friendly

2. Efficient

3. Free for student use

4. Sustainable

5. Implementable in all lab setups

6. Long-lasting

7. Promotes Lab Safety

8. Fosters Student Learning

9. Reliable

Table 2: Sweep-N-Go 3.0 Deliverables

6

Delivery

Date
Deliverable Description

1/21/2020 Design Review

2/25/2020 EE 461 Demo

3/13/2020 EE 461 Report

5/12/2020 EE 462 Demo

5/25/2020 ABET Sr. Project Analysis

6/05/2020 Sr. Project Expo Poster

6/12/2020 EE 462 Report

[1] R. Ford and C. Coulston, Design for Electrical and Computer Engineers, McGraw-Hill,

2007, p. 37

[2] IEEE Std 1233, 1998 Edition, p. 4 (10/36), DOI: 10.1109/IEEESTD.1998.88826

These specifications show an outline of what the code should accomplish. To better

understand how the code works generally, a simple block diagram shows the inputs and outputs

to the program.

7

CHAPTER 3

Level 0 Block Diagram

The following level 0 block diagram in Figure 1 demonstrates the overall functionality of

the system. Table 3 describes the functionality of Sweep-N-Go, which has two inputs and one

output. The user sets data points which constitute the inputs to the program. The user enters

values they wish to sweep as an input to the relevant circuit. A specified instrument on the bench

reads the data from the circuit and sends that data to the program which it stores in an Excel,

Comma Separated Value, document. These data points update to a graph with clearly labeled

axis after the sweep completes.

Figure 1: Level 0 Block Diagram

TABLE 3

LEVEL 0 BLOCK DIAGRAM FUNCTION TABLE

Table 3: Level 0 Block Diagram Function Table

Module Sweep-N-Go 3.0

Inputs -User-Entered Parameters

First, the user chooses instruments from

which to collect data.

Then the user chooses what instrument

(Agilent Supply, SourceMeter, Function

Generator, and RIGOL power supply) they

want to sweep and specify start, stop, and step

values. Finally, the user enters further device

options offered.

-Instruments on bench

Oscilloscope

Power Supply

Function Generator

8

Agilent Multimeter

Fluke Multimeter

Keithley Source Meter

These instruments communicate through

GPIB (General Purpose Instrument Bus).

They send measured data to the program to

read.

Outputs -Collected data

After the user runs the program, they see the

data collected in an excel spreadsheet as a

CSV file. Furthermore, the program plots the

data points on a graph with the swept values

on the x-axis and the measured data on the y-

axis.

Functionality The program automatically queries which

instruments exist on the bench and establishes

communication accordingly. Then the user

enters the range of values for which they wish

to measure data and the program outputs the

collected data.

This basic outline shows the overall functionality, but going one level deeper helps to

better explain how the program completes the functionality previously specified.

Level 1 Block Diagram

 Figure 2 shows the level one block diagram of Sweep-N-Go 3.0. Since LabVIEW

interfaces the hardware, this diagram demonstrates the interaction of the software and the

instruments on the lab bench. First, the software establishes communication with the instruments

and initializes parameters based on the user inputs mentioned in the level 0 function table. Once

the user sets the parameters, the program begins reading data received from the equipment and

stores it. Then, as the name of the program implies, the code then updates swept instrument

values and continues this process until it collects all the intended data.

9

Figure 2: Level 1 Block Diagram

Table 4: Level 1 Block Diagram Function Table

Module Startup Sequence

Inputs After the user powers all bench instruments,

they choose instruments from which to collect

data.

The user also selects which instrument

(Agilent Supply, SourceMeter, Function

Generator, and RIGOL power supply) he

wants to sweep and specify start, stop, and

step values. Finally, the user selects further

device options offered.

Outputs Instructions for instrument setup and

communication.

Functionality Establishes communication protocols with the

instruments on the bench via GPIC and USB.

Sets initial values of the outputs on the

relevant instruments based upon user inputs.

Module Instruments

Inputs -Instructions for instrument setup and

communication.

10

-Instructions from the iterative part of the

code setting a new value on an instrument

output.

Outputs Data read from the selected instrument.

Usually a voltage or current value.

Functionality The instruments read instructions from code

and sets appropriate outputs. They then report

the measured data to the software to be saved.

Module Store and Sweep

Inputs This module of code reads the measured data

from the specified instrument.

Outputs Sends instructions to the appropriate

instrument to change the output value of the

instrument. Keeps sending these values

iteratively until the program collects all data.

Once the sweep completes, the program saves

data and outputs is as both a graph and in an

Excel spreadsheet.

Functionality The block of code reads measured data, saves

it, then instructs the relevant instrument to

change its output value by a variable value.

The block of code does this iterative process

until the program collects all data and outputs

the results to the user.

The next section gives a temporal breakdown of the project design.

11

CHAPTER 4

Gantt Chart

Figure 3 represents the estimated timeline and project plan for making improvements to

the current Sweep-N-Go (Version 2.0). Fall quarter entails preparing the project report and

refining requirements and specifications. Winter quarter starts by familiarizing myself with the

current version of Sweep-N-Go and recognizing common bugs. I anticipate this to only take a

week to complete, and then plans to create a programmatic flow diagram. By week 4, I plan to

have interfaced with all the relevant lab equipment and have developed a plan for software

changes. By the end of Winter quarter, I complete version one of the software and acquire

student and faculty feedback. At the start of Spring quarter, I begin on version two of the

software to accommodate for the feedback received Winter quarter. I plan to complete the final

second version by week six of Spring quarter.

Figure 3: Gannt Chart

Cost Estimate

The following table, Table 5, identifies a comprehensive list of the anticipated costs

entailed in implementing this project. Since Cal Poly already pays for LabVIEW and the

developer of Sweep-N-Go wrote it in LabVIEW, the only new project costs include the cost of

labor. Furthermore, Cal Poly provides the equipment used in this project. The only cost the

students encounter when using the software occurs when purchasing a laboratory kit (usually

around $8) to build the circuits analyzed in the labs using this program. The most conservative

12

estimate of the time required to finish this project will take to complete yields approximately 200

hours. The optimistic view of the time spent on the project yields 120 hours. Realistically, I

anticipate spending somewhere around 150 hours on the project. Using the PERT analysis, the

estimated overall time the project takes to complete is 𝑡𝑖𝑚𝑒 =
180+120+4(150)

6
=

153 . Conceptually, I would charge $75/hour as a competitive salary for an engineer.

Table 5: Cost Estimates

Item Cost

Labor 153 hours*$75/hour = $11,475

Lab Kit $8

Total $11,483

 The developer works diligently to develop a functional program during this time. The

next section gives background on the software and design of the final project.

13

CHAPTER 5

Programing Language

 The original developer of Sweep-N-Go, Arthur Young, chose to write the program in

LabVIEW. People commonly use LabVIEW for data acquisition and instrument control, since

there exist several built-in functions which communicate with connected instruments. This

makes LabVIEW a perfect fit for Sweep-N-Go functionalities. The program communicates with

the standard IEEE-488 communication protocols for GPIB (General Purpose Interface Bus).

GPIB protocols mandate that two thirds of all instruments on the bus must be powered on to

ensure communication. Therefore, Sweep-N-Go asks students to power all instruments on the

bench to ensure proper communication. LabVIEW also communicates through USB connections

which correlates to the Rigol Power Supply on most Electrical Engineering lab benches and

other new laboratory equipment such as Rigol Multimeters. Through these communication

capabilities, a LabVIEW program can write commands to instruments and read the values they

report to save them in a file. Figure 4 shows the communication lines through which Sweep-N-

Go operates.

Figure 4: Bench Connections

LabVIEW uses a visual programming language in which they call functions “virtual

instruments” or VIs. The language operates very similarly to C, but instead of coding through

text, the programmer codes using visual blocks. Figure 5 shows LabVIEW’s basic coding

blocks: FOR loop, WHILE loop, case statement, and basic arithmetic operations.

14

Figure 5: Example LabVIEW Code

The logic moves from left to right and outputs a number in the indicator. LabVIEW represents

VIs as small boxes that have different icons with input and output connections. Once the

developer obtained a basic understanding of the software, she works to understand the overall

design of Sweep-N-Go 2.0 and make improvements.

Design

Arthur Young’s design of Sweep-N-Go in 2003 implements a basic structure of waiting

in a while loop until the user presses the “SWEEP” button to start. The program then moves into

a FOR loop iterating a calculated number based on the user-input sweep parameters. In each

iteration, a VI sets output voltages/currents and then reads the data to be saved to a file. Another

VI in the FOR loop reports that data to a graph updated every iteration. Figure 6 shows the basic

LabVIEW design structure of Arthur’s code.

Figure 6: Sweep-N-Go 2.0 Design Structure

This code structure works well but does not allow for other features. Furthermore, this design

uses hard-coded values for GPIB and USB instrument addresses which causes problems if there

exist any discrepancies for different lab benches.

15

In the design for Sweep-N-Go 3.0, there exists a preliminary VI before the WHILE loop

to initialize and query the instrument connection addresses. The program disables all user-

interface interactions until this process completes. Once in the WHILE loop, the program has an

event structure which acts as an interrupt system for different user interactions. Depending on

what the user clicks, the program makes different options available to limit user error. The event

structure checks for fourteen different user-defined actions including an “EXIT” option which

stops the program entirely. When the user presses the “SWEEP” button, the event structure

initializes instrument settings and enqueues the sweep data to run in a parallel WHILE loop. This

parallel structure allows the user to enqueue several sweeps and still interact with the UI. Figure

7 shows the LabVIEW design structure of Sweep-N-Go 3.0.

Figure 7: Sweep-N-Go 3.0 Design Structure

After determining the structure of Sweep-N-Go 3.0, the developer first focused on

creating an effective user interface to set data types which propagate throughout the program.

16

CHAPTER 6

User Interface

Sweep-N-Go 2.0 requires the user to take four steps to run the program. The user goes

through these steps by clicking on consecutive tabs. The first tab in Sweep-N-Go 2.0, shown in

Figure 8, requires the user to indicate which instruments they intend to use during the sweep.

However, three instruments (the Agilent Power Supply, Agilent Multimeter, and the Function

Generator) always run in Sweep-N-Go 2.0. In the updated version, no instruments automatically

run during the sweep to decrease user confusion and increase efficiency during the sweep.

Figure 8: Sweep-N-Go 2.0 Step 1 UI

Figure 9 shows the user interface for the next step in Sweep-N-Go 2.0 which requires the

user to set the sweep parameters they need for relevant instruments. Since the user does not need

to specify these parameters for unused instruments, many parameters can be neglected. However,

the user could potentially have forgotten which instrument they chose to use during the sweep or

accidentally set parameters for the Agilent Power Supply not thinking it would run.

17

Figure 9: Sweep-N-Go 2.0 Step 2 UI

Sweep-N-Go 3.0 removes this first step and instead has buttons indicating instrument

usage next to the places the user sets sweep parameters as seen in Figure 10.

Figure 10: Sweep-N-Go 3.0 Step 1 UI

18

Figure 11: Sweep-N-Go 3.0 Step 2 UI

Furthermore, Sweep-N-Go 3.0 includes a separate box adjacent to the “sweep

parameters” for the user to indicate which read-only instruments they use in their data collection.

The same configuration and placement of instruments correlates to the next tab in “Step 2. Set

Instrument Parameters” shown in Figure 11. This helps the user navigate to relevant settings they

wish to adjust, since parameters only apply to used instruments. Figure 12 shows Sweep-N-Go

2.0’s tab for device options which contains a list that does not separate which options correlate to

each instrument. This list not only requires more reading but could potentially cause the user to

miss an important configuration, since the interface sandwiches different instrument

configurations between others.

19

Figure 12: Sweep-N-Go 2.0 Step 3 UI

Finally, the user collects the data according to what they specify in the x and y axis drop-

down menu. Sweep-N-Go 2.0 shows real-time numerical data for all instruments during the

sweep and next to this, updates the graph. However, Sweep-N-Go 3.0 moves the numerical

values to the “debug panel” tab to create more space for the graph. Figure 13 shows the busy 2.0

user interface versus Figure 14 which show the improved, neat interface.

20

Figure 13: Sweep-N-Go 2.0 Step 4 UI

Figure 14: Sweep-N-Go 3.0 Step 3 UI

As discussed in the previous section, Sweep-N-Go relies on instrument connectivity.

Sweep-N-Go 3.0 adds a tab “Instruments Connected”, as seen in Figure 15, to inform the user

the current instrument addresses and connectivity status. This creates ease in debugging Sweep-

N-Go errors due to a lack of instrument communication, which an advanced user can make

changes to in the “Debug Panel”.

21

Figure 15: Sweep-N-Go 3.0 "Instruments Connected" Tab

 Figure 16 shows the debug panel which the user can manually change the

instrument addresses to fix connectivity problems. Furthermore, the user can see the numeric

real-time data values to understand why potential discrepancies may appear during the sweep.

Figure 16: Sweep-N-Go 3.0 "Debug Panel" Tab

22

Finally, Sweep-N-Go 3.0 features a “User Manual” tab, which serves to help users

understand the program within the program. This way, students can easily find instructions

instead of clicking on a website or referencing their lab manuals.

Additionally, the developer made some aesthetic choices to improve Sweep-N-Go.

Firstly, instead of using the toggle switches, the developer replaced them all with drop-down

menus. The developer also changed the color from bright green to periwinkle for improved

visual interpretation. Figure 17 shows the overall changes made to the user interface with Sweep-

N-Go 2.0 on the left and Sweep-N-Go 3.0 on the right.

Figure 17: GUI DIfference 2.0 vs 3.0

23

The developer made several additional changes to improve the user experience of Sweep-N-Go.

User Inputs

To reduce errors when inputting instrument instructions, Sweep-N-Go 2.0 and 3.0 both

coerce user-input values. They both ensure that the user cannot enter negative voltages when

entering sweep parameters. Furthermore, the programs set a maximum voltage range coercion

according to instrument limitations.

However, Sweep-N-Go 2.0 also coerces the “step” inputs, so the user cannot input

anything less than 0. This requirement does not prevent the user from sweeping a higher value to

a lower one, but they must input a positive step increment. In Sweep-N-Go 3.0, the user may

enter positive values to indicate a positive sweep and negative step values to indicate a

backwards sweep. This makes more logical sense to users, and, if the user mistakenly entered the

wrong-signed step value, Sweep-N-Go 3.0 automatically corrects this to continue the sweep.

Figure 18 shows the logic which fixes potential user errors regarding step values. The

program subtracts the stop voltage from the start voltage to see if the user wants intends a

positive or negative sweep. Then, the program multiplies this value and the step value. If the user

intends a negative sweep and inputs a negative step size value, the program outputs a positive

value. Same with a positive sweep and a positive step size. However, if the value is negative,

then the program changes the step value sign by multiplying it and -1. Then, the program outputs

the correctly incremented voltage. Therefore, the user cannot enter a value that causes the sweep

to increment outside the start and stop values.

Figure 18: Increment Sweep Logic "Calculate_Voltage.vi"

Once the user sets all parameters they need to sweep, then they move to “Step 3: Sweep”

to collect data and see it update the graph. The user must only specify the axis data and press the

“Sweep” button.

Data Options

Another development which improves the user experience shows only relevant data

options on the x and y axis drop-down menus when the user chooses what data to plot. Since the

user specifies each instrument they use during the sweep, the data options need to reflect those

24

specifications. The event structure waits to see if the user clicks a Boolean button indicating

instrument use and then runs the INIT_DROP_MENU VI as seen in Figure 19.

Figure 19: Update X and Y axis Menus

 This VI checks each Boolean indicating whether the user intends to implement an

instrument in the sweep and adds a string representing data accordingly. The VI takes inputs

“Read Data Config”, “Read Data From”, and “Sweep Parameters”. “Read Data Config” reports

whether the user intends to read DC Voltage or DC Current from the multimeters or

oscilloscope. The “Read Data From” and “Sweep Parameters” inputs include data about which

instruments the user wishes to implement in their sweep. The VI outputs arrays of strings “X-

Axis” and “Y-axis”. The strings output to the “X-Axis” only include instruments defined in the

“Sweep Parameters” input since the program should plot instrument sources on the x axis. The

“Y-Axis” string array output includes all potentially relevant data including the actual source

voltage and current. Figure 20 shows the VI which checks if the user does not use an instrument

in the sweep and within the case statement adds an empty string to the string array. Finally, the

two for loops remove any empty string cases so the string array size matches the relevant data.

25

Figure 20: INIT_DROP_MENU.vi

 This feature reduces user error when selecting data to plot on each axis. Furthermore, the

drop-down menus do not contain so many options that the user might overlook the required data.

Additionally, this reminds the user to select the Boolean indicators according to which

instruments they intend to implement in the sweep since the drop-down menus remain empty

until the user specifies this information.

 However, during testing, the developer realized the drop-down menus keep the default

values previously selected if the user de-selects all used instruments. Therefore, when the event

structure times out (when the user does not interact with the other cases for .1 milliseconds) the

drop-down menu checks to ensure that there exists at least one instrument selected. If the string

array is empty, the program re-writes the drop-down menus to hold no values as seen in Figure

21.

Figure 21: Empty Drop Menu Check

26

 This way the user cannot sweep using default values in the drop-down menus. This

addition to Sweep-N-Go creates an easily navigated user interface and reduces potential user

error.

Furthermore, if the user does not select data to read from the drop-down menus of the x

and y axis the program stops the sweep if either the x or y axis drop down menus remain empty.

The user receives the message “Please select data to display on the x and y axis then hit the

"Sweep" button. If options are not available, check to ensure that you have selected the devices

you are using for the sweep. Also consider restarting the computer to reset instrument

communications.”

The user must then make the appropriate changes to start the sweep. Once the user has

appropriately selected the data to read and set other parameters accordingly, they press the

“Sweep” button to start the data collection.

User Experience During Sweep

 Depending on what parameters the user set, the sweep could potentially take several

seconds and potentially a couple minutes. To indicate this time commitment, Sweep-N-Go 3.0

provides a progress bar to inform the user approximately how much remaining time exists. Since

the program calculates the number of iterations for a sweep, it updates the progress bar

accordingly. The program divides the current iteration count by the total iterations and multiplies

by 100 to output the percentage complete. The progress bar updates every iteration of the FOR

loop and appears directly above the “SWEEP” button in the user interface.

 Furthermore, instead of prompting the user with a dialog box to inform them the sweep

completed, Sweep-N-Go 3.0 instead shows a Boolean indicator labeled “Sweep Complete”

which lights up green when complete. The program resets this indicator at the beginning of every

sweep and when the program first runs. This feature informs the user without using an annoying

pop-up.

 Additionally, the “Quit Sweep” button stops the sweep while allowing the program to

continue running. When the user presses this button, the progress bar informs the user the of the

data not collected, but the “Sweep Complete” indicator turns green to indicate the stopped

sweep. The collected data still saves to a unique file even when the user aborts the sweep early.

Saving Data

 Sweep-N-Go 3.0 saves data to a new file every sweep. To accomplish this, the program

creates a unique file name using the time and date to name every file. If the user wishes to add

their custom name to a file, the date and time stamp appends to the end of the custom name to

ensure uniqueness. The unique file names ensure the user never overwrites data they took from a

previous sweep. Figure 22 shows the coding process of creating the unique names.

27

Figure 22: Create Timestamp File Name

 Furthermore, the program saves each file to a designated “Sweep-N-Go data” folder so

all the files exist in the same place. The program saves the file as a CSV, or comma separated

value. This way users can analyze and graph all the data saved in this tabular form.

Like the INIT_DROP_MENU.vi, the program selects the file headers according to

instruments used in the sweep. This way, the user only saves relevant data and does not need to

parse out columns of useless data. The program initializes the headers before entering the FOR

loop in which the program appends the data to the file.

The data appends to the file in the SET_AND_READ.vi in which the program saves all

the data in a string array and removes the empty strings to output an array the length of relevant

data. Figure 23 shows this process within the SET_AND_READ function.

Figure 23: Append Data to File

Compared to Sweep-N-Go 2.0, this file-saving process reduces errors, since Sweep-N-Go

3.0 uses LabVIEW’s “Write Delimited Spreadsheet.vi” instead of the “Write Characters to

File.vi” as seen in Figure 24. In version 2.0, Sweep-N-Go stops the program to prompt the user

for a file path using this method. This happens because the vi does not have an error path (seen in

gold) to report any errors that may occur during the file-saving process. Sweep-N-Go 3.0 allows

for error-handling and reduces pop-up annoyances.

28

Figure 24: Sweep-N-Go 2.0 Write to File

Furthermore, once the program saves all relevant data to the file, it can read this file to

adjust the data plotted on the graph.

Switching Data on Axis

 Users may accidentally choose x and y axis data they do not wish graphed. Sweep-N-Go

3.0 allows users to change the data graphed during or after a sweep. When the user changes the x

or y axis value, the upper-WHILE loop event structure triggers and the program updates the

graph.

 The function “Get_Data_From_File”, seen in Figure 25, has inputs “file path” and “axis

string value” and outputs “data array” to replace the current graph data. This function reads the

data from the saved file and returns a string array of file headers. For each header, the function

checks the desired string axis value. When the desired value equals the string header value, the

TRUE case reads the numerical file values corresponding to the column header. After removing

the header information, the function outputs the desired data array.

Figure 25: Get_Data_From_File.vi

29

 The output data then replaces the current x or y axis plotted data. Since the sweep runs

parallel to this operation, the graph updates new data during the sweep if either the x or y axis

string value changes. This feature helps users to not re-run the sweep if they clicked the wrong

value in the drop-down menus. This could potentially save users minutes and reduce the power

used to re-run sweeps.

 However, Sweep-N-Go 3.0 reduces programmatic errors in the previous version which

ultimately saves the user the most time. Through deliberate consideration and testing, the next

section covers the program’s error-handling measures.

30

CHAPTER 7

Instrument Addresses

Sweep-N-Go 2.0 commonly breaks due to incorrect addressing of the bench instruments,

leading to failed communication. Therefore, the developer designed a dynamic query of

instrument addresses to ensure ongoing instrument communication. Figure 26 shows the

program’s process of first finding a list of all the USB addresses and then writing them to the

correct instrument. The program then completes the same process for GPIB addresses.

Figure 26: LabVIEW Code Queries Instrument Addresses

To find the list of USB or GPIB addresses, the program queries the computer’s localhost.

Figure 27 shows the code for the VI named “FIND_VISA_ADDRESS” which has the input “Bus

Type” and returns the output “VISA RESOURCE NAMES” which is an array of strings

containing the relevant addresses. The program then inputs this array to the next VI to pair each

address to the appropriate instrument. To accomplish this, the program communicates with each

address and asks for the instrument’s identification.

Figure 27: FIND_VISA_ADDRESS.VI

The program writes the “*IDN?” command which returns a comma separated instrument

identification of the form "Company Name",<model number>,<serial "number>,<software

revision>. As seen in Figure 28, the program parses this data and, according to the output, sets

the address in the “VISA Sessions” cluster containing all the instrument address information.

Furthermore, once the program establishes the address in this matter, it sets the Boolean

“Instrument Connected” indicator “true”.

31

However, when testing the developer found some lab benches for which there exist

several addresses that do not connect to any instrument and make this process very slow.

Therefore, there exists a condition that checks if this process takes longer than 5 seconds and

aborts the FOR loop of “*IDN?” commands.

Figure 28: WRITE_GPIB VI

Once the loop stops because of the time condition, another VI runs and uses the hard-

coded GPIB/USB addresses to check individual instrument connection. Furthermore, in the case

that the computer does not find any addresses, there exists a case that checks all instruments still

not connected with two default cases. The first case checks GPIB1 and then secondly checks

GPIB0 default connections if the instrument is still not connected. Figure 29 shows the process

in which the program queries a default address using the *IDN? command if there exists no

instrument connectivity. If the query reports identification equal to the expected (hard-coded)

instrument identification, the Boolean reports TRUE and the program updates the address. This

process serves as a last check before starting user-interaction with the program.

Figure 29: IDN_QUERY

32

 Furthermore, since this process can take several seconds, the program updates a progress

bar at each step to inform the user how long they must wait, until they can interact with the

program. The process should take no longer than 15 seconds due to the timeout conditions set in

place. The progress bar updates in quarters since there exist four VIs to complete this process.

This initialization process mostly improves the addressing USB connected devices, since

every bench has a unique address. Therefore, benches holding new, USB connected instruments

can run Sweep-N-Go as well.

New Laboratory Equipment

 Not all benches in the electrical engineering laboratories house the same equipment.

Therefore, Sweep-N-Go must accommodate these differences allowing all lab groups to

efficiently complete their laboratory experiments. For example, bench 9 in room 148 houses a

Rigol Power Supply, two Rigol multimeters, and an oscilloscope. There exist no instruments

connected through GPIB on this bench. Hard-coded address values would lead to zero instrument

connectivity. Figure 30 shows the user interface in which the program only allows users to work

with the instruments on bench 9.

Figure 30:Bench 9 User Interface

 Sweep-N-Go 3.0 incorporates the new multimeter equipment through querying the USB

addresses and checking for its identification: “Rigol Technologies DM3058E” as seen in Figure

31. The user can select these instruments instead of the Agilent or Fluke multimeter.

33

Figure 31: Rigol Multimeter Identification

 To include these multimeters in the sweep, the developer made several VIs to initialize,

read, and close the instruments. To do this, the developer referenced SCPI commands to set the

multimeter to read voltage or current and when to report the value read [16].

While the initialization process eliminates hard-coding issues, there existed several areas

in the Sweep-N-Go 2.0 code where errors could occur. Therefore, the next section covers

information relating to reducing propagating errors.

Reducing Errors

Many users of Sweep-N-Go 2.0 find themselves frustrated when they enter all the correct

parameters, follow the user manual procedures, and hit the “sweep” button only for the program

to fail. Even if the user only selects properly connected instruments to sweep, other instruments

not connected can cause the program to fail through error propagation. For example, Sweep-N-

Go 2.0 executes a function “Open VISA”, as seen in Figure 32, where the program always opens

the implicit instruments (Agilent Power Supply, Agilent Multimeter, and Agilent Function

Generator) during a sweep. Attempting to open a VISA connection for these instruments when

the address is incorrect causes an error that propagates throughout the program.

34

Figure 32: Sweep-N-Go 2.0 VISA_open.vi

This error causes other functionalities to fail as well causing the whole sweep to crash. To

remedy this, there exist no implicit instruments in Sweep-N-Go 3.0. The user specifies each

instrument they wish to use in the sweep and the program only opens those instruments. The

CHECK_OPEN_ERROR.vi function, as seen in Figure 33, checks if the user specified to use the

instrument in the sweep and outputs the error status.

Figure 33:CHECK_OPEN_ERROR.vi

If an error appears, the program then identifies the first problematic instrument and

notifies the user which instrument does not have proper connectivity. Furthermore, the program

prevents the sweep from continuing and instructs the user on how to check instrument

connectivity. Figure 34 shows the message the user receives when the program detects an error.

35

Figure 34: Instrument Connectivity Error Message

 If there exist no errors, the program goes to the “TRUE” case and initializes the sweep.

However, to prevent the user from selecting an unconnected instrument, the function

HIDE_UNCONNECTED, in Figure 35, checks each instrument connectivity status and greys out

and disables buttons thereby not allowing the user to select unconnected instruments. This

prevents errors and reduces user responsibility to examine the “Connected Instruments” tab.

Figure 35: HIDE_UNCONNECTED.vi

36

Figure 36: grey_out.vi

However, this caused some concern for the case in which the program found no

connectivity with any the bench instruments. Therefore, as a fail-safe, on the “Debug Panel” tab

the user can input an instrument address they found through manually querying the instrument or

looking on NI MAX. While the average user would probably not execute this feature, it would

pose useful for any laboratory assistant who possesses advanced knowledge of Sweep-N-Go.

The event structure waits until the user causes a value change corresponding to a specific

instrument’s address and checks errors in opening the VISA connection to the input address. If

there exists no error, the program sets the new address for the specified instrument and sets the

Boolean instrument connection TRUE. Furthermore, if the input address produces an error when

opening the VISA connection, the program does not set the new address and sets the Boolean

indicator FALSE. To accommodate this change, the above HIDE_UNCONNECTED function

updates every loop iteration when the event structure is in the “timeout” case. Figure 37 shows

the relevant code for the event in which the user changes the Agilent Power Supply address.

Figure 37:Update Agilent VISA Address

37

CHAPTER 8

Testing

Although the coronavirus pandemic impeded laboratory testing spring quarter, Dr. Braun

worked to create a lab bench the developer could access remotely. Dr. Braun powered the room

148, bench 5 instruments for initial testing. Since the developer spent several weeks writing code

without lab bench access, the testing process initially required ironing out logic flaws and

realizing new code requirements. After the developer adequately tested the program, Dr. Braun

set up two circuits seen in Figure 38 and Figure 39 to see Sweep-N-Go 3.0’s capabilities. Firstly,

the developer tested the diode circuit by sweeping the Rigol Channel 1 Power Supply from 0 to 3

V while measuring the voltage across the 982Ω with the Agilent Multimeter.

Figure 38: Diode Connected Circuit

Figure 39: JFET Connected Circuit

 To measure and plot the diode characteristics, however, students must find the voltage

across and current through the diode. The voltage across the diode equals the Rigol Power

Supply Voltage – Multimeter Voltage reading the voltage across the resistor. The current through

the diode equals the voltage across the resistor divided by the resistance. Sweep-N-Go users,

therefore, must open the CSV file to interpret and plot this data instead. Even though Sweep-N-

Go plots the data read, this graph does not show students anything analytical about the diode’s

characteristics.

38

 Therefore, after the sweep completes, the developer opens the CSV file to interpret the

data. Figure 40 shows the file and including Sweep-N-Go data and the interpreted diode voltage

and current data. Plotting the current versus voltage, Figure 41 shows the diode characteristics.

Figure 40: Diode Data Saved CSV File

39

Figure 41: Diode Characteristics

From this graph, the student can determine the threshold voltage for this diode to be

approximately 0.57V. This one graph plots 31 data points and the sweep took 1 minute and 43

seconds to complete. This sweep took longer since the Rigol took five measurements at each

increment and averaged the values. This means the sweep took 155 measurements in that time.

Therefore, even though the sweep takes a couple minutes to complete, the user collects more

accurate data faster than if they took this data manually. Furthermore, the sweep duration

depends on how fast the computer runs. This variable causes some lab benches to take longer

than others.

 Next, the developer tested the JFET circuit in Figure 42 by sweeping the Agilent Power

Supply (-VGS) from 0 to 3V and the Keithley from 10 to 0V (VDS) for each VGS. The user sets

the Agilent Power Supply to loop position 1 and sets the Keithley loop position to 2. Then, the

user sets the x axis to read the Keithley voltage and the y axis to read the Keithley current. Figure

X shows the Sweep-N-Go graph displaying the JFET characteristics for four different VGS

values. This sweep on the same computer took 1 minute and 23 seconds one week and 2 minutes

the next week to read 44 data points. The variable time most likely results from network

bandwidth and or variable computer speed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00E+00 5.00E-04 1.00E-03 1.50E-03 2.00E-03 2.50E-03 3.00E-03

D
io

d
e

C
u

rr
en

t
(A

)

Diode Voltage (V)

Diode Characeristics

40

Figure 42: JFET Characteristics

 Students learn about both these circuit components in EE306 and test them in the 336

laboratory. Sweep-N-Go 3.0 helps students efficiently learn about diodes and transistors.

Unfortunately, since the developer fell behind schedule and due to COVID-19, no other students

tested Sweep-N-Go 3.0 in the laboratory. However, the developer asked few electrical

engineering peers to attempt to break the program to account for user errors the developer did not

consider. Through this process, the developer made appropriate changes. However, the developer

not only tested the user-experience, but instrument connectivity as well.

Testing Instrument Connectivity

To test instrument connectivity, the developer must work on all relevant lab benches to

ensure the dynamic instrument queries function for all Sweep-N-Go equipment. The developer

notes any discrepancies which result in small changes to the code, accounting for instrument

outliers. One testing utility widely used to see the interface of connected equipment is called “NI

MAX”, and is a corollary software to LabVIEW. This software readily identifies all GPIB and

USB connected devices under the tab called “Devices and Interfaces” as demonstrated below in

Figure 43.

41

Figure 43:NI MAX Debugging Interface

One can query the devices to ensure connectivity and discover the address correlating to

each instrument. Sweep-N-Go queries and discovers every instrument listed in NI MAX.

However, NI MAX does not always recognize the connected instruments. Therefore, the

developer created default instrument addresses to check each instrument. Furthermore, the list

sometimes contains up to 50 addresses even though the electrical engineering benches only

connect to at most seven instruments. To remedy potentially querying all these addresses (which

would take quite some time), the program quits this process and the checks the default cases

instead.

Furthermore, if the user finds all instruments unconnected, the user manual instructs them

to go to NI MAX to find the addresses. Then, with the new capabilities, the user cab manually

input this address and check its connectivity within the Sweep-N-Go 3.0 program. If NI MAX

does not find any connected instruments, an advanced user could check all physical cable

connections and restart the computer.

While testing instrument connections, NI MAX does not show which instrument

correlates to which address. To find this information, the developer opens the “Open VISA Test

Panel” on NI MAX and writes the *IDN? command to find instrument identification. Figure 44

shows the panel where the developer clicks “Query” and reads the output, which shows the

Agilent Power Supply correlates to GPIB address 5.

42

Figure 44: VISA Test Panel Agilent Power Supply

However, the older Fluke multimeter does not comply with current SCPI commands.

Figure 45 shows the “identification” returned from querying the Fluke multimeter which does

not tell the user any useful information. Sweep-N-Go 3.0 queries the Fluke multimeter by

checking for the numeric information returned.

Figure 45: VISA Test Panel Fluke Multimeter

43

 Overall, testing and debugging instrument connection greatly contributed to the time

spent on this project. The tools mentioned above helped the developer to programmatically

create an instrument connectivity query.

44

CHAPTER 9

Unimplemented Features

 Although the Sweep-N-Go 3.0 greatly reduces errors and improves the user experience,

there still exist areas of improvement. One such improvement would allow users to sweep

logarithmically in addition to the current linear sweep. This would greatly expedite data

collection in some cases.

 Furthermore, student feedback requests improvements to the loop position selection.

Sweep-N-Go 2.0 and 3.0 both ensure the user does not pick the same loop position for multiple

instruments. The program alerts the user if they make this mistake and does not start the sweep.

However, the program does not allow the user to sweep even if the user does not select the

instruments that have the same loop position to sweep. An improvement to the program would

check the same loop positions only if the user specified the instrument’s use.

 Additionally, even though Sweep-N-Go 3.0 worked to create a robust querying system,

potential issues may arise on other benches for which the developer did not test the program. The

commenting throughout Sweep-N-Go 3.0 alleviates potential future development confusions.

Difficulties Encountered

 The developer competed Sweep-N-Go 3.0 during the coronavirus pandemic, which

caused difficulties in testing. Luckily, Dr. Braun safely accessed the labs and worked to help the

developer test remotely. However, while testing remotely, the Fluke multimeter readings did not

make sense. The Fluke read values of -19V, -12V, -2V, and 9V randomly even though nothing

was connected. After the developer spend hours debugging this issue, she later discovered that

issue related to hardware, not software issue. If the developer could test this in-person, the

debugging process would not have taken so long.

 However, COVID-19 did not solely contribute project difficulties. The developer

downloaded LabVIEW version 2019 on their personal computer, but the lab computers run

version 2017 of the software. The developer converted the 2019 version to 2017 and back a

couple times which caused some lost files along the way. The developer recovered everything

eventually, but this file confusion led to burnt time.

 Furthermore, as mentioned in the testing chapter, different benches caused different

levels of difficulty. When testing pre-COVID, the developer would find empty lab benches

during other lab classes to test instrument connectivity. However, the open lab benches were

usually the ones no one else wanted to work at for a reason. Several times the developer worked

at a bench with an extremely slow computer, which greatly reduced progress. Furthermore, the

quest to find empty lab benches sometimes ended promptly, since students already occupies

them all.

Planning Results

As typically occurs with most senior project plans, I fell behind on the originally planned

schedule in the Gannt Chart shown in Chapter 4. For the first four weeks of Winter quarter, the

45

developer worked ahead of schedule, but fell behind around week 7. Although the developer had

three revisions of the instrument connection query and verification functions, she completed

version one of the code at the end of Winter quarter. Although the developer should have

completed two versions of the project Winter quarter, Spring quarter allowed enough time to

finish the project. The rest of the changes are minimal compared to the dynamic ability of the

program to communicate with instruments on the bench. Furthermore, due to COVID, Spring

quarter consisted of only 9 weeks long. Furthermore, social distancing regulations which

restricted students from using laboratory equipment caused delays in bench testing. A revised

version of the Gannt Chat can be seen in Figure 46.

FIGURE 8

REVISED GANNT CHART AS OF WINTER QUARTER 2020

Figure 46:Revised Gannt Chart

Conclusion

 While there still exists room for improvement, Sweep-N-Go 3.0 greatly improves the user

experience and programmatic reduces errors. The developer referenced past internship

experience working with LabVIEW to develop robust code. The improvements made upon

Sweep-N-Go 2.0 creates a better learning environment for EE students, faculty, and technical

support.

 The developer learned how to read existing code and debug errors. Then, the developer

identified once errors, she created error handling protocols and preemptive measures. The

46

program successfully developed a dynamic instrument query to reduce instrument connectivity

issues. Throughout the coding process, the developer learned about saving data to files, parallel

loops, and creating an effective user interface.

 Finally, this project would not be possible without Arthur Young’s and Dr. Braun’s

previous work to create this program. Their ideas and existing code helped the developer of

Sweep-N-Go 3.0 to build upon and improve. The Sweep-N-Go 3.0 code free download is posted

on Arthur’s website under the “Downloads” tab for students’ and faculties convenience. The link

to the reach this webpage is https://courseware.ee.calpoly.edu/~dbraun/ayoung/aa-

download.html for the reader’s convenience. Throughout the improvement process, Sweep-N-Go

3.0 accomplishes its goal to create an efficient and effective automated data acquisition in

electric circuit laboratories.

https://courseware.ee.calpoly.edu/~dbraun/ayoung/aa-download.html
https://courseware.ee.calpoly.edu/~dbraun/ayoung/aa-download.html

47

References

[1] M. Z. Zulkifli, S. W. Harun, K. Thambiratnam and H. Ahmad, "Self-Calibrating Automated

Characterization System for Depressed Cladding EDFA Applications Using LabVIEW

Software With GPIB," IEEE Transactions on Instrumentation and Measurement, vol.

57, no. 11, pp. 2677-2681, Nov. 2008.

[2] Lina Karam; Naji Mounsef, "Introduction to Engineering: A Starter's Guide with Hands-On

Digital Multimedia and Robotics Explorations," Introduction to Engineering: A Starter's

Guide with Hands-On Digital Multimedia and Robotics Explorations, Morgan &

Claypool, 2008, pp.

[3] X. Yuan, M. B. Cohen and A. M. Memon, "GUI Interaction Testing: Incorporating Event

Context," in IEEE Transactions on Software Engineering, vol. 37, no. 4, pp. 559-574,

July-Aug. 2011.

[4] E. A. Miranda, C. N. Abdelahad, M. M. Beron and D. E. Riesco, "Inferring Use-cases from

GUI Analysis," IEEE Latin America Transactions, vol. 13, no. 12, pp. 3942-3952, Dec.

2015.

[5] System and method for converting a graphical program including a structure node into a

hardware implementation, by National Instruments. (2001, Sept.

27). Patent 20010025231. Accessed on: Oct. 21, 2019. [Online]. Available: USPTO.

[6] Keysight, “InfiniiVision 2000 X-Series Oscilloscopes,” 5990-6618EN datasheet, 8 Aug.

2008.

[7] Keysight Technologies, “Keysight 34401A 6½ Digit Multimeter”, 34401-90013 datasheet,

Aug. 2014.

[8] Keysight Technologies, “Keysight Technologies 33120A Function/Arbitrary Waveform

Generator”, 5968-0125EN datasheet, 31 Jul. 2014.

[9] Keithley, “Model 2400 Series SourceMeter”, datasheet, Aug. 2001.

[10] Keysight Technologies, “E3640A – E3649A Programmable DC Power Supplies”, 5968-

7355EN datasheet, 3 May 2018.

[11] Author Unknown. What is Automated Testing? (2019). Retrieved December 7, 2019, from

https://smartbear.com/learn/automated-testing/what-is-automated-testing/.

[12] MarketsandMarkets. (2019, September 9). Automation Testing Market Worth $28.8 Billion

by 2024 - Exclusive Report by MarketsandMarkets™. Retrieved December 7, 2019, from

https://www.prnewswire.com/news-releases/automation-testing-market-worth-28-8-

billion-by-2024--exclusive-report-by-marketsandmarkets-300913922.html.

[13] Young, A. (2003). Automated Data Acquisition in Electronic Circuit Laboratories.

Retrieved December 12, 2019, from

https://courseware.ee.calpoly.edu/~dbraun/ayoung/02-analysis.html.

https://smartbear.com/learn/automated-testing/what-is-automated-testing/
https://www.prnewswire.com/news-releases/automation-testing-market-worth-28-8-billion-by-2024--exclusive-report-by-marketsandmarkets-300913922.html
https://www.prnewswire.com/news-releases/automation-testing-market-worth-28-8-billion-by-2024--exclusive-report-by-marketsandmarkets-300913922.html
https://courseware.ee.calpoly.edu/~dbraun/ayoung/02-analysis.html

48

[14] Rigol, “DP800 Series Programmable DC Power Supply”, DP832 datasheet, March 2013.

[15] EE Department Faculty Members, “EE and CPE LAB SAFETY RULES”, California

Polytechnic University, January 2010.

[16] Rigol Technologies, “DM3058 Digital Multimeter”, Programming Guide, October 2009.

[17] “IEEE Code of Ethics,” IEEE, 2020. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html.

49

TABLE 5

APPENDIX A — ANALYSIS OF SENIOR PROJECT DESIGN

Project Title: Sweep-N-G0 3.0

Student’s Name: Maria Pieroni

Student’s Signature: Maria Pieroni

Advisor’s Name: Dr. Braun

 Advisor’s Initials: DB

• 1. Summary of Functional Requirements

This project improves the current performance of the Sweep-N-Go LabVIEW (Version

2.0) program used in Cal Poly electrical engineering laboratories. Sweep-N-Go expediates the

laboratory data collection process through automated testing. The new version of the program

(Sweep-N-Go Version 3.0) reduces user debugging time, improve sustainability, increase

efficiency, and considers all new lab bench equipment. Sweep-N-Go Version 3.0 includes an

enhanced Graphical User Interface (GUI) for which students provided feedback to optimize user-

efficiency. The program interfaces with instruments on every standard Cal Poly electrical

engineering lab bench through both USB and GPIB communication. After the user runs the

program, they have the capability to capture the graph of collected data and export the data to a

CSV file for further interpretation.

• 2. Primary Constraints

The original author of Sweep-N-Go in LabVIEW, so the developer of the new version

must program in this same language so she can reuse the existing code. Furthermore, the lab

equipment with which the program interfaces remains constant with existing lab equipment, so

many functions addressing these instruments remain unchanged. The GPIB addresses for each

instrument and other constrains can be found in Table I in Chapter 2. The high-speed GPIB

standard requires no less than 2/3rds of the instruments must be powered for proper connection.

This constraint affects the progress towards a solution that allows students the option to not

power on all instruments to run the program. The only development tools available for this

project reside in the electronic circuit laboratories on the Cal Poly campus. Students may only

access these labs when lab classes occupy them.

• 3. Economic

Since students can use LabVIEW for free and the EE department pays for the lab

equipment, there exist no project costs, other than the “donation” of my own time. Students can

use Sweep-N-Go at no cost, so no one monetarily profits. However, EE/CPE students experience

improved efficiency while using the program, so they profit by saving time. Furthermore, the EE

50

department profits since they see a higher success rate in labs requiring the use of Sweep-N-Go.

The Sweep-N-Go 2.0 program already exists, but by the end of June 2020, the new version

should come to completion. The developer expects the project to last for a very long time, since

the computer saves the code. There may necessitate some maintenance to integrate any new

equipment that Cal Poly might purchase in the future. A student or professor might also need to

account for any unexpected bugs in the code. According to the Gantt chart included above, the

developer expects to finish the project over 200 hours of work.

• 4. If manufactured on a commercial basis:

Students do not need to pay to use the program, so the school does not sell this program.

Furthermore, since the program does not require any components other than pre-existing lab

equipment, there does not exist a production cost for the product. To produce this product for

free on a commercial basis, the developer could publish this code to an open source.

Additionally, there would exist instructions as to what equipment the user needs and the GPIB

addresses correlating to these instruments. However, large-scale consumers would most likely

not have any use for the program, since the instruments provided in the Cal Poly electrical

engineering labs are very expensive and not every other lab provides the same equipment.

• 5. Environmental

 Environmental impacts related to this project are de minimis since students powering on

the lab instruments result in additional power usage which contribute to the release of additional

greenhouse gasses. However, the efficiency of the program offsets this additional power usage.

Additionally, since I plan to spend 200 hours developing this code, the power I use in this

process also negatively impacts the environment. However, the development or use of Sweep-N-

Go does not generate any wastewater, air pollution, or other by-products. Unfortunately, due to

the coronavirus pandemic and remote testing, this project’s advisor left one bench’s instruments

51

powered all day. While this allowed the developer to remotely test the program through logging

onto that bench’s computer, this process led to powering these instruments for essentially half a

quarter (5 weeks). Due to the pandemic, the testing process caused a negative impact to power

usage and contribution to greenhouse gasses.

• 6. Manufacturability

 The long-term viability of Sweep-N-Go 3.0 could be potentially impacted by new

computer hardware and software configurations. Furthermore, any addition of new lab

equipment would require an upgrade of the code, requiring programming updates. The developer

could post the code on an open-source platform for laboratories supplying the same equipment.

However, it would be unlikely that laboratories outside Cal Poly supply the same equipment.

Therefore, this project would unlikely be manufactured outside of Cal Poly’s Electrical

Engineering labs.

• 7. Sustainability

This project should last, if it can be saved on a computer for student use. Therefore, this

program should not have too many issues maintaining the completed system. However, there

exist some potential upgrades, where someone would have to alter the code. Cal Poly might

upgrade the lab equipment which would entail someone updating the communication between

the equipment in LabVIEW. Furthermore, students may find fault with the GUI or run into a bug

that would cause impetus for further improvements to the code. Additionally, some Keysight &

Windows updates break Sweep-N-Go, requiring our technical staff or Dr. Braun to debug and

repair the issue. If an upgrade is required, it may prove difficult to find someone to complete

these improvements since few EE students know how to code in LabVIEW.

• 8. Ethical

From the ethical framework of psychological egoism, people act in their own self-

interest. Since Sweep-N-Go increases efficiency in labs and decreases student frustration in

debugging the program, students should want to use the upgraded version of the program.

However, this program could potentially take away from students learning new circuit concepts

through manual data collection process. Therefore, it is recommended that students undertake

both manual and automated approaches. Sweep-N-Go allows students to be introduced to the

benefits of automated testing, such as improved accuracy and efficiency. The program also

shows the characteristics of the circuit for which they are collecting data so the students still see

the trends and concepts of the new circuits they study.

Furthermore, since this project allows a senior to graduate, it helps all students taking the

EE labs requiring this program, and the professors teaching these labs, the ethical theory of

utilitarianism supports this project. While this project takes time input from the developer and

the project’s advisor, the benefits outweigh this cost. This project creates the greatest good for

the greatest number of people.

This project abides by the IEEE code of ethics in that it assists colleagues and co-workers

in their professional development. Furthermore, the developer took all necessary health

52

precautions for social distancing while working on this project. This abides by the IEEE

standards to “hold paramount the safety, health, and welfare of the public” [17]. Finally, this

report honestly represents all Sweep-N-Go 3.0 functionality and testing further abiding by the

IEEE code of ethics.

• 9. Health and Safety

Since Sweep-N-Go controls lab bench equipment, students must take precautions to

protect against unexpected high voltages or currents set on these instruments. Students should

practice common safety practices outlined in all labs when powering the equipment [15]. The

program sets all output voltages and current once the sweep is complete, thereby ensuring no

equipment has the potential to harm circuit components or people while not running.

Furthermore, the documentation outlining how to use the code also covers these safety

precautions and warns students of the connections the program has to the equipment.

Due to the coronavirus pandemic, additional safety concerns arose while testing

remotely. Since Dr. Braun connected circuits to the instruments controlled remotely through

Sweep-N-Go, this posed a fire hazard. If the program set voltage or current levels too high, the

circuit components could burn and cause a fire. Communication between the developer and Dr.

Braun reduced this hazard.

• 10. Social and Political

 This project directly impacts EE/CPE students and professors at Cal Poly. Sweep-N-Go

3.0 benefits professors, since they do not have to spend as much time helping students debug the

software, and it helps students measure data more efficiently through automated data collection.

This also benefits the people in technical support who must help debug issues with the program

when students and faculty cannot achieve a functioning program. Companies looking to hire Cal

Poly students would also benefit from students familiar with LabVIEW and automated testing.

Sweep-N-Go 3.0 accounts for the new equipment installed at some of the benches, so all students

in the lab have access to the program’s full capacity.

• 11. Development

 I learned LabVIEW throughout the course of this project. While I started this project with

some prior knowledge about the development environment. I had to teach myself several new

programming concepts and refer to the “help” page several times throughout the coding process.

The article titled “Self-Calibrating Automated Characterization System for Depressed Cladding

EDFA Applications Using LabVIEW Software With GPIB” helped me see how someone used

GPIB instrument communication with LabVIEW software [1]. From the journal article titled

“Inferring Use-cases from GUI Analysis”, I saw general common practices used in designing a

graphical user interface [4]. These tips helped to create the updated GUI seen in Sweep-N-Go

3.0. Furthermore, I learned the usefulness of having several stages to code development that

includes student and professor feedback since they also use the product. Finally, I have learned

about the product development cycle and marketing research previously not covered in other

classes.

