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Abstract 

 

Unconventional Approaches to Kinase Inhibition: Covalent Inhibitors 

and Docking Site Inhibitors of Mitogen-Activated Protein Kinases 

 

Rachel Marie Sammons, PhD 

The University of Texas at Austin, 2018 

 

Supervisor: Kevin N. Dalby 

 

The body of work that follows is a description of biochemical screening methods 

to identify non-ATP competitive and covalent ERK inhibitors, as well as assay design for 

characterizing covalent inhibitors of JNK in an isoform-specific manner.  A covalent 

ERK inhibitor is presented, as well as a novel class of non-covalent ERK docking site 

inhibitors.  An assay to elucidate the kinetic parameters of covalent JNK inhibitors is 

described, and the kinetic parameters for the inhibitor JNK-IN-8 are illustrated as a case 

study.  Additionally, a series of JNK-IN-8 analogues were tested in a PyVMT breast 

cancer cell model for their ability to preferentially inhibit either JNK1 or JNK2. The 

rationale behind targeting MAPKs at docking sites and focusing on covalent inhibitors is 

centered on several key elements.  First, the proximity-based mechanism of MAPK 

catalysis depends on docking site interactions to direct substrate consensus sequences to 

the vicinity of the MAPK active site. MAPK activators, phosphatases, scaffolding 

proteins, and other molecules also engage docking sites.  Therefore, targeting docking 

sites with inhibitors can not only directly or indirectly block substrate phosphorylation or 

enzyme activation, but the mechanisms of catalysis themselves can be altered.  Secondly, 



 viii 

the signal dynamics of MAPKs, such as their switch-like behavior, intra-pathway 

feedback, and inter-pathway crosstalk makes complete inhibition of MAPKs necessary to 

stop signaling in a therapeutic context.  Covalent, irreversible MAPK inhibitors can 

induce complete inhibition by being effectively immune to substrate competition, and by 

forcing recovery of signaling to be fully dependent on either MAPK mutations, protein 

synthesis, or pathway bypass. Targeting a MAPK at multiple interaction sites can further 

promote a full blockade of signaling.  The collective goal of the work presented in this 

dissertation is to contribute to the breadth of targeted kinase inhibitors that can be used 

against cancers, such as BRAF-V600E melanoma.  These inhibitors and methods of 

inhibitor development can be used as tools to probe the functionality of individual 

protein-protein interaction sites on ERK and JNK, and the principles described here can 

be adapted to apply to other kinases and binding sites as needed in future studies. 
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Chapter 1: Introduction 

MAPK OVERVIEW 

The mitogen-activated protein kinase (MAPK) signal transduction cascades are 

highly studied due to their roles in critical cellular processes and disease development 

and progression. Over 500 (518) genes have been identified that encode protein kinases, 

accounting for approximately 1.7% of the human genome [1]. There are four core MAPK 

signaling pathway subgroups: ERK1/2, p38, JNK, and ERK5. Each of these pathways 

consists of a central 3-tiered signaling module of MAP3K, MAP2K, and MAPK [2, 3].  

Here, extracellular stimuli such as stress, mitogens, and cytokines result in the activation 

of these modules, where subsequently MAP3Ks phosphorylate MAP2Ks, which in turn 

phosphorylate MAPKs (Figure 1.1). The MAPKs go on to phosphorylate hundreds of 

substrates that govern important cellular processes such as survival, apoptosis, gene 

expression, and proliferation.  In each phosphorylation event, the acting kinase transfers 

the γ-phosphate of ATP to a hydroxyl group of the downstream effector.  This process is 

reversed by appropriate phosphatases. These basic three-tiered kinase cascades are 

flanked by a wide variety of stimuli and outputs.  Extensive pathway cross-talk, feed-

back and feed-forward signaling regulation, subcellular compartmentalization, and 

scaffolding interactions all create additional levels of signaling complexity.  Here we 

discuss the basic components and functions of the ERK1/2 and JNK pathways and 

explore different protein-protein interacting (PPI) sites on the MAPK level of these 

cascades, as a layer of signaling regulation and potential target for drug therapies.   
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ERK Pathway 

The two main extracellular signal-regulated kinase (ERK) isoforms, ERK1 and 

ERK2, are the final components of the Ras/Raf/MEK/ERK signaling cascade [4].  This 

pathway is activated by a variety of mitogens and other extracellular sources, such as 

growth factors, insulin, osmotic stress, and cytokines [5, 6].  These ligands and stimuli 

trigger receptor-tyrosine kinase (RTK) dimerization and activation at the cell membrane, 

which in turn leads to recruitment of Ras-GDP to the receptor.  Ras-GDP is converted to 

Ras-GTP with facilitation from the guanine-nucleotide exchange factors Sos-1/2 (son of 

sevenless (drosophila) -1 and -2) [7], which are recruited to the receptor via several 

adaptor proteins (Shc, Grb2) [5].  Ras-GTP then leads to the activation of the Raf family 

(A-Raf, B-Raf, C-Raf) which culminates in Raf dimerization [8].  Raf serves as the 

primary member of the MAP3K tier in the core ERK signaling pathway. Activated Raf 

then phosphorylates and activates MEK1/2, which phosphorylate a threonine and tyrosine 

on ERK1 (T202/Y204) and ERK2 (T185/Y187) to activate them [5].   

ERK1 and ERK2 are serine/threonine protein kinases that phosphorylate over 175 

known substrates [9].  The functional redundancy of the two isoforms appears to be 

dependent on cell type and context.  For example, ERK2, but not ERK1, was reported to 

be essential for mouse trophoblast development [10].  The substrates that ERK1/2 

phosphorylate include transcription factors (e.g. Ets-1, Elk1, c-Fos, c-Jun), the RSK 

family of kinases, phosphatases, apoptotic proteins, and cytoskeletal proteins [5].  This 

wide array of substrates governs cellular processes such as proliferation, gene 

transcription, cell cycle progression, migration, adhesion, survival, and chromatin 

remodeling [3].  Since the cellular functions that depend on ERK signaling are so critical, 

dysregulation of the ERK pathway is a common driving factor in a variety of diseases.  

Particularly, the pathway is activated in numerous cancers.  Ras activation is present in 
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over 30% of cancers [11], and activating BRAF mutations occur in 40-60% of 

melanomas (BRAF-V600E in over 50% of metastatic melanomas) [12, 13].  Aberrant 

ERK signaling is also implicated in neurodegenerative diseases, cardiac hypertrophy, 

diabetes, and kidney diseases [14-17].  

JNK Pathway 

Mammalian c-Jun N-terminal kinases (JNKs) are encoded by three genes, jnk1, 

jnk2, and jnk3, where jnk1 and jnk2 are ubiquitously expressed, and jnk3 is expressed in 

the heart, brain, and testes [18, 19]. These genes encode the three isoforms JNK1-3 which 

encompass a total of 10 different splice variants [18].  Due to their ubiquity, JNK1/2 will 

be the main focus of this discussion. JNKs were originally identified as ‘stress-activated 

protein kinases’ (SAPKs) that phosphorylate a canonical substrate c-Jun, part of the AP-1 

transcription factor complex [20-22].  Numerous other mechanisms of JNK pathway 

activation have been identified since its discovery, including pro-inflammatory cytokines 

(TNF-α, interleukin-1β), growth factors, pathogens, ER stress, and toll-like receptor 

activation [23]. Pathway stimulation leads to activation of a large pool of MAP3Ks, such 

as the mixed-lineage protein kinase group members (MLK1-3), the MEKK family 

(MEKK1-4), and ASK1/2 [19].  These MAP3Ks phosphorylate and activate the dual-

specificity kinases MKK4 and MKK7, which are responsible for JNK1/2 activation by 

phosphorylation of Thr183 and Tyr185 in the activation loop (Thr-Xxx-Tyr motif).  

Though they are dual-specificity kinases, MKK4 preferentially phosphorylates Tyr on 

JNK, while MKK7 conversely targets Thr, and both can be activated by different 

mechanisms [19].   

Once activated, JNK1/2 phosphorylate a variety of substrates, including 

transcription factor activator protein complex -1 (AP-1) components (Jun and Fos 
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proteins), activating transcription factor -2 (ATF-2), NFAT, the Bcl-2 family, and 

numerous others [23].  These effectors regulate cellular processes like proliferation, 

survival, morphology, apoptosis, and differentiation.  As with the ERK pathway, 

disturbances in JNK pathway signaling are a hallmark of a number of different 

pathologies, including neurodegenerative diseases like Alzheimer’s [23-25], diabetes 

[26], inflammatory disorders [24, 27], and cardiovascular disease [14].  JNK1 and JNK2 

also play critical roles in tumorigenesis and tumor suppression, in an isoform- and cell-

type- specific manner that remains controversial [28, 29]. For example, JNK has been 

shown to promote the cancer stem cell (CSC) phenotype in TNBC models [30], while it 

acts as a tumor suppressor in mouse models of prostate cancer [31]. In tumorigenesis, the 

JNK2 isoform drives migration in PyVMT mouse models of breast cancer [32] and is the 

major active isoform in glioblastoma [33]. Conversely, JNK1 has been shown to be the 

primary JNK isoform driving proliferation in gastric and hepatocellular carcinoma 

models [34-37].  The substantial conflicting evidence suggests non-redundant roles for 

the two isoforms that depend on a complex variety of environmental factors and signaling 

events.  

TARGETING MAPKS IN CANCER 

Due to the prevalence of MAPK signaling in development and progression of 

diseases like cancer, the components of these pathways are ideal drug targets.  There are 

numerous inhibitors of the ERK MAPK pathway in clinical use or pre-clinical 

development for cancer therapy, particularly for BRAF-V600E melanoma. Vemurafenib 

and dabrafenib (B-Raf inhibitors) are approved for treatment of BRAF-V600E 

melanoma, but often result in acquired resistance with a median time of 6-8 months [38, 

39].  MEK inhibitors, such as trametinib, have been used alone or in combination with 
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mutant B-Raf inhibitors to combat this resistance, with limited efficacy [40-42].  ERK 

inhibition has emerged as a possible method of overcoming these resistance mechanisms, 

but relatively few ERK inhibitors have been clinically investigated. Currently a trial of 

the ERK inhibitor LY3214996 is recruiting for treatment of advanced cancers 

(NCT02857270), and the inhibitor ulixertinib (BVD-523) is also being clinically studied 

for various forms of cancer (NCT02296242).  Another ERK inhibitor, ravoxertinib 

(GDC-0994), has completed a phase I trial for advanced and metastatic solid tumors 

(NCT01875705). A dual Akt/ERK inhibitor, ONC201, is the subject of 15 past, current, 

and recruiting clinical trials for different forms of cancer (clinicaltrials.gov). Phase I 

study recruitment is currently underway for several newer ERK inhibitors: LTT462, KO-

947, and MK-8353 (clinicaltrials.gov). Similarly to the ERK pathway, JNK inhibition in 

cancer may target a signaling bottleneck that could overcome issues with upstream 

pathway inhibition.  JNK signaling is also crucially linked to ERK signaling in melanoma 

[43, 44], indicating the utility of targeting multiple pathways.  This pathway crosstalk is 

discussed in more detail later in this chapter.  In 2002, Celgene advanced the JNK 

inhibitor CC-401 into a phase I clinical trial for cancers and inflammation though this 

trial was terminated (NCT00126893).  As with ERK, many inhibitors of JNK have been 

developed, though none have been approved for cancer treatment so far.  

There are four main classes of kinase inhibitors that must be considered in drug 

design (Figure 1.2) [45-47]. Type I inhibitors bind to the ATP-binding pocket of the 

kinase in the active DFG-in conformation, where the aspartate residue on the kinase 

activation loop faces into the pocket.  Type II inhibitors bind to the same ATP-binding 

pocket while the kinase is in the inactive DFG-out conformation.  In this conformation, 

the aspartate residue of the activation loop is flipped outward from the binding site. Type 

III-IV inhibitors are allosteric; they inhibit the kinase without blocking the ATP-site or 



 6 

substrate binding sites [48, 49].  Additional types of kinase inhibitors include protein-

protein interaction (PPI) inhibitors, also referred to as docking site or substrate-

competitive inhibitors, and covalent inhibitors.  Most biochemical and computational 

methods for kinase inhibitor discovery utilize ATP competition as an inhibitor detection 

method [45].  Therefore, the majority of identified kinase inhibitors are ATP-competitive 

(Type I and II).   Type III and IV inhibitors are often serendipitously identified during 

mechanistic evaluations of hit compounds from ATP-site –directed biochemical 

screenings.  However, the design of ATP-competitive inhibitors has numerous 

shortcomings that limit their potency and selectivity.  Kinases have high affinity for ATP, 

which is often present at millimolar-level concentrations in cells, thus ATP-competitive 

inhibitors must be extremely potent [50-52]  Additionally, ATP-binding sites have high 

structure and sequence homology among the kinase groups, so ATP-competitive 

inhibitors must be highly selective to avoid off-target effects and promiscuity [52].   

Because of these issues, growing attention has been placed on development of 

kinase inhibitors that block substrate or other protein interactions, allowing for specificity 

and selectivity in signaling manipulation by avoiding ATP competition.  Irreversible, 

covalent inhibitors are of particular interest in this context, as they can potentially 

overcome substrate competition at any interaction site, including the ATP site.  PPI sites, 

or docking sites, serve at a regulatory level as a recognition mechanism to identify 

binding partners and direct signaling specificity within the hundreds of MAPK substrates.  

Here we will explore inhibitors of the docking sites of ERK and JNK that are distinct 

from the ATP-binding pocket, as well as covalent inhibitors, as pertaining to the future of 

targeted cancer therapy.   
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OVERVIEW OF DOCKING INTERACTIONS 

MAPK-binding docking motifs are typically less than 20 amino acids in length 

and are linear, disordered regions that adopt defined structure upon binding [53].  There 

can often be multiple docking motifs on the same protein that target the same sites, or 

different sites, on one or more MAPK [54].  These docking motifs can bind their targets 

in different conformations. For example, D-motifs can bind to the D-recruitment site of 

JNK in either NFAT4-like or JIP-like classes of conformations [54].  These extensive 

layers of complexity liken a single MAPK to a telephone switchboard, where the cell acts 

as an operator to relay a single explicit interaction among hundreds or thousands of 

possible outcomes and connections.  In fact, it has been predicted that while the size of 

docking motifs is generally around 10 amino acids in length, there are likely over 

100,000 different docking motifs in the human proteome [55].   

For MAPKs, there are two main docking sites: the D-recruitment site (DRS) and 

the F-recruitment site (FRS), which are discussed here in detail.  Aside from these sites, 

there are numerous other postulated protein-protein interaction domains on JNK and 

ERK.  These docking sites interact with upstream and downstream effectors, positive and 

negative regulatory elements, as well as structural and scaffolding proteins.  We predict 

that targeting docking sites with small-molecule inhibitors can have a variety of different 

outcomes, as shown in Figure 1.3.  Primarily, an inhibitor of a docking site could directly 

prevent the phosphorylation of the MAPK substrates or the phosphorylation/ 

dephosphorylation of the MAPK itself, resulting in full competitive inhibition (Figure 1.3 

A).  A docking site inhibitor could also indirectly inhibit MAPK substrate 

phosphorylation or actions performed on the MAPK by other enzymes (Figure 1.3 B).  

This can be accomplished if the inhibitor causes allosteric effects at other distinct binding 

locations, or if the inhibitor blocks a scaffolding protein from binding to the MAPK that 
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is required for a specific reaction to occur.  Substrate phosphorylation may only be 

partially blocked by a single docking site inhibitor, especially if the substrate employs 

multiple docking sites on the kinase.  This can result in altered reaction mechanism, 

processivity, and efficiency, as docking sites are often utilized to bring phosphorylation 

consensus sequences into close proximity of the MAPK active site (Figure 1.3 E) [54, 56, 

57].  Additionally, MAPKs have specific functions in different subcellular locations, and 

docking sites are known to be involved in regulation of subcellular location.  Therefore, 

inhibition of docking sites may disrupt spatiotemporal MAPK signaling (Figure 1.3 C).  

It has also been shown that inhibition of MAPK signaling can have widespread effects on 

the kinome, where other pathways or upstream effectors can be upregulated to bypass or 

overcome MAPK inhibition in order to achieve the same signaling outcomes (Figure 1.3 

D) [40, 58].  There are likely to be more functions of docking sites and inhibitors that 

have yet to be explored.  In the following sections, the details of specific docking sites on 

ERK and JNK are discussed, along with descriptions of their known functions and 

examples of existing targeted inhibitors.    

D-Recruitment Site 

The D-recruitment site (DRS) can be found on all MAPKs (p38, JNK, ERK1/2, 

ERK5) (Figure 1.4) in a location distal to the ATP-site on the protein surface [59]. The 

DRS binds to proteins with complementary D-site, or D-motif, sequences that are linear 

regions of varying lengths.  The general consensus sequence of these D-motifs is           

ψ1-3Χ3-7ΦΧΦ where ψ, Χ, and Φ, indicate positively charged, hydrophobic, and any 

residue, respectively [53].  The DRS on all MAPKs includes a charged region and a 

hydrophobic groove.  The charged region is a conserved acidic patch consisting of Asp or 

Glu residues, referred to as the common docking (CD) domain (Figure 1.4 B).  The 
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hydrophobic groove region of the DRS is flanked by the CD domain and another motif, 

the ED domain, which consists of two variable residues (ED in p38, SD in JNK, TT in 

ERK1/2, and EN in ERK5).  The ED domain helps convey specificity among the 

different MAPK D-recruitment sites (Figure 1.4 B) [60, 61].  The hydrophobic docking 

grooves are different for p38, ERK1/2 and JNK, making this region an ideal target for 

design of selective inhibitors [53]. The hydrophobic groove also contains a solvent-

exposed cysteine residue, adjacent to the ED domain, that is conserved among all 

MAPKs. These cysteines can be targeted by covalent inhibitors.  Additionally, binding at 

the DRS results in different conformational changes for each type of MAPK that mainly 

impact the kinase activation loop [59].  This kinase-specific effect offers an additional 

avenue of selectively targeting a given MAPK.   

Blocking the DRS of ERK can result in direct inhibition of interactions with 

substrates (RSK-1 [62, 63] and MAPKAPK2 (MK2) [64], and caspase-9 [65]),  

phosphatases (MKP-5 and HePTP [64]), activators (MEK1/2 [66]),  and scaffolding 

proteins such as PEA-15 [67]  Many of these interactions influence subcellular 

localization of ERK, such as binding to PEA-15 and MEK1/2 which both sequester ERK 

in the cytoplasm [67-72].  Similarly, the DRS of JNK interacts directly with substrates 

such as c-Jun and ATF-2, the upstream activators MKK4 and MKK7, phosphatases like 

PPM1J, as well as numerous cytoskeletal proteins, receptors, scaffolds and adaptor 

proteins that are listed in further detail in a review by Zeke, et al. (2016) [73].  These 

examples illustrate that a wide array of different ERK and JNK functions are influenced 

by the DRS.  Therefore, it is expected that targeting the DRS of each kinase with small 

molecules will significantly alter signaling events.   
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ERK Inhibitors  

Numerous inhibitors of the ERK DRS have been identified, namely through 

computer aided drug design (CADD) and virtual screening.  In 2005, Hancock, et al. used 

CADD to detect small molecules that bind to the hydrophobic groove between the CD 

and ED domains of the DRS of unphosphorylated ERK2 [74].  This groove is known to 

be the interaction location of the phosphatase HePTP by crystal structure, so it is often 

used as a starting point for DRS inhibitor development [5, 75].  Five hit compounds were 

found to inhibit proliferation and colony formation of multiple cancer cell lines.  Two of 

those compounds, 1.1 and 1.2 (Figure 1.5), were shown to bind ERK2 by a fluorescence 

quenching assay with dissociation constants near 5 µM in vitro. In 2006, the same group 

(Chen, et al.) published findings for a CADD screening for inhibitors that target active, 

phosphorylated ERK2 [76]. The activation of the enzyme induces conformational 

changes in various regions of ERK2, though this study indicated that changes in the DRS 

are minimal. Of the biologically active compounds, compounds 1.3, 1.4, and 1.5 were 

found to bind ERK2 with dissociation constants of 13-20 µM (Figure 1.5).  Compound 

1.1 was further optimized by virtual screening of analogues (Boston, et al.) [77] and 

synthetic chemistry to evaluate structure-activity relationship (Li, et al.) [78]. The 

inhibitors identified by Boston, et al. activated the intrinsic apoptosis pathway in cells, 

inhibiting proliferation and p90RSK-1 and Bad phosphorylation [77].  The compounds 

also showed the potential to preferentially target transformed cells over non-transformed 

cells.  In addition to these inhibitors, Kinoshita, et al. identified small-molecule DRS 

inhibitors by in silico methods, which they validated by displacement of a peptide (PEP) 

designed based on the STAT3-ERK2 interaction [79].  Interestingly, these compounds 

did not interact with the DRS hydrophobic pocket, but rather the charged acidic region 

denoted by the CD domain.  The hit compounds that met the criteria of IC50 <100 µM had 
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IC50 values ranging from 11-82 µM by ELISA assay (Figure 1.5, compounds 1.6 and 

1.7).  These reported small-molecule inhibitors have shown great potential for ERK 

pathway inhibition, though there is still further room for development of inhibitors with 

drug-like biological activities.  It is also notable that, to our knowledge, no biochemical 

high-throughput screenings have been developed to date that target the DRS of ERK.  

JNK Inhibitors  

Early work on JNK inhibitors that target the DRS began with peptides modeled 

after the JNK-JIP protein interaction (Figure 1.5). JIP (JNK Interacting Protein) scaffolds 

include the four isoforms JIP1-JIP4, which bind to JNK and MKK7 to facilitate JNK 

activation.  The peptide pepJIP1 was first developed as an 11-mer D-site sequence of 

JIP1 that acts as an allosteric inhibitor of JNK [80].  It exhibited high selectivity for JNK 

over the other MAPKs and blocked JNK phosphorylation of numerous downstream 

substrates in vitro.  PepJIP1 was modified with the addition of an HIV-TAT sequence to 

increase cell permeability (L-JNKI-1), and further modified to the D-retro-inverso 

peptide D-JNKI-1 (XG-102) to prevent cellular degradation [81, 82].  XG-102 has been 

studied in multiple clinical trials for treatment of inflammation and is a neuroprotective 

agent in animal models of stroke and Alzheimer’s disease [81, 83].  It is also effective in 

animal models of insulin resistance and Type II diabetes, as well as numerous other 

disease models, which are reviewed further in Bogoyevitch, et al. (2010) [83].  However, 

our group has shown that XG-102 is not an inhibitor of JNK in kinase assays in vitro, 

suggesting that its effectiveness in these models and clinical trials is due to mechanisms 

outside of the JNK pathway [32].  L-JNKI-1, on the other hand, does inhibit JNK in 

kinase assays with an IC50 of 0.45 µM for JNK2, 0.33 µM for JNK1, and 0.06 µM for 

JNK3 [32]. Our group has further developed this peptide into a 10-mer fused to either 
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inverted HIV-TAT (JIP10-Δ-TATi) or polyarginine (JIP10-Δ-R9) cell-penetrating 

sequences via an aminohexanoyl linker (Figure 1.5) [32].  These peptides potently 

inhibited cell migration in PyVMT mouse mammary tumor models and showed a 10-fold 

selectivity for the JNK2 isoform (IC50 ~90 nM) over JNK1 and JNK3. Ngoei, et al. have 

also identified a peptide that binds the DRS of JNK, D-PYC98, from yeast two-hybrid 

screenings [84].  The retro-inverso peptide was found to be five times more potent than 

L-PYC98 in vitro. When linked to the HIV-TAT sequence and tested in cells, the peptide 

inhibited c-Jun phosphorylation by JNK in a manner that did not affect JNK activation.    

In addition to peptide inhibitors of the JNK DRS, several small-molecule 

inhibitors have also been discovered that target this site. The compound BI-78D3 (Figure 

1.5) was identified by Stebbins, et al. in a high-throughput screening to detect 

displacement of pepJIP1 from the DRS of JNK1[85], and several other thiadiazole 

analogues have since been developed by the same group [86-88]. BI-78D3 exhibited an 

IC50 of 12.5 µM against c-Jun phosphorylation in HeLa cells. It was speculated that BI-

78D3 may react covalently to Cys163 in the DRS of JNK1/2 [89], however data by 

Stebbins’ group and other experiments conducted by our lab have suggested that if such a 

covalent reaction takes place, it is reversible. We have found that BI-78D3 also potently 

and irreversibly targets the DRS of ERK2, suggesting that future work should focus on its 

development as an ERK inhibitor.  

Our lab has also identified the lignan (-)-zuonin A (Figure 1.5) as a selective 

inhibitor of the JNK DRS.  This compound was discovered by virtual screen using BI-

78D3 as a starting point [90].  Both enantiomers of zuonin A bind the DRS of JNK2 with 

an IC50 of approximately 2.5 µM, while (-)-zuonin A can achieve 80% maximal 

inhibition of c-Jun phosphorylation compared to 15% for (+)-zuonin A [90, 91]. (-)-

Zuonin A prevented JNK activation by MKK4 and MKK7 as well as downstream c-Jun 
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phosphorylation in cells [91].  It also inhibited migration of MDA-MB-231 breast cancer 

cells [91].    

Though these potent and selective inhibitors of the JNK DRS have been 

developed, small-molecule inhibitors that are selective for individual JNK isoforms will 

be vital to understanding the roles of the different isoforms in disease.  Isoform-specific 

non-ATP competitive inhibitors will also be crucial for tuning inhibition to target specific 

interactions while minimizing undesired effects.  

F-Recruitment Site  

ERK1/2 and p38α are known to have an additional distinct docking site, called the 

F-recruitment site (FRS), which may be putatively found on p38β and ERK5 as well [92-

94].  This docking site is not canonically present in JNK2 or the other p38 isoforms [95]. 

The FRS binds to proteins containing the consensus sequence Phe-Xxx-Phe-Pro (FXFP), 

also known as the DEF motif (Docking site for ERK, FXFP) [96].  The FRS is located 

adjacent to the active site, and is comprised of a hydrophobic cavity that is exposed 

subsequent to the activation of the kinase (Figure 1.6) [95].  The key hydrophobic ERK2 

residues that compose the FRS are Y231, L232, L235, Y261, M197, and L198 (rat) [95].   

The FRS of ERK is known to interact with several ERK substrates including c-

Fos, Elk-1, and Ets-1 and is suggested to interact with nucleoporins, indicating it may 

have a role in nuclear transport of ERK [57, 62, 63, 97].  The fact that it is exposed upon 

activation of ERK suggests that its function is only associated with ERK docking 

interactions post-activation, thus inhibitors of the FRS would inevitably target active 

ERK.    

As mentioned above, no substrates of JNK have been identified that contain the 

FXFP consensus sequence [73, 98].  However, the surface of JNK that structurally 
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corresponds to the FRS of ERK may still be a functional docking site, as suggested by 

assays of artificial substrates containing docking motifs [73, 99].  More recently, a 

structural study by Liu, X., et al. (2016) showed that this FRS-like region of JNK1 

mediated interactions with the phosphatase MKP7 [100].  The motif of MKP7 that bound 

JNK1 was the sequence FNFL rather than FXFP.  The FRS-like region of human JNK1 

responsible for MKP7 interaction was found to include the hydrophobic residues W234, 

I197, L198, V256, Y259, V260, adjacent to the MAPK insert.  Charged and polar 

residues involved in the interaction included T255, Q253, N263, T228, and D229.  As 

discussed later in this chapter, inhibitors have been found that target this region of JNK1, 

providing further evidence that this surface is biologically relevant for JNK signaling 

[101]. Going forward, we refer to the region as ‘FRS-like’ for JNK, while reserving 

‘FRS’ as the notation for the sites on ERK and p38 isoforms that bind classical FXFP 

motifs.  

ERK Inhibitors 

Recently, a class of small molecules that targets the FRS of ERK2 was identified 

by Samadani, et al. (2015) using virtual database screening [102]. The core thienyl 

benzenesulfonate scaffold molecule (Figure 1.7, compound 1.8) was shown to interact 

with the FRS of ERK2 in a pocket exposed by Phe181 and Leu182 (rat residue 

numbering).  Compound 1.8 and its analogs were found to selectively inhibit FRS-

mediated phosphorylation of c-Fos and c-Myc proteins.  Notably, the compounds 

selectively inhibited proliferation of BRAF-V600Q melanoma cell lines that exhibited 

constitutively active ERK signaling.   A high-throughput biochemical assay to identify 

FRS inhibitors was recently reported by Miller, et al. (2017) [103].  The screening 

employed a proximity-based AlphaScreen (Perkin-Elmer) to detect displacement of a 



 15 

DEF peptide by library compounds. Though no hit compounds have been reported by the 

authors, this screening method will likely be a useful tool for biochemical detection of 

FRS inhibitors.  In addition to small molecules, numerous peptides containing the DEF 

consensus sequence have been generated in order to probe the FRS and its role in ERK 

catalysis and binding interactions [97, 104-106]. 

Other Interaction Sites 

While the FRS and DRS are well-documented, there are likely to be other 

physiologically relevant surfaces on MAPKs that have not yet been identified or fully 

characterized.  Here we describe some of these likely PPI sites as well as binding pockets 

that appear to be induced by inhibitors.  

Dimerization Interface 

ERK2 has been reported to dimerize upon activation in order to regulate its 

subcellular localization. The putative dimer interface was first identified using the crystal 

structure of rat ERK2 [107] and includes the residues E343, E339, K340, P337, L336, 

D335, L333, E332, F329, F181, and H176 [108, 109].  This region is adjacent to the FRS 

but they do not share common key residues (Figure 1.6). Many of the studies supporting 

dimerization utilized His6-tagged ERK2, however, the His6 tag is known to induce 

association of proteins under certain circumstances [110, 111].  Our lab has shown that 

active recombinant ERK2 with the His6 tag removed does not dimerize under 

physiologically relevant conditions in vitro [112].  Recently, Herrero, et al. identified a 

compound, DEL-22379 (Figure 1.7, compound 1.9), as targeting this putative 

dimerization interface via a docking groove [109]. The compound was an effective 

inhibitor of proliferation in ERK pathway-driven tumor cells, even in models of MEK 
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and B-Raf inhibitor resistance.  While this compound clearly showed an inhibitory effect 

on ERK signaling, its mechanism requires more investigation.  Regardless of whether this 

interface region mediates dimerization or other protein-protein interactions, it is apparent 

that it is a physiologically important site.   

P-Loop Binding Pocket 

The discovery of the potent tight-binding ERK inhibitor SCH772984 (Figure 1.7, 

compound 1.14) led to the identification of another binding pocket on ERK, the P-loop 

binding pocket [113].  The interaction of this compound with ERK2 induces the 

formation of this binding pocket, which is not found on the unbound active or inactive 

forms of the kinases.  The pocket is located adjacent to the ATP binding site, thus 

SCH772984 functions as a type II (DFG-out, ATP-competitive) inhibitor and a type III 

allosteric inhibitor at the same time [47].  It has been proposed that the P-loop binding 

pocket forms slowly and this conformational change is the rate-limiting step of 

SCH772984 binding, indicating a slow-binding kinetic mechanism [114]. This suggests 

that the P-loop pocket may be a beneficial target to produce ERK inhibitors with long 

drug residence times.  

DARPins 

Non-ATP competitive MAPK inhibitors need not be limited to small molecules or 

peptides.  In 2012, Kummer, et al. identified two designed ankyrin repeat proteins 

(DARPins) that selectively bind either active (doubly phosphorylated) or inactive ERK2 

[115].  These DARPins are small proteins of 33 amino acids each, with a fixed structural 

framework and an interaction interface of randomized residues, allowing for synthesis of 

combinatorial libraries. The identified DARPins are not ATP-competitive, but rather bind 
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to the activation loop of ERK2 and adjacent regions, recognizing the conformational 

changes that occur upon phosphorylation of T183/Y185.  The DARPins interact with 

several key hydrophobic residues of the FRS, including Y231, L232, Y261, and L198 (rat 

residue numbering), and slightly overlap with the putative dimerization interface of 

ERK2 as well. The DARPins were found to inhibit ERK2 phosphorylation and were able 

distinguish the phosphorylation state of ERK2 in cells.  

DARPins that bind JNK have also been identified and are capable of 

differentiating between the JNK1 and JNK2 isoforms.  Parizek, et al. (2012), the same 

group that developed the ERK-binding DARPins, described sets of DARPins that either 

target human JNK1α1, JNK2α1, or both, with low nanomolar affinities and little binding 

to other MAPKs [116].  These DARPins prevent JNK activation, but do not inhibit active 

JNK, and are therefore similar in mechanism to the DARPins that target ERK.  Later, the 

group crystalized two of the DARPins with truncated JNK1, using a chaperone DARPin 

(D12) to achieve crystallization [117].  As with ERK, the DARPins interact with the 

FRS-like region of JNK1 along with surrounding areas and the activation loop. The 

DARPin referred to as 47 (or J1_4_7) interacts with an alpha helix of the MAPK insert 

region composed of residues 253-265.  The activation loop residues 173-181 are forced to 

fold back into the ATP-binding pocket, which is likely how the DARPin inhibits JNK1 

activation.  The DARPin interacts with both lobes of JNK1, via hydrogen bonds with 

Arg59 and Arg150.  Thr255 and Thr258 of JNK1 are buried in amphiphatic pockets of 

J1_4_7.  The DARPins interact with JNK1 in a manner similar to that of MKP7 [100], 

indicating a key role for the FRS-like region in the activation state of JNK1.  The 

differences in the residues of this region for JNK1 compared to JNK2 was proposed as 

the source of isoform-specific DARPins, and this may be a critical consideration for 

development of isoform-specific small molecules.  These examples of designed proteins 
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for MAPK inhibition further illustrate the utility in identifying and targeting unique, 

biologically relevant surfaces on kinases. 

FRS-Like Site for JNK1 

Comess, et al. in 2010 developed a unique biochemical screening method for 

detection of p38α and JNK1 inhibitors that bind at any exposed surface of the proteins 

without bias [101]. The proteins were exposed to small molecules, and any poorly bound 

compounds were removed by ultrafiltration. The remaining high affinity compounds 

were identified by mass spectrometry, and the binding sites of the active compounds were 

determined by NMR.  The screen identified both ATP-competitive and non-ATP 

competitive inhibitors.  Of interest, a non-ATP competitive inhibitor of JNK1 activation 

was found to bind in the region of JNK1 bordered by the activation loop and the MAPK 

insert region (Figure 1.7, compound 1.10).  As mentioned, this region is analogous to the 

FRS of ERK2 [75, 97], though no such site has been characterized for JNK via 

conventional DEF-consensus sequences.  This method offers an additional way to 

identify new high-affinity inhibitors and new interaction sites on MAPKs. 

COVALENT INHIBITORS 

Development of covalent inhibitors for therapeutic purposes has long been met 

with concern for a variety of reasons, including toxicity, off-target reactivity, and 

haptenization [118, 119].  However, the benefits of covalent inhibition, including 

duration of action and high potency, can outweigh these risks with careful inhibitor 

design.  This design must involve a balance of reactivity and selectivity [118].  Optimal 

covalent inhibitor design can potentially be achieved by targeting non-conserved 

nucleophilic residues that are located in functionally relevant regions of proteins [120]. 
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Irreversible covalent inhibitors can be interpreted as non-ATP competitive regardless of 

target location, since they can inherently overcome high substrate concentrations and 

affinities over time [119, 121].  Covalent inhibitors can also potentially overcome issues 

with signaling pathway feedback mechanisms and acquired resistance in response to 

reversible targeted kinase inhibition [122-124].  Examples of covalent ERK and JNK 

inhibitors are discussed below. 

ERK Inhibitors 

Numerous covalent inhibitors have been identified that target a non-catalytic 

active site cysteine of ERK (Cys164 for rat ERK2).  The natural product hypothemycin 

(Figure 1.7, compound 1.11) and its analog FR148083 (Figure 1.7, compound 1.12) were 

identified as covalent inhibitors of numerous ERK pathway components, including 

ERK1/2 [125, 126].  However, these compounds are not selective enough to overcome 

covalent drug reactivity issues without further optimization, considering that they target 

multiple kinases outside of the MAPK pathway at the conserved active site cysteine.  

Ward, et al. took a different approach to discovering covalent ERK inhibitors [127].  

They identified non-covalent inhibitors that selectively target the ATP-site of ERK using 

both high-throughput screening results and published literature.  They then modified 

these inhibitors to incorporate reactive warheads in proximity to Cys164 of ERK2 by 

structure-aided drug design.  Ultimately, they identified a covalent class of pyrimidine-

based inhibitors that showed great potential for in vivo efficacy (Figure 1.7, scaffold 

compound 1.13).   

Our lab has focused on identifying covalent inhibitors of ERK that target the 

solvent-exposed DRS cysteine (Cys159 of rat ERK2) rather than targeting the ATP-site.  

As mentioned, we have found that the reversible JNK inhibitor BI-78D3 covalently binds 
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the DRS of ERK2 at this residue (Kaoud, et al., in preparation).  Much of this dissertation 

is devoted to describing a biochemical high-throughput screening method to identify 

covalent DRS inhibitors, and the results of this screen.  

JNK Inhibitors 

Zhang, et al. developed the first class of covalent JNK inhibitors that target the 

active site cysteine residue (Cys116 for JNK1/2, Cys154 for JNK3) [128].  The small 

molecules contain a phenylamino-pyrimidine core scaffold modified by addition of an 

acrylamide with a dimethylamino group. The core compound was initially intended as an 

imatinib-based inhibitor of c-Kit but was found to potently inhibit JNK1/2/3 in a kinome 

screening.  Of the series of analogues that the group developed from these findings, JNK-

IN-8 showed high potency and selectivity for JNK, potential for studying JNK inhibition 

in cells and in vivo, and possibility for further development into isoform-selective 

inhibitors (Figure 1.7, compound 1.15).  In the work described within this dissertation, 

we sought to develop methods to characterize the in vitro kinetic parameters and cellular 

effects of JNK-IN-8 and its analogues to pave the way for development of isoform-

specific covalent inhibitors. 

MULTIPLE MAPK TARGETS AS CANCER TREATMENT  

The numerous protein-interaction sites on MAPKs that direct signaling events in 

unique ways indicate the possibility of targeting ERK and JNK signaling by multiple 

direct mechanisms. There is growing evidence that targeting multiple MAPK signaling 

components in cancer may be advantageous. This includes drug combinations that act 

within a single kinase pathway, multiple sites of a single kinase, parallel pathways, or 

upon kinases and alternative targets that converge on a common cancer phenotype [129-
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132]. For example, bivalent ERK and JNK inhibitors have been developed to target both 

the DRS and the ATP-binding site of each kinase [133-137].  As a case study here, we 

discuss the crosstalk between JNK and ERK pathways in cancers, as well as the barriers 

to effective targeted kinase inhibition in BRAF-V600E melanoma that may be overcome 

by multivalent inhibition of the two pathways.  

JNK and ERK Pathway Cross-Talk  

ERK and JNK signaling pathways exhibit crosstalk at a multitude of levels that 

are not yet fully understood, and much of this crosstalk results in tumorigenic signaling 

(Figure 1.8).  For example, numerous extracellular stimuli can activate both JNK and 

ERK signaling, and ERK and JNK share common downstream substrates, namely c-Jun, 

c-Myc, and Elk-1 [23]. Additionally, DUSP4 is a known phosphatase for both ERK1/2 

and JNK1/2.  Loss of DUSP4 drives ERK and JNK activation in cancers, and this 

promotes the cancer stem cell (CSC) phenotype in basal-like breast cancer (BLBC) [138].  

Thus, it has been proposed that under these conditions, inhibition of both JNK and ERK 

would be of therapeutic benefit [138].  The protein BPGAP1 mediates another crosstalk 

node between the pathways in cancer.  BPGAP1 scaffolds MP1 and MEK at the late 

endosome to facilitate ERK activation, leading to nuclear translocation of ERK to 

phosphorylate substrates that drive tumor development.  JNK phosphorylation of 

BPGAP1 is required for this process, showing how ERK/JNK pathways can merge to 

facilitate cellular proliferation [139]. 

ERK and JNK pathways can also interact to antagonize their respective signaling 

in cancer as well. For example, ERK1 (but not ERK2) has been found to directly interact 

with JNK1 to suppress its activity and Ras/JNK/c-Jun –mediated transformation [140].  

Conversely, JNK pathway activation has been shown to inhibit ERK signaling by 
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inducing hyper-phosphorylation of Sos-1 and the Raf isoforms, leading to their phospho-

inhibition and unresponsiveness to upstream signals [141]. Additionally, in melanoma 

driven by constitutive ERK activity, it has been found that ERK signaling upregulates 

JNK and c-Jun activity, leading to cyclin D1 transcription and tumor progression [44].  It 

is clear from these examples that the nature of interactions between the ERK and JNK 

pathways in cancer is dependent on numerous factors like cell type, cancer type, 

subcellular context, and possible feedback signaling.  The examples of ERK/JNK 

pathway interactions discussed here are summarized in Figure 1.8.  It is also important to 

note that these examples include JNK/ERK pathway interactions alone, so this does not 

exclude the possible involvement of other additional pathways, such as p38 and 

PI3K/Akt/mTOR.   

Adaptive Resistance to ERK Pathway Inhibition 

Given that ERK and JNK pathways positively regulate one another in melanoma, 

we focus on melanoma here as a case where dual-pathway inhibition could be 

therapeutically beneficial.  This is an especially critical future directive when considering 

adaptive resistance to clinically developed ERK pathway inhibitors. It has in fact been 

shown that c-Jun activity is upregulated in response to Raf inhibition in BRAF-V600E 

melanoma, and Raf and JNK inhibitors can synergize to cause melanoma cell death [43].  

As previously mentioned, Raf inhibitors (vermurafenib and dabrafenib) and MEK 

inhibitors (trametinib, selumetinib, and cobimetinib) have been clinically used to treat 

BRAF-V600E melanoma either alone or in combination [42, 142], though these 

treatment methods are commonly met with acquired resistance [40, 41].  Targeted kinase 

inhibitor resistance can arise by a variety of mechanisms, such as mutations of the target 

kinase itself or mutations within the kinase pathway [40, 143, 144], pathway bypass via 
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alternative signaling routes [40, 145, 146], epigenetic changes [147-150], and adaptation 

of cellular processes such as drug transport [147].  Some examples of these acquired 

resistance mechanisms are illustrated in Figure 1.9.  ERK pathway reactivation is 

observed in 50-70% of melanoma tumors that have been treated with a single B-Raf 

inhibitor [151-153]. Upregulation of receptor tyrosine kinases at the cell surface can drive 

other pathways such as PI3K/Akt signaling to overcome ERK pathway inhibition, and 

this is a critical result of the entire kinome remodeling in response to inhibitor treatment 

[154, 155]. These factors indicate that targeting ERK and other MAPKs positioned at the 

bottleneck of their respective signaling pathways may be a method of overcoming 

resistance; often BRAF-V600E melanoma cell lines that become resistant to Raf 

inhibitors and exhibit pathway reactivation maintain sensitivity to ERK inhibitors [113, 

156].  However, considering that ERK pathway reactivation can be observed in as little as 

24 hours post- B-Raf inhibitor exposure [157], combination therapies will likely be a 

necessary approach for clinical treatment of melanoma.  

 SUMMARY OF WORK 

The goal of the work presented in the following chapters is to expand the arsenal 

of targeted MAPK inhibitors that can be used in cancer therapies, particularly BRAF-

V600E melanoma.  We focused on targeting ERK and JNK because these signaling 

pathways interact in cancers to lead to pro-tumorigenic phenotypes, and current clinical 

inhibitors upstream of ERK in melanoma are often met with acquired resistance. 

Therefore, inhibiting multiple pathways, kinases, and binding sites on individual kinases 

may be therapeutically beneficial.  A covalent ERK DRS inhibitor is presented in Chapter 

2, and a novel class of non-covalent ERK DRS inhibitors is described in Chapter 3.  In 

Chapter 4, an assay to elucidate the kinetic parameters of covalent JNK inhibitors is 
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described, and the kinetic parameters for JNK-IN-8 are illustrated as a case study.   

Fluorescence-based methods for identifying and characterizing inhibitors are at the core 

of these projects.    
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Figure 1.1. Basic components of the ERK and JNK signaling pathways.   

The JNK and ERK pathway phosphorylation cascades consist of three core tiers: 

MAP3K, MAP2K, and MAPK.  Examples of each tier are represented. Pathways are 

activated by extracellular stresses, ligand-receptor interactions, and a variety of other 

stimuli, and in each case the signaling pathways culminate in phosphorylation of nuclear 

and cytoplasmic substrates that govern critical cellular processes like apoptosis, 

proliferation, and differentiation. (Sources: [5, 28]) 
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Figure 1.2. Types of kinase inhibitors.   

A kinase, depicted with an ATP-binding site and distal protein-binding site, can be 

inhibited in a variety of ways (inhibitor is shown in red). Type I inhibitors target the ATP 

site when the kinase is active and in the DFG-in conformation, where the DFG-motif 

(orange) of the activation loop is facing into the pocket.  Type II inhibitors target the ATP 

site of the inactive kinase conformation, when the DFG-motif is facing out from the 

pocket. Type III and IV inhibitors are allosteric, targeting sites adjacent and distant from 

the ATP site, respectively.  These inhibitors do not block the binding of ATP.   (Sources: 

[45, 47, 114]) 
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Figure 1.3.  Scheme of potential outcomes of docking site inhibition.   

A docking site inhibitor (red) bound to a MAPK (light blue) can result in: (A) direct 

inhibition of substrate phosphorylation or MAPK phosphorylation, (B) indirect inhibition 

of substrate phosphorylation through conformational changes or inhibition of scaffold 

protein binding, (C) inhibition of MAPK translocation or sequestration in subcellular 

compartments, (D) kinome remodeling or signaling pathway bypass in response to 

MAPK inhibition, and (E) altered reaction mechanisms or processivity due to the 

involvement of docking sites in bringing substrate S/T-P consensus sequences within 

proximity of the MAPK active site.   
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Figure 1.4. The structural elements of the DRS.   

(A) The structure of ERK2 is shown (gray, PDB ID: 2ERK) depicting the secondary 

structural elements of the DRS (red).  (B) The sequence alignment of the major domains 

of the DRS for all major MAPKs is shown.  The DRS is composed of three major 

elements: (1) a groove formed by the hydrophobic residues of the αD and αE helices that 

is bordered by (2) the β7- β8 reverse turn containing the ED domain, and (3) the L16 loop 

containing the CD domain.  Key hydrophobic residues identified via ERK2 are shown in 

orange, while other conserved hydrophobic residues are highlighted in gold.  The ED 

domain is shown in pink, adjacent to the conserved DRS cysteine residue (red).  The 

DFG motif of the activation segment is shown in blue, and residues of the CD domain are 

shown in green.  All MAPK sequences are human, obtained from UniProt database and 

aligned using Clustal Omega.    

  

 

A B
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Figure 1.5. DRS inhibitors.   

Structures of small-molecule inhibitors of the ERK and JNK DRS are shown, along with 

sequences of selected peptides that target the JNK DRS.  (Superscripts indicate sources: a 

[74], b [76], c [79], d [80], e [81], f [82], g [32], h [84], j [85], k [90], “i" superscript 

indicates inverted peptide sequence, lowercase amino acid codes indicate D-amino acids).  

IC50 values for specified isoforms are provided unless they are unreported.   
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Figure 1.6. The FRS and putative dimerization interface of ERK2. 

ERK2 is shown in gray, with the FRS in green, interface residues in purple, and the 

catalytic site in light yellow.  The FRS and interface are both adjacent to the catalytic 

region. The inactive conformation of ERK2 (PDB ID: 1ERK) is shown in (A) while (B) 

depicts the active conformation (PDB ID: 2ERK), showing the changes in the 

organization of the domains.  Namely, the hydrophobic FRS pocket opens upon 

activation, and the interface residues become more ordered and clustered, separated more 

distinctly from the FRS.  (Sources: [95, 108, 109]) 

  

 

A B
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Figure 1.7.  Non-ATP competitive inhibitors of ERK and JNK.   

Structures are shown for selected inhibitors that target the ERK FRS, P-loop, and putative 

dimerization interface, along with covalent inhibitors that target ERK and JNK, and an 

inhibitor that targets the MAPK insert domain of JNK1 in an FRS-like site.  IC50 values 

are given (when provided) for reversible inhibitors and are used as estimates (*) for 

covalent inhibitors when parameters (KI and kinact) are not determined.  † Publication in 

preparation.  (Sources: [101, 102, 109, 113, 125-128]) 
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Figure 1.8.  ERK and JNK signaling pathway crosstalk.   

ERK and JNK signaling can be stimulated by common stresses or ligand-receptor 

interactions, and both ERK and JNK can phosphorylate common substrates such as c-Jun, 

Elk-1, and c-Myc.  DUSP4 is a phosphatase that acts on both JNK and ERK. In cancer, 

ERK1 can directly suppress JNK1 activity, while at the late endosome JNK can activate 

ERK via BPGAP1.  In melanoma, ERK signaling is known to upregulate JNK and c-Jun 

activity.  Conversely, JNK signaling can suppress ERK pathway activity by 

hyperphosphorylation of Sos-1 and the Raf isoforms.  (Sources: [23, 43, 44, 138-141, 

158, 159]) 
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Figure 1.9. Models of acquired resistance to melanoma treatments.   

(A) Acquired resistance to mutant B-Raf inhibitors resulting from (1) MEK mutation, (2) 

alternative activators of MEK, including BRAF-V600E spliceforms (p61 B-Raf), other 

Rafs, and MAP3Ks, and (3) signaling through alternative pathways driven by events such 

as upstream NRAS mutations and upregulated RTKs. (B) Acquired resistance to MEK 

inhibition arising from (1) MEK1 mutation, (2) upregulation of mutant B-Raf, and (3) 

mutant K-Ras to drive signaling through the remaining active population of MEK.  

Upregulated mutant K-Ras (3) can also drive signaling through alternate pathways (like 

PI3K) to overcome resistance. (Figure adapted from [40]) 
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Chapter 2: Identification of Auranofin as a Bivalent, Irreversible ERK 

Inhibitor Using a High-Throughput Screening  

ABSTRACT  

Docking sites on mitogen-activated protein kinases (MAPKs) facilitate protein 

complex formation and help generate signaling specificity.  Therapeutically targeting 

these sites offers a way to potentially overcome many issues associated with ATP-

competitive MAPK inhibitor design.  Extracellular signal-regulated kinases 1/2 (ERK1/2) 

are MAPKs that are up-regulated to drive numerous cancers.  ERKs possess two protein 

docking sites that are distinct from the active site: the D-recruitment site (DRS) and the 

F-recruitment site (FRS).  In this study, we have developed a novel high-throughput 

fluorescence anisotropy screen to identify small molecules that target the DRS of ERK2. 

The screen promotes identification of compounds that covalently target this region via 

Cys159. Over 23,000 molecules were screened for the ability to competitively displace a 

fluorescent peptide from the DRS.  From the screen, we identified auranofin, an FDA-

approved anti-rheumatic agent, as an inhibitor of ERK signaling that covalently targets 

the DRS of ERK2 at Cys159, in addition to the active site at Cys164.  Both in vitro and in 

transfected HEK293T cells, mutating Cys159 and Cys164 together prevented inhibition 

of ERK by auranofin.  The results here indicate the utility of targeting the DRS as a 

method for ERK inhibition and support the notion that the DRS cysteine is a viable target 

for covalent inhibition of ERK.   Auranofin as a hit molecule shows that this covalent 

inhibition can be achieved by gold (I) -thiol bond formation, illustrating the potential to 

utilize the gold (I)-triisopropylphosphine electrophile of auranofin as a functional group 

in future ERK inhibitor design.   
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INTRODUCTION  

Extracellular signal-regulated kinases (ERKs) are positioned at a critical location 

in the Ras/Raf/MEK/ERK signaling pathway. ERK transduces signals through this 

mitogen-activated protein kinase (MAPK) pathway as two classical isoforms: ERK1 and 

ERK2. Upon activation by upstream kinases, ERK1/2 can phosphorylate over 175 

cytosolic and nuclear substrates, including transcription factors and other kinases [5, 

160]. These phosphorylation events result in tightly controlled transcription of genes that 

facilitate processes such as cellular proliferation, differentiation, survival, and motility [5, 

160].  Abnormal ERK signaling is a driving factor in many forms of cancer, where 

constitutive activation of ERK arises from alterations in the upstream pathway.  These 

alterations include mutations in the three RAS genes (KRAS, NRAS, HRAS), MEK, and 

BRAF, with KRAS mutations present in 30% of human cancers [161]. These factors 

make the ERK pathway an attractive therapeutic target. However, there are numerous 

barriers to developing effective inhibitors of ERK signaling in cancer.   

Traditional MAPK inhibitors are ATP-competitive, targeting a binding site that is 

highly conserved among the 518-member kinase family, which can lead to poor 

selectivity [5, 51, 52, 162].   An additional issue is that these direct inhibitors of kinases 

must out-compete ATP, which is present in cells at millimolar concentrations and binds 

to MAPKs with high affinity [50, 51]. This makes the design of potent ATP-competitive 

ERK inhibitors difficult. However, there are several known ATP-competitive inhibitors 

of ERK1/2 that inhibit at nanomolar-level IC50s, such as VTX-11e [163], SCH772984 

[113, 114], and the covalent inhibitor FR180204 [126].  Though these potent inhibitors 

exist, it is important to explore alternative avenues of inhibiting ERK signaling to combat 

drug resistance mechanisms and target particular signaling events in a tunable manner. In 

cancer, resistance-causing mutations within MAPK active sites are known to arise from 
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targeted ATP-competitive kinase inhibitors [40, 113, 164-166]. Furthermore, recent 

studies indicate that kinome remodeling in response to targeted kinase inhibitors results 

in rapid adaptive resistance in cancers [154, 155]. For all of these reasons, it is critical to 

explore inhibition of the known binding sites on ERK that facilitate substrate recognition 

and protein complex formation. These docking sites, the D-recruitment site (DRS) and F-

recruitment site (FRS), are distinct from the active site of ERK.  Thereby, they offer a 

method of ERK inhibition that is not ATP-competitive.  

This study focuses on finding inhibitors of the DRS, an extended protein-binding 

site located opposite of the active site on the surface of ERK.  It consists of a 

hydrophobic groove, a polar surface known as the ED domain, as well as a common 

docking domain of two aspartate residues [5].  Due to its size and varied chemical 

properties, potently inhibiting interactions at the DRS with a single small molecule is 

difficult.   Numerous small-molecule inhibitors of the ERK DRS have been identified by 

computer-aided drug design (CADD) and in silico screening methods.  These inhibitors 

have affinities for ERK ranging from approximately 5-20 μM [74, 76, 77], with some 

inhibitors showing in vitro IC50 values as high as 82 μM [79].  Current DRS inhibitors 

show significant cellular activity against ERK signaling at concentrations exceeding 50 

μM [77, 78].   Highly potent inhibitors that target the DRS are therefore difficult to 

detect.  We hypothesized that covalently targeting the DRS via a solvent-exposed 

cysteine residue located within its hydrophobic region (Cys159 for ERK2) could 

overcome these difficulties. Covalent kinase inhibitors offer potential for increased 

potency and selectivity when targeted to unique residues in comparison to reversible 

inhibitors.  Therapeutically, they often require lower and less frequent doses than 

reversible inhibitors, have a longer duration of action, and have potential to effectively 

target shallow, solvent-exposed sites that are difficult to drug, like the DRS [167]. Once 
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bound, irreversible covalent inhibitors are not susceptible to increased substrate 

concentrations.  Due to their permanent modification of enzymes, irreversible inhibitors 

also have potential to overcome acquired resistance mechanisms that are often observed 

in cancer [123, 124, 168].   

To our knowledge, there are currently no reported biochemical high-throughput 

screening methods to specifically discover ERK DRS inhibitors, though one has been 

developed for the FRS [169].  Biochemical screening methods are typically designed to 

favor ATP-competitive kinase inhibitors, where inhibitors are identified by measured 

reduction of kinase activity. Non-ATP competitive inhibitors can only potentially be 

identified from kinase activity-based screens after extensive kinetic characterization of hit 

molecules. Here, we report a fluorescence anisotropy assay to detect small molecules that 

bind to the DRS by competitively displacing a fluorescent peptide probe.  The screen was 

designed to preferentially identify covalent modifiers of Cys159 in the DRS of ERK2 by 

eliminating use of reducing agents and allowing sufficient time for covalent molecules to 

react and achieve maximum potency.  We ultimately show that covalently targeting 

Cys159 is a viable method of ERK2 inhibition by example of auranofin, one of the top 

inhibitors identified from the screen. 

MATERIALS AND METHODS 

Proteins, Peptides, and Buffers 

Proteins: Tag-less ERK2 was expressed, purified, and activated essentially as 

described in [112] .  Erk2 DNA (NM_053842) was ligated into a pet28a (+) vector that 

was modified to include a TEV cleavage site for His6-tag removal.  Vector modification 

and cleavage of the His6-tag with TEV protease were performed as described in [170].  

ERK2 was activated using the constitutively active MKK1G7B mutant [171]. Active 
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ERK2 mutants (C159S, C164A, Cys-less, -Cys+C159) were expressed and purified 

essentially as described in [172] and activated in the same manner as WT ERK2.  GST-c-

Jun and active JNK2 were prepared as previously reported [170, 173].  

Peptides: The ERK substrate peptide Sub-D was prepared as described in [105].  

The control peptide Lig-D(Dap) was synthesized in the same manner as the DRS ligand 

Lig-D in [97], with the exception that diaminopropionic acid (Dap, or, Fmoc-Dap(MTT)-

OH from Chem-Impex International) was substituted for Gly-13 in the peptide sequence.  

Sox-labeled Sub-D (sox-Sub-D) was synthesized by alkylation of sox-Br (2-

bromomethyl-8-tertbutyldiphenylsilyloxy-5- (N, N-dimethyl) sulfonamide quinolone) to 

Sub-D on resin [174, 175].  Sox-Br was provided by William H. Johnson at the 

University of Texas at Austin. FITC-labeled Lig-D (FITC-X-Lig-D) was prepared by 

labeling the C-terminus of Lig-D with FITC via a 6-aminohexanoic acid linker on a 

cysteine residue [32].  For peptide sequences and synthesis of sox-labeled peptides, see 

Appendix A.   

Buffers: The following buffers were used for all in vitro ERK2 assays: anisotropy 

buffer (25 mM HEPES pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 µM EGTA, 1.3% 

glycerol), kinase assay buffer (50 mM HEPES pH 7.5, 100 mM KCl, 0.1 mM EDTA, 0.1 

mM EGTA, 10 mM MgCl2, 10 µg/mL BSA), and fluorescence assay buffer (25 mM 

HEPES pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 µM EGTA, 10 mM MgCl2, 10 µg/mL 

BSA, 0.01% (v/v) Triton X-100). 

Primary Fluorescence Anisotropy Screening 

All fluorescence anisotropy measurements were collected at room temperature on 

a Synergy H4 plate reader using a 480 nm excitation filter and a 512 nm emission filter.  

Assays were performed at room temperature in 30 µL reaction volumes in anisotropy 
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buffer with 10 µg/mL BSA.  Samples contained 10 nM FITC-X-Lig-D and 1 µM ERK2 

(inactive, His6-cleaved), with or without library compounds.  Compounds were diluted in 

anisotropy buffer from 10 mM DMSO stocks to reach a final assay concentration of 50 

µM and 0.5% DMSO.  Positive controls included 50 µM Lig-D(Dap) with 10 nM FITC-

X-Lig-D and 1 µM ERK2, and 10 nM FITC-X-Lig-D alone in anisotropy buffer with 10 

µg/mL BSA.  Compounds or DMSO controls were allowed to incubate with the enzyme-

peptide mixture for 1 hour before data collection.  Details of the screening process and 

assay optimization can be found in Appendix B.   

Secondary Activity-Based Screening 

The ability of 2 nM ERK2 (active, His6-cleaved) to phosphorylate 10 µM Sub-D 

in the presence of 10 and 50 µM compounds (0.1 and 0.5% (v/v) final DMSO) and 

saturating [γ-32P] MgATP (1 mM) was assessed in kinase assay buffer with 0.01% Triton 

X-100.  Positive controls were (1) background (kinase assay buffer) and (2) assay 

mixture with either 10 or 50 µM of Lig-D(Dap) as a known inhibitor of the DRS.  

Negative controls were (1) assay mixture with no compounds present and (2) selected 

non-binding compounds from the primary screening.  The assay was performed in 96-

well plate format at room temperature, with total reaction volumes of 50 µL.  10 µL of 

each compound at 5X their final concentration were added to 35 µL of assay mixture, 

following dilution in assay buffer.  After 30 minutes of incubation at room temperature, 

reactions were initiated by addition of 5 µL of 10 mM [γ-32P] MgATP.  The reactions 

were quenched after 10 minutes by transfer of 35 µL/well reaction mixture to 96-well 

plates containing P-81 filter paper (Whatman) and 50 mM phosphoric acid (approx. 200 

µL per well).  The plates were washed 10X, or until flow-through reached background 

CPM levels, with 50 mM phosphoric acid and 1X with acetone using a MultiScreenHTS 
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Vacuum Manifold system (EMD Millipore).  After fully drying the P-81 paper, the plate 

bottoms were sealed with MutliScreen Sealing Tape (EMD Millipore).  Each well was 

filled with 20 µL of OptiPhaseTM SuperMix liquid scintillation cocktail (Perkin Elmer), 

and the plate tops were sealed in the same manner as the bottoms.  The counts in each 

sample were read using a MicroBeta®TriLux microplate scintillation counter (Perkin 

Elmer).  Hits were ranked by their relative % inhibition of ERK2 at each concentration. 

Selection of Hit Compounds 

The top 100 compounds were ranked from 0 to 99 based on their percent 

inhibition (secondary screening) or % displacement (primary screening validation) with 

99 being the most effective inhibitor.  A weighted average of each validation assay result 

was used to find the best hits.  Each ranking was normalized by the respective compound 

concentration used, and these values were averaged as follows. 

Equation 2.1: 

 𝑠𝑐𝑜𝑟𝑒 =  
1
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Here A, B, and C are the rankings for the anisotropy validation assays at 5.5, 16.7, 

and 50 µM of each compound, and D and E are the rankings for the secondary screening 

assays at 10 and 50 µM of each compound, respectively.   

Anisotropy Dose-Response Assays 

 1 µM ERK2 (inactive, His6-cleaved) was pre-incubated with 10 nM FITC-X-Lig-

D and 0, 1, 2.5, 5, 10, 25, 50, 100, and 200 µM of each compound at room temperature 

for 45 minutes prior to anisotropy measurements as described for the primary screening.  

For inactive C159S mutant ERK2, 5 µM enzyme and 50 nM FITC-X-Lig-D were used to 
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account for their weaker binding affinity and resulting lower anisotropy signal. Kd for 

C159S ERK2 binding to FITC-X-Lig-D was determined in the same manner as for WT 

ERK2. Each sample contained 0.01% Triton X-100, 10 µg/mL BSA, and a final 

concentration of 2% DMSO in anisotropy buffer.  Anisotropy values were corrected for 

compound intrinsic fluorescence as described in the screening validation procedure.  The 

anisotropy dose-response curves were fit to an equilibrium binding model for conditions 

where the FITC-X-Lig-D substrate concentration is much less than the concentration of 

ERK2 [67, 68].  Curve fitting was performed in GraphPad Prism software (see Appendix 

B).   

32P Dose-Response Assays 

ERK2 DRS inhibition: 2 nM ERK2 was pre-incubated with 0-200 µM of each 

compound for 20 minutes at room temperature prior to reaction initiation by the addition 

of 10 µM Sub-D and 1 mM [γ-32P] MgATP.  Reactions were initiated by addition of 2 

nM ERK2 and performed at 28ºC.  JNK2 inhibition: 25 nM JNK2 was pre-incubated with 

0 – 50 µM inhibitor (compounds 3, 4, 5, 18, 21) for 20 minutes at room temperature.  

Reactions were initiated by addition of 2 µM GST-c-Jun and 0.5 mM [γ-32P] MgATP. All 

reactions were carried out at 28ºC in kinase assay buffer with 0.01% Triton X-100. 

Phosphorylated substrate was quantified at 0.5, 1, 1.5, 2, and 4 minute time points as 

previously described (32P protocol) [176] on a MicroBeta®TriLux scintillation counter 

(Perkin Elmer).   

Fluorescence Dose-Response Assays  

Assays and data analysis were performed essentially as previously described 

[177].  2 nM ERK2 was pre-incubated with 0 – 50 µM inhibitor for 20 minutes at room 
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temperature in fluorescence assay buffer, prior to addition of 2 µM sox-Sub-D and 1 mM 

MgATP.  Data were collected on a Perkin Elmer 1420 multilabel counter with a 355/40 

nm excitation filter and 460/25 nm emission filter and integration time of 0.1 s.    

Fluorescence intensity was measured at room temperature every 40 seconds for 1 hour. 

Assays for Recovery of ERK2 Activity 

Auranofin (0 or 50 µM) was pre-incubated in fluorescence assay buffer with 1 nM 

ERK2 variants (WT, C159S, C164A, Cys-less, -Cys+C159) for 10 minutes at room 

temperature prior to addition of 10 µM sox-Sub-D and 1 mM MgATP. Alternatively, 

ERK2 variants were pre-incubated with 1 mM MgATP for 5 minutes prior to addition of 

auranofin or DMSO and sox-Sub-D.  Initial rates were collected at 26ºC for 300s on a 

Horiba Jobin-Yvon Fluorolog-3 spectrofluorometer.    

Preparation of Cell Lysates 

HEK293T cells were maintained in DMEM with 10% (v/v) FBS, 2 mM L-

glutamine, 100 U mL-1 penicillin, and 100 g mL-1 streptomycin.  All cell culture reagents 

were from Sigma-Aldrich or Thermo Fisher Scientific. Cells were cultured at 37ºC in a 

humidified incubator with 5% CO2.   

For transfection experiments, HEK293T cells were plated into poly-D-lysine -

coated 12-well plates at 600,000 cells per well in antibiotic-free media.  After reaching 

50-60% confluence, the cells were transfected with the following DNA by 

Lipofectamine®3000 protocol: WT ERK2, C164A ERK2, C159A ERK2, C159A/C164A 

ERK2, pcDNA3 (empty vector). Transfections were performed in antibiotic-free media, 

using 1 µg DNA and 1.5 µL Lipofectamine reagent per well.  Non-transfected cells were 

included as an additional control.  After 30 hours, the media was removed and transfected 
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(and non-transfected) cells were treated with 5 or 10 µM auranofin or 1% (v/v) DMSO in 

serum-free media for 12 hours.  The cells were then treated with/without 0.1 µM EGF 

(Invitrogen) for 25-30 minutes to stimulate ERK signaling and immediately washed with 

PBS (Thermo Fisher Scientific).  The cells were lysed on ice for 10-15 minutes in M-

PER™ Mammalian Protein Extraction Reagent (Thermo Scientific) supplemented with 

10 µL/mL Halt™ Protease and Phosphatase Inhibitor Single-use Cocktail (Thermo 

Scientific).  Lysates were flash-frozen in liquid N2 and stored at -80ºC.   

Western Blots 

Thawed lysates were cleared by centrifugation and protein concentrations were 

evaluated by Bradford assay (Bio-Rad).  A total of 40 µg protein per sample was resolved 

on 10% SDS polyacrylamide gels and transferred to Immobilon®-FL PVDF membranes 

(EMD Millipore).  Membranes were blocked for 1 hour at room temperature with 4X 

diluted Odyssey® Blocking Buffer (PBS) (LI-COR).    Membranes were incubated with 

primary antibodies overnight at 4ºC in 5% BSA or non-fat dry milk in Tris-buffered 

saline/Tween® 20 (TBST) according to manufacturer protocols.  The membranes were 

then washed in TBST and incubated with appropriate secondary antibodies for 1 hour at 

room temperature.  After washing again with TBST and Tris-buffered saline, 

fluorescence was detected on an Odyssey® Sa imaging system (LI-COR) and quantified. 

All primary antibodies are from Cell Signaling Technology unless otherwise 

noted: 1:2000 antiphospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® 

rabbit mAb; 1:1000 anti-p44/42 MAPK (Erk1/2) (137F5) rabbit mAb; 1:2000 

antiphospho-SAPK/JNK (Thr183/Tyr185) (G9) mouse mAb, antiphospho-p38α 

(Thr180/Tyr182) clone 8.78.8 rabbit mAb (EMD Millipore); 1:6000 anti-actin (clone C4) 

mouse mAb (EMD Millipore); 1:3000 anti-vinculin (E1E9V) XP® rabbit mAb. 
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Secondary antibodies: 1:15000 IRDye® 800CW Goat (polyclonal) anti-rabbit IgG or 

IRDye® 680RD Goat (polyclonal) anti-mouse IgG (LI-COR). 

RESULTS AND DISCUSSION  

Anisotropy Assay Detected Small Molecules That Bind to the DRS  

In order to develop a method to screen for DRS inhibitors, we reasoned that we 

could design a competitive displacement assay using a previously identified peptide, Lig-

D, that binds to the DRS of ERK2 [97].  By linking the fluorophore FITC to this peptide 

and allowing it to bind to ERK2, small molecules that target the DRS can be identified by 

change in anisotropy signal upon displacement of the peptide (FITC-X-Lig-D).    To test 

this concept, we first incubated FITC-X-Lig-D (10, 60 or 100 nM) with varied 

concentrations of ERK2 (inactive, His6-cleaved) from 0-12 µM. Anisotropy values were 

measured at equilibrium after 10-20 minutes of incubation.  Apparent dissociation 

constants were estimated at each FITC-X-Lig-D concentration using a basic single step 

binding model (Supplementary Figure B1).  FITC-X-Lig-D concentration was minimized 

at 10 nM without loss of signal.  The observed dissociation constant (Kd,obs) for this 

condition was  then calculated to be 0.57 ± 0.12 µM by fitting the binding data to a 

previously established anisotropy model [67]  (Figure 2.1 A).  Using the binding curve, 

we fixed ERK2 concentration at 1 µM for the competition assay in order to achieve a 

robust anisotropy signal for the negative control (no displacement of fluorescent peptide).  

To test competitive displacement of the fluorescent probe, we incubated a non-

fluorescent DRS-binding peptide (Lig-D(Dap)) at 0-200 µM with 10 nM FITC-X-Lig-D 

and 1 µM ERK2 and measured resulting anisotropy.  The observed IC50 for the non-

fluorescent peptide was measured at 0.83 ±0.15 µM (Figure 2.1 B).  Lig-D(Dap) fully 

displaced the fluorophore from ERK2 at 50 µM by comparison to background anisotropy 
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measurements, so this concentration was selected for use as a positive control in the high-

throughput screening.   

To prepare the assay format for high-throughput screening, we first tested the 

tolerance of the control signals to increasing amounts of DMSO.  All stocks of library 

compounds used in the screen were dissolved in DMSO.  We selected a final 

concentration of 0.5% (v/v) DMSO for the screening assay to maximize compound 

concentration while minimizing effects on anisotropy signal (Supplementary Figure B2).  

In high-throughput assay development, the Z-factor is a statistical parameter often used to 

assess assay quality [178].  A 384-well validation plate consisting of positive and 

negative controls, representing maximum and minimum fluorophore binding, yielded a 

test Z-factor of 0.80. This value indicated that the screening design was of sufficient 

quality to identify DRS inhibitors (Supplementary Table B1).   

We then applied the displacement assay to 23,534 compounds at 50 µM, allowing 

them to incubate with ERK2-bound FITC-X-Lig-D for approximately 1 hour prior to data 

collection.  Hit compounds were identified as causing over 50% change in anisotropy 

signal from the negative controls (Figure 2.1 C).  This yielded 204 compounds, indicating 

a hit rate of 0.87% with an overall average Z-factor of 0.86.  Figure 2.1 D shows a 

selection of data from the screen that illustrates library compound results compared to 

each control group and the hit threshold of 50% signal change.  If it is initially assumed 

that the FITC-X-Lig-D binding state is the only influence on anisotropy and the binding 

state does not affect FITC emission intensity, a library compound inducing a 50% signal 

change indicates that 50% of bound FITC-X-Lig-D has been displaced from the DRS.  

However, several factors aside from the relative amounts of free and bound FITC-X-Lig-

D can affect anisotropy.  Intrinsic fluorescence of compounds at the emission wavelength 

of FITC-X-Lig-D as well as scattered light from aggregated compounds can generate 
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false positives and negatives.  The most obvious of these false positives and negatives in 

the screening data were compounds that generated percent signal changes over 100% or 

under 0%.  In order to account for potential aggregate inhibition, the 204 compounds 

were assessed at varied concentrations by anisotropy assays incorporating 0.01% Triton 

X-100 [179, 180].  Additionally, the anisotropy measurements were corrected for any 

intrinsic compound fluorescence.  To further rule out false hits, we tested the resulting 

top 100 compounds in a secondary validation assay, measuring their ability to prevent 

ERK2 phosphorylation of a D-site substrate peptide (Sub-D) [105] at both 10 and 50 µM 

(Figure 2.1 E).  We ultimately selected the top 30 compounds arising from the 

aggregation test and secondary assay using a concentration-weighted score (equation 

(2.1)) and narrowed this to 21 based on compound safety and availability (Supplementary 

Table B2). 

Screening Hits Inhibited Phosphorylation of Peptide Substrate by ERK2 

We evaluated the top 9 inhibitors (compounds 3, 4, 5, 12, 13, 16, 18, 21, and 23) 

by a fluorescence-based dose-response assay.  The ERK2 substrate used here was the 

Sub-D peptide modified to include a chelation-enhanced sox moiety.  Sox fluorescence 

increases in the presence of 10 mM Mg2+ when the peptide is phosphorylated by active 

ERK2 [174].  As seen in Table 2.1 and Supplementary Figure B3, all of the 9 compounds 

show IC50 values of less than approximately 12 µM.  The compounds were also evaluated 

in anisotropy dose-response assays to determine their observed dissociation constants, or 

Ki* values (Table 2.1, Supplementary Figures B4, B5, and B6).  Ki* values were defined 

as the observed compound binding affinity (Ki) after approximately 45 minutes of 

incubation of 0-200 µM compound with ERK2 and FITC-X-Lig-D. The values were fit 

according to a previously established binding model that accounts for the high 
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concentration of ERK2 compared to the fluorescent probe (see Appendix B).   This 

model also corrects for differing fluorescence intensities of free and bound fluorophore.  

However, the model only describes an apparent Ki value in this study because it assumes 

reversible equilibrium binding with 1:1 stoichiometry.  As discussed later, this is not the 

case for many of the hit compounds.  Ki*, like the IC50 here, is used as a method of 

comparing the top hits to one another.  It can be considered a complimentary method to 

validate the order of magnitude of potency of the compounds as determined by IC50, and, 

like the IC50 values, is not intended to be absolute.    

Screening Preferentially Detected Reactive Small Molecules 

We then sought to determine if the compounds interacted at Cys159 in the DRS of 

ERK2.  When the cysteine residue in the DRS (Cys159) was mutated to serine, the 

compounds showed no quantifiable binding in the anisotropy dose-response assays 

(Table 2.1 and Supplementary Figures B4, B5, and B6).  This implies that Cys159 forms 

critical interactions with all 9 of the compounds.  When selected compounds (3, 4, 5, 18, 

21) were tested for inhibition of JNK2 phosphorylation of c-Jun, they showed similar 

magnitude IC50 values to ERK2 (Table 2.1 and Supplementary Figure B7). This suggests 

that they likely target the kinase DRS motif non-specifically, or they target other 

additional locations on the proteins.  Based on the potentially reactive chemical moieties 

found on the top 9 compounds, we predicted that they likely covalently modify Cys159.  

To evaluate this, the compounds were incubated with ERK2, and all unreacted 

compounds were removed by size-exclusion column and dilution.  The ability of ERK2 

to phosphorylate Sub-D was then measured, and only compound 5 showed recovery of 

activity similar to controls (Table 2.1, Supplementary Figure B9 and Table B4).  This 

coincides with the structure of compound 5 showing no notably reactive functional 
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groups (Table 2.1). These results indicate that all of the compounds are likely reactive 

with ERK2, potentially excluding compound 5. 

Compound reactivity is required in order to covalently target Cys159, however, 

reaction promiscuity is generally undesirable.  Highly reactive covalent inhibitors can 

generate off-target effects and toxicities. The top hits, other than compound 5, likely meet 

the criteria of being both reactive and targeting numerous cellular proteins according to 

definitions of assay interference compounds (PAINs) [181, 182].  Ideal covalent 

inhibitors must balance selectivity and reactivity to maximize potential therapeutic index. 

However, deprioritizing hits based on the use of PAINs filters for substructural features 

has been found to overlook potential drug candidates [183, 184]. It has also been shown 

that compounds with substructures that match criteria for PAINs do not actually reflect 

increased activity trends in a broad study of different screenings [185].  We cross-

referenced the 9 hit compounds from this screening with 4 other screenings that we have 

performed in the absence of reducing agents, against the proteins ENL, NDM-1, Aldolase 

A, and TRIM24.  We found that compounds 3, 5, and 21 were not hits in any of these 

screenings, but the other 6 compounds were hits for one or more of the proteins.  Hits 

here were defined as having a minimum of 50% inhibition under screening conditions.  

This assessment indicates that while some hit compounds may match PAINs criteria, they 

are not necessarily promiscuous inhibitors. Rather than using PAINs definitions as a 

filter, we looked for other indicators to warrant further investigation of the hit 

compounds.  Compound 3 was selected as a promising hit for several reasons.   

Compound 3 is auranofin (AF), an FDA-approved anti-rheumatic drug that is under 

investigation for its antimicrobial properties (NCT02089048, NCT02736968) and also for 

treatment of HIV/AIDS (NCT02961829), several cancers (NCT01747798, 

NCT01419691, NCT01737502, NCT02770378), and neurodegenerative disorders [186]. 
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Its pharmacology profile is well-evaluated [187] and it shows potential for drug-

repurposing.  Therefore, we chose to further evaluate AF inhibition of ERK2.  

Auranofin Inhibits ERK2 via Cys159 and Cys164 

AF is known to be a covalent inhibitor, so in order to confirm interaction of AF at 

the DRS, we studied its effects on different cysteine mutants of ERK2 in vitro.  Here, we 

tested the ability of ERK2 variants to phosphorylate a fluorescent peptide (sox-Sub-D) in 

the presence of AF. Mutating all ERK2 cysteine residues to alanine (Cys-less ERK2) 

completely recovered activity of AF-treated ERK2 to DMSO-treated control levels, but 

individual cysteine mutations in the active site (C164A) or DRS (C159S) did not (Figure 

2.2 A).  In fact, C159S ERK2 showed no noticeable recovery of activity compared to WT 

ERK2, and C164A ERK2 showed partial recovery, suggesting that AF may inhibit with 

greater potency at the active site.  Together, these data indicate that AF activity against 

ERK2 is fully dependent on cysteine interactions. Additionally, protecting the active site 

with 1 mM ATP prior to treatment with AF gave full recovery of activity, with respect to 

DMSO controls, to C159S ERK2 but not WT ERK2 (Figure 2.2 B).  This again suggests 

that AF interacts in the active site as well as the DRS.  For mutant ERK2 with a single 

intact cysteine in the DRS (-Cys+Cys159), ATP protection of the active site did not affect 

activity in response to AF treatment when compared to C164A ERK2.  This indicates that 

inhibition of the -Cys+C159 and C164A mutants of ERK2 arises solely from interactions 

at C159.  All together, these results signify that AF interacts with two cysteine residues 

on ERK2: Cys164 and Cys159, located in the active site and DRS, respectively.  It is also 

apparent from these data that binding of AF at each site contributes to the inhibition of 

ERK2.  We further validated that AF covalently interacts with ERK2 at two locations by 

mass spectrometry (Supplementary Figures B10 and B11).   
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We then tested whether AF targets both the active site and DRS cysteines of ERK 

in HEK293T cells.  In this case, we looked at effects of AF on activation of ERK, as 

MEK is known to interact at the ERK DRS [66].  Different ERK2 variants (wildtype 

(WT), C159A, C164A, and C159A/C164A) were overexpressed in these cells, and ERK 

pathway activation was stimulated with EGF. Upon pathway stimulation, auranofin 

inhibited ERK phosphorylation at 5 µM in all cases after 12 hours of treatment except for 

the double mutant C159A/C164A ERK2 (Figure 2.3).  This indicates that mutation of 

these two residues prevents AF effects on ERK activation.   

It is expected that AF would block ERK activation by MEK for the C164A ERK2 

mutant in cells and have no effect on C159A ERK2 activation, given that MEK is known 

to bind at the DRS in order to phosphorylate Thr/Tyr of the ERK activation loop. It has 

been shown that docking at the DRS can induce an alternate confirmation of the 

activation loop of ERK, such that the Thr/Tyr residues become solvent exposed and 

primed for phosphorylation [188, 189]. This conformation does not match the fully active 

or inactive conformations of ERK but is possibly an intermediate conformation that 

prepares ERK for phosphorylation by MEK or dephosphorylation by phosphatases.  As 

shown in this study, auranofin can inhibit ERK2 activation by MEK in cells by either 

disrupting the DRS interaction at Cys159 or by targeting the ATP-binding site via 

Cys164 (Figure 2.3).  Blocking the DRS interaction should theoretically be enough to 

prevent MEK phosphorylation of ERK, given that this docking interaction influences the 

activation loop [189].  It is possible that auranofin binding in the active site can alter the 

conformation of the activation loop in such a way that phosphorylation of ERK is 

prevented, as has been observed with the ERK inhibitor SCH772984 [114].  Inhibition of 

ERK activation by AF in C159A ERK2 cells can also potentially be explained by other 

factors.  For example, MEK1/2 activation of ERK may be impaired to a greater degree 
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than phosphatase activity, causing a net dephosphorylation of ERK in these cells.  Also, 

AF binding in the active site could cause conformational changes that alter the 

scaffolding and subcellular localization interactions that are necessary for ERK 

phosphorylation.  These mechanisms can potentially explain why both mutation of 

Cys159 and Cys164 are necessary to prevent ERK inhibition by AF in cells. In contrast, 

for downstream inhibition, the in vitro Sub-D –based peptide substrate utilizes both the 

DRS and the ATP-site of ERK2 in order to be phosphorylated, so blockage at either site 

by auranofin explains inhibition of Sub-D phosphorylation.  This inhibition can only be 

rescued in vitro by mutation of both Cys159 and Cys164.   

Other Effects of Auranofin in Cells 

In these same transfected HEK293T cells, no inhibition of JNK or p38α 

phosphorylation was observed at 5 µM AF (Figure 2.4).  Rather, JNK and p38α 

phosphorylation exhibited an overall dose-dependent activation in response to AF 

treatment.  For JNK, this stimulated phosphorylation subsided by 10 µM doses of AF, 

while conversely for p38α, activation was most notable at 10 µM AF (Figure 2.4).  This 

activation of other MAPK pathways can be potentially explained by the known stress-

inducing effects of AF in cells. AF has been shown to inhibit thioredoxin reductase and is 

also a broad-spectrum deubiquitinase inhibitor, thereby inducing oxidative stress and 

intrinsic apoptosis that can culminate in the activation of the JNK and p38 MAPK 

pathways [190-193].    

AF also inhibited HEK293T cell proliferation in a dose dependent manner, with 

EC50 = 0.7 ±0.2 µM after 3 days of treatment (Supplementary Figure B12 C).  In 2-D 

clonogenic assays, AF inhibited HEK293T colony size at 0.5 µM as seen in 

Supplementary Figure B12 A.  In analogous anchorage-independent growth assays, AF 
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significantly reduced the number of colonies per well at 0.5 µM (Supplementary Figure 

B12 B).  However, it is unclear whether the results of these phenotypic assays are due to 

ERK pathway inhibition or other effects of auranofin, such as ROS generation and 

intrinsic apoptosis.   

In addition to its involvement in oxidative stress, auranofin has been observed to 

down-regulate JAK/STAT signaling [194], antiapoptotic protein Mcl-1, NF-κB 

transactivated anti-apoptotic proteins [195], PKC activity  [191, 196] and 

proinflammatory cytokines [197].  To date, the observed effects of AF on ERK signaling 

appear to be cell type- and dose-dependent [198].  The off-pathway effects of AF, in 

addition to ERK inhibition, can potentially be of therapeutic benefit.  Increasingly, 

inhibitors with polypharmacological behavior have been recognized as possible drug 

candidates.  It is apparent that auranofin’s versatility is the source of its clinical and pre-

clinical success in such a broad range of disease states.  Therefore, the possible off-target 

effects of auranofin here could be an advantage in cancer therapy.   

Proposed Models for ERK Inhibition by Auranofin  

Figure 2.5 illustrates a scheme of potential outcomes of inhibiting the DRS of 

ERK.  Blocking the DRS can result in direct inhibition of ERK interactions with 

substrates (like the kinases RSK-1[62, 63] and MAPKAPK2 (MK2) [64], caspase-9 

[65]),  phosphatases (such as MKP-5 and HePTP [64]), and activators (MEK1/2 [66]).  

Binding at the DRS can also influence the conformation of ERK2 as discussed earlier, 

which can result in allosteric inhibition at other locations on the kinase [189].  Disruption 

of particular protein interactions with ERK can result in altered subcellular location.  For 

example, the MEK/ERK interaction is involved in sequestration of ERK in the cytoplasm 

[71, 72].  Additionally, the protein PEA-15 directly interacts at both the DRS and FRS of 
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ERK and is known to retain ERK in the cytoplasm as well [67-70].   Blocking the DRS 

can also affect the mechanism of phosphorylation of ERK substrates that utilize multiple 

docking sites. For example, the transcription factor Ets-1 undergoes bipartite binding to 

the DRS and FRS in order to place its phosphorylation site in close proximity to the ERK 

active site for efficient phosphorylation [56].  Blocking the DRS with small molecules 

can result in partial inhibition of Ets-1 phosphorylation (data not shown), as the 

proximity-mediated mechanism is disrupted. Thus, phosphorylation of specific substrates 

may still be possible with inhibitors present at the DRS but may occur by different 

methods or at different efficiencies. Blocking the ERK signaling pathway can also result 

in upregulation of alternative signaling pathways and kinome remodeling to achieve the 

same signaling outcomes [58, 154, 199].  In many of these examples, the off-target 

effects of auranofin or its bivalent inhibition of ERK may be more beneficial for 

preventing ERK signaling outcomes than an inhibitor that targets the DRS alone.  This is 

especially true when considering that the cellular pool of ERK can retain its full signaling 

capacity when only 10% of ERK is activated [200].  In therapeutic contexts where full 

pathway inhibition is desired, auranofin irreversibly targets two key locations on ERK so 

it may be more effective than reversible or single-site inhibitors.  In contrast, selectively 

targeting the DRS may further reveal its roles in ERK signaling or allow particular ERK 

interactions to be targeted discretely.  This can be accomplished by functionalizing the 

gold (I)-triisopropylphosphine electrophile of auranofin with DRS-selective inhibitors in 

future studies.  

CONCLUSIONS 

Though it is clear that further structural optimization of auranofin is necessary to 

improve specificity and potency, its ability to target ERK2 at both Cys159 and Cys164 
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could be beneficial in treatment of cancer via ERK pathway inhibition. Fundamentally, 

the screening method developed here successfully identified compounds that covalently 

target the DRS of ERK2 through Cys159.  Further iterations of the screen could 

potentially generate other types of novel ERK inhibitors.  For example, using a high 

concentration of ATP in the screening to protect the active site of ERK could yield hits 

that exclusively target the DRS, whereas auranofin targets both the DRS and active site.  

Inclusion of reducing agents in the assay would facilitate finding reversible inhibitors. 

Different inhibitors could also be identified by using active rather than inactive ERK2 in 

the screen, or a fluorescent peptide ligand that binds the active site or FRS.  Thus, the 

screening method presented here is a valuable and versatile tool for identifying molecules 

that interact with ERK. These molecules can be used to probe ERK signaling events that 

are mediated by specific binding sites and can be further optimized to yield highly 

selective ERK inhibitors with potential therapeutic value.  This is illustrated by the top hit 

from the screen, auranofin.  Overall, the findings here suggest that covalently targeting 

the DRS is a viable approach to ERK inhibition that warrants further investigation. 
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Figure 2.1. Fluorescence anisotropy screening and secondary screening.  

(A) The dissociation constant for ERK2 binding to FITC-X-Lig-D was determined by 

incubating varied concentrations of ERK2 with 10 nM FITC-X-Lig-D for 10-20 min 

prior to anisotropy measurements.  (B) To test competitive displacement of FITC-X-Lig-

D, Lig-D(Dap) at 0-200 µM was incubated with 10 nM FITC-X-Lig-D and 1 µM ERK2 

prior to anisotropy measurements.  (C) Histogram of all primary screening data: positive 

controls (green), negative controls (orange), and samples (blue). (D) Plot of 

representative data from the primary screening: 2506 negative controls (orange x’s), 2528 

positive controls (green crosses) and 2561 samples (blue circles).  The dashed line 

indicates the hit threshold of ≥ 50% signal change. (E) Cumulative frequency distribution 

of secondary screening percent inhibition data for both 10 and 50 µM compound 

concentrations.   Normalized anisotropy is with respect to positive controls.  % Signal 

change is defined in methods as a function of positive and negative controls.    
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Com- 

pound  

# 

Structure 
WT ERK2 

IC50, μM 

WT ERK2 

Ki*, μM 

C159S 

ERK2 

Ki*, μM 

JNK2 

IC50, μM 

Reactivity/  

(% residual 

activity)  

3 

 

1.6 ± 0.3 1.4 ± 0.2 > 1900 3.6 ± 0.4 Yes/ (28) 

4 
 

0.38 ± 0.06 0.19 ± 0.04 > 900  1.0 ± 0.3 Yes/ (12) 

5 

 

1.5 ± 0.3 0.50 ± 0.13 NI 2.2 ± 0.6 
Potentially/ 

(62) 

12 

 

0.93 ± 0.21 4.5 ± 1.0 NI    NC  Yes/ (none) 

13 

 

1.3 ± 0.2 3.2 ± 1.6 NI    NC  Yes/ (19) 

Table 2.1. IC50 and Ki* values for the top 9 screening hits.   

The top compound structures and IDs are listed. For IC50 measurements, the compounds 

were tested for inhibition of ERK2 (2 nM) phosphorylation of sox-Sub-D (2 µM) or for 

inhibition of JNK2 (25 nM) phosphorylation of GST-c-Jun (2 µM) after 20 min pre-

incubation.  For determination of Ki* values by anisotropy, 1 µM WT ERK2 (or 5 µM 

C159S ERK2) was incubated with the compounds and 10 nM (or 50 nM) FITC-X-Lig-D 

for 45 minutes prior to anisotropy measurements.  Reactivity of the compounds was 

assessed by structural analysis, and percent residual activity was determined by a 

covalent test (Appendix B): compounds were incubated with ERK2 and excess 

compound was then removed by dilution and dialysis, prior to testing ERK2 activity.  NI 

= no observed inhibition; NC = not tested.   
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Com- 

pound  

# 
Structure WT ERK2 

IC50, μM 

WT 

ERK2 

Ki*, μM 

C159S 

ERK2 

Ki*, μM 

JNK2 

IC50, μM 

Reactivity/  

(% residual 

activity)  

16 
 

11 ± 5.2 6.6 ± 2.2 NI    NC  Yes/ (none) 

18 

 

0.27 ± 0.02 8.9 ± 3.6 NI 0.06 ± 0.02 Yes/ (26) 

21 

 

12 ± 1.6 4.5 ± 1.4 > 1000 0.77 ± 0.23 Yes/ (16) 

23 

 

0.97 ± 0.14 6.4 ± 3.3    NI     NC  Yes/ (11) 

 

Table 2.1, continued.   
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Figure 2.2. In vitro ERK2 mutant activity in the presence of auranofin.  

(A) 1 nM ERK2 (WT, C159S, C164A, and Cys-less) was incubated with 0 or 50 µM 

auranofin (2% DMSO final) for 10 min at 26ºC.  Reactions were initiated by addition of 

10 µM sox-Sub-D and 1 mM MgATP (final concentrations).  Cys-less ERK2 results in 

full recovery of ERK2 activity.  (B) 1 nM ERK2 (WT, C159S, C164A, or –Cys+C159) 

was pre-incubated with 1 mM MgATP for 5 min at 26ºC to protect the active site from 

auranofin.  Reactions were initiated by 0 or 50 µM auranofin and 10 µM sox-Sub-D and 

monitored for 240s.  Only mutation of C159 in combination with ATP-protection of the 

active site results in full recovery of ERK2 activity.  
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Figure 2.3. C159A/C164A mutant ERK2 overexpression in HEK293T cells recovers 

ERK activity in presence of 5 µM auranofin.   

HEK293T cells were transfected with WT ERK2 or mutants of ERK2 (C159A, C164A, 

C159A/C164A).  Cells were treated with DMSO or 5 or 10 µM auranofin for 12 hours 

followed by stimulation with 0.1 µM EGF (+) (or no stimulation for control (-)).  (A) 

Representative Western blots showing ERK phosphorylation changes in response to 

auranofin treatment. † and ‡ denote loading controls used for corresponding band 

quantification. (B) Densitometry of phosphorylated ERK normalized to total ERK 

fluorescence signal. n=4 for each treatment condition.  
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Figure 2.4. Selectivity of auranofin in HEK293T cells against JNK and p38α.  

JNK1/2 and p38α phosphorylation are not significantly inhibited at 5 µM auranofin 

treatment for any of the ERK2-transfection cases.  (A) Representative Western blot 

showing JNK1/2 and p38α phosphorylation. Transfected HEK293T cells were treated 

with 0, 5, or 10 µM auranofin for 12 hours followed by stimulation with 0.1 µM EGF (+) 

or no stimulation (-).  Densitometry for (B) phospho- JNK1/2 and (C) phospho- p38α are 

shown, along with the legend for both on the lower right.  n=2.  
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Figure 2.5. Scheme of possible influences of DRS inhibition on ERK signaling.  

The results of targeting the DRS of ERK1/2 with a small molecule could include (A) 

direct inhibition of binding at the DRS, (B) indirect inhibition at other binding sites such 

as the active site via conformational changes (allosteric inhibition), (C) MAPK pathway 

remodeling where inhibited ERK is bypassed to achieve the same signaling outcomes, 

(D) altered subcellular localization such as inhibited nuclear translocation, and (E) altered 

substrate phosphorylation mechanisms or reaction processivity for substrates that dock at 

the DRS.   
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Chapter 3: A Novel Class of Common Docking Domain Inhibitors That 

Prevent ERK2 Activation and Substrate Phosphorylation  

ABSTRACT 

Extracellular signal-regulated kinases 1/2 (ERK1/2) are mitogen activated protein 

kinases (MAPKs) that have a pro-tumorigenic role in numerous cancers.  ERK1/2 

possess two protein-docking sites that are distinct from the active site: the D-recruitment 

site (DRS) and the F-recruitment site (FRS). Protein-docking sites on mitogen-activated 

protein kinases facilitate substrate recognition, intracellular localization, signal 

specificity, and protein complex assembly. Targeting these sites on ERK in a therapeutic 

context may overcome numerous problems that are associated with traditional ATP-

competitive inhibitors.  Here, we identified a new class of inhibitors of the ERK DRS by 

screening a synthetic combinatorial library of over 30 million compounds. The screen 

that we employed detects the competitive displacement of a fluorescent peptide from the 

DRS of ERK2.  The top molecular scaffolds from the screen were optimized for 

structure-activity relationships by positional scanning of different functional groups.  The 

core structure of the resulting 10 compounds consists of a central tertiary amine hub from 

which three functionalized cyclic guanidine branches extend.  We found that the 

compound 2507-1 inhibited ERK2 from phosphorylating substrates that bind to the DRS 

and prevented the activation of ERK2.  Direct interaction between an analogue, 2507-8, 

and the DRS of ERK2 was confirmed by both NMR spectroscopy and macromolecular 

X-ray crystallography, which yielded a 1.9 Å -resolution structure.  2507-8 forms critical 

interactions at the common docking domain residue D319 via an arginine-like moiety that 

is shared among all 10 hits, suggesting a common binding motif.  
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INTRODUCTION 

The protein kinome consists of 518 members, representing 1.7% of the human 

genome [5].  Of these kinases, 385 are known Ser/Thr kinases that are directed to 

phosphorylate motifs consisting of only two residues (Ser/Thr-Pro) [5]. ERK1/2 alone 

have over 175 known cellular substrates [9].  Additionally, MAPKs like ERK1/2 have 

highly conserved active sites, so despite their structural and mechanistic similarities, they 

must each take part in specialized interactions in order to control critical cellular 

processes.  As a result, extensive regulation of these MAPK signaling networks is 

required to reliably orchestrate specific events. One level of MAPK signaling specificity 

is achieved through protein docking sites. Docking sites are interfaces of protein-protein 

interaction that are distinct from catalytic sites. In the case of MAPKs, docking sites can 

bind substrates in a position that orients specific S/T-P sequences into proximity of the 

active site in order to facilitate catalysis [98, 201].  For example, the transcription factor 

Ets-1 weakly engages both the FRS and DRS of ERK2 in order to position Thr38 near the 

ERK2 active site for efficient phosphorylation [56, 202, 203].  In comparison, the 

substrate Elk-1 binds the FRS to direct ERK2 to phosphorylate Ser383, but different 

residues are phosphorylated when Elk-1 binds the DRS [201].   The number of protein 

docking sites, the order in which they are engaged, as well as their positions and 

arrangement on an enzyme can all influence binding interactions and substrate 

phosphorylation.  Therefore, inhibitors that block these sites can potentially disrupt 

particular MAPK binding interactions and signaling events, while leaving others 

unaffected. An additional advantage to targeting these docking sites is that inhibitors do 

not have to compete with ATP, which is present in cells at millimolar concentrations and 

binds to MAPKs with high affinity [50, 51]. Instead, kinase substrates that utilize these 

docking sites are typically present in cells at or below their Km values, so high affinity 
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inhibitors may not be required to block interactions [204, 205].  Consequently, protein-

docking sites on MAPKs offer an alternative approach to classical kinase inhibition that 

could improve selectivity and block specific signaling events in a tunable manner.   

ERK phosphorylates substrates in a signaling cascade that controls cellular 

processes such as proliferation and survival. Thus, ERK plays a critical role in the 

development of diseases associated with excessive cell proliferation, like cancer [206, 

207].  ERK is also implicated in cardiac hypertrophy, neurodegenerative diseases, and 

diabetes [14-17]. Consequently, ERK inhibitors are potentially of significant therapeutic 

value.  Here, we focus on identification of ERK inhibitors that target the D-recruitment 

site (DRS), a protein-protein interaction surface that is distal from the active site of ERK. 

Classically, linear regions of proteins that bind to the DRS consist of the D-site sequence 

ψ1-3X3-7ϕXϕ, where ψ, ϕ, and X are positively charged, hydrophobic, and any residue, 

respectively. The DRS is composed of a hydrophobic groove located between an ED 

domain (T157/T158 on ERK2) and an acidic common docking domain (D316 and D319 

on ERK2).  Though MAPK sequences are highly conserved among the ERK1/2, p38, and 

JNK subfamilies [75] and all of these subfamily members possess a DRS, it has been 

shown that kinase-specific DRS inhibitors can be designed [53] and that differences 

among the D-recruitment sites, particularly in the ED domain, can help confer substrate 

specificity [60].  Though protein-protein interaction sites like the DRS are large and 

shallow compared to standard druggable features, small-molecule inhibitors have been 

shown to successfully disrupt expansive protein binding interfaces much larger than the 

inhibitors themselves [77, 208-210].  

The ERK DRS mediates numerous specific interactions, including binding of the 

upstream activators MEK1/2 [211-213], certain phosphatases like MKP3 [211, 214], and 

the substrates MNK1[211], caspase-9 [65], p90Rsk-1 [63, 208, 215], and Ets-1[56, 203].  
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In cancer, several mutations in the ERK DRS confer resistance to upstream Raf/MEK 

inhibition by preserving ERK activity.  For example, the sevenmaker mutant D319N of 

ERK2 is known to significantly decrease MEK1 binding, while in cells, it is a gain-of-

function mutation due to pathway feedback signaling and probable decrease in 

phosphatase binding [216].  DRS mutations are observed in cervical, head, and neck 

cancers and can be found in the COSMIC database (E322 and D321 alterations in human 

ERK2 correspond to E320 and D319 in rat ERK2) [217]. Distinct DRS mutations have 

been observed for ERK1 and ERK2 isoforms, suggesting non-redundant functions 

associated with the DRS between the two isoforms [217].  Therefore, the DRS is likely of 

biological importance in these cancers, so targeting it with inhibitors could be beneficial. 

In addition, ERK DRS inhibitors could be valuable tools for understanding signaling 

events that are mediated by the DRS, both in cancerous and in normal cells.  

Several small-molecule ERK DRS inhibitors have been discovered using 

computer-aided drug design (CADD) [74, 208] or in silico screening methods [79]. This 

pool of inhibitors was expanded by further in silico screening and computational searches 

for similar compounds, and by synthesis of analogues for SAR studies [76-78]. CADD 

and in silico screenings have also been used to identify inhibitors of the other known 

docking site of ERK2, the F-recruitment site (FRS) [102]. Biochemical screenings for 

non-ATP competitive kinase inhibitors are difficult, given there are multiple mechanisms 

of kinase inhibition, and high-throughput screenings typically rely on kinase activity 

assays that focus on the active site. Assays against ERK docking sites must be biased 

against discovery of ATP-competitive inhibitors. For example, a high-throughput 

AlphaScreen assay has previously been designed to identify ERK2 FRS inhibitors, 

utilizing a high ATP concentration to prevent ATP-competitive inhibitors from binding 

[169].  Here, we describe a competition-based screen to identify inhibitors that displace a 
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fluorescent peptide from the DRS of ERK2.  The compounds identified from this 

screening method are a new structural class of ERK inhibitors.  NMR spectroscopy and 

x-ray crystallography data confirmed that these compounds bind to the DRS of ERK2, 

which opens avenues for the future chemical optimization of ERK DRS inhibitors.  

MATERIALS AND METHODS  

Proteins, Peptides, and Buffers 

Proteins: Tag-less ERK2 was expressed, purified, and activated essentially as 

described in [112] (see Chapter 1, Materials and Methods).  The ERK substrate Ets-1 

(residues 1-138) (EtsΔ138) was expressed and purified as previously described [218]. 

GST-c-Jun and active JNK2 were prepared as previously reported [170, 173].  

Peptides: The ERK substrate peptides Sub-F and Sub-D were prepared as 

described in [105] and Lig-D was synthesized in the same manner, as described [97]. 

Sox-labeled Sub-D (sox-Sub-D) [174, 175]and FITC-labeled Lig-D (FITC-X-Lig-D) [32] 

were prepared as previously described (see Chapter 1, Materials and Methods).  See 

Appendix A for peptide sequences and synthesis protocols for sox-labeled peptides. 

Buffers: The following buffers were used for all in vitro ERK2 assays: Buffer A 

(25 mM HEPES pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 µM EGTA, 1.3% glycerol, 2 

mM DTT, 10 µg/mL BSA, and 0.1% w/v Triton X-100), and Buffer B (25 mM HEPES 

pH 7.5, 50 mM KCl, 0.1 mM EDTA, 0.1 µM EGTA, 10 mM MgCl2, 2 mM DTT, 10 

µg/mL BSA, 0.01% (v/v) Triton X-100, 2% (v/v) DMSO). 

DMF Tolerance 

To assess effects of DMF on anisotropy signal, DMF was varied from 0-4% (v/v) 

in the presence of 1 µM ERK2 and 10 nM FITC-X-Lig-D in Buffer A.  Anisotropy of 
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free FITC-X-Lig-D in Buffer A with no ERK2 or DMF was measured as a background 

control.  All samples were prepared in triplicate and incubated at room temperature for 1 

hour prior to data collection on a Synergy H4 plate reader.  Library compounds were 

dissolved in water with 5% (v/v) DMF for a final concentration of 0.5% (v/v) DMF in the 

screening.  All library compounds were obtained from Richard A. Houghten, Marc 

Guilianotti, and Yangmei Li at Torrey Pines Institute for Molecular Studies (Port St. 

Lucie, FL). 

Validation Set 

To validate the screening procedure, we measured fluorescence intensities for one 

full 384-well plate of manually pipetted controls with and without FITC-X-Lig-D in 

Buffer A (no ERK2 present).  %CV values for parallel and perpendicular fluorescence 

intensities were confirmed to be under 5%, and Z-factors exceeded 0.9.   

Combinatorial Library Screening 

All screening samples were prepared in 384-well low-volume black polystyrene 

plates (Corning) with final volumes of 30 µL per well.  Compounds were tested in Buffer 

A with 1 μM ERK2 and 10 nM FITC-X-Lig-D with 0.5% (v/v) DMF. All anisotropy 

readings were conducted at room temperature after 1 hour of incubation.  Controls 

included maximal anisotropy signal (full binding of 10 nM FITC-X-Lig-D to 1 μM 

ERK2 with no inhibitor present), and minimum signal (free 10 nM FITC-X-Lig-D with 

no ERK2 present).  Phase I of the screening tested 78 scaffolds at 50 μg/mL and 25 

μg/mL in duplicate.  The compounds were also tested for intrinsic fluorescence in Buffer 

A.  The top two scaffolds, 2408 and 2157, were selected for the second phase of the 

screening: positional scanning of the scaffold R-groups. The 2408 library contained 125 
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mixtures (9,765,625 compounds) and the 2157 library contained 110 mixtures (45,864 

compounds).  The samples were screened at 50 μg/mL and 25 μg/mL in duplicate, with 

original hit mixtures from Phase I as additional controls.  The top 50 compounds were 

selected for individual synthesis (purity ≥ 70%) and screened at 12.5, and 25 µM, and the 

top 31 compounds from those results were rescreened at 3.125, 6.25, and 12.5 µM. The 

top 10 compounds were selected for additional purification and further characterization.   

Synthesis of 2408 Libraries and Individual Compounds 

The synthesis methods for creating the 2408 scaffold and the details for the 

synthesis and purification of 2507-8 are described in Appendix C (Figure C14). 

Dose-Response Assays with Fluorescent Reporter  

Compounds at concentrations of 0-100 µM were pre-incubated with 0.5 nM 

ERK2 at room temperature for 20 minutes. The ability of ERK2 to phosphorylate 2 µM 

sox-Sub-D in the presence of 1 mM MgATP was then assessed in Buffer B.  Reactions 

were initiated by addition of MgATP and sox-Sub-D and carried out at room temperature 

in a Synergy H4 plate reader for 10 minutes.  Data collection and analysis was conducted 

as previously described [177].   

Anisotropy Dose-Response Assays 

1 µM active or inactive ERK2 was pre-incubated with 10 nM FITC-X-Lig-D and 

0, 1, 2.5, 5, 10, 25, 50, 100, and 200 µM of each compound at room temperature for 45 

minutes prior to anisotropy measurements as described for the primary screening. The 

anisotropy dose-response curves were fit to an equilibrium binding model for conditions 

where the ERK2 concentration is in excess of FITC-X-Lig-D concentration (see 

Appendix B for basic curve fitting protocol) [68].  The affinities of active and inactive 
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ERK2 for FITC-X-Lig-D were evaluated for use in the anisotropy binding model 

(Supplementary Figure C7).   

Quantifying Inhibition of ERK2 Activation In Vitro 

The ability of 20 nM MKK1G7B to phosphorylate and activate 1 µM ERK2 was 

tested in the presence of 0, 50, 100, and 200 µM compound 2507-1 with 10 mM MgATP 

in Buffer B (with MgCl2 at 0.5 mM).  ERK2 was incubated with 2507-1 for 10 minutes at 

28ºC prior to initiation with MKK1G7B and MgATP.  Reactions were quenched in SDS 

loading buffer at time points ranging from 0-30 minutes. All quenched samples were 

loaded into 10% SDS polyacrylamide gels at 52 ng/lane ERK2.  Fully active and inactive 

ERK2 at 52 ng/lane were used as controls.  The gels were transferred to Immobilon-FL 

membranes overnight at 4ºC. Membranes were then blocked in 4X diluted Odyssey® 

Blocking Buffer (PBS) (LI-COR) for 1 hour at room temperature.  Membranes were 

incubated in TBST (5% milk) with 1:2000 antiphospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204) (E10) mouse mAb (Cell Signaling Technology), or TBST (5% BSA) 

with 1:1000 anti-p44/42 MAPK (Erk1/2) (137F5) rabbit mAb (Cell Signaling 

Technology) for 1 hour at room temperature and washed with TBST. The membranes 

were incubated with appropriate secondary antibodies (1:15000 IRDye® 800CW Goat 

(polyclonal) anti-rabbit IgG or IRDye® 680RD Goat (polyclonal) anti-mouse IgG (LI-

COR)) for 30 minutes at room temperature.  After washing again with TBST and Tris-

buffered saline, fluorescence was detected on an Odyssey® Sa imaging system (LI-

COR). 
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32P Assay for Evaluating 2507-1 Selectivity 

2507-1 was tested for its ability to inhibit ERK2 (2 nM) phosphorylation of Ets-1 

(10 µM), Sub-D (10 µM), or Sub-F (30 µM), and JNK2 (25 nM) phosphorylation of c-

Jun (2 µM).  Enzymes were pre-incubated with 0-200 µM 2507-1 at room temperature 

for 30 minutes prior to reaction initiation by addition of substrate and [γ-32P] MgATP (1 

mM for ERK2 reactions and 500 µM for JNK2 reactions).  All reactions were carried out 

at 28ºC in Buffer B with reduced MgCl2 (0.5 mM).  Sub-F phosphorylation reactions 

contained final DMSO concentration of 3.2% (v/v) DMSO. Phosphorylated substrate was 

quantified at 0.5, 1, 1.5, 2, and 4 minute time points as previously described (32P 

protocol) [176] on a Tri-Carb® 2910TR liquid scintillation analyzer (Perkin Elmer).   

NMR Spectroscopy 

NMR spectroscopy was performed by Andrea Piserchio at City College of New 

York, NY. The protocol for producing uniformly labeled 2H,13C,15N kinase has been 

described elsewhere [188]. The NMR data were collected at 25 °C on a 300 μl sample 

containing 100 μM inactive ERK2, 20 mM potassium phosphate, pH 6.8, 150 mM KCl, 

200 μM EDTA and 5.0 mM DTT (10 % 2H2O) using a 700 MHz Bruker Avance III 

spectrometer equipped with a triple resonance cryogenic probe and capable of applying 

pulsed field gradients along the z-axis. 1H-15N TROSY [219] experiments with 128 

transients, a 1.5 s recycling delay and a digital resolution of 8.9 and 18.3 Hz/point in the 

direct and indirect dimension, respectively, were collected in the absence and presence of 

a two-fold excess (200 μM) of the ligand (compound 2507-1, 2507-8, or 2507-26). Data 

were processed using NMRPipe [220] and analyzed using Sparky [221].  Chemical shift 

perturbations based on the previously published partial assignment of ERK2 [188] were 

calculated as previously described [56]. 
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Expression and Purification of ERK2 for Crystallization 

ERK2 for crystallization was expressed and purified by Nicole Perry at 

Vanderbilt University, TN. The ERK2 plasmid Npt7-5H6ERK2 was transformed into 

BL21 DEM Gold cells and a single colony was used to inoculate a 100 mL overnight 

culture in Luria Broth at 37ºC. The next morning, 20 mL of culture was added to 1 L of 

LB supplemented with ampicillin (100 µg/mL) and incubated to an OD of 0.6 at 37ºC 

and 205 rpm. The cells were induced with IPTG (0.5 mM) and grown for 4-5 hours at 

30ºC before harvesting (6000 rpm, 4ºC, 10 minutes). Pellets were frozen in liquid 

nitrogen and kept at -80ºC until purification.  

Cells were resuspended in 30 mL lysis buffer (40 mM Tris-HCl pH 7.0, 1% 

Triton X-100, 750 mM NaCl, 5 mM imidazole, 0.1 mM PMSF, 2 mM TCEP, 1X 

protease inhibitor cocktail powder (Sigma)) per 1 L culture. The suspension was 

sonicated for 3 minutes (model FB505 (Fisher Scientific), 75% maximum amplitude, in 

cycles of 5 seconds on and 10 seconds off) at 4ºC. The crude lysate was then centrifuged 

(18,000 rpm, 4ºC, 45 min) and the supernatant loaded onto a nickel column (HisTrap HP 

5 mL, GE Healthcare Life Sciences), which was then washed in equilibration buffer (40 

mM Tris HCl pH 7.5, 10 mM Imidazole, 0.1 mM PMSF, 2 mM TCEP). The eluate was 

collected over a 30 mL gradient (0-100%) of elution buffer (40 mM Tris-HCl pH 7.5, 200 

mM Imidazole, 0.1 mM PMSF, 2 mM TCEP) and loaded directly onto a Source Q 

column for anion exchange (20 mM Tris HCl pH 8.0, 0.1 mM EDTA, 0.1 mM EGTA, 2 

mM TCEP). After elution with an upper gradient of 250 mM NaCl (0-100%), all 

fractions containing ERK2 were dialyzed overnight into the final storage buffer (20 mM 

Tris HCl pH 8.0, 0.1 mM EDTA, 0.1 mM EGTA, 200 mM NaCl, 10% glycerol).  
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Crystallization, Structure Determination, and Analysis 

The following protein crystallization protocols and data analysis were performed 

by Nicole Perry and Tina Iverson at Vanderbilt University, TN. Crystals were grown 

using the hanging-drop vapor diffusion method with droplets containing 1 µL protein 

solution (8-10 mg/ml ERK2 in 20 mM Tris HCl, pH 8.0, with 0.1 mM EDTA, 0.1 mM 

EGTA, 200 mM NaCl, 10% glycerol) and 1 µL of the reservoir solution (33% PEG 5,000 

MME, 0.25 M ammonium sulfate, 0.1 M MES, pH 6.5) in the presence of an arrestin-3 

peptide (CH3CO-AVPETDAPVDTNLIEFE-NH2) at a molar ratio of 1:2. Droplets were 

allowed to equilibrate over the reservoir solution at room temperature (approximately 

22ºC). The 2507-8 inhibitor was soaked into the crystals at a molar ratio of 1:3 

(ERK2:2507-8) for 24 hours prior to flash cooling. Crystals were cryo-protected with a 

solution comprised of the reservoir solution and 15% glycerol.  

X-ray diffraction data were collected at the Advance Photon Source (APS) 

beamline 21-ID-F at -173ºC using a wavelength of 0.9798 Å and a MarMosaic225 CCD 

detector. Data were processed and scaled using HKL2000 [222]. The structure was 

determined using molecular replacement in the program Phaser-MR [223] through the 

Phenix interface [224], with wild-type ERK2 (PDB entry 1ERK [225]) as the search 

model. As 1ERK was reported prior to the widespread use of the Rfree for cross-

validation, Rfree reflections were randomly selected for ERK2.  However, because the 

original model (1ERK) was refined against these reflections, the free-R is of limited 

utility in this case. Model building was performed in Coot [226] and refinement was 

conducted using Phenix [224]. Residues 328-332 are not included in the final model as 

the electron density corresponding to these residues was not readily interpretable. 

Protein-inhibitor interactions were analyzed using the program LigPlot [227], which 

builds schematic diagrams of protein-ligand interactions using PDB files. All structural 
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figures were made using PyMOL Molecular Graphics System (version 1.5.04, 

Schrodinger, LLC, New York) unless otherwise indicated. Data collection and refinement 

statistics are summarized in Supplementary Table C4.   

RESULTS AND DISCUSSION 

Screening Identified Cyclic Guanidine Scaffolds as DRS Inhibitors 

To identify reversible inhibitors that bind the DRS of ERK2, we first designed 

and optimized a screening method suitable for combinatorial ligand libraries. This library 

format allows high-throughput screening with low resource consumption, i.e. less than 

100 samples are needed to screen millions of compounds [228, 229].  We previously 

designed a high-throughput screening method to preferentially detect covalent inhibitors 

of the ERK2 DRS that react with Cys159 (Chapter 2).  In that method, a FITC-tagged 

peptide (FITC-X-Lig-D) was competitively displaced from the DRS by library 

compounds, generating a change in fluorescence anisotropy.  We modified this protocol 

to avoid the detection of covalent cysteine-reactive inhibitors by including a reducing 

agent (2 mM DTT) in each sample. Since the combinatorial libraries contained the 

solvent DMF, we then tested the effects of DMF concentration on the anisotropy signal 

for fully bound FITC-X-Lig-D (Supplementary Figure C1).  Concentrations of DMF 

exceeding 0.5 % (v/v) significantly reduced the anisotropy, so this concentration was 

chosen as a maximum functional limit for the screening. Additionally, we determined the 

Z-factor for manual 384-well plate preparation by measuring the fluorescence signal for 

FITC-X-Lig-D samples in a 384-well plate (Supplementary Table C1). The Z-factor was 

≥ 0.90 for all fluorescence intensity readings, which indicated that plate preparation was 

consistent [178].  
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The screening then proceeded in three phases that allowed for inherent 

optimization of the structure-activity relationship (Figure 3.1).  In Phase I, a library of 

scaffolds, each with randomly varied functional groups, was screened at 50 and 25 μg/mL 

to measure displacement of FITC-X-Lig-D from the DRS (Supplementary Figures C2 

and C3).  The top 5 scaffolds that caused the greatest displacement of the fluorescent 

peptide all contained cyclic guanidine moieties (Table 3.1).  2408 was the most potent hit 

by at least two-fold, so it was selected for the second screening phase.  It qualitatively has 

an additional plane of symmetry compared to the other hits, which could increase its 

productive binding modes and account for its higher potency. 2157, 2353, and 2354 differ 

only by stereochemistry. 2157 was selected to continue to Phase II two of the screening, 

as it encompasses the basic bicyclic guanidine core found in 4 out of the 5 hit scaffolds 

and includes both (S) and (R) stereocenters.  In Phase II of the screening, 5 functional 

groups on 2408 and 3 functional groups on 2157 were varied in mixture format and re-

screened at 50 and 25 μg/mL. In each sample mixture, a single R-group was held constant 

while the remaining groups were randomly varied. The 2408 scaffold was selected for 

continued study, due to its larger number of variable groups that could potentially 

increase structural diversity of hits in the subsequent screening phase. The hit functional 

groups for each location on the scaffold, based on the results shown in Supplementary 

Figure C4 and Table C2, were combined to generate structures of 48 single-compound 

hits.  The individual structurally optimized hits were then rescreened in Phase III 

(Supplementary Figure C5 and C6) and the resulting top 10 hit compounds were selected 

and purified for further characterization (Table 3.2).   
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Hit Compounds Inhibit DRS Interactions in a Dose-Dependent Manner  

Next, we measured the dose-dependent change in anisotropy signal for each of the 

top 10 compounds upon competitive displacement of FITC-X-Lig-D from the DRS of 

ERK2.  Both inactive (unphosphorylated) and active (bis-phosphorylated) forms of 

ERK2 were tested to evaluate if the conformational changes of ERK2 upon its activation 

have any effect on DRS binding.  The resulting apparent affinities (Ki values) of the 

compounds for ERK2 ranged from approximately 0.24 – 1.5 μM for each enzyme 

activation state (Table 3.3, Supplementary Figures C8, C9, C10, and C11).  The 

activation state of ERK2 did not appear to have a dramatic effect on the inhibitor binding 

affinities; the largest observed difference between inhibitor affinity values for active and 

inactive forms of ERK2 was 2.4-fold.  These results indicated that while there are minor 

differences between the affinities of each compound for active and inactive ERK2, the 

compounds all effectively bind to both forms of the enzyme under the assay conditions.  

The compounds were also tested for their ability to prevent active ERK2 from 

phosphorylating sox-Sub-D, a fluorescent reporter substrate peptide (Table 3.2, 

Supplementary Figures C12 and C13).  This peptide sequence included the same core 

sequence of FITC-X-Lig-D without the FITC tag and 6-aminohexanoic acid linker (X).  

The peptide also contained a phosphorylation consensus sequence such that it can bind to 

both the DRS and active site of ERK2.  The peptide was labeled with the sox moiety, 

which fluoresces upon chelation with magnesium and peptide phosphorylation.  Dose-

response curves were obtained for each compound against ERK2 phosphorylation of sox-

Sub-D.  The resulting IC50 values indicated that the relative potency among the 10 

compounds was similar to the observed Ki measurements; however, the IC50 values for 

each compound were larger than their respective Ki values by approximately 2 orders of 

magnitude. This large difference is not expected, though it could be attributed to a 
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number of factors. First, the substrate/ligand peptides and experimental conditions are 

distinctly different for the two assays that were employed to determine Ki and IC50.  The 

activation state of a kinase can affect substrate binding affinity, as suggested by the 

anisotropy dose-response data for the compounds binding to active and inactive ERK2. 

Also, the presence of MgATP which binds the kinase can influence substrate binding and 

phosphorylation [230, 231].  Specifically, bound ATP can induce communication to other 

binding sites [79, 189].  Here, the IC50 assay required MgATP with large excess of free 

magnesium (Mg2+) in order to chelate with sox-Sub-D, while the anisotropy dose-

response assay did not include MgATP or Mg2+. Combined, these factors could account 

for the differences in measurements between the two assays.   

Characterization of 2507-1 Selectivity 

Compound 2507-1 (Figure 3.2 A, Supplementary Figure C15) showed the most 

potent IC50 at 28.5 ± 4.4 μM, so we selected it for further mechanistic evaluation.  In [γ-

32P] ATP-based dose-response assays, we found that 2507-1 more potently inhibited 

ERK2 phosphorylation of the substrate Ets-1 compared to the non-fluorescent Sub-D 

peptide, with an IC50 of 5.62 ± 0.96 μM (Figure 3.2 B).  Meanwhile, the IC50 against the 

Sub-D peptide phosphorylation was measured at 46 ± 14 μM, which is within error of the 

IC50 against sox-Sub-D.  Interestingly, 2507-1 was found to be a partial inhibitor of Ets-1 

phosphorylation (~77% maximum inhibition), which is consistent with Ets-1 docking at 

the FRS of ERK2, in addition to the DRS and active site. To validate that 2507-1 does 

not interact at the FRS, we tested it as an inhibitor of ERK2 phosphorylation of Sub-F, a 

peptide that only docks at the FRS.  The IC50 of 2507-1 in this case was not accurately 

measurable due to solubility limits of the compound, so we concluded that 2507-1 does 

not effectively target the FRS.  Knowing that other kinases like p38α and JNK1/2 share 
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similar DRS regions to ERK2, we tested the ability of 2507-1 to inhibit JNK2 

phosphorylation of GST-c-Jun in vitro (Figure 3.2 B).  This IC50 was measured at 43 ± 6 

μM, which indicated that 2507-1 has similar selectivity for JNK2 when compared to 

ERK2 phosphorylation of Sub-D, but much less selectivity for JNK2 when compared to 

ERK2 phosphorylation of the more physiologically relevant substrate Ets-1.  It is possible 

that the difference in IC50s observed for 2507-1 inhibition of Ets-1 and Sub-D 

phosphorylation could be explained by multiple modes of inhibitor binding that occur 

with different affinities.   

2507-1 Inhibited ERK2 Activation by Constitutively Active MEK1 

Because MEK1 is known to interact at the DRS of ERK2 [211-213], we tested 

whether 2507-1 would prevent activation of ERK2 by the constitutively active MEK1 

mutant, MKK1G7B.  We found that 2507-1 blocks ERK2 activation in vitro in a dose-

dependent manner, with an IC50 of 9.9 ± 1.9 μM (Figure 3.3).  Thus, this small molecule 

can potently block ERK2 protein-protein interactions in vitro.  D-site sequences 

frequently contain basic residues, such as arginine, that are important for engaging the 

common docking region of the DRS, which consists of D316 and D319.  As mentioned, 

the sevenmaker mutation D319N causes significant decrease in MEK1 binding to ERK2, 

and in cells, and acts as a gain-of-function mutation due to signaling pathway feedback 

and other effects [216].  Thus, only small interferences in this region can disrupt protein 

docking. All 10 hit compounds have at least one arginine-like functional group and 2507-

1 significantly blocked MKK1G7B activation of ERK2.  This indicates that the 

compounds may function in a similar manner as the D319N mutant by neutralizing the 

acidic environment of the common docking region.  
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Confirmation of DRS Binding by Structural Data 

To confirm the binding mode of the hit compounds, we used a combination of 

NMR and macromolecular X-ray crystallography.  For the NMR experiments, inhibitor 

interactions at particular residues of ERK2 were detected by measuring chemical shift 

perturbations in response to addition of inhibitor [188]. We tested three of the top 10 hit 

compounds, 2507-1, 2507-8, and 2507-26, by this method in order to observe binding 

interactions for different R-groups on the 2507 scaffold.  As shown in Figure 3.4 for 

compound 2507-8, most perturbations were localized to the DRS region of ERK2, as was 

also the case for 2507-1 and 2507-26 (not shown).   All three compounds induced 

chemical shift perturbations above two standard deviations for the following key DRS 

residues: both common docking domain residues (D316 and D319), either T157 or T158 

of the ED domain, the hydrophobic residues L119, L155, H123, Y126, and a solvent-

exposed cysteine residue C159 (Supplementary Table C3).  These results indicated that 

the compounds likely bind the DRS in the same manner, regardless of their differing R-

groups.  

To ensure that the chemical shift perturbations detected by NMR were not caused 

by allosteric effects, conformational changes of the protein, or nonspecific binding of the 

inhibitor, we crystallized compound 2507-8 (Figure 3.5 A) in complex with inactive 

ERK2 and determined the structure with 1.9 Å resolution (Figure 3.5 B, Supplementary 

Table C4). We observed the appearance of new density near ERK2 residues 311-318. 

This electron density was not fully contiguous and was difficult to model with a single 

molecule of 2507-8 (Figure 3.5 C, D).  Instead, our best interpretation of this electron 

density used two fragments of 2507-8, termed Fragment A and Fragment B. When 

considering this model, one possibility is that one or both of the fragments are portions of 

two intact inhibitor molecules, but only part of each molecule is resolvable. A second 
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possibility is that one or both of the fragments are impurities or degradation products of 

2507-8.  This may be likely for Fragment B, given that LC-MS analysis of the 2507-8 

inhibitor identified Fragment B ((S)-4-benzylimidazolidin-2-imine) as an impurity 

(Appendix C, Supplementary Figure C16). Finally, although it is unlikely given the 

distance between the two regions, it remains possible that this density is attributed to a 

single inhibitor molecule, where the structural elements of the inhibitor that link the 

regions are too flexible for visualization. Nevertheless, both modeled 2507-8 fragments 

indicate that binding is localized at the DRS and does not occur at the active site of ERK2 

(Figure 3.5 B).   

As predicted, the arginine-like group on Fragment A is located sufficiently close 

to form ionic interactions with the common docking domain residue D319, in addition to 

Y129 and Y314 (Figure 3.5 E, Figure 3.6). These interactions may stabilize the binding 

position of this functional group, which is consistent with the observation of clear 

electron density for Fragment A.  Additional hydrophobic interactions engage Fragment 

A with D316 of the common docking domain, as well as E312, Y315, and P317.  In 

contrast, Fragment B is bound in the hydrophobic groove between the common docking 

and ED domains. It forms hydrophobic interactions at the key DRS residues H123 and 

Y126, as well as with D122 and Y314 (Figure 3.5 F).  Both Fragment A and Fragment B 

appear to participate in similar binding interactions to those of a peptide derived from the 

phosphatase HePTP, which has previously been crystallized in complex with ERK2 and 

is known to bind to the DRS [189].  This peptide has been used as a basis for identifying 

inhibitors of the DRS via computer-aided drug design [74, 76].  Thus, the HePTP peptide 

provides further context for the mechanism and binding mode of 2507-8. Interestingly, 

the phenyl carbon at the meta- position of Fragment B is approximately 4.5 Å from the 

C159 sidechain, which we have shown to be a suitable target for covalent inhibition of 
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ERK2 (Chapter 2). Functionalization of the phenyl ring with a cysteine-reactive 

substituent could generate future covalent ERK inhibitors with greater potency than the 

reversible inhibitors identified here.  

CONCLUSIONS 

From the binding interactions of 2507-8 and the ability of the hit compounds to 

inhibit ERK2 activity and activation, it is clear that this class of small molecule is 

effective at inhibiting ERK2 through the DRS.  The structural data showed that small-

molecule interactions at the acidic common docking region and the hydrophobic residues 

adjacent to the ED domain of the DRS are likely the basis of this inhibition.  Further 

structural modifications of these compounds could improve selectivity for ERK or 

promote covalent inhibition of the solvent-exposed cysteine residue of the DRS.  The 

continued development of these inhibitors can potentially lead to ERK-targeted drugs that 

do not compete with ATP but rather function by disrupting critical protein-protein 

interactions.   
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Figure 3.1. Deconvolution of cyclic guanidine libraries. 
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Mixture Sample 

# 
Structure Percent (%) signal change 

2408 

 

55.7 

2407 

 

21.2 

2353 

 

19.5 

2157 

 

19.4 

2354 

 

16.3 

Table 3.1. Top mixtures that exhibited highest displacement of fluorescent probe in 

scaffold screening 
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Table 3.1. Top mixtures that exhibited highest displacement of fluorescent probe in 

scaffold screening  

 

Screening results for scaffold ranking library at 25 µg/mL.  Scaffold mixtures were 

ranked by their average % displacement of the FITC-X-Lig-D probe from the D-

recruitment site of ERK2.  The anisotropy screening is described in Materials and 

Methods, and Appendix C. Data reported as average of 2 replicate samples at mixture 

dose of 25 µg/mL. 
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Table 3.2. Top individual compounds resulting from positional scanning of library 

2408  

Structure-activity relationship and potency of the top 10 individual hit compounds from 

the 2408 scaffold library. IC50s were evaluated by fluorescence assay.  ERK2 at 2 nM 

was incubated with 0-50 µM compounds for 20 minutes prior to reaction with 2 µM sox-

Sub-D and 1 mM MgATP.  Values shown indicate IC50 ± standard error. Compounds are 

organized according to structural similarities. AIC50 was too large to be accurately 

measured. 

 

  

Com- 

pound 

 

# 

 
2507- 

 

Dose- 

response 

data 

R1 R2 R3 R4 R5 IC50, µM 

8 

Phe 

 

Arg 

isobutyric acid 

Arg 
cyclohexanepropionic acid 

34.0 ± 9.5 

2 

 

3-bromophenylacetic acid 

31.4 ± 4.8 

26 p-tolylacetic acid 41.2 ± 4.5 

14 Phe(4-F) 
cyclohexanepropionic acid 

54.8 ± 15.3 

1 

Arg 

Arg 
28.5 ± 4.4 

25 p-tolylacetic acid 48.9 ± 7.1 

13 

Phe(4-F) 

cyclohexanepropionic acid 41.8 ± 4.0 

37 p-tolylacetic acid 68.7 ± 15.9 

16 
Met 

cyclohexanepropionic acid NDA 

40 p-tolylacetic acid 60.8 ± 13.4 
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Table 3.3. Binding affinities of top 10 compounds.  

Potency of top inhibitors against ERK2.  Ki values were determined by anisotropy assay 

in the same manner as the original screening. Active or inactive ERK2 at 1 µM was 

incubated with 0-200 µM compounds for 45 minutes at room temperature prior to 

anisotropy measurements as conducted in the main screening. Ki values were calculated 

in GraphPad Prism as described in Appendix B.  Values shown indicate Ki ± standard 

error of the fit. 

  

ID 
Inactive ERK2 

Ki , µM 

Active ERK2 

Ki , µM 

Approx. Ki ratio 

(Active/Inactive) 

2507-1 0.383 ± 0.042 0.567 ± 0.122 1.48 

2507-2 0.247 ± 0.026 0.584 ± 0.104 2.36 

2507-8 0.549 ± 0.066 0.384 ± 0.048 0.70 

2507-13 0.351 ± 0.045 0.598 ± 0.085 1.70 

2507-14 0.933 ± 0.110 0.660 ± 0.112 0.71 

2507-16 1.48 ± 0.11 1.273 ± 0.203 0.86 

2507-25 0.611 ± 0.064 0.861 ± 0.138 1.41 

2507-26 0.501 ± 0.075 0.404 ± 0.061 0.81 

2507-37 0.567 ± 0.066 0.564 ± 0.078 0.99 

2507-40 0.938 ± 0.109 0.783 ± 0.092 0.83 
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Figure 3.2. Potency and selectivity of 2507-1.   

(A) Structure of lead compound 2507-1. (B) The ability of 2507-1 to inhibit 2 nM ERK2 

phosphorylation of 10 µM Ets-1 and 10 µM Sub-D, as well as 25 nM JNK2 

phosphorylation of 2 µM c-Jun, was assessed by 32P assay as described in Materials and 

Methods.  Enzymes were incubated with 0-200 µM 2507-1 for 30 minutes prior to 

reaction initiation by addition of MgATP and substrate.  Initial rates ± standard errors are 

shown fit to standard IC50 models.   
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Figure 3.3.  2507-1 inhibits MKK1G7B phosphorylation of ERK2 in vitro.  

Recombinant ERK2 was incubated with varied concentrations of 2507-1 (0-100 µM) for 

10 minutes prior to reaction with MKK1G7B and MgATP as described in Methods.  (A) 

Resulting ERK2 phosphorylation was measured by Western blot. Controls include fully 

phosphorylated active ERK2 and unphosphorylated inactive ERK2. (B) Densitometry of 

Western blot, where phospho-ERK signal is normalized to total ERK signal.  (C) IC50 

curve was generated from initial rate measurements of % ERK2 phosphorylation.   
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Figure 3.4. Docking of 2507-8 at the DRS via NMR. 

2507-8 binding to ERK2 was analyzed by NMR. (A) Structure of ERK2 (PDB ID: 

3ERK, grey) showing key DRS residues (dark blue). (B) Solution NMR results showing 

ERK2 (PDB ID 3ERK) residues affected by 2507-8 binding.  Colors indicate chemical 

shift perturbations: 1-1.5 S.D.: light pink, 1.5-2 S.D.: magenta, 2-3 S.D.: hot pink, >3 

S.D.: red, and perturbations beyond detectable limits: marine. (S.D. = standard deviation). 

  

A B
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Figure 3.5. The 1.9Å structure of ERK2 in complex with inhibitor 2507-8.  
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Figure 3.5. The 1.9Å structure of ERK2 in complex with inhibitor 2507-8.  

 

 (A) Chemical structure of inhibitor 2507-8 (B) ERK2 (light blue) in complex with 

inhibitor 2507-8, which was resolved as two fragments termed A and B, that are labeled 

in blue and red respectively. The OMIT map is shown for the crystallized inhibitor (C) 

Fragment A and (D) Fragment B with a sigma of 2.5.  LigPlot projections of hydrophobic 

and ionic interactions are shown for (E) Fragment A and (F) Fragment B. Ionic 

interactions are shown using green dashed lines. Hydrophobic interactions are shown 

using circular red bursts. Residues are listed using the three-letter code followed by the 

residue number.  (Crystallographic and LigPlot data provided by Nicole Perry and Tina 

Iverson at Vanderbilt University.) 
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Figure 3.6. Electrostatic interactions of Fragment A with the DRS of ERK2.  

Ionic and hydrogen-bonding interactions between ERK2 and Fragment A of inhibitor 

2507-8. Interactions were measured using the free available software LigPlot. Three 

nitrogen atoms in inhibitor 2507-8 interact with residues Tyr129, Tyr314, and Asp319 in 

ERK2.  (Crystallographic and LigPlot data provided by Nicole Perry and Tina Iverson at 

Vanderbilt University.) 
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Chapter 4: Characterization of Kinetic Parameters and Isoform-

Selectivity of Covalent JNK Inhibitors  

ABSTRACT 

c-Jun N-terminal kinases (JNKs) are an extensively studied subfamily of mitogen-

activated protein kinases.  The three isoforms of JNK, JNK1/2/3, have been observed 

performing different context-dependent roles in tumorigenesis.  These isoform-specific 

functions are difficult to study due to lack of inhibitors that are selective for individual 

isoforms. JNK-IN-8, a potent inhibitor that selectively targets JNK through a covalent 

mechanism, has recently been discovered.  This inhibitor can potentially be structurally 

optimized to target specific isoforms.  In order to properly characterize the mechanism of 

JNK-IN-8 and its analogs, we explored different methodologies to determine isoform 

selectivity. We developed a fluorescence-based assay to monitor the time-dependent 

reaction of JNK-IN-8 with JNK1 and JNK2.  This assay allows the direct quantification 

of the kinetic parameters KI and kinact for two-step covalent inhibition by JNK-IN-8.  We 

found that for JNK1, KI is 23.8 ± 1.8 nM and kinact is (12 ± 4) x 10-3 s-1, while for JNK2, 

KI is 35.3 ± 12.2 nM and kinact is (4.7 ± 1.5) x 10-3 s-1.  Additionally, we tested 10 analogs 

of JNK-IN-8 in jnk1-/- and jnk2-/- PyVMT cells and found that four of the compounds 

showed selectivity for JNK2 with little effects on JNK1 activity.  The methods described 

here are essential tools for the continued development of isoform-specific JNK inhibitors. 

INTRODUCTION 

c-Jun N-terminal kinases (JNKs) belong to the mitogen-activated protein kinase 

(MAPK) family.  The JNK pathway transduces cellular signals via a kinase 

phosphorylation cascade that is stimulated by a variety of sources, such as external 

stresses, cytokines, and growth factors [232, 233]. JNK is expressed as three isoforms, 
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JNK1/2/3, where JNK1 and JNK2 are ubiquitous, and JNK3 expression seems to be 

localized to the brain, heart, and testes [18, 234]. Activation of JNK leads to its 

phosphorylation of numerous substrates such as c-Jun and ATF-2, members of the AP-1 

group of transcription factors [19, 233].  JNK substrates govern critical cellular processes 

such as proliferation, migration, and apoptosis [19].  Accordingly, JNK signaling has 

been implicated as a therapeutic target in diseases such as diabetes, CNS disorders, 

cancer, and inflammation [232, 235-237].  The role of JNK in cancer has been 

controversial, with evidence supporting both pro- and anti- tumorigenic effects of its 

signaling that are likely due in part to non-redundant isoform functions [29].  Probing 

JNK signaling with isoform-specific inhibitors would allow the crucial clarification of 

these functions.  However, no isoform-specific small-molecule inhibitors have been 

reported to date.   

Recently, Zhang, et al. (2012) discovered covalent inhibitors of JNK that show 

potential for development into isoform-specific inhibitors [128]. Of the identified 

inhibitors, JNK-IN-8 has ~5-fold selectivity for JNK3 over JNK1, ~20-fold selectivity for 

JNK3 over JNK2, and exhibits no off-pathway activity in cellular pathway profiling 

experiments [128]. Although this slight isoform-selectivity is observed, JNK-IN-8 is not 

discrete enough to act on only one isoform, especially given its high potency. Covalent 

inhibitors as drugs have long been regarded with concern due to potential off-target 

effects and toxicities.  Despite this concern, as of 2005, approximately 30% of marketed 

drugs acted by irreversible mechanisms [118]. In recent years the benefits of covalent 

drugs have received renewed attention, with particular applications as kinase inhibitors in 

cancer that can overcome resistance mechanisms [122, 238, 239]. Therefore, JNK-IN-8 

and its derivatives could be of additional therapeutic value due to their covalent nature 

and minimal off-target reactivity. 
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IC50 values are often used to describe and compare the ability of different 

inhibitors to prevent a kinase from phosphorylating a substrate in vitro.  However, this 

parameter cannot reliably describe covalent inhibitors because of their time-dependent 

reactivity. Incubation of inhibitor and enzyme can be done for an arbitrary duration of 

time in these dose-response experiments, so IC50 values for time-dependent inhibitors are 

therefore variable and can often obscure critical attributes of inhibitors.  For example, 

given sufficient time to react, any irreversible inhibitor will inactivate an enzyme with 1:1 

stoichiometry, thus rendering them indistinguishable from one another at such time 

points.  Therefore, it is necessary to characterize covalent inhibitors in terms of the 

kinetic parameters KI and kinact. The parameter kinact is the maximal rate constant for 

inactivation of enzyme by the inhibitor.  KI describes the inhibitor binding step and is the 

inhibitor concentration that results in half-maximal kinact. These terms are independent of 

reaction conditions and apply in the general case of two-step covalent inhibition, as 

shown in the reaction scheme below (Scheme 4.1), where enzyme (E) reacts with 

inhibitor (I).  

Scheme 4.1 

 

For JNK-IN-8, reaction occurs at C116 (JNK1/2) or C154 (JNK3), a cysteine 

residing in the active site that is not directly involved in catalysis. Therefore, it doesn’t 

function as a typical mechanism-based inhibitor that is modified by the catalytic residues 

of JNK, but rather blocks the binding of ATP in the same pocket.   
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MATERIALS AND METHODS 

Proteins, Peptides, and Small Molecules 

Full-length human tag-less JNK1α1 (GenBank accession number NM_002750) 

and human JNK2α2 (GenBank accession number NM_002752) were expressed, purified, 

and activated as previously described by Tamer Kaoud at the University of Texas at 

Austin [32]. GST-tagged ATF-2 was expressed and purified as described by Szafranska, 

et al. [240]. Sox-NFAT4 peptide (Ac-LERPSRDHLYLPLSGRYRES(C-Sox)LSPSPA) 

was synthesized and purified as described previously (see Appendix A) [174].  JNK-IN-

8, JNK-In-B, JNK-In-C, and THZ-3-60-1 were synthesized by Ramakrishna Edupuganti 

from the Targeted Therapeutic Drug Discovery and Development Program at the 

University of Texas based on the synthesis methods described by Zhang, et al. (2012) 

[128].  All other JNK-IN-8 analogues were provided by Nathanael Gray at Harvard 

University. 

Kinase Activity Assays 

Catalytic parameters for JNK1 and JNK2 substrate phosphorylation, as well as 

covalent inhibition, were determined by continuous fluorometric assay.  The peptide 

reporter sox-NFAT4 is phosphorylated by JNK1 or JNK2 on Ser-23 in the presence of 

MgATP.  Fluorescence assay buffer (pH 7.4) contained 25 mM HEPES, 50 mM KCl, 0.1 

mM EDTA, 0.1 mM EGTA, 10 µg/mL BSA, 2 mM DTT, and 10 mM MgCl2.  Assays 

were performed at 25ºC, pH 7.4 in 384-well plates with 70 µL sample volumes. 

Fluorescence measurements, in relative fluorescence units (RFU), were collected using a 

Synergy H4 plate reader at λex/λem of 360 nm/482 nm.   
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Steady State Kinetics: Km and kcat for Sox-NFAT4   

Michaelis-Menten parameters were determined for sox-NFAT4 phosphorylation 

to validate the fluorometric assay. JNK1 or JNK2 (25 nM) phosphorylated sox-NFAT4 

(0-35 µM) in the presence of 500 µM MgATP.  Reactions were initiated by addition of 

MgATP and fluorescence measurements were taken every 30 seconds for 1 hour.  

Reaction progress curves were normalized by background subtraction of 

unphosphorylated sox-NFAT4 signal for each concentration.  Curves were fit to the 

single-exponential equation (4.1) [177]. 

Equation 4.1: 

𝐹(𝑡) =  𝐹0 + (𝐹∞ − 𝐹0)(1 − 𝑒−𝑘0𝑏𝑠𝑡) 

To evaluate linearity of the fluorescence signal as a function of phosphorylated 

peptide concentration, the maximal signal (F∞) from equation (4.1) was plotted against 

sox-NFAT4 concentration for each condition (Supplementary Figure D1 A).  The 

resulting curve was fit by linear regression to evaluate the conversion factor, Q (1027 ± 

27 RFU/µM for JNK1 and 1095 ± 14 RFU/µM for JNK2).  Q is a proportionality 

constant used to convert fluorescence units to reaction product concentration. Strong 

linearity (r > 0.99) was confirmed, so in all subsequent assays the peptide concentration 

was treated as directly proportional to the fluorescence output by the conversion factor 

(Q), and Q was re-evaluated for each experiment as validation. To evaluate Km and kcat 

for sox-NFAT4 phosphorylation (Km,S and kcat,S) for JNK1 and JNK2, the initial rates of 

each reaction were defined over the range of 0-600 s, and this subset of the data was fit 

by linear regression (Supplementary Figure D1, parts B and D).  The initial rates for each 

reaction were then expressed in units of µM/s by normalizing the fluorescence rates by 

the appropriate conversion factor (Q).  Steady state kinetic parameters were then 
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evaluated by fitting the rate data to the Michaelis-Menten equation (Supplementary 

Figure D1, parts C and E).   

The Km,S values for JNK1 and JNK2 were evaluated to be 1.2 ± 0.2 µM and 2.3 ± 

0.5 µM, respectively (Supplementary Figure D1).  This provided a starting estimate for 

concentration of sox-NFAT4 in the optimization of JNK-IN-8 assays. Similarly the kcat,S 

was measured at 0.21 ± 0.01 s-1 for JNK1 and 0.32 ± 0.02 s-1 for JNK2. 

Steady State Kinetics: Km and kcat for ATP 

To determine Km and kcat for ATP substrate under the reaction conditions for 

covalent inhibition of JNK, we tested phosphorylation 4 µM sox-NFAT4 by 2.5 nM 

JNK1 or 5 nM JNK2 in the presence of varied MgATP (0.5-100 µM). Fluorescence 

measurements were collected every 5 s for 600 s (Supplementary Figure D2, parts A and 

C).  The Michaelis constants with respect to ATP (Km,A) were determined in the same 

manner as described for sox-NFAT4, resulting in Km,A for JNK1 of 7.0 ± 0.8 µM and 

Km,A for JNK2 of 6.4 ± 0.6 µM (Supplementary Figure D2, parts B and D).  These 

parameters were used in evaluation of the constant KI for JNK-IN-8.   

JNK-IN-8 Assays 

Reaction progress curves were measured for 2.5 nM JNK1 (or 5 nM JNK2) 

phosphorylation of sox-NFAT4 (4 µM) in the presence of varied amounts of JNK-IN-8 

(0-5 µM).  This assay was repeated at varied concentrations of MgATP for each JNK 

isoform.  ATP concentrations were determined by measuring the absorbance of 7X 

concentrated MgATP stock solutions at λ =259 nm.  Fluorescence data were collected 

every 5 s for a minimum of 600 s.  
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To model the mechanism of time-dependent inhibition of JNK by JNK-IN-8, we 

assumed a model of enzyme affinity labeling that is equivalent to mechanism-based 

inactivation.  This model is characterized by two steps: JNK-IN-8 binding in the active 

site, followed by irreversible covalent reaction at C116.  The enzyme mechanism in the 

presence of JNK-IN-8 is shown in Scheme 4.2.  The enzyme is assumed to follow 

Michaelis-Menten kinetics over the time-course of the experiment. 

Scheme 4.2: 

 

Here E (enzyme) can either react covalently with inhibitor (I) and become 

inactivated, or it can react with ATP substrate (A) to yield ADP product (P).  The 

substrate in this model is depicted as ATP rather than sox-NFAT4 since JNK-IN-8 

directly competes with ATP for the same binding site.  Negligible depletion of 

unphosphorylated sox-NFAT4 is assumed over the time-course of the experiment, as 

discussed further below.  

Data sets were fit globally in GraphPad Prism to the system of equations below 

[241].  The Prism equation and parameter inputs are further described in Appendix D. 

Equation 4.2: 

[𝑃] = {
𝑣𝑠𝑡                                         𝑖𝑓 [𝐼] = 0 (𝑘𝑜𝑏𝑠 = 0)

(
𝑣𝑜 − 𝑣𝑠

𝑘𝑜𝑏𝑠
) (1 − 𝑒−𝑘𝑜𝑏𝑠𝑡)       𝑖𝑓 [𝐼] ≠ 0 (𝑘𝑜𝑏𝑠 ≠ 0) 

Equation 4.3: 

𝑘𝑜𝑏𝑠 =  
𝑘𝑖𝑛𝑎𝑐𝑡[𝐼]

𝐾𝐼
∗ + [𝐼]
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Equation 4.4: 

𝐾𝐼
∗ = 𝐾𝐼 (1 +

[𝐴]

𝐾𝑚,𝐴
) 

In equation (4.2), [P] is the concentration of the phosphorylated sox-NFAT4, 

which is directly measured as the fluorescence signal normalized by the conversion factor 

Q.  (Note that the concentration of phosphorylated sox-NFAT4 is equivalent to that of 

ADP due to reaction stoichiometry.)  The rates vs and v0 are the steady state and initial 

rates of reaction, respectively, and kobs is the apparent first-order rate constant for 

conversion from v0 to vs.  This change in the reaction rate is attributable to the rate of 

inactivation of JNK by the inhibitor, assuming the following assumptions are valid: 

(1) There is no substrate depletion for the duration of measurement of the control 

reaction ([I] = 0 µM); i.e. for [I] ≠ 0 µM, the only possible source of measured 

change in reaction rate is due to enzyme inactivation by inhibitor.  In order for 

this assumption to be valid, the reaction progress curve for this case must be 

linear. 

(2) There is no tight-binding inhibition, or initial enzyme concentration [E]0 << 

KI* and inhibitor concentration is not depleted over the course of the reaction 

([I] >> [E]0).     

Assumption (1) above was validated by analyzing the linearity of the control (0 

µM JNK-IN-8) progress curves.  Assumption (2) was confirmed by using inhibitor 

concentrations at least 20X the initial enzyme concentration of 2.5 nM, and by using 

substrate (ATP) protection at the active site to raise the observed KI*.  Therefore, it can 

be assumed that kobs is also the apparent first order rate constant for inactivation of JNK.  

From the enzyme reaction model, kobs is described by equation (4.3) where KI* is the 
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apparent concentration of inhibitor required to reach half-maximal enzyme inactivation 

and kinact is the maximum rate of enzyme inactivation.   

Since JNK-IN-8 is a competitive inhibitor of the ATP binding site, KI* is a 

function of ATP concentration, as given by equation (4.4). Here, ATP concentration was 

assumed to be saturating with negligible depletion over the course of each reaction, so it 

was quantified by absorbance measurements of initial MgATP stocks.  The Km for ATP, 

Km,A, was determined from steady state substrate kinetics assays. Equation (4.4) allows 

evaluation of the observed KI by extrapolating to the theoretical absence of ATP.   

Cell Lines and Treatments 

PyVMT jnk1-/- and PyVMT jnk2-/- cell lines were provided by the Van den Berg 

laboratory at the UT Austin Institute for Cellular and Molecular Biology [242].  Cells 

were plated in 10 cm dishes at 1.5 million cells per plate (PyVMT jnk1-/-) or 750,000 

cells per plate (PyVMT jnk2-/-) and cultured in DMEM-F:12 media containing 10% FBS, 

25 µg/mL EGF, and 10 µg/mL insulin for approximately 24 hours. The cells were 

washed 2X with warm PBS and serum-starved overnight in DMEM-F:12 media 

containing 1X MEM amino acids and 10 mM HEPES.  Then the cells were treated with 

0-5 µM inhibitor (final concentration of 0.1% (v/v) DMSO) for a total of 4 hours in 

serum –free media.  During the last 45 minutes of this treatment, the cells were 

stimulated with 8 µM anisomycin.  Stimulated and un-stimulated DMSO controls were 

included in each experiment.   After 45 minutes, the plates were placed on ice and the 

media was replaced with ice-cold PBS.  The cells were collected by manual scraping in 

100 µL ice-cold PBS and were centrifuged at 400 rcf for 5 minutes at 4ºC.  The 

remaining cell pellets were resuspended in 60 µL MPER lysis buffer containing 1X 
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HaltTM protease and phosphatase inhibitor cocktail (Thermo Scientific) and were flash-

frozen in liquid nitrogen.  

Western Blots  

Thawed lysates were cleared by centrifugation and protein concentrations were 

evaluated by Bradford protein assay (Bio-Rad). Sample lysates were run on SDS-PAGE 

gels (10% acrylamide gel) at 40 µg protein/lane, and the gel contents were transferred to 

Immobilon®-FL PVDF membranes (EMD Millipore) overnight at 4ºC (30 V). The 

membranes were blocked in 4X diluted Odyssey® blocking buffer (LI-COR) in PBS for 

1 hour at room temperature.  Primary antibodies were applied at 4ºC overnight according 

to the following conditions: 1:500 phospho-c-Jun (Ser63) II rabbit antibody (5% BSA in 

TBST), 1:1000 phospho-SAPK/JNK (Thr183/Tyr185) (G9) mouse mAb (5% milk in 

TBST), 1:1000 c-Jun (60A8) rabbit mAb (5% milk in TBST), and 1:1000 JNK1 (2C6) 

mouse mAb or JNK2 (56G8) rabbit mAb (5% BSA in TBST). All primary antibodies 

were obtained from Cell Signaling Technology. The membranes were washed 3 times for 

5 minutes each in TBST.  Then they were incubated with appropriate secondary 

antibodies at 1:15,000 in 5% milk/TBST for 30 minutes at room temperature.  Secondary 

antibodies included IRDye® 800CW Goat (polyclonal) anti-rabbit IgG and/or IRDye® 

680RD Goat (polyclonal) anti-mouse IgG (LI-COR).  The membranes were washed and 

scanned on an Odyssey® Sa imaging system (LI-COR) and fluorescence was quantified.  

The membranes were saved and incubated with 1:3000 vinculin (E1E9V) XP® rabbit 

mAb for 1 hour at room temperature to provide a loading control.  The secondary 

antibody was applied and the membranes were imaged again as described.   
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RESULTS AND DISCUSSION 

Kinetic Parameters for Inactivation of JNK1/2 by JNK-IN-8 

In order to characterize the mechanism of JNK-IN-8, we developed a method to 

determine KI and kinact for JNK1 and JNK2 inhibition.  There are several types of 

experiments that can be used to evaluate these parameters.  Directly solving differential 

equations to evaluate rate constants is possible if assay conditions can be used to simplify 

the reaction mechanism [243].  It is also possible to evaluate KI and kinact from IC50 

measurements taken at different inhibitor incubation times, however this method can 

become too mathematically intensive and strongly depends on kinact to allow a broad 

measurement window [244].  A more common method of evaluating these parameters 

involves incubation of enzyme with inhibitor, followed by dilution of the mixture and 

measurement of residual enzyme activity [245]. However, this method is not appropriate 

for very potent inhibitors like JNK-IN-8 that still exhibit reactivity at nanomolar 

concentrations.   For JNK-IN-8, we instead chose to directly measure product formation 

over time via a fluorescent peptide substrate, sox-NFAT4.  The resulting reaction 

progress curves allowed simple evaluation of KI and kinact.   

For JNK1 and JNK2, reaction progress curves were evaluated for a range of JNK-

IN-8 concentrations at different saturating ATP concentrations, as shown in Figures 4.1 

and 4.2, respectively. Saturating both substrates was necessary for the duration of each 

experiment, so any observed decreases in the rate of product formation could be 

attributed solely to inactivation of the enzyme by JNK-IN-8 rather than substrate 

depletion.  Substrate saturation was confirmed by linearity of the reaction progress curves 

for the controls (0 µM JNK-IN-8), and ATP concentrations themselves were confirmed 

by absorbance measurements at 259 nm wavelength.  The calculated apparent KI* is 
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dependent on ATP concentration as described in Materials and Methods, due to 

competition of ATP and JNK-IN-8 for the same binding site.  The known ATP 

concentration [A] and the Michaelis constant for JNK1 or JNK2 phosphorylation of ATP 

(Km,A) were used to determine the ATP-independent parameter KI (equation (4.4)).  

Values of KI and kinact for each experiment, along with calculated KI* and ATP 

concentration, are shown in Table 4.1. The resulting average KI and kinact values for JNK-

IN-8 inactivation of each JNK isoform are shown in Figure 4.3.  For JNK1, KI = 23.8 ± 

1.8 nM and kinact = (12 ± 4) x 10-3 s-1
. Similarly, for JNK2, KI = 35.3 ± 12.2 nM and kinact = 

(4.7 ± 1.5) x 10-3 s-1
. The ratio of kinact/KI is a second-order rate constant of enzyme 

inactivation and is used as an indicator of inhibitor potency.  The value of kinact/KI is 

5.0x105 M-1s-1 for JNK1 and 1.3x105 M-1s-1 for JNK2, which reveals a 4-fold selectivity 

of JNK-IN-8 for JNK1 over JNK2. These values are consistent with the trend shown by 

previously reported IC50 values of 4.7 nM for JNK1 and 18.7 nM for JNK2, which also 

indicate that the inhibitor has approximately 4-fold selectivity for JNK1 over JNK2 

[128]. This suggests that it is possible to use IC50 experiments as an initial test for isoform 

selectivity in the future development of JNK-IN-8 analogs.  

Comparing JNK-IN-8 Kinetic Parameters to Other Covalent Kinase Inhibitors  

Table 4.2 shows the values of KI and kinact as well as kinact/KI for examples of other 

covalent kinase inhibitors in comparison to JNK-IN-8.  The values of kinact/KI for JNK-

IN-8 are very high for both isoforms of JNK.  Its potency is similar to those of CL-

387785 and WZ-4002, which are in pre-clinical development for EGFR tyrosine kinase 

inhibition.  JNK-IN-8 has much more potent kinact/KI ratios than 2’-thioadenosine, a weak 

EGFR inhibitor, and hypothemycin, a natural product that is a promiscuous kinase 

inhibitor. However, KI and kinact must also be considered individually when evaluating 



 104 

covalent inhibitors, not just as a ratio. The value of KI is a metric of binding affinity 

while kinact indicates reactivity of an inhibitor, but their numerical values do not always 

directly correspond to favorable characteristics. For example, an increase in an inhibitor’s 

kinact might result in off-target promiscuity, though it will positively increase the metric 

kinact/KI.  Sometimes a high kinact is a result of a moderately reactive inhibitor that binds in 

a position that strongly facilitates its reaction.  This favorable, highly selective binding 

would be reflected by a low KI (high affinity). This balance of parameters is illustrated by 

the EGFR- L858R/T790M inhibitors listed in Table 4.2. In contrast, 2’-thioadenosine is a 

much less potent example, with a high KI and a moderate kinact.  JNK-IN-8 falls well 

within the broad range of these kinetic parameters for known covalent kinase inhibitors, 

and it is additionally highly selective for JNK isoforms over other kinases [128].   

The reactive functional groups of the inhibitors listed in Table 4.2 are displayed in 

Figure 4.4. Other inhibitors with the same reactive group as JNK-IN-8 include afatinib, 

neratinib, and compound III, all of which target the active site of EGFR-L858R/T790M 

(Figure 4.4) [243].  Though the reactive functional groups of these inhibitors are the 

same, their kinetic parameters significantly vary, illustrating the importance of binding 

mode in determining potency.  When compared to the FDA-approved covalent drugs 

afatinib and neratinib, JNK-IN-8 has a weaker KI value by over 100-fold, while kinact 

values are all relatively similar. Thus, JNK-IN-8 can likely be improved through 

development of analogues that focus on the inhibitor binding step of the covalent reaction 

instead of on altering reactivity.  These data together show the utility of addressing 

covalent inhibitors in terms of KI and kinact rather than IC50. In addition to being 

independent of experimental conditions, these parameters contain more information about 

a covalent inhibitor than the IC50, though IC50 values can be a good indicator of an 

individual inhibitor’s relative potency against multiple enzyme targets.  
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Limitations of the Reaction Progress Curve Assay 

To test the versatility of the described reaction progress curve assay, it was 

applied to a derivative of JNK-IN-8, THZ-3-60-1, in order to evaluate its potential 

selectivity for JNK2 over JNK1. However, this inhibitor was found to absorb UV light at 

the wavelength of the fluorescent probe excitation (Supplementary Figure D3) and 

subsequently degraded into fragments as confirmed by TLC (data not shown).  Thus, this 

assay is not applicable to all potential derivatives of JNK-IN-8.  Additionally, the assay 

described here can only determine KI and kinact for covalent inhibitors of the active 

enzyme, as phosphorylation of the fluorescent probe is required to obtain the reaction 

progress curves.  Potential inhibitors that selectively target the inactive form of JNK1 or 

JNK2 must be detected and characterized by other methods.   

It is possible that some of the analogues tested in this study may have a different 

binding mode than JNK-IN-8 itself. This is especially likely given that THZ-3-60-1 was 

found to be non-covalent, as determined by dose-response experiments that did not utilize 

fluorescence detection methods (Appendix D). THZ-3-60-1 is also much less potent than 

JNK-IN-8 against JNK phosphorylation of ATF-2 in vitro, and it is highly selective for 

JNK2 with an IC50 of 4.0 ± 1.1 µM as compared to >100 µM for JNK1 (Supplementary 

Figure D3 A).  Ideally, an isoform-specific JNK inhibitor would covalently target a single 

isoform with nanomolar potency, while leaving the other isoforms unaffected.  

Evaluating Selectivity of Inhibitors for JNK Isoforms in Cells 

Given the importance of evaluating the isoform-selectivity of different JNK 

inhibitors and the apparent limitations of the reaction progress curve assay when applied 

to inhibitors other than JNK-IN-8, we explored a different approach to inhibitor 

characterization.  We tested 10 JNK-IN-8 analogues in PyVMT cells with either jnk1 or 
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jnk2 knocked out, in order to determine if the compounds preferentially inhibit JNK1 or 

JNK2.  The PyVMT model closely resembles human breast cancer, wherein JNK2 has 

been shown to play a major isoform-specific role in cell migration in comparison to 

JNK1 [32]. The jnk1-/- and jnk2-/- cell lines are derived from spontaneous mouse 

mammary tumors [246]. Testing these compounds in this model should not only indicate 

JNK isoform-specificity, but also therapeutic potential and SAR details that can be used 

to further modify and improve the compound structures.  

Each cell line was treated with 0-5 µM of each compound for 4 hours, including 

45 minutes of anisomycin treatment for stimulation of JNK signaling (or unstimulated 

control) prior to harvesting cells. The levels of phosphorylated and total c-Jun, as well as 

phosphorylated and total JNK1 and JNK2, were detected and quantified by Western blot.  

THZ-3-60-1 (Figure 4.5) showed preference for inhibition of JNK2 

phosphorylation and c-Jun phosphorylation in jnk1-/- cells. Additionally, JNK-In-B 

(Figure 4.6) and JNK-In-C (Figure 4.7) selectively inhibited JNK2 phosphorylation in 

jnk1-/-cells.  For all three compounds, however, JNK1 phosphorylation was also inhibited 

significantly in jnk2-/- cells at slightly higher compound concentrations than required for 

JNK2 inhibition.  Compound YL-01-035-1 showed similar inhibition of JNK1, JNK2, 

and c-Jun phosphorylation in each cell line, with a possible slight preference for 

inhibition of JNK2 phosphorylation of c-Jun in jnk1-/- cells (Figure 4.8). Thus, these 

compounds all exhibited a minor selectivity for targeting JNK2 over JNK1.  Conversely, 

YL-02-053-1 showed slight inhibition of JNK1 phosphorylation and c-Jun 

phosphorylation in jnk2-/- cells, but it had little to no effect on JNK2 phosphorylation or 

activity (Figure 4.9).   

YL-01-042-1, YL-02-057-1, and YL-02-079-1 all showed some inhibition of 

JNK2 phosphorylation but no significant effects on phosphorylation of JNK1 or c-Jun in 
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either cell line (Figures 4.10, 4.11, 4.12 respectively).  YL-02-048-1 had the opposite 

effects, with most drastic inhibition of JNK1 phosphorylation in jnk2-/- cells (Figure 

4.13).  YL-02-056-1 fully inhibits c-Jun phosphorylation in jnk1-/- cells and has no effect 

on c-Jun phosphorylation in jnk2-/- cells; however, it similarly inhibits JNK 

phosphorylation in both cell lines (Figure 4.14).  Of the 10 tested compounds, these five 

showed the most evidence of isoform-specific effects.  

Interestingly, the 10 compounds tested here inhibited JNK1 or JNK2 activation to 

at least some degree.  Previously, JNK-IN-8 was also shown by our group to inhibit JNK 

activation in the PyVMT model with a preference for JNK2 inhibition [242].  However, 

when JNK-IN-8 and several of its analogs were tested by Zhang, et al. (2012) in 

HEK293-ILR1 cells, they did not inhibit JNK phosphorylation over a concentration range 

of 0-3 µM and treatment duration of 18 hours [128].  

It is possible that some of the analogues tested here may have a different binding 

mode than JNK-IN-8 itself. This is especially likely given that THZ-3-60-1 was found to 

be non-covalent, as determined by dose-response experiments (Appendix D) and lack of 

observed band shifts for JNK in Western blot analyses that would indicate covalent 

reaction. THZ-3-60-1 is also much less potent than JNK-IN-8 against JNK1 and JNK2 in 

vitro.  The cell experiments conducted by Zhang, et al. (2012) suggest that JNK-IN-8 

does not block or otherwise prevent the upstream kinases MKK4 and MKK7 from 

activating JNK. Unlike their cell experiments, ours utilize a different cell line which can 

result in different pathway interactions and protein expression levels between the two 

studies.  Additionally, we measured JNK1 or JNK2 phosphorylation, rather than the two 

isoforms together. We believe that the drop in JNK2 phosphorylation that we have 

previously observed with JNK-IN-8 in PyVMT cells is likely due to inhibition of JNK2 

autophosphorylation, something that would not necessarily be observed in other cell lines 
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if looking at cumulative JNK1 and JNK2 [242].  On the other hand, some of the THZ-3-

60-1 analogues discussed here may bind in such a way as to induce a different activation 

loop conformation that prevents JNK phosphorylation.  This would potentially account 

for the dose-dependent loss of JNK1 phosphorylation observed for THZ-3-60-1, JNK-IN-

B, JNK-IN-C, YL-02-048-1, YL-01-035-1, YL-02-056-1, and YL-02-053-1 treatments.  

THZ-3-60-1 appears to be more potent in cells than in vitro experiments (Figure 4.5, 

Supplementary Figure D3 A), suggesting that it is a non-covalent inhibitor that 

preferentially targets the inactive form of JNK, preventing its activation by upstream 

kinases.  This could imply a similar mechanism to other known kinase inhibitors like the 

MEK inhibitor PD098059 [247].  JNK-IN-8 analogues that potently block both activation 

of JNK by upstream kinases as well as phosphorylation of downstream substrates by 

active JNK may bear more resemblance to the ERK inhibitor SCH772984 that induces a 

conformational change in the activation loop of ERK [113].    

CONCLUSIONS 

Ideally, an isoform-specific JNK inhibitor would potently target one isoform 

while leaving the others unaffected. Based on the quantified Western blot data collected 

over the inhibitor concentration range of 0-5 µM, compounds YL-01-042-1, YL-02-056-

1, YL-02-057-1, and YL-02-079-1 most closely meet these criteria for JNK2 inhibition. 

Importantly, JNK2 is a therapeutic target in breast cancer and the PyVMT mammary 

tumor model.   These inhibitors must be tested over a larger concentration range to 

determine their fold-selectivity for JNK2 and could be further structurally optimized to 

increase their selectivity.  Inhibition of JNK phosphorylation could indicate that the 

compounds selectively target the inactive enzyme, so it is also necessary to evaluate their 

potency against active and inactive JNK isoforms.  Once potent small-molecule inhibitors 
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with isoform selectivity are developed, they will be a crucial tool to differentiate the roles 

of each isoform in different disease states and cellular processes.  

Here we have presented two methods for evaluating JNK-IN-8 analogues: a 

reaction progress curve assay to evaluate kinetic parameters, and a cell-based assay for 

quantifying isoform-specific inhibition. This study has demonstrated the importance of 

fully characterizing the kinetic parameters of covalent inhibitors.  From KI and kinact for 

JNK-IN-8, with respect to other covalent kinase inhibitors, it is clear that binding potency 

can be improved in future analogue design while reactivity is appropriate for minimizing 

off-target effects.  This room to adjust binding affinity (KI) can be utilized to design 

isoform-specific inhibitors, which can be evaluated in jnk1-/- and jnk2-/- cells as we have 

described in this study.  
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Figure 4.1. Reaction progress curves for JNK-IN-8 inhibition of JNK1.   

The ability of JNK1 to phosphorylate the fluorescent reporter peptide sox-NFAT4 was 

measured in the presence of JNK-IN-8.   ATP concentrations were fixed at (A) 83 µM, 

(B) 164 µM, (C) 251 µM, and (D) 402 µM. JNK-IN-8 concentrations were varied from 0-

5 µM at each ATP concentration.  Time ranges of measurements were set by linearity of 

the control (0 µM JNK-IN-8).  Data were fit globally as described in Materials and 

Methods and Appendix D.  
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Figure 4.2. Reaction progress curves for JNK-IN-8 inhibition of JNK2.   

The ability of JNK2 to phosphorylate the fluorescent reporter peptide sox-NFAT4 was 

measured in the presence of JNK-IN-8.   ATP concentrations were fixed at (A) 92 µM, 

(B) 254 µM, and (C) 426 µM. JNK-IN-8 concentrations were varied from 0-5 µM at each 

ATP concentration.  Time ranges of measurements were set by linearity of the control (0 

µM JNK-IN-8).  Data were fit globally as described in Materials and Methods and 

Appendix D.  
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JNK isoform kinact (10-3 s-1) KI* (µM) KI (nM) [ATP], µM 

JNK1 

11.3 ± 1.5 0.283 ± 0.054 22.0 ± 4.3 83 

16.3 ± 1.6 0.644 ± 0.088 26.2 ± 3.6 164 

11.7 ± 1.2 0.879 ± 0.126 23.9 ± 3.5 251 

7.5 ± 1.5 1.35 ± 0.35 23.1 ± 6.0 402 

JNK2 

5.3 ± 0.6 0.505 ± 0.097 32.9 ± 6.3 92  

5.6 ± 0.5 1.97 ± 0.25 48.5 ± 6.3 254  

3.0 ± 0.1 1.65 ± 0.13 24.4 ± 1.8 426  

Table 4.1. JNK-IN-8 kinetic parameters.  

For JNK-IN-8 inhibition of JNK1 and JNK2, the kinetic parameters kinact and KI are 

shown for each experimental condition.  Each experiment was conducted at different 

saturating ATP concentrations, resulting in varying apparent KI* due to competition 

between ATP and JNK-IN-8.   
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Figure 4.3. Average values of kinetic parameters for JNK-IN-8.  

Average values of (A) KI and (B) kinact for each JNK isoform from all experiments (n=3 

for JNK2, n=4 for JNK1).  Error bars are standard error of global data fits for each 

parameter.  
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Inhibitor Target KI (10-9 M) kinact (10-3 s-1) 
Approx. kinact/KI 

 (106 M-1s-1) 
Source 

CI-1033 

EGFR-

L858R/ 

T790M 

0.11 ± 0.03 11.0 ± 0.2 100 

Schwartz, et 

al., PNAS, 

2014 [243] 

Dacomitinib 0.63 ± 0.05 1.8 ± 0.1 2.9 

Afatinib* 0.16 ± 0.03 2.4 ± 0.3 15 

Neratinib* 0.14 ± 0.03 1.1 ± 0.2 7.9 

WZ-4002 13 ± 3 5.0 ± 0.1 0.38 

CL-387785 10 ± 2 2.0 ± 0.3 0.20 

I 0.14 ± 0.07 8.0 ± 0.4 57 

II 2.3 ± 0.3 3.5 ± 0.6 1.5 

III* 4.0 ± 1.0 1.8 ± 0.1 0.4 

IV 108 ± 20 0.15 ± 0.02 0.0014 

V 30 ± 3 1.1 ± 0.1 0.037 

hypothemycin 

ERK1 8400 5.0 0.0006 

Schirmer, et 

al., PNAS, 

2006 [125] 

ERK2 2400 4.3 0.0018 

MEK1 17 2.0 0.12 

MEK2 38 1.0 0.026 

2'-thioadenosine EGFR 1000 ± 300 2.3 ± 0.2 0.0023 

Singh, et 

al., J. Med. 

Chem. 1997 

[248] 

VI 

BTK 

2.0 ± 1.4 2.3 ± 0.7 1.2 Wang, et 

al., Eu. J. 

Med. 

Chem., 

2017 [249] 

VII 3.2 ± 0.06 2.5 ± 0.2 0.78 

VIII 14.2 ± 2.8 2.2 ± 0.8 0.15 

XVIII 97 ± 30 1.2 ± 0.5 0.012 

1a 

PDK1 

3700 ± 300 5.6 ± 0.3 0.0015 

Liu, et al., J. 

Med. Chem. 

2017 [250] 

1m 1800 ± 200 7.0 ± 0.5 0.0039 

2e 3300 ± 100 0.21 ± 0.01 0.00006 

2g 870 ± 70 0.47 ± 0.03 0.00054 

2h 4000 ± 700 0.32 ± 0.03 0.00007 

2k 110 ± 20 0.44 ± 0.02 0.0042 

2r 22000 ± 2500 0.69 ± 0.01 0.00003 

2s 120 ± 30 0.50 ± 0.02 0.0041 

3a 110 ± 10 0.55 ± 0.04 0.0051 

XVI 460 ± 50 0.88 ± 0.02 0.0019 

JNK-IN-8 
JNK1 23.8 ± 1.8 12 ± 4 0.50 

  
JNK2 35.3 ± 12.2 4.7 ± 1.5 0.13 

Table 4.2. Kinetic parameters of covalent kinase inhibitors. 
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Table 4.2. Kinetic parameters of covalent kinase inhibitors.  

 

Selected covalent kinase inhibitors, their target kinases, and corresponding values of KI, 

kinact, and kinact/KI are shown.  Inhibitors with the same reactive functional group as JNK-

IN-8 are denoted with (*).   
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Figure 4.4. Reactive functional groups associated with selected covalent kinase 

inhibitors. 

Reactive groups of the covalent inhibitors referenced in the table. Text color coded to 

indicate JNK inhibitors (red), EGFR inhibitors (blue), BTK inhibitors (pink), PDK1 

inhibitors (purple), and ERK/MEK inhibitors (green).  ‘R’ indicates variable functional 

groups.   
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Figure 4.5. THZ-3-60-1. 

Western blots for THZ-3-60-1 inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM THZ-3-60-1, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment). 
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Figure 4.6. JNK-In-B.  

Western blots for JNK-In-B inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM JNK-In-B, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment).  
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Figure 4.7. JNK-In-C.  

Western blots for JNK-In-C inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM JNK-In-C, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment).  
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Figure 4.8. YL-01-035-1.  

Western blots for YL-01-035-1 inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM YL-01-035-1, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment).  
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Figure 4.9. YL-02-053-1.   

Western blots for YL-02-053-1 inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM YL-02-053-1, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment).  
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Figure 4.10. YL-01-042-1.  

Western blots for YL-01-042-1 inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM YL-01-042-1, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment).  
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Figure 4.11. YL-02-057-1.   

Western blots for YL-02-057-1 inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM YL-02-057-1, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment).  
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Figure 4.12. YL-02-079-1.  

Western blots for YL-02-079-1 inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM YL-02-079-1, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment). 
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Figure 4.13. YL-02-048-1. 

Western blots for YL-02-048-1 inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM YL-02-048-1, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment).  
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Figure 4.14. YL-02-056-1.   

Western blots for YL-02-056-1 inhibition of (A) jnk1-/- and (B) jnk2-/- PyVMT cells.  

Phosphorylated and total levels of both c-Jun and JNK1 or JNK2 were measured for 4-

hour treatment with 0-5 µM YL-02-056-1, with or without stimulation of signaling with 8 

µM anisomycin.  Superscripts after protein labels indicate corresponding vinculin loading 

controls used for quantification. (C) Quantification of the ratio of phospho-c-Jun to total 

c-Jun for each sample. (D) Quantification of the ratio of phosphorylated JNK1/2 to total 

JNK1 or JNK2 for each cell line.  All sample signals were normalized to appropriate 

vinculin loading controls prior to further data processing. Ratios of phospho- to total 

protein levels were normalized to the maximal signal control (DMSO + anisomycin 

treatment).  
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Appendices 

APPENDIX A: PEPTIDES  

Peptide Sequences 

Sub-D: FQRKTLQRRNLKGLNLNL-XXX-TGPLSPGPF 

Sub-F: YAEPLTPRILAKWEWPA 

Lig-D: FQRKTLQRRNLKGLNLNL (no acetylation) 

Lig-D(Dap): FQRKTLQRRNLK(Dap)LNLNL-NH2 

FITC-X-Lig-D: FITC-X-FQRKTLQRRNLKGLNLNL 

Sox-Sub-D: FQRKTLQRRNLKGLNLNL-XXX-TGPLSP-C(Sox)-PF 

Sox-NFAT4: LERPSRDHLYLPLSGRYRES-C(Sox)-LSPSP 

X= 6-aminohexanoic acid; all peptides N-acetylated and C-amidated unless noted. 

Sox-Alkylation of Peptide Substrates 

Peptides were purchased on-resin from Anaspec: sox-Sub-D (Ac-

FQRKTLQRRNLKGLNLNL-X-X-X-TGPLSP-C(Mmt)-PF on Rink amide resin; X= 6-

aminohexanoic acid) and sox-NFAT4 (Ac-LERPSRDHLYLPLSGRYRES-C(Mmt)-

LSPSPA on Wang resin.  The peptides were N-acetylated (Ac) and modified to include 

cysteine residues with Mmt protecting groups.  The sox-alkylation procedure for these 

peptides was performed essentially as described by Zamora-Olivares, et al. (2014) [174]. 

Deprotection of Cys(Mmt) 

A cleaving solution of 60 mL dry DCM with 0.5% TFA (0.3 mL) and 2.5% TIS 

(1.5 mL) was prepared under argon.  200 mg of each peptide on resin was allowed to 

swell in 20 mL DCM, added in 5 mL increments.  The cleaving solution was then added 
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to the resin drop-wise in 5 mL increments.  As Mmt is removed from cysteine, the 

solution changes from clear to a bright yellow-orange color.  The cleavage is complete 

when color returns to clear.  After cleavage was complete, the resin was washed in 20 mL 

DCM.   

Cysteine Labeling 

The sox-labeling reaction requires 2.2 mol.EQ sox-Br and 10 mol.EQ 

tetramethylguanidine as base.  Sox-Br was synthesized by William H. Johnson 

(University of Texas at Austin). For each peptide, the resin loading from Anaspec was 

used in calculating the theoretical yield: Rink amide resin loading 0.43 mmol/g, Wang 

resin loading 0.82 mmol/g.  Tetramethylguanidine base and ~4 mL DMF were added to 

the measured sox-Br and peptide resin.  The activation of cysteine was confirmed by a 

bright yellow solution color.  The reaction was allowed to proceed under argon overnight 

with shaking.  Reaction completion was confirmed by the solution color changing to red, 

indicating free bromine. The resin was washed with 20 mL DMF, 20 mL DCM, followed 

by 20 mL methanol, and was allowed to dry under vacuum prior to storage at 4ºC.   

Cleaving and Deprotection of Peptides 

 A small sample of each peptide was cleaved to verify labeling was successful. 

Approximately 1-5 mg of resin was added to 1 mL of cleaving solution containing 95% 

TFA, 2.5% TIS, and 2.5% water. The mixture was vortexed and allowed to sit for 1 hour 

at room temperature. The cleaved peptide was drained from the resin and dried under a 

nitrogen flow.  The dried peptide was then dissolved in 1:1 acetonitrile:water, filtered 

with a 0.45 µM PVDF membrane, and analyzed via LC-MS.     
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After LC-MS, the full 200 mg amount of resin was cleaved and deprotected with 

15 mL cleaving solution for 4 hours at room temperature.  The resin was filtered from the 

peptide solution, and the cleaving solution was evaporated by a nitrogen flow until 3-5 

mL remained.  The peptide was precipitated from the solution with 40 mL of ethyl ether 

at -20ºC.  The solution was centrifuged at 7000 rpm for 10 minutes at 10ºC and the pellet 

of crude peptide was collected by decanting off the remaining ethyl ether.  Crude 

peptides were stored at -20ºC prior to purification.  

Purification of Peptides 

 Crude peptides were purified via preparative reverse phase HPLC on an 

AlltimaTM C18 5µm particle-size column.  Each peptide was purified ~20 mg at a time 

after dissolution in 5 mL degassed DI water with 0.1% TFA using a gradient from solvent 

A (degassed DI water, 0.1% TFA) to solvent B (degassed acetonitrile, 0.1% TFA). A 

flow rate of 1.5 mL/min with fraction size of 1.5 mL was employed.  Absorbance of the 

eluate was measured at wavelengths of 220 nm (peptide backbone) and 316 nm (sox) to 

detect labeled peptide.  Fractions corresponding to all peaks were collected and analyzed 

via MALDI.  The fractions corresponding to each labeled peptide were as follows: sox-

Sub-D (observed mass 3757.95, calculated mass 3757.53), sox-NFAT4 (observed mass 

3390.16, calculated mass 3408.67).  Sox-NFAT4 peptide mass discrepancy was attributed 

to loss of water at Ser5 by LC-MS/MS analysis.  This did not affect the ability of JNK1/2 

to phosphorylate sox-NFAT4.   
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APPENDIX B: SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

Anisotropy Screening Optimization 

Fluorescence anisotropy assays were optimized for 384-well, low-volume black 

polystyrene plates (Corning).  To determine optimal ERK2 and FITC-X-Lig-D 

concentration, FITC-X-Lig-D was held at 10, 60 or 100 nM and ERK2 (inactive, His6-

cleaved) was varied from 0-12 µM in anisotropy buffer with 10 µg/mL BSA.  Anisotropy 

values were measured at equilibrium after 10-20 minutes incubation.  Observed 

dissociation constants (Kd,obs) were calculated at each FITC-X-Lig-D concentration 

assuming a single-step binding model.  FITC-X-Lig-D was minimized at 10 nM without 

loss of signal (Figure B1), and Kd,obs was measured as 0.57 ± 0.12 µM.  From the binding 

curve, ERK2 concentration was fixed at 1 µM to achieve optimal signal.  As a positive 

control, Lig-D(Dap) (0-200 µM) was incubated with 10 nM FITC-X-Lig-D and 1 µM 

ERK2.  The observed IC50 was measured at 0.83 ± 0.15 µM.  At 50 µM Lig-D(Dap) fully 

displaced the fluorophore from ERK2, so this was selected as a positive control for the 

screening.   

All library compounds were dissolved in DMSO.  To determine effects of DMSO 

on anisotropy signal, DMSO was varied from 0-10% (v/v) in the presence of 10 nM 

FITC-X-Lig-D and 0.5 µM ERK2 (Figure B2).  A maximum value of 5% (v/v) DMSO 

was chosen to ensure maximal anisotropy signal.  Anisotropy was measured after 10-20 

minutes of incubation to establish equilibrium. 0.5% (v/v) DMSO was selected for use in 

the screening. 
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Figure B1. Optimization of FITC-X-Lig-D and ERK2 concentrations for anisotropy 

screening.  

 

 
 

Figure B2. Effects of DMSO concentration on anisotropy signal.  

DMSO was varied from 0-10% (v/v) in the presence of 0.5 µM ERK2 bound to 10 nM 

FITC-X-Lig-D.  DMSO had very little effect on the observed anisotropy signal.   
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We then evaluated if the assay was suitable for high-throughput format by 

measuring the preliminary Z-factor [178].  A validation plate consisting of positive 

controls (10 nM FITC-X-Lig-D in anisotropy buffer with 10 µg/mL BSA) and negative 

controls (10 nM FITC-X-Lig-D and 1 µM ERK2 in anisotropy buffer with 10 µg/mL 

BSA) with 0.5% (v/v) DMSO was prepared and anisotropy measurements were collected 

and averaged for each control (Table B1).  The Z-factor was measured at 0.80, which is 

well above the acceptable threshold for a high-throughput assay. 

 

 Mean anisotropy Standard deviation 

(+) control  120.6 2.0 

(-) control  57.1 2.3 

Table B1. Assay validation measurements to determine Z-factor.  

Average anisotropy values for positive (+) controls (10 nM free FITC-X-Lig-D) and 

negative (-) controls (10 nM FITC-X-Lig-D fully bound to 1 µM ERK2) were measured 

for a 384-well validation plate.  Resulting mean and standard deviation for each control 

were used to calculate the Z-factor.   

Library Compound Aggregation Test 

The 204 hit compounds resulting from the primary anisotropy screening were 

tested for aggregate inhibition of ERK2 using the same primary screening protocol with 

added 0.01% Triton X-100 [179, 180].  The compounds were re-ranked based on % 

displacement of FITC-X-Lig-D, and the top 100 compounds were selected for dose-

response validation.   

Primary Anisotropy Screening Validation 

The top 100 compounds were tested in dose-response assays at 5.5, 16.7, and 50 

µM concentrations using the primary screening protocol including 0.01% (v/v) Triton X-

100.  Additionally, the anisotropy measurements were corrected for intrinsic compound 
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fluorescence by blank-subtracting the parallel and perpendicular intensity components of 

each sample anisotropy by the intensity components of the compounds in anisotropy 

buffer alone. 

Top Compounds Ranked from the Primary and Secondary Screenings 

From the final ranking score, the top 30 compounds were chosen for further 

analysis.  This number was reduced to 21 based on compound stability, availability, and 

toxicity or hazards.  These 21 compounds are described in Table B2 below.  

 

Score ID     Name CAS/Other* Manufacturer Part Number 
6.43 1 Sennoside A 81-27-6 Sigma Aldrich 68909 

5.28 3 Auranofin 34031-32-8 Enzo Life Sciences BML-EI206 

5.10 4 JFD 01947 2645-32-1 Calbiochem 662141 

4.03 5 NSC 194308 90379-42-3 NCI 194308 

3.59 9 JFD 00257 119-70-0 Sigma Aldrich S572039 

3.55 8 Menadione 58-27-5 Acros Organics 127180050 

3.47 10 Sanguinarine chloride 5578-73-4 Tocris  2302 

3.17 11 BTB 12919 BTB 12919 Maybridge BTB 12919 

3.16 12 NSC 228155 113104-25-9 NCI 228155 

2.91 14 1215 (Stattic) 19983-44-9 Enzo Life Sciences BML-EI368 

2.74 13 HTS 12959 HTS 12959 Maybridge HTS 12959 

2.63 16 Bay 11-7082 19542-67-7 EMD Millipore 196870 

2.54 18 KM 04416 KM 04416 Maybridge KM 04416 

2.50 17 S 11893 S 11893 Maybridge S 11893 

2.42 22 Protoporphyrin IX 553-12-8 Frontier Scientific P562-9 

2.36 23 HTS 01833 HTS 01833 Maybridge HTS 01833 

2.27 21 HTS 12963 HTS 12963 Maybridge HTS 12963 

2.07 26 Ethacrynic acid 58-54-8 Enzo Life Sciences BML-EI128 

1.78 30 S 11269 S 11269 Maybridge S 11269 

1.76 29 SEW 01906 SEW 01906 Maybridge SEW 01906 

1.71 28 NSC 48443 6641-18-5 NCI 48443 

Table B2. List of top ranking compounds from the screening.   

Compounds are identified by their library name, hit ID number, and CAS number or 

library ID if unavailable.  Manufacturers and part numbers for purchased compounds are 

also listed. *Compounds from NCI and Maybridge are identified by their library IDs. 
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Dose-Response Curves 

Figure B3. Dose-response curves for the top 9 compounds.  

Dose-response curves showing the ability of the 9 hit compounds (3, 4, 5, 12, 13, 16, 18, 

21, and 23) to inhibit ERK2 (2 nM) phosphorylation of sox-Sub-D (2 µM) after 20 min 

pre-incubation. Data were fit to IC50 equation. 
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Figure B4.  Anisotropy dose-response curves for compounds 3, 4, and 5 against WT 

and C159S ERK2. 
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Figure B5. Anisotropy dose-response curves for compounds 12, 13, and 16 against 

WT and C159S ERK2.  
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Figure B6. Anisotropy dose-response curves for compounds 18, 21, and 23 against 

WT and C159S ERK2.  
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Figure B7.  Dose-response curves for JNK2 inhibition.  

Dose-response curves for inhibition of JNK2 (25 nM) phosphorylation of GST-c-Jun by 

selected compounds (3, 4, 5, 18, and 21). 
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Model for Fitting Anisotropy Dose-Response Curves 

The anisotropy dose-response curves were fit to an equilibrium binding model for 

conditions where the FITC-X-Lig-D substrate concentration is much less than the 

concentration of ERK2 [67].   

Equilibrium binding model: 

𝐸 + 𝑆 ↔ 𝐸𝑆 (peptide binding) 

𝐸 + 𝐵 ↔ 𝐸𝐵(inhibitor binding) 

Mass Balances: 

Et  = ES + EB + Ef  = EB + Ef  since St << Et 

Bt  = Bf  + EB 

St  = Sf  + ES  

Equations: 

𝑟 =  

[𝐸𝑆]
[𝑆𝑡]

(𝑟𝑏𝑅 − 𝑟𝑓) + 𝑟𝑓

1 +
[𝐸𝑆]
[𝑆𝑡]

(𝑅 − 1)
 

[𝐸𝑆] =
[𝐸𝑓][𝑆𝑡]

𝐾𝑑 + [𝐸𝑓]
 

[𝐸𝐵] =
[𝐸𝑓][𝐵𝑓]

𝐾𝑖
 

Here, r is the anisotropy signal and rb and rf are the anisotropies of bound and free 

fluorophore, respectively.  R is the ratio of fluorescence intensities of the bound to the 

free fluorophore, which was measured to be 1.8 using the average intensity values of the 

positive and negative controls.  E, S, and B are concentrations of enzyme, fluorophore, 

and inhibitor, respectively.  Subscripts t and f indicate ‘total’ and ‘free’ species 
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concentrations.  EB denotes concentration of enzyme-inhibitor complexes, and ES is 

enzyme-fluorophore complex concentration.  Dissociation constants for the inhibitor and 

the fluorophore are indicated by Ki and Kd, respectively.   

Substituting the mass balances into the second two equations and algebraically 

rearranging them leads to the following equations that can be modeled in the GraphPad 

Prism software program.    

[𝐸𝑆] =
[𝑆𝑡]([𝐸𝑡] − [𝐸𝐵])

𝐾𝑑 + [𝐸𝑡] − [𝐸𝐵]
 

[𝐸𝐵] =
1

2
[([𝐸𝑡] + [𝐵𝑡] + 𝐾𝑖) − √([𝐸𝑡] + [𝐵𝑡] + 𝐾𝑖)2 − 4[𝐸𝑡][𝐵𝑡]] 

Variable subscripts were converted to lowercase letters for software-compatible 

notation.  X indicates total inhibitor concentration (independent variable) and Y indicates 

anisotropy (dependent variable).  Total enzyme (Et) and substrate (St) concentrations, the 

dissociation constants for FITC-X-Lig-D (Kd), the ratio of intensities of bound to free 

fluorophore (R), and the anisotropy of the free fluorophore (rf) were fixed at their known 

values (Table B3).    

Equation system input to Prism:   

EB=((Et+X+Ki)-sqrt((Et+X+Ki)^2-4*Et*X))/2 

ES=St*(Et-EB)/(Kd+Et-EB) 

Y=((ES/St*(rb*R-rf))+rf)/(1+(ES/St*(R-1))) 

For each parameter identified in the system of equations, initial values and 

constraints were specified in Prism (Table B3).  Et was fixed at 1 µM for WT ERK2 (or 5 

µM for C159S mutant), and St was fixed at 10 nM (or 50 nM for C159S mutant).  

Dissociation constants (Kd) for WT and C159S ERK2 were also fixed at their 

approximate measured values of 0.57 and 19.4 µM, respectively (see Figure B8).  The 
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anisotropy parameters of R and rf were set to 1.8 and 53, respectively, while maximum 

anisotropy rf was allowed to float with an initial guess value of the maximum anisotropy 

signal input (Ymax).  The value of Ki was initially estimated at 50 nM and constrained to 

be greater than 0 for both WT and C159S ERK2.    

 

Parameter WT ERK2 

Initial Value (units) 

C159S ERK2 

Initial Value 

(units) 

Constraint 

Et 1.0 (µM) 5.0 (µM) Fixed 

Ki 0.05 (µM) 0.05 (µM) >0.0 

St 0.01 (µM) 0.05 (µM) Fixed 

Kd 0.570 (µM) 19.4 (µM) Fixed 

rb 1.0*(Ymax) 1.0*(Ymax) [none] 

R 1.8 1.8 Fixed 

rf 53.4 53.0 Fixed 

Table B3.  GraphPad Prism input parameters, initial values, and constraints.   

Fixed parameters are indicated with their values and units (if applicable).  Ymax indicates 

maximum anisotropy value for a given data set (Y).   

 

 

Figure B8. Kd curve for C159S ERK2 binding to FITC-X-Lig-D. 

Kd is equal to 19.4 ± 1.9 μM evaluated using anisotropy model with R = 1.8, with FITC- 

peptide concentration fixed at 50 nM.  Value was approximated as 10 μM for Ki* 

measurements with C159S ERK2.    
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Evaluation of Inhibitor Reversibility  

Compound Reactivity Test 

Figure B9. Covalent modification test for top 9 compounds.  

3 µM active ERK2 was incubated with each compound for 2 hours at room 

temperature.  Compound concentrations were chosen to be approximations of 10 x 

[ERK2 (µM)] x Ki* but not allowed to exceed 200 µM or be less than 5X ERK2 

concentration (Table B4).  These thresholds were chosen in order to avoid aggregation of 

compounds or solubility limits while still ensuring saturation of ERK2 binding sites.  

After incubation, the samples were run through Bio-Spin® size exclusion columns (Bio-

Rad) to remove all unbound inhibitor. ERK2 from each sample was diluted to 50 nM and 

kept on ice for 1 hour to allow any remaining reversible inhibitors to dissociate.  The 

ERK2 from each sample was then diluted to 4 nM and assayed for phosphorylation of 10 

µM Sub-D with 1 µM [γ-32P]-MgATP (Chapter 2 Materials and Methods).  DMSO and 
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the reversible inhibitor FR180204 were used as controls for maximal remaining ERK2 

activity.   

 

ID #  Conc., μM  

3  30  

4  15  

5  15  

12  90  

13  60  

16  150  

18  180  

21  120  

23  120  

FR180204  15  

Table B4. Initial conditions used in reactivity test.  

Concentrations for each compound were chosen based on their affinities in order to 

ensure full binding or reaction of the compounds with ERK2 without exceeding solubility 

limits.  

ESI-MS for ERK2 with Auranofin 

Inactive ERK2 (5 μM) was incubated with 100 μM auranofin or 5 % (v/v) DMSO 

overnight at room temperature.  The incubation was performed in 1 mL (total volume) of 

buffer: 50 mM HEPES pH 7.5, 100 mM KCl, 0.1 mM EDTA, and 0.1 mM EGTA.  To 

remove unbound auranofin, the samples were then washed 3 times in the buffer using 10 

kDa MWCO centrifugal concentrator tubes at 5000xg for 10 minutes.  The protein was 

then washed in 30 mL of 50 mM ammonium bicarbonate, pH 7.5, in PD-10 columns to 

exchange buffer and continue removal of auranofin.  The eluate from the column was 
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collected in 200-500 μL aliquots, and each aliquot was tested by Bradford Assay for 

presence of protein.  The fractions of eluate containing protein were combined and 

concentrated in 10 kDa MWCO microcentrifuge concentrator tubes at 10,000 rpm.  The 

collected protein was evaluated to be approximately 20 μM and 60 μL volume for each 

sample.  The protein samples were flash-frozen in liquid N2 and sent to the Laboratory for 

Biological Mass Spectrometry at Texas A&M University for analysis by ESI-MS 

(Yohannes H. Rezenom).   
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Figure B10. ESI-MS data for inactive ERK2.   

Data shown for inactive ERK2 incubated without inhibitor (control).  The main peak for 

inactive ERK2 appears at 41647 amu.  Spectrum obtained by Yohannes H. Rezenom, 

Texas A&M University – Laboratory for Biological Mass Spectrometry. 
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Figure B11. ESI-MS data for ERK2 with auranofin.  

The main peak for inactive ERK2 appears at 41647 amu.  Two additional peaks are 

observed at 41962 and 42277 amu, corresponding to two covalent modifications of 315 

amu each that are attributed to the gold(I) triisopropylphosphine of auranofin appended to 

both C159 and C164  [251].  Spectrum obtained by Yohannes H. Rezenom, Texas A&M 

University – Laboratory for Biological Mass Spectrometry.  
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Phenotype Assays in HEK293T Cells 

Viability Assay (MTS) 

HEK293T cells were plated in 96-well plates at 2000 cells/well.  After 24 h of 

growth, cells were treated with varied concentrations of auranofin for 24, 48, and 72 

hours.  Cells were then treated with MTS reagent (Promega) according to manufacturer 

protocol for 1, 2, 3, and 4 hours.  Optimal signal and response was obtained after 72 h of 

auranofin treatment with 4 h MTS reagent incubation. (n=5, all data corrected for 

background absorbance of compound + media). 

Colony Formation Assays 

For 3-D colony formation assays, HEK293T cells were plated in full media at 

1000 cells/well in the top layer of 0.4%(top)/1%(bottom) agarose (6-well plates).  The 

top layer of agarose contained 0, 0.5, 1, and 2.5 μM of auranofin (0.5% DMSO).   After 

11 days of growth, cells were stained with 0.005% crystal violet, imaged, and colonies 

were manually counted on ImageJ (Fiji) software.   

To assess 2-D colony growth, HEK293T cells plated at 500 cells/well in full 

media in 6-well plates.  After 24 h, cells were dosed in triplicate with 0, 0.5, 1, or 5 μM 

auranofin with 0.5% DMSO (final).  After 8 days of exposure the cells were fixed in 

1.3% paraformaldehyde for 30 min and stained with 0.2% crystal violet.  Colonies were 

counted using OpenCFU with a threshold of Regular/4 and a radius filter of 3-200 pixels.  

Colony radii in pixels were converted to mm using ImageJ (Fiji) to determine scaling of 

42.6 μm/pixel. 
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Figure B12. Auranofin inhibits proliferation and survival in HEK293T cells.  

Auranofin inhibited two-dimensional clonogenic growth (A) and anchorage independent 

colony formation (B) of HEK293T cells in 6-well plates (500 cells/well; **p< 0.0001, 

*p< 0.05; 3-D error bars = SD; 2-D error bars = 95% CI; 3-D FOV = 18.5 x 13.8 mm).  

(C) Auranofin additionally inhibited cell proliferation in a dose dependent manner by 

MTS assay (EC50 = 0.7 ± 0.2 μM for 3 days incubation). 
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APPENDIX C: SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

Combinatorial Library Screening Optimization 

 

 

 

 

 

 

Figure C1. Dependence of maximum anisotropy signal on DMF % (v/v).  

ERK2 at 1 µM was incubated with 10 nM FITC-X-Lig-D at room temperature in the 

presence of 0-4 % (v/v) DMF for 1 hour.  Anisotropy was measured and normalized to 

the maximum signal at 0 % (v/v) DMF. All subsequent screening conditions utilized 0.5 

% (v/v) DMF.   
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Fluorescence intensity     

  

Average 

(RFU) St. Dev. CV (%) 
    

(-) 35.34 14.42 40.82 Z = 0.90 

(+) 6684.63 212.71 3.18     

            

Parallel intensity component     

  

Average 

(RFU) St. Dev. CV (%) 
    

(-) 336.38 10.89 3.24 Z = 0.94 

(+) 38583.29 816.29 2.12     

            

Perpendicular intensity component     

  

Average 

(RFU) St. Dev. CV (%) 
    

(-) 180.27 7.91 4.39 Z =    0.94 

(+) 32821.19 649.40 1.98     

Table C1. Validation of manual screening plate preparation.  

A 384-well plate containing samples with (+) and without (-) 10 nM FITC-X-Lig-D was 

prepared by hand-pipetting (+) and (-) samples into alternating rows.  Average 

fluorescence values ± standard deviation (st. dev.) were used to calculate coefficient of 

variation (CV) and Z-factor (Z) for the plate.  See Chapter 3 Materials and Methods.  

Parallel and perpendicular intensity components account for polarized emission 

measurements that are used to calculate anisotropy.     
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Figure C2. Screening Phase I – scaffold mixtures at 50 µg/mL.   

Scaffold mixtures were ranked by their average % displacement of the FITC-X-Lig-D 

probe from the DRS of ERK2.  Intrinsic fluorescence of each mixture is shown adjacent 

to its average % displacement. Controls for probe displacement data were FITC-X-Lig-D 

fully bound to ERK2 (neg.) and free FITC-X-Lig-D in solution (pos.).  Intrinsic 

fluorescence controls (ctrls.) included the average fluorescence of all samples with no 

scaffolds present (pos. and neg.).  Samples were screened in duplicate.  
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Figure C3. Screening Phase I – scaffold mixtures at 25 µg/mL.  

Scaffold mixtures were ranked by their average % displacement of the FITC-X-Lig-D 

probe from the DRS of ERK2.  Intrinsic fluorescence of each mixture is shown adjacent 

to its average % displacement. Controls for probe displacement data were FITC-X-Lig-D 

fully bound to ERK2 (neg.) and free FITC-X-Lig-D in solution (pos.).  Intrinsic 

fluorescence controls (ctrls.) included the average fluorescence of all samples with no 

scaffolds present (pos. and neg.).  Samples were screened in duplicate. 
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Figure C4. Positional scanning of library 2408 mixtures at 25 and 50 µg/mL. 

Mixtures derived from the top hit scaffold 2408 (A) were re-screened for binding of 

ERK2 as described. (B)-(F) show results for varied moieties at R1-R5, respectively. 

*Moieties selected to advance to the next screening phase. Samples at each dose were 

screened in duplicate; average % displacement values are shown as determined from 

anisotropy measurements.  
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Table C2. Top mixtures derived from scaffold 2408 in screening Phase II. 

The functional groups that were held constant for each mixture are shown, while 

functional groups that were varied at random are denoted by ‘X’.  The control (labeled 

‘C’) is the bare scaffold where every R-group is fixed as –H. These results were used to 

generate 48 compounds for the next screening phase. 

  

Mixture 

 

 

# 

 

% Signal 

Change 

R1 R2 R3 R4 R5 25 µg/mL 

14 

Arginine 

X X X X 97.2 

4 
Phenylalanine  

X X X X 71.5 

20 
 

α-Aminobutyric 

acid 

X X X X 74.9 

39 X 

Arginine 

X X X 100.9 

35 X 
Methionine 

X X X 93.2 

62 X X  
3-

Bromophenylacetic 

acid 

X X 91.2 

69 X X 
 

Isobutyric acid 

X X 75.6 

89 X X X 

Arginine 

X 90.9 
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Table C2, continued. 

99 X X X  
L-4-fluorophenyl-

alanine 

X 82.0 

125 X X X X 
cyclohexanepropionic 

acid 

86.7 

114 X X X X  
p-Tolylacetic acid 

76.8 

C H H H H H 62.3 
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Figure C5. Screening of crude individual compounds at 12.5 and 25 µM. 

The top 50 hits from the second screening phase were synthesized (70%< purity) and 

screened at 12.5 and 25 µM. 2408-X is a control where all R-groups are –H. 
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.  

Figure C6. Screening of crude individual compounds at 12.5, 6.25, and 3.125 µM. 

The top 30 compounds were rescreened at lower concentrations of 3.125, 6.25, and 12.5 

µM. 2408-X is a control where all R-groups are –H.  
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Dose-Response Curves  

Figure C7. Binding affinities of FITC-X-Lig-D for active and inactive ERK2.   

Kd curves fit using equation for tight binding from [67, 68] (with R= 0.94). Kd (inactive 

ERK2) = 1.0 ± 0.1 μM and Kd (active ERK2) = 1.4 ± 0.2 μM. These Kd values were used 

in the anisotropy model (Appendix B) to calculate Ki for each inhibitor in Table 3.3.   
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Figure C8. Ki curves for inactive ERK2 inhibition, part 1. 

Boundary dotted lines indicate the average values of minimum and maximum anisotropy 

signal for positive and negative controls, respectively.  Ki values were fit using the 

parameter R = 0.94 and the Kd value from Figure C7 (see model in Appendix B). 
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Figure C9. Ki curves for inactive ERK2 inhibition, part 2. 

Boundary dotted lines indicate the average values of minimum and maximum anisotropy 

signal for positive and negative controls, respectively.  Ki values were fit using the 

parameter R = 0.94 and the Kd value from Figure C7 (see model in Appendix B). 
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Figure C10. Ki curves for active ERK2 inhibition, part 1. 

Boundary dotted lines indicate the average values of minimum and maximum anisotropy 

signal for positive and negative controls, respectively.  Ki values were fit using the 

parameter R = 0.94 and the Kd value from Figure C7 (see model in Appendix B). 
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Figure C11. Ki curves for active ERK2 inhibition, part 2. 

Boundary dotted lines indicate the average values of minimum and maximum anisotropy 

signal for positive and negative controls, respectively.  Ki values were fit using the 

parameter R = 0.94 and the Kd value from Figure C7 (see model in Appendix B). 
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Figure C12. IC50 curves for top 10 compounds, part 1. 

ERK2 phosphorylation of sox-Sub-D peptide was measured in the presence of 0-100 µM 

of each compound by change in sox-Sub-D fluorescence over time (RFU/s).  IC50 curves 

and fit values are shown for 2507-1, 2507-2, 2507-8, 2507-13, 2507-14, and 2507-16. 

  

 

2507-1

[Inhibitor], M

R
a

te
 (

R
F

U
/s

)

0 10 20 30 40 50
0

2

4

6

8

IC50 = 28.5  4.4 M

2507-2

[Inhibitor], M

R
a

te
 (

R
F

U
/s

)

0 10 20 30 40 50
0

2

4

6

IC50 = 31.4  4.8 M

2507-8

[Inhibitor], M

R
a

te
 (

R
F

U
/s

)

0 20 40 60 80 100
0

2

4

6

8

IC50 = 34.0  9.5 M

2507-13

[Inhibitor], M

R
a

te
 (

R
F

U
/s

)

0 10 20 30 40 50
0

2

4

6

8

IC50 = 41.8  4.0 M

2507-14

[Inhibitor], M

R
a

te
 (

R
F

U
/s

)

0 10 20 30 40 50
0

2

4

6

8

IC50 = 54.8  15.3 M

2507-16

[Inhibitor], M

R
a

te
 (

R
F

U
/s

)

0 10 20 30 40 50
0

2

4

6

8

IC50 = ND (error too high)



 164 

Figure C13. IC50 curves for top 10 compounds, part 2. 

ERK2 phosphorylation of sox-Sub-D peptide was measured in the presence of 0-100 µM 

of each compound by change in sox-Sub-D fluorescence over time (RFU/s).  IC50 curves 

and fit values are shown for 2507-25, 2507-26, 2507-37, and 2507-40. 
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Structural Studies  

Residue 

code 

Residue 

number 
Δδ (CSP) 1.5*STDev n*STDev 2D struct./other 

Y 314 --       

T 158 --     ED 

C 159 --     DRS cysteine 

D 122 --       

L 155 0.3642 1.5stdev 3stdev hydrophobic 

H 123 0.2521 1.5stdev 3stdev hydrophobic 

I 124 0.2386 1.5stdev 3stdev   

Q 313 0.1681 1.5stdev 3stdev   

I 322 0.1591 1.5stdev 3stdev   

D 319 0.1572 1.5stdev 3stdev CD 

E 320 0.1422 1.5stdev 3stdev   

Y 315 0.1382 1.5stdev 3stdev   

D 42 0.0999 1.5stdev 3stdev   

D 316 0.0981 1.5stdev 3stdev CD 

N 156 0.089 1.5stdev 3stdev   

A 323 0.0887 1.5stdev 3stdev   

A 325 0.0778 1.5stdev 3stdev   

E 79 0.0688 1.5stdev 3stdev   

Y 126 0.0673 1.5stdev 3stdev hydrophobic 

E 348 0.0585 1.5stdev 3stdev   

S 120 0.0515 1.5stdev 3stdev   

T 116 0.0513 1.5stdev 3stdev   

V 143 0.0424 1.5stdev 3stdev   

D 109 0.04 1.5stdev 3stdev   

T 66 0.0393 1.5stdev 3stdev   

E 303 0.0374 1.5stdev 3stdev   

N 222 0.0371 1.5stdev 3stdev   

C 125 0.0342 1.5stdev 3stdev   

A 33 0.0331 1.5stdev 3stdev   

R 77 0.0314 1.5stdev 3stdev   

S 318 0.031 1.5stdev 2stdev   

D 104 0.0309 1.5stdev 2stdev   

H 78 0.0295 1.5stdev 2stdev   

Table C3. Chemical shift perturbations for ERK2 residues in the presence of 

compound 2507-8.   

The single-letter amino acid codes for the residues with chemical shift changes that were 

greater than 1 standard deviation (1stdev) of the mean, calculated over a set of CSP 

values [56], are listed and numbered according to PDB entry 3ERK.  Key DRS residues 

are marked in red and their secondary structural elements noted as either: hydrophobic, 

ED domain, CD (common docking) domain, or solvent-exposed cysteine.    
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Residue 

code 

Residue 

number 
Δδ (CSP) 1.5*STDev n*STDev 2D struct./other 

I 87 0.0292 1.5stdev 2stdev   

A 284 0.029 1.5stdev 2stdev   

E 324 0.0289 1.5stdev 2stdev   

A 141 0.0281 1.5stdev 2stdev   

D 86 0.0276 1.5stdev 2stdev   

S 140 0.0268 1.5stdev 2stdev   

E 10 0.0259 1.5stdev 2stdev   

A 172 0.0256 1.5stdev 2stdev   

K 112 0.0238 1.5stdev 2stdev   

L 119 0.0234 1.5stdev 2stdev hydrophobic 

I 345 0.0233 1.5stdev 2stdev   

Q 304 0.0229 1.5stdev 2stdev   

K 97 0.0193 1.5stdev 1stdev   

K 115 0.0193 1.5stdev 1stdev   

C 164 0.0191 1.5stdev 1stdev active site cysteine 

S 221 0.0191 1.5stdev 1stdev   

C 63 0.0189 1.5stdev 1stdev   

N 251 0.0183 1.5stdev 1stdev   

Q 103 0.0182 1.5stdev 1stdev   

Y 23 0.0179 1.5stdev 1stdev   

F 76 0.0173 1.5stdev 1stdev   

R 65 0.0168 1.5stdev 1stdev   

I 81 0.0165 1.5stdev 1stdev   

T 108 0.0161 1.5stdev 1stdev   

S 151 0.0155   1stdev   

R 351 0.0155   1stdev   

L 44 0.0153   1stdev   

L 242 0.0153   1stdev   

R 299 0.0153   1stdev   

L 144 0.0151   1stdev   

L 154 0.0151   1stdev   

I 300 0.0151   1stdev   

I 84 0.015   1stdev   

C 252 0.0147   1stdev   

S 246 0.0141   1stdev   

N 45 0.0138   1stdev   

K 298 0.0136   1stdev   

V 302 0.0135   1stdev   

Table C3, continued.   
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Residue code 
Residue 

number 
Δδ (CSP) 1.5*STDev n*STDev 2D struct./other 

D 335 0.0128   1stdev   

L 341 0.0128   1stdev   

G 243 0.0127   1stdev   

L 276 0.0127   1stdev   

K 46 0.0124   1stdev   

H 118 0.0122   1stdev   

Y 261 0.0122   1stdev   

N 142 0.012   1stdev   

I 253 0.0116   1stdev   

D 281 0.0116   1stdev   

F 346 0.0114   1stdev   

K 340 0.0109   1stdev   

E 312 0.0106   1stdev   

R 68 0.0105   1stdev   

Table C3, continued.  
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 ERK2 

Inhibitor 2507-8 

PDB accession code 

Data Collection and 

Processinga 

(in prep.) 

Beamline 21-ID-F 

Space groups P21 

Cell Dimensions: a, b, c 

(Å) 
48.9, 71.2, 60.2 

α, β,  (degrees) 90, 109.4, 90 

Resolution (Å) 37.2-1.90 (1.968-

1.90) 

Total Reflections 30,771 

Unique Reflections 3,054 

Rsym
b (%) 0.102 (1.619) 

Rpim
c (%) 0.049 (0.791) 

<I>/<σ> 20.09 (1.55) 

Completeness (%) 99.9 (99.8) 

Refinement Statistics  

Rwork
d

 (%) 16.9 

Rfree (%) 20.6 

RMS deviations  

  Bond (Å) 0.006 

  Angle () 0.80 

Ramachandran 

statisticse 

 

  Favored (%) 95.86 

  Allowed (%) 4.14 

  Outliers (%) 0.0 

Table C4. Crystallographic data collection and refinement statistics. 

aNumbers in parentheses indicate statistics for the highest shell.  
b𝑅𝑠𝑦𝑚 = ∑|𝐼𝑖 − (𝐼)|/ ∑|𝐼𝑖|  where 𝐼 is intensity, 𝐼𝑖 is the 𝑖th measurement, and (𝐼) is the 

weighted mean of 𝐼.  
c 𝑅𝑝𝑖𝑚 = ∑ √[1/(𝑁 − 1)]2

ℎ𝑘𝑙 ∑ |𝐼𝑖(ℎ𝑘𝑙) − 𝐼(ℎ𝑘𝑙)̅̅ ̅̅ ̅̅ ̅̅ |𝑖 ∑ ∑ 𝐼𝑖(ℎ𝑘𝑙)𝑖ℎ𝑘𝑙⁄  where I is running 

over the number of independent observations of reflection hkl and N is representing the 

number of replicate observations. 
d𝑅𝑤𝑜𝑟𝑘  =  ∑||𝐹𝑜| − |𝐹𝑐||/ ∑|𝐹𝑜| where 𝐹𝑜 and 𝐹𝑐 are the observed and calculated 

structure factor amplitudes. 𝑅𝑓𝑟𝑒𝑒 is the same as 𝑅𝑤𝑜𝑟𝑘 for a set of data omitted from the 

refinement. 
eRamachandran analysis from MOLPROBITY [252] 
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Chemical Synthesis and Purification 

Synthesis of Compounds 

The compounds and libraries were synthesized by our collaborators at Torrey 

Pines Institute for Molecular Studies (Port St. Lucie, FL), who provided the protocols and 

purification data shown in this section.   

The screening results indicated that the most active compounds consisted of a 

tripodal tris-(2-aminoethyl)amine scaffold appended with three imidazolidin-2-imines 

(denoted as 2507 group of compounds). These tripodal tris-(2-(2-iminoimidazolidin-1-

yl)ethyl)amines are from the mixture-based positional scanning library 2408, which 

consists of 125 samples comprising a total of 9,765,625 individual tris-(2-(2-

iminoimidazolidin-1-yl)ethyl)amines. The tripodal tris-(2-(2-iminoimidazolidin-1-

yl)ethyl)amines were synthesized through a solid-phase synthetic approach shown in 

Figure C14.  Briefly, a Boc-protected L-amino acid (Boc-AA1-OH, R1) was coupled to 

the 4-methylbenzhydrylamine (MBHA) resin (A), forming a resin-bound amino amide 

(B). The resin-bound amino amide was reacted with a bromoacetic acid to form a resin-

bound (C) containing a reactive bromide, followed by reaction with a mono-Boc-

protected ethylenediamine to form (D). The unprotected secondary amino group of (D) 

was coupled with an Fmoc-protected glycine to form a tripodal intermediate (E), 

containing Boc-protected and Fmoc-protected legs. After treatment of the intermediate 

(E) with 55% TFA to remove the Boc protective group, a second Boc-protected L-amino 

acid (Boc-AA2-OH, R2) was coupled to form (F). The Boc-protected amino group was 

then transformed to an acyl terminus through reaction with a carboxylic acid (R3-COOH, 

R3) (G).  
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Next, the Fmoc protective group was removed by the treatment of (G) with 20% 

piperidine and a third Boc-protected L-amino acid (Boc-AA3-OH, R4) was coupled to 

form (H).  The Boc-protected amino group of (H) was then removed and a carboxylic 

acid (R5-COOH, R5) was coupled to cap the amino terminus, forming a tripodal peptide 

(I).  

The resin-bound tripodal peptide (I) was then reduced to a tripodal polyamine (J) 

using an exhaustive borane reduction method [253]. The tripodal polyamine (J) was 

treated with cyanogen bromide to form a resin-bound, tripodal (K) containing the tris-(2-

(2-iminoimidazolidin-1-yl)ethyl)amines. Following treatment of (K) with anhydrous HF, 

the final product, tris-(2-(2-iminoimidazolidin-1-yl)ethyl)amine (L), was released from 

the resin. 
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Figure C14. Synthetic approach for tris-(2-(2-iminoimidazolidin-1-yl)ethyl)amines. 
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Synthesis of the Mixture-Based Tris-(2-(2-iminoimidazolidin-1-yl)ethyl)amine Library.  

The mixture-based tris-(2-(2-iminoimidazolidin-1-yl)ethyl)amine library (2408) 

was constructed using the same method as for the synthesis of the individual compounds. 

The library was synthesized in a positional scanning format. The library was composed of 

125 samples divided into 5 sub-libraries; each sub-library represents a position, R1, R2, 

R3, R4, or R5 and each position was defined with either a single reagent or a mixture of 

the 25 reagents. For each of the 125 samples, one position was made up of a single 

reagent and the 4 remaining positions were a mixture of 25 reagents. Therefore, each 

sample contained 390,625 individual tris-(2-(2-iminoimidazolidin-1-yl)ethyl)amine 

compounds.  
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Compound 2507-1 

Figure C15. LC-MS results for compound 2507-1 purification. 
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Compound 2507-8 

 

 

 

 

 

 

 

 

 

 

 

Figure C16. LC-MS results for compound 2507-8 purification. 
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The compound 2507-8 was purified by HPLC. Under our HPLC conditions, a 

byproduct showing an m/z of 176 was not separable from the 2507-8, resulting in a purity 

of ~90% of the final product. This product was then examined by LC-MS (Figure C16) 

and its structure was characterized by 1D and 2D NMR spectroscopy.  

NMR data of 2507-8: 

H NMR (400 MHz, DMSO-d6):  0.80-0.89 (8H), 1.14-1.20 (6H), 1.39-1.46 

(7H), 1.58-1.73 (8H), 1.92 (1H), 2.69-2.84 (7H), 2.99-3.10 (7H), 3.25 - 3.45 (11H), 3.60-

3.75 (3H), 3.88 (2H), 4.26 (1H), 7.26-7.30 (m, 5H), 8.24 (brs, 8H), 8.46 (s, 5H), 9.53 

(brs, 6H) 

C NMR (100 MHz, DMSO-d6):  19.6, 20.0, 23.6, 23.7, 24.3, 26.2, 26.3, 26.6, 

28.4, 28.7, 33.3, 33.9, 37.3, 37.7, 40.1, 40.7, 42.6, 43.3, 45.7, 48.7, 50.6, 50.9, 51.1, 56.0, 

56.1, 59.0, 127.2, 129.0, 129.9, 136.9, 157.2, 157.3, 158.3, 159.5, 167.6 

H NMR data of 8.46 ppm (s, 5H) and C NMR of 167.6 ppm are from formic acid. 
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APPENDIX D: SUPPLEMENTARY INFORMATION FOR CHAPTER 4 

Michaelis-Menten Kinetics 

Figure D1. Michaelis-Menten kinetics for JNK phosphorylation of sox-NFAT4.   

ATP concentration was fixed at 100 µM.  (A) Fluorescence signal was directly 

proportional to amount of phosphorylated sox-NFAT4.  Reaction progress curves (B) for 

phosphorylation of varied amounts of sox-NFAT4, and initial rates (C) fit to the 

Michaelis-Menten equation, were used to determine Km,S and kcat,S for JNK1.  The 

reaction progress curves (D) and initial rate analysis (E) for JNK2 were conducted in the 

same manner. 
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Figure D2. Michaelis-Menten kinetics for JNK with respect to ATP. 

Michaelis-Menten kinetics with respect to ATP.  Fluorescence measurements for (A) 

JNK1 and (C) JNK2 phosphorylation of 4 μM sox-NFAT4 in the presence of varied 

concentrations of ATP (0.5-100 μM). Initial rates were fit to Michaelis-Menten model for 

(B) JNK1 and (D) JNK2.   
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Global Fitting of JNK1/2 Inactivation in GraphPad Prism 

The following equations were entered as a model for nonlinear regression analysis 

of the data sets (Y = rate of fluorescence or rate of substrate phosphorylation, X = time). 

Note that the parameter ‘Ki’ here is the apparent KI*, but KI can be evaluated using ATP 

concentration and Km,A for ATP as describe in Chapter 4, Materials and Methods.  This 

can be done in Prism by applying a transform to the output ‘Ki’.  

 

Equation set for inhibition model: 

kobs=kinact*I/(Ki+I) 

Y=v/kobs*(1-exp(-kobs*X)) 

(or Y=v*X for I=0) 

 

Parameter Constraint     Value 

kinact  Shared and must be >0   0 

I  Data set constant (=column title) 

Ki  Shared and must be >0   0 

v  No constraint 

 

The inhibitor concentration (I) constraint is drawn from the numerical column 

title of the input data in Prism.  The ‘shared’ constraint specifies that all inhibitor 

concentrations are fit globally.   
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Kinetics of THZ-3-60-1 Inhibition  

Figure D3. Characterization of THZ-3-60-1.   

(A) IC50 curves for THZ-3-60-1 inhibition of JNK1 and JNK2 by 32P assay. (B) 

Normalized fluorescence emission spectra for 5 µM THZ-3-60-1 and 2% (v/v) DMSO 

control in assay buffer.  λem as indicated by the dotted line marks the fluorescence assay 

emission wavelength of 482 nm.  (C) Time-dependent fluorescence of 5 µM THZ-3-60-1 

compared to 2% (v/v) DMSO control at the emission wavelength of 482 nm. Relative 

fluorescence units (RFU) here are expressed as CPS/µA.  

Evaluation of IC50 Values for THZ-3-60-1 

To evaluate the IC50 values for THZ-3-60-1 inhibition of JNK1 and JNK2, THZ-

3-60-1 (0-43.2 µM) was incubated with 20 nM JNK1 or JNK2 for 30 minutes at room 

temperature.  Reactions were initiated by addition of 10 µM ATF-2 substrate and 100 µM 

[γ-32P] MgATP and carried out at 30ºC.  Initial reaction rates were determined for each 

condition as previously described, and the rates as a function of inhibitor concentration 
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were used to evaluate the IC50. For JNK1, IC50 > 100 µM, and for JNK2, IC50 = 4.0 ± 1.1 

µM. These IC50 curves were determined for 0, 60, 120, and 240 minutes of incubation of 

JNK1/2 with inhibitor with no significant change in IC50.  Therefore, we assumed that 

THZ-3-60-1 exhibited no time-dependent inhibition.   
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