
rcHex: A Radio-controlled Hexapod

A Senior Project Report

presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Engineering

by

Dominique Sayo

June 2020

Advisor: Dr. Paul Hummel

Abstract

rcHex: A Radio-controlled Hexapod

Dominique Sayo

rcHex is a radio-controlled hexapod with 18 degrees of freedom, capable of positional and rotational

body adjustment as well as omnidirectional travel at variable speeds using three common gaits.

Its general-purpose design accessible to hobbyists makes rcHex an platform for further develop-

ment, whether it be experimentation in advanced robotic movement or retrofitting sensors to utilize

technologies such as computer vision and artificial intelligence. This report explores some of the

design intricacies of hexapod movement, including gait sequencing and the application of inverse

kinematics to multi-jointed limbs.

ii

Contents

1 Introduction 1

1.1 Stakeholders . 1

1.2 Goals and Objectives . 1

1.3 Project Deliverables . 1

1.4 Project Outcomes . 2

2 Background 3

3 Formal Project Definition 4

3.1 Customer Requirements . 4

3.2 Engineering Requirements . 4

3.3 End-User Personas . 5

3.4 Use Cases . 5

4 Design 6

4.1 Mechanical Design . 6

4.2 Electrical Design . 7

4.3 Software Design . 7

4.4 TX/RX Protocol and Radio Control . 9

4.5 Inverse Kinematics . 12

4.6 Gait Sequencing . 15

5 System Testing and Analysis 17

5.1 Timing and Calibration Tests . 18

5.2 Battery Life . 20

6 Conclusion and Future Work 21

7 Reflection 21

Bibliography 22

Appendix A Bill of Materials 23

Appendix B Top Plate Drawing 24

Appendix C Code Listing 25

iii

List of Tables

1.1 Project Milestones . 2

3.1 Engineering Requirements . 4

4.1 Radio Switch Functions . 10

4.2 Radio Stick Functions . 11

5.1 Control Loop Timing for Stationary Mode . 18

iv

List of Figures

3.1 Use Case Diagram . 5

4.1 Hexapod Leg Structure . 6

4.2 Electronics System Schematic . 7

4.3 Control Data Flowchart . 8

4.4 Movement Flowchart . 9

4.5 SBUS Packet Format . 10

4.6 Q X7 Channel Labels . 11

4.7 Inverse Kinematics Derivation: Coxa Plane . 12

4.8 Inverse Kinematics Derivation: Femur and Tiba Plane 13

4.9 Gait Sequencing Diagrams . 16

5.1 Completed Hexapod . 17

v

1 Introduction

Designing and building a hexapod allows for the exploration of topics regarding radio-controlled

robotics, including inverse kinematics and overall system design that is is capable of expansive

development. The electronic design allows for modular use of common hobbyist radios and batteries,

and the embedded software provides a framework that makes it simple to add or modify hexapod

functionality.

1.1 Stakeholders

Hexapod research and development is of interest to those in the field of robotics, whether they be

hobbyists, educators, or researchers exploring biologically-inspired locomotion. Additionally, engi-

neers of various backgrounds can expand upon or adapt features towards more specific applications.

1.2 Goals and Objectives

The goal of this project is to design and build the electrical and software components of a mecha-

tronic system from the ground up while using professional embedded development and engineering

practices. These practices include searching for and incorporating compatible components, inte-

grating several subsystems to create a functional product, and maximizing the maintainability of a

code base over the course of a project. Regarding project management, a timeline with milestones

must be established and followed while regularly communicating progress with an advisor.

1.3 Project Deliverables

Deliverables during the project are demonstrations of functional subsystems that accompany the

milestones shown in Table 1.1. After completion of the last milestone, the radio-controlled hexapod

will be able to adjust body position and orientation in place as well as travel omnidirectionally using

three types of gaits.

1

Table 1.1: Project milestones

Milestone Description Demonstration

MS-01 TX/RX protocol Live control data on terminal

MS-02 Servo controller library Simultaneous control of servos in one leg

MS-03 Stationary inverse kinematics Hexapod moving with singular IK commands

MS-04 Gait sequencing Crawling with LED timing indicators

MS-05 End product All implemented functionality

1.4 Project Outcomes

The completion of this project allows for further development of legged robotic movement on com-

plex terrain. Although the project only goes as far to develop a solely human-controlled hexapod

without the use of any environmental or operational feedback, addition of technologies such as com-

puter vision, artificial intelligence, and the use of sensors can offer insight to the intricacies of legged

biological movement.

2

2 Background

Accompanied with sensors and other technologies, robotic limbs have several useful applications in

which they can sometimes outperform humans. One common application is automation of tasks

such as assembly line work, moving objects, or spot welding. In the biomedical field, prosthetic

limbs are being developed to function as if organic muscles were present [2]. In the space industry,

robotic arms are being used for inspection of spacecraft damage, maintenance, and moving payloads.

The Canadarm used on previous space shuttles and the Canadarm2 currently on the International

Space Station are a few valuable and well-known examples [1]. Furthermore, groups of robotic

limbs can be used to coordinate terrestrial movement. Boston Dynamics, a robotics company, is

well-known for designing robots with life-like movement. Their product videos show advanced feats

such as humanoid robots performing handstands and parkour rolls. Their versatile remote-controlled

quadruped robot, Spot, was made commercially available in 2019 to pursue the vision of hardened

robots working in the field [3]. Although far from the forefront of the field of robotics, the design

of a hexapod will explore a basic level of robotic movement and serve as an entry-point to those

interested in such an inspiring field.

3

3 Formal Project Definition

The following sections outline the project requirements. At each milestone in the design process,

these requirements are reviewed and verified through testing, inspection, and analysis.

3.1 Customer Requirements

Customers and users require that the hexapod shall:

• be bindable from any FrSky-compatible radio system

• be powered by battery

• be capable of adjusting body orientation and position while stationary

• be capable of omnidirectional travel with controllable crawl speed

• have fluid motion

• have easily modifiable and expandible behavior though its code base

3.2 Engineering Requirements

Table 3.1 outlines the engineering requirements with tolerance values and risk levels. These require-

ments are targets and metrics suitable for fulfilling the above customer requirements. Some are

chosen for the accessibility of and compatibility with commonly used RC hobby equipment.

Table 3.1: Engineering requirements

Spec Parameter Description Target Tolerance Risk Compliance*

1 Number of RX channels 8 Min High I

2 Battery voltage 6 V ±1 Med. S

3 Battery life 5 min Min Med. I, T

4 Degrees of freedom per leg 3 ±0 Low I, S

5 Control loop refresh rate 30 Hz Min High A, T

6 Maximum crawl velocity 0.1 m/s Min Low I, T

*(A)nalysis, (T)est, (S)imilarity to existing designs, and/or (I)nspection.

4

3.3 End-User Personas

Two personas were developed to assist with design approach:

1. A RC hobbyist has radio equipment and batteries used for their other RC models and want

an addition to their fleet. They like to fine-tune controls and adjust parameters whether it be

for functional improvements or just for fun.

2. An engineering team is tasked with adapting hexapods for specific applications involving

moving a payload over stretches of complex terrain for transportation, sensing, or terrain

mapping purposes. They need to be able to modify and handoff hexapods to other teams who

deploy them in the field for different scenarios.

3.4 Use Cases

Figure 3.1 shows the basic use cases of the hexapod as a product line in a mobile robotics service.

Customers can lease or purchase the hardware and operate the hexapod. The business can modify

the hexapod according to customer needs while offering continual support service of the product.

Figure 3.1: Use cases in a mobile robotics service

5

4 Design

The following sections cover the hexapod’s mechanical, electrical, and software subsystems as well

as the main technological concepts dedicated to each milestone.

4.1 Mechanical Design

With six legs each having three degrees of freedom (DoF), the hexapod uses 18 servos total. HS-

645MG servos were selected due to their specifications suitable for mobile robotics, such as torque

and operating volage. An appropriate frame was chosen, with proper-fitting servo brackets and

enough capacity to manage cables and mount electronics and a battery. Figure 4.1 shows a single

leg labelled with arthropod leg nomenclature. Additionally, servos were installed into the brackets

such that the 90◦ position is aligned with the neutral stance of the robot shown in the figure.

Measurements of the hexapod geometry were taken post-assembly for constants used in inverse

kinematics calculations, such as body dimensions and the lengths of the coxa, femur, and tibia. A

top plate to mount electronics on top of the hexapod frame was designed and 3D printed.

Figure 4.1: Hexapod leg structure

6

4.2 Electrical Design

The STM32F303K8 was chosen as the MCU because of its extensive range of peripherals and small

development board footprint. A FrSky XM+ receiver was chosen due to its UART-compatible

communication protocol as well as its compatibility with popular RC transmitters. Lastly, the SSC-

32U servo controller board was selected to manage the PWM signals to the 18 servos. Figure 4.2

shows the system schematic connecting these three main components. Additional components are

an external LED showing the armed status, and a UBEC (switching voltage regulator) to maintain

a stable voltage from the battery pack to the MCU and receiver. The servos are directly powered

from the battery through the VS1+ and VS1- rails on the SSC-32U.

Figure 4.2: Electronics system schematic

4.3 Software Design

In addition to writing libraries to communicate with the receiver and servo controller, a large

software focus was to create a robust framework that allows for development towards additional

features such as using more receiver channels, gaits, and other hexapod movements or actions.

Interrupts were used for two important timing decisions in the main control loop. First, a DMA

interrupt signals a complete SBUS packet reception. The data processing flow is shown in Figure 4.3.

Data is parsed according to the channels assigned to the armed and mode switches, and movement

is executed according to the status of those switches.

7

Figure 4.3: Flowchart for main and control data processing

The second interrupt occurs from a timer and is used for the gait sequencer. These interrupts occur

at a variable frequency according to the movement speed of the hexapod. Each timer interrupt

signals a change in the leg position in the gait sequence. The hexapod can also operate in a

stationary mode which more clearly demonstrates the capabilities of inverse kinematics. Figure 4.4

shows the decisions made in the movement execution portion of the main control loop.

Because the control loop includes several components such as parsing receiver data, computing

inverse kinematics servo angles, and sending commands to the servo controller, operational smooth-

ness was a continually addressed concern. Any unnecessarily slow subroutine could possibly result

in choppy movement.

8

Figure 4.4: Flowchart for movement execution

4.4 TX/RX Protocol and Radio Control

SBUS is a serial communication protocol derived from RS232 and is used in RC receivers manufac-

tured by FrSky. After the RX signal is inverted, it can be processed with UART at a non-standard

baud rate of 100000 bits per second. The UART peripheral on the STM32F303 has configuration

options that allow for receiving SBUS data without an external inverting circuit, which is common

in other RC systems using SBUS receivers.

One SBUS packet contains 16 channels of 11-bit data and one byte of flags. The 25-byte packet

format is shown in Figure 4.5. The flags include two digital channels and a failsafe bit, but are

not currently used for the hexapod. A UART peripheral was configured on the MCU to receive

data and transfer to memory with DMA, interrupting every 25 bytes to signal a complete refresh

of control data.

9

Figure 4.5: SBUS packet format

Transmitters can configure and assign switches and sticks to receiver channels. Figure 4.6 shows the

Taranis Q X7’s available control options. This transmitter allowed for fine tuning such as changing

sensitivity or adjusting the curve that the raw data follows when moving a stick or potentiometer.

This allowed for flexible configuration on the transmitter side that did not have to be done in

software. Table 4.1 shows the final configuration for the Q X7 that was decided to effectively

switch between hexapod modes and features. Stationary mode is split into Roll/Pitch and X/Y

mode in order to demonstrate all six inverse kinematic command arguments, which are discussed

in Section 4.5. S1 and S2 are unused potentiometers available for use in future features. Table 4.2

shows the functions of stick axis movement when the hexapod is in each mode.

Table 4.1: Radio switch functions

Name Function
Position

Notes
1 2 3†

SA Reserved — — —

SB Reserved — — —

SC Gait Select Tripod Ripple Wave Crawl mode only.

SD Mode Roll/Pitch X/Y Crawl

SF Arm Disarmed Armed —

SH Rotate Mode Off On — Overrides SD if on.

† Switches SA, SB, SC, and SD are three-position switches. SF and SH are two-position switches.

10

Figure 4.6: Q X7 channel labels

Table 4.2: Radio stick functions

Name
Mode

Roll/Pitch X/Y Crawl Rotate

J1 Roll Body x Crawl x —

J2 Pitch Body y Crawl y —

J3 Body z Body z — —

J4 Yaw Yaw — Rotation

11

4.5 Inverse Kinematics

Inverse kinematics is important to the fluidity of multi-jointed movement. In forward kinematics,

an input of several joint angles outputs a final position of the end effector or the end of the robotic

arm. The process of inverse kinematics reverses this relationship such that providing the cartesian

coordinates of the desired end effector position returns possible sets of joint angles to achieve such

a position. In anticipation of the task of gait coordination, using inverse kinematics was deemed

essential for smooth movement; providing cartesian coordinates for foot positions would be much

more effective than a guess-and-check method of supplying individual servo angles in a forward

kinematics approach.

Solving inverse kinematic problems can be complicated when dealing with higher numbers of joints,

but fortunately each leg in an 18-DoF hexapod only have three joints moving in three-dimensional

space. To derive the inverse kinematic equations for one hexapod leg, the three dimensional axes

must be defined: the x-axis spans left to right of the hexapod, the y-axis spans backward to forward,

and z-axis from below to above. First, let’s view the hexapod from above, using Figure 4.7 to observe

the hip movement of the coxa servo in order to achieve foot position p = (x, y, z).

Figure 4.7: Inverse kinematics derivation on the coxa plane

12

Right away, coxa angle θ1 can be determined:

tan θ1 =
y

x

θ1 = tan−1
(y
x

)
For the next steps, the total length L of the leg from this perspective is obtained by the Pythagorean

theorem:

L =
√
x2 + y2

The perspective in Figure 4.8 observes the plane of rotation of the femur and tibia servos.

Figure 4.8: Inverse kinematics derivation on the femur-tibia plane

LC , LF , and LT are physical constants, respectively representing the lengths of the coxa, femur,

and tibia. The triangles formed by these lengths will be analyzed to find the femur and tibia angles

θ2 and θ3.

13

To split the current geometry into two triangles, find LHF , the length from the hip to the foot using

Pythagorean theorem:

LHF =
√

(L− LC)2 + z2

Angle α1 of the lower triangle can be found:

tanα1 =
L− LC

z

α1 = tan−1
(
L− LC

z

)
Now that three side lengths of upper triangle LFLTLHF are known, the law of cosines can be used

to obtain angles α2 and β:

L2
T = L2

F + L2
HF − 2LFLHF cosα2

α2 = cos−1
(
L2
F + L2

HF − L2
T

2LFLHF

)

L2
HF = L2

F + L2
T − 2LFLT cosβ

β = cos−1
(
L2
F + L2

T − L2
HF

2LFLT

)
Servo angles for the femur and tibia, θ2 and θ3, are calculated using the calculated angles and their

relation to right angles:

θ2 = α1 + α2 − 90◦

θ3 = 90◦ − β

The final three servo angles q = (θ1, θ2, θ3) needed to achieve foot position p = (x, y, z) are:

θ1 = tan−1
(y
x

)
θ2 = tan−1

(
L− LC

z

)
+ cos−1

(
L2
F + L2

HF − L2
T

2LFLHF

)
− 90◦

θ3 = 90◦ − cos−1
(
L2
F + L2

T − L2
HF

2LFLT

)
Total control requires applying this set of equations to all six legs with the appropriate offsets from

the center of the body. For roll, pitch, and yaw, the change in position is added after rotational

trigonometry is applied. In doing so, a singular command of three-dimensional coordinates (x, y, z),

roll, pitch, and yaw is used to control the position and orientation of the hexapod body.

14

Using inverse kinematics involves using trigonometric operations on a microcontroller and results

in a tradeoff of performance and smoothness of hexapod motion. Anticipating slow computation in

the overall process cycle, trigonometry function lookup tables were prepared. However, the math.h

library functions and the FPU on the STM32F303 were fast enough such that these improvements

were not necessary. See section 5.1 for the timing measurements and analysis.

4.6 Gait Sequencing

The idea of gait coordination stems from applying different inverse kinematics commands to subsets

of legs as opposed to applying the same command to all six legs in the stationary modes. The

hexapod gaits are implemented as finite state machines with each state representing a set of leg

positions, so faster cycling through these states results in faster hexapod movement. The gait

sequencer uses a timer on the STM32 for state changes, interrupting at a frequency proportional to

the magnitude of the receiver channels assigned to movement.

Three common hexapod gaits were implemented: tripod, ripple, and wave gait. The rotation gait is

derived from the tripod gait, using yaw instead of lateral movement. In a gait cycle or stride, a leg

is in one of two phases: the stance phase and swing phase. Figure 4.9 shows diagrams of the states

and the corresponding phases of each leg in each gait. Red segments represent the stance phase,

during which the foot is in contact with the ground supports weight. Blue segments represent the

swing phase, during which the foot is not in contact with the ground to return to a position to

begin the stance phase again.

The states are labelled A through F to cover the lengths of stance and swing phases. Each lettered

state is split into three sub-states because the swing phase requires three steps of raising a foot off

of the ground, moving it across in mid-air, and placing it back down. The stance phase is divided

evenly between the rest of the sub-states in the cycle with equidistant foot positions between the

end and start of the swing phase to achieve a smooth transition.

Ripple gait is slightly more complicated, as the beginning of the swing phases are offset between

the left and right legs of the hexapod. Twice the amount of states are used such that a left leg

can begin its swing phase precisely in the middle of its counterpart’s swing phase. There are many

possibilities in six-legged locomotion aside from these three gaits, so this state-based model can be

used to plan and implement other movement patterns.

15

Swing phase

Stance phase

Tripod/Rotate

Leg A1 A2 A3 B1 B2 B3 A1 A2 A3 B1 B2 B3 A1 A2 A3 B1 B2 B3

1: Right front 1 2 3

2: Right middle 1 2 3

3: Right back 1 2 3

4: Left back 1 2 3

5: Left middle 1 2 3

6: Left front 1 2 3

Ripple

Leg A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3

1: Right front 6 1 2 3 4 5

2: Right middle 1 2 3 4 5 6

3: Right back 3 4 5 6 1 2

4: Left back 1 2 3 4 5 6

5: Left middle 4 5 6 1 2 3

6: Left front 1 2 3 4 5 6

Wave

Leg A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3

1: Right front 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2: Right middle 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9

3: Right back 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3

4: Left back 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5: Left middle 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6

6: Left front 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.9: Sequencing diagrams for the tripod, ripple, and wave gaits

16

5 System Testing and Analysis

Throughout the design process, subsystems were tested and demonstrated with the milestones listed

in Table 1.1. Some engineering requirements were fulfilled from component and design decisions

earlier in the process, but further tests needed to be conducted to verify the requirements specific

to the end product’s functionality. Figure 5.1 shows the fully-built hexapod. All planned features

were successfully implemented, including body motion in stationary mode and the three basic gaits

chosen for crawl mode. Some additional small features were added: an LED to indicate armed

status and a rotate-in-place mode.

Figure 5.1: The completed hexapod build

17

5.1 Timing and Calibration Tests

Reactiveness and smoothness of hexapod motion was adjusted by optimizing timing-critical sections

in software. One important metric specific to stationary mode is the length of the loop in which

receiver data is processed, servo angles are calculated with inverse kinemematics, and the 18 servo

commands are sent to the servo controller. Table 5.1 shows the measured execution times that each

of these subroutines. The receiver sends a data packet every 14 ms, which is less than 24.65 ms it

takes to send all of the SSC-32U commands through UART. Therefore, accounting for this period

is not necessary as the start of every loop will have a new packet ready for processing.

Table 5.1: Control loop timing for stationary mode

Subroutine Execution Time

Conversion of receiver data to IK command 0.015 ms

IK calculations 1.776 ms

Send all servo commands to SSC-32U 24.650 ms

Total 26.441 ms

The time for inverse kinematic calculations was lower than expected when math.h trigonometric

functions were used instead of predefined lookup-tables. The STM32F303 FPU helped performance

with the large amount of single-precision floating point arithmetic. Since the bulk of the control

loop is dedicated to sending servo commands through UART, despite using the SSC-32U’s maximum

supported baud rate of 115200 bits per second, any optimizations made in the other subroutines

are marginal. If any significant improvement is to be made, the method of sending commands to

manage the PWM signals of 18 servos must be faster, possibly by designing another servo controller

board that uses a communication protocol such as SPI. Nevertheless, a total loop time of 26.441

ms results in a refresh rate of approximately 37.8 Hz in stationary mode, fulfilling the refresh rate

requirement.

In crawl mode, the frequency of sent commands to the SSC-32U is directly tied to the sequencer

frequency. The sequencer uses a 16-bit timer sourced at 4 MHz with a prescaler value of 92. The

minimum sequencer frequency uses the full range of the timer between interrupts, or a CCR of

0xFFFF:

18

Min. sequencer frequency =
Timer clock frequency

(CCR+ 1) ∗ (Prescaler+ 1)

=
4000000

(65535 + 1) ∗ (92 + 1)

= 0.656 Hz

The maximum sequencer frequency uses a CCR of 0xFFFFminus the maximum magnitude of control

data multiplied by a constant scalar:

CCR′ = 65535−Max. magnitude ∗ Speed scalar

= 65535− 820 ∗ 64

= 13055

Max. sequencer frequency =
Timer clock frequency

(CCR′ + 1) ∗ (Prescaler+ 1)

=
4000000

(13055 + 1) ∗ (92 + 1)

= 3.294 Hz

With these specific timer settings, the sequencer frequency ranges from 0.656 to 3.294 Hz. Therefore,

servo commands sent in crawl mode are always sent at a much slower rate than in stationary mode.

If the servo movements between leg positions are too fast at these low sequencer frequencies, then

the hexapod’s crawl gaits will appear to be choppy. If the servos move too slow, then commanded

positions will not be fully reached before initiating movement to the next one. According to the

above frequency range, legs will need to use from 1.656 to 0.303 seconds to get to their next position

in the gait sequence. Fortunately, the SSC-32U supports an optional command argument to specify

the speed at which servos transition from their current angle to the given position. This was used

to tune the servo transition speeds to make gait motion as fluid as possible.

Crawl velocity was measured by timing the hexapod travelling over a set distance. Tripod, ripple,

and wave gait crawl speeds were measured at 0.190, 0.046, and 0.029 m/s, respectively. Ripple and

wave gait are naturally slower, sacrificing speed for stability. Rotation speed was measured at 24

deg/s. These movement speed metrics can vary as they are dependent on many aspects such as IK

precision, tuning values for timers, parameters for stroke length, etc.

19

5.2 Battery Life

Battery life was tested by using the hexapod with a fully charged 6 V, 2800 mAh NiMH battery pack

until the battery voltage dropped below a 5.6 V threshold, at which the receiver would disconnect

occasionally most likely due to lack of operating current. Cycles lasted between approximately a

10 to 15 minute range; times varied due to the health of available batteries. There was no notable

difference in battery life observed between tests in which the hexapod stood idle or constantly

moved.

20

6 Conclusion and Future Work

The radio-controlled hexapod was completed, satisfying the defined user and engineering require-

ments. Despite the end product having hobbyist-level functionality that is not incredibly revolution-

ary to the field of legged robotics, a solid foundation was created for further development. The ease

of tuning various values and adding features at the end of the project demonstrates an extensible

code base and readiness for future work.

The vast possibilities of mobile robotics allow for further development in several ways. One feature

that was not implemented is stacking commands used in stationary mode onto the crawl mode

commands to allow for gaits with a tilted body. Legged robots can navigate complex terrain much

better than those with wheels or treads, but require more advanced sensing and control systems.

Challenging motions for a hexapod such as climbing stairs, rappelling down steep faces, or swinging

across monkey bars seem possible by adding sensors and having a sufficient understanding of physics.

7 Reflection

After learning about embedded systems design with the MSP432, I wanted to familiarize myself with

the STM32, another popular ARM MCU. This was a good lesson in using my available resources

(prior knowledge, an advisor, online forums, several datasheets and reference manuals) to learn

about an unfamiliar board and use it in a product.

Knowing that the bulk of this project would be time spent writing and debugging embedded soft-

ware, I chose the readily available SSC-32U to manage the 18 servo PWM signals. The SSC-32U

did its job, but I would design and use my own servo controller board given more time.

In terms of project management, I gained lots of experience using tools like Trello to organize task

lists, datasheets, research, and documents effectively. I very much appreciated having Dr. Hummel

as my advisor to discuss design approaches, concerns, and logistics.

21

Bibliography

[1] Bruce A. Aikenhead, Robert G. Daniell, and Frederick M. Davis. Canadarm and the space

shuttle. Journal of Vacuum Science & Technology A, 1(2):126–132, 1983.

[2] DG Caldwell and N Tsagarakis. Biomimetic actuators in prosthetic and rehabilitation applica-

tions. Technology and Health Care, 10(2):107–120, 2002.

[3] Erico Guizzo. Boston dynamics’ spot robot dog goes on sale, Sep 2019.

22

Appendix A: Bill of Materials

Revised: 2 Jun 2020
Revision: 4
rcHex Bill O

f M
aterials Page 1 of 1

Item
Q

uantity
U

nit
Part N

o.
Description

M
anufacturer

Cost per unit
Extended Cost

1
1

ea.
Q

 X7
Taranis 2.4G Transm

itter
FrSky

$107.99
$107.99

2
1

ea.
XM

+
SBU

S M
icro Receiver

FrSky
$13.99

$13.99
3

1
ea.

STM
32F303K8

N
ucleo Dev Board

STM
icro

$10.99
$10.99

4
1

ea.
SSC-32U

Servo Controller
LynxM

otion
$44.95

$44.95
5

18
ea.

HS-645M
G

High Torque M
etal Gear Servo

Hitec
$28.99

$521.82
6

1
ea.

Phoenix
3DO

F Hexapod Fram
e

LynxM
otion

$248.90
$248.90

7
2

ea.
n/a

6V 2800 m
Ah N

iM
H Battery Pack

LynxM
otion

$26.95
$53.90

8
1

ea.
IM

AX B6
Balance Charger

SkyRC
$30.99

$30.99
9

1
ea.

U
BEC3A2-6S

5V 3A U
BEC

Hobbyw
ing

$7.06
$7.06

10
1

ea.
n/a

1/8" PET Braided Sleeving
Alex Tech

$10.50
$10.50

11
2

ea.
n/a

XT60 Connector Pair
AM

ASS
$1.50

$3.00
12

1
ea.

n/a
Perfboard

ElectroCookie
$0.99

$0.99
13

1
ea.

LTL-1CHG
Green LED

Lite-O
n Inc.

$0.32
$0.32

14
1

ea.
CFM

12JT47R0
RESISTO

R 47 O
HM

 1/2W
 5%

Stackpole Electronics Inc.
$0.10

$0.10
15

0.006
kg

n/a
Gun M

etal Gray PETG Filam
ent

Atom
ic U

SA
$32.99

$0.20
Total

$1,055.70

23

Appendix B: Top Plate Drawing

Ø
2.2

Ø
3.18

39.75

44.76

68.58

50.8

78.2

64.42

C
reated by

D
ocum

ent type

Title

R
ev.

D
ate

Sheet

3

Part D
raw

ing

20.05.2020
1/1

rcH
ex Top Plate

D
om

inique Sayo

24

Appendix C: Code Listing

Only a selection of code is shown here due to length. See https://github.com/dsayo/rcHex for

the complete repository.

main.h

1 /∗∗∗

2 ∗ main.h

3 ∗

4 ∗ RC Hexapod

5 ∗

6 ∗ California Polytechnic State University, San Luis Obispo

7 ∗ Dominique Sayo

8 ∗ 19 May 2020

9 ∗∗∗

10 ∗/

11 #ifndef __MAIN_H

12 #define __MAIN_H

13

14 #include "stm32f3xx_hal.h"

15

16 void HAL_TIM_MspPostInit(TIM_HandleTypeDef ∗htim);

17 void Error_Handler(void);

18

19 #endif /∗ __MAIN_H ∗/

25

https://github.com/dsayo/rcHex

main.c

1 /∗∗∗

2 ∗ main.c

3 ∗

4 ∗ RC Hexapod

5 ∗

6 ∗ California Polytechnic State University, San Luis Obispo

7 ∗ Dominique Sayo

8 ∗ 19 May 2020

9 ∗∗∗

10 ∗/

11 #include <string.h>

12 #include <math.h>

13 #include "main.h"

14 #include "sbus.h"

15 #include "ssc.h"

16 #include "term.h"

17 #include "controls.h"

18 #include "ik.h"

19

20 TIM_HandleTypeDef htim3;

21

22 UART_HandleTypeDef huart1;

23 UART_HandleTypeDef huart2;

24 DMA_HandleTypeDef hdma_usart1_rx;

25

26 volatile uint8_t ready = 0; /∗ Flag: ready to process RX data ∗/

27 volatile uint8_t delta = 0; /∗ Flag: change in RX data ∗/

28 volatile uint8_t phase_ready = 0; /∗ Flag: ready for next crawl phase ∗/

29 uint16_t seq_speed; /∗ CCR subtractor for sequence speed ∗/

30 Phase max_phase; /∗ Maximum phase in sequence cycle ∗/

31 float angle_delta[NUM_LEGS][NUM_SERVO_PER_LEG]; /∗ Servo degree changes ∗/

32

33 void SystemClock_Config(void);

34 static void MX_GPIO_Init(void);

26

35 static void MX_DMA_Init(void);

36 static void MX_USART1_UART_Init(void);

37 static void MX_USART2_UART_Init(void);

38 static void MX_TIM3_Init(void);

39

40 int main(void)

41 {

42 uint8_t packet[PACKET_SZ]; /∗ SBUS packet data ∗/

43 RXData rx_data; /∗ Formatted ctrl data ∗/

44 RXData old_rx_data; /∗ Previous ctrl data ∗/

45 Command cmd; /∗ Stationary command ∗/

46 uint8_t armed = 0; /∗ Flag: is armed ∗/

47 Mode mode = MODE_RPY; /∗ Movement mode ∗/

48 CrawlMode cmod = TRIPOD; /∗ Gait type / rotate ∗/

49 Phase phase = A1; /∗ Current phase in sequence ∗/

50 float crawl_angle; /∗ Crawl direction in radians ∗/

51 uint16_t rot_dir; /∗ Rotation direction +CW −CCW ∗/

52

53 /∗ Reset peripherals, Initializes the Flash interface and the Systick. ∗/

54 HAL_Init();

55

56 /∗ Configure the system clock ∗/

57 SystemClock_Config();

58

59 /∗ Initialize all configured peripherals ∗/

60 MX_GPIO_Init();

61 MX_DMA_Init();

62 MX_USART1_UART_Init();

63 MX_USART2_UART_Init();

64 MX_TIM3_Init();

65

66 HAL_Delay(1000); /∗ One second startup ∗/

67

68 /∗ Start reading incoming RX data over UART ∗/

69 HAL_TIM_OC_Start_IT(&htim3, TIM_CHANNEL_1);

27

70 __HAL_UART_FLUSH_DRREGISTER(&huart1);

71 HAL_UART_Receive_DMA(&huart1, packet, PACKET_SZ);

72

73 powerup_stance(); /∗ Fast stance on powerup ∗/

74 neutral_stance(); /∗ Transition to neutral stance ∗/

75

76 while (1)

77 {

78 /∗ UART Error checking ∗/

79 if (HAL_UART_GetError(&huart1))

80 {

81 /∗ Overrun error, flush and restart ∗/

82 huart1.ErrorCode = HAL_UART_ERROR_NONE;

83 __HAL_UART_FLUSH_DRREGISTER(&huart1);

84 HAL_UART_Receive_DMA(&huart1, packet, PACKET_SZ);

85 }

86

87 /∗ Parse control data when ready ∗/

88 if (ready)

89 {

90 ready = 0;

91

92 /∗ Save prev rx data and get new rx data∗/

93 memcpy(&old_rx_data, &rx_data, sizeof(RXData));

94 sbus_format(packet, &rx_data);

95

96 /∗ Get armed switch and operating mode ∗/

97 armed = get_arm(rx_data);

98 mode = get_mode(rx_data);

99

100 if (armed)

101 {

102 switch (mode)

103 {

104 case MODE_CRAWL:

28

105 /∗ Parse control data into gait and sequencer info ∗/

106 cmod = get_cmod(rx_data);

107 seq_speed = get_speed(rx_data, cmod);

108 crawl_angle = get_angle(rx_data);

109 rot_dir = get_rot_dir(rx_data);

110 break;

111

112 default: /∗ Stationary modes ∗/

113 /∗ Check deltas (if rx data changed) ∗/

114 delta = ctrl_delta(&old_rx_data, &rx_data);

115 seq_speed = 0; /∗ Don’t use sequencer ∗/

116 break;

117 }

118 }

119 }

120

121 /∗ Enable control if armed ∗/

122 if (armed)

123 {

124 switch (mode)

125 {

126 case MODE_CRAWL:

127 /∗ When sequencer signals next phase ∗/

128 if (phase_ready)

129 {

130 phase_ready = 0;

131

132 /∗ Execute phase movement ∗/

133 exec_phase(phase, cmod, seq_speed, crawl_angle, rot_dir);

134 phase++;

135 if (phase > max_phase)

136 {

137 phase = A1;

138 }

139 }

29

140 break;

141

142 default:

143 /∗ Stationary mode ∗/

144 if (delta)

145 {

146 /∗ Only run new calculations if rx data changed enough ∗/

147 delta = 0;

148

149 /∗ Convert rx data to command & calculate inv. kinematics ∗/

150 cmd = to_command(rx_data, mode);

151 ik(cmd, ALL_LEGS, angle_delta);

152 set_angles(ALL_LEGS, angle_delta, STATIONARY_SERVO_SPEED);

153 ssc_cmd_cr(); /∗ Send new servo pwm ∗/

154 }

155 break;

156 }

157 }

158 else

159 {

160 /∗ Stand still ∗/

161 neutral_stance();

162 }

163

164 }

165 }

166

167 /∗ System Clock Configuration

168 ∗/

169 void SystemClock_Config(void)

170 {

171 RCC_OscInitTypeDef RCC_OscInitStruct = {0};

172 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

173 RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

174

30

175 /∗ Initializes the CPU, AHB and APB busses clocks ∗/

176 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

177 RCC_OscInitStruct.HSIState = RCC_HSI_ON;

178 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;

179 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;

180 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

181 {

182 Error_Handler();

183 }

184 /∗ Initializes the CPU, AHB and APB busses clocks ∗/

185 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

186 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

187 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

188 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

189 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

190 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

191

192 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)

193 {

194 Error_Handler();

195 }

196 PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1;

197 PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK1;

198 if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)

199 {

200 Error_Handler();

201 }

202 }

203

204 /∗ TIM3 Initialization Function

205 ∗/

206 static void MX_TIM3_Init(void)

207 {

208 TIM_ClockConfigTypeDef sClockSourceConfig = {0};

209 TIM_MasterConfigTypeDef sMasterConfig = {0};

31

210 TIM_OC_InitTypeDef sConfigOC = {0};

211

212 htim3.Instance = TIM3;

213 htim3.Init.Prescaler = 92;

214 htim3.Init.CounterMode = TIM_COUNTERMODE_UP;

215 htim3.Init.Period = 0xFFFF;

216 htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

217 htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

218 if (HAL_TIM_Base_Init(&htim3) != HAL_OK)

219 {

220 Error_Handler();

221 }

222 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

223 if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)

224 {

225 Error_Handler();

226 }

227 if (HAL_TIM_OC_Init(&htim3) != HAL_OK)

228 {

229 Error_Handler();

230 }

231 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

232 sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

233 if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)

234 {

235 Error_Handler();

236 }

237 sConfigOC.OCMode = TIM_OCMODE_ACTIVE;

238 sConfigOC.Pulse = 0;

239 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

240 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

241 if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)

242 {

243 Error_Handler();

244 }

32

245

246 HAL_TIM_MspPostInit(&htim3);

247 }

248

249 /∗ USART1 Initialization Function

250 ∗/

251 static void MX_USART1_UART_Init(void)

252 {

253 huart1.Instance = USART1;

254 huart1.Init.BaudRate = 100000;

255 huart1.Init.WordLength = UART_WORDLENGTH_9B;

256 huart1.Init.StopBits = UART_STOPBITS_2;

257 huart1.Init.Parity = UART_PARITY_EVEN;

258 huart1.Init.Mode = UART_MODE_RX;

259 huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;

260 huart1.Init.OverSampling = UART_OVERSAMPLING_16;

261 huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;

262 huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_RXINVERT_INIT |

263 UART_ADVFEATURE_DMADISABLEONERROR_INIT;

264 huart1.AdvancedInit.RxPinLevelInvert = UART_ADVFEATURE_RXINV_ENABLE;

265 huart1.AdvancedInit.DMADisableonRxError =

266 UART_ADVFEATURE_DMA_DISABLEONRXERROR;

267 if (HAL_UART_Init(&huart1) != HAL_OK)

268 {

269 Error_Handler();

270 }

271 }

272

273 /∗ USART2 Initialization Function

274 ∗/

275 static void MX_USART2_UART_Init(void)

276 {

277 huart2.Instance = USART2;

278 huart2.Init.BaudRate = 115200;

279 huart2.Init.WordLength = UART_WORDLENGTH_8B;

33

280 huart2.Init.StopBits = UART_STOPBITS_1;

281 huart2.Init.Parity = UART_PARITY_NONE;

282 huart2.Init.Mode = UART_MODE_TX;

283 huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;

284 huart2.Init.OverSampling = UART_OVERSAMPLING_16;

285 huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;

286 huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;

287 if (HAL_UART_Init(&huart2) != HAL_OK)

288 {

289 Error_Handler();

290 }

291 }

292

293 /∗ Enable DMA controller clock

294 ∗/

295 static void MX_DMA_Init(void)

296 {

297 /∗ DMA controller clock enable ∗/

298 __HAL_RCC_DMA1_CLK_ENABLE();

299

300 /∗ DMA interrupt init ∗/

301 /∗ DMA1_Channel5_IRQn interrupt configuration ∗/

302 HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 0, 0);

303 HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn);

304

305 }

306

307 /∗ GPIO Initialization Function

308 ∗/

309 static void MX_GPIO_Init(void)

310 {

311 GPIO_InitTypeDef GPIO_InitStruct = {0};

312

313 /∗ GPIO Ports Clock Enable ∗/

314 __HAL_RCC_GPIOF_CLK_ENABLE();

34

315 __HAL_RCC_GPIOA_CLK_ENABLE();

316 __HAL_RCC_GPIOB_CLK_ENABLE();

317

318 /∗ Configure GPIO pin Output Level ∗/

319 HAL_GPIO_WritePin(GPIOF, GPIO_PIN_0 | GPIO_PIN_1, GPIO_PIN_RESET);

320

321 /∗ Configure GPIO pin Output Level ∗/

322 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_4 | GPIO_PIN_5, GPIO_PIN_RESET);

323

324 /∗ Configure GPIO pins : PF0 PF1 ∗/

325 GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;

326 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

327 GPIO_InitStruct.Pull = GPIO_NOPULL;

328 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

329 HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);

330

331 /∗ Configure GPIO pins : PB4 PB5 ∗/

332 GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5;

333 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

334 GPIO_InitStruct.Pull = GPIO_NOPULL;

335 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

336 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

337 }

338

339 /∗ Callback for complete UART receive

340 ∗/

341 void HAL_UART_RxCpltCallback(UART_HandleTypeDef ∗huart)

342 {

343 if (huart−>Instance == USART1)

344 {

345 ready = 1;

346 }

347 }

35

	Introduction
	Stakeholders
	Goals and Objectives
	Project Deliverables
	Project Outcomes

	Background
	Formal Project Definition
	Customer Requirements
	Engineering Requirements
	End-User Personas
	Use Cases

	Design
	Mechanical Design
	Electrical Design
	Software Design
	TX/RX Protocol and Radio Control
	Inverse Kinematics
	Gait Sequencing

	System Testing and Analysis
	Timing and Calibration Tests
	Battery Life

	Conclusion and Future Work
	Reflection
	Bibliography
	Appendix Bill of Materials
	Appendix Top Plate Drawing
	Appendix Code Listing

