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Abstract 

Environmental monitoring has become increasingly important due to the 

significant impact of human activities and climate change on biodiversity. 

Environmental sound sources such as rain and insect vocalizations are a rich and 

underexploited source of information in environmental audio recordings.  Rain is a 

frequent component of environmental recordings and in some research areas is 

avoided or removed depending on the application. This thesis is concerned with the 

detection of rain within acoustic sensor recordings.  

Detection of rain will advance the techniques for biodiversity analysis and the 

proposed method will help and save time for ecologists when they are 

browsing/navigating long audio recordings, in order to find a particular animal call. 

We approached rain detection in acoustic recordings as a classification task 

using multiple machine learning techniques. We investigated the novel application of 

a set of features (known as indices) for classifying the content of acoustic recordings: 

acoustic entropy, the acoustic complexity index, spectral cover, and background 

noise.  In order to improve the performance of the rain classification system we 

automatically classified segments of environmental recordings into the classes of 

heavy rain or non-heavy rain.  A Decision Tree classifier is experimentally compared 

with other classifiers. The experimental results show that our system is effective in 

classifying segments of environmental audio recordings with an accuracy of 93% for 

the binary classification of heavy rain/non-heavy rain (Experiment1).  It 

demonstrates that the features used are promising for classifying acoustic recordings 

of the environment. Other experiments were conducted; in the multi-class problem 

(Experiment 2), the confusion matrix showed that the feature set used is capable in 

distinguishing between multiple classes. In the Experiment 3, different combination 

of the classification algorithms were tested and it is found that combining different 

algorithms give a better accuracy rate than using a single classification algorithm. 

We also conducted another experiment (Experiment 4), which consisted of the 

prediction of rain in a long recording (24h long). 
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To test whether the identified feature set for rain classification is useful or not 

for rain estimation, we applied it to predict rain in a long recording (24h long), then 

mapped the prediction outputs with weather data for that particular day using 

different regression techniques. A promising result was achieved with the M5P 

model at high correlation and low prediction errors. 
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Chapter 1: Introduction 

This Chapter outlines the background and motivation (Section 1.1), aims and 

objectives (Section 1.2) of the research, and its approaches (Section 1.3). Section 1.4 

describes the research scope. Section 1.5 describes the contributions and 

significance. Finally, Section 1.6 includes an outline of the remaining chapters of the 

thesis. 

1.1 BACKGROUND AND MOTIVATION 

Environmental sounds are a rich and underexploited source of information in 

environmental monitoring. They are highly non-stationary and contain much 

background noise. Hence, it is hard to describe environmental sounds using common 

audio features.  Defining suitable features for environmental sounds is an important 

problem in an automatic acoustic classification system. 

Much of the noise in environmental recordings is of physical origin such as 

wind, rain, rustling of leaves, etc.; biological origin such as cicadas, bird 

vocalizations and other animals; and human generated sound such as highway traffic 

or airplane engine noise. In this work, we define noise as signals with constant 

acoustic energy which remains constant throughout the duration of the recording. 

Thus it is possible that the same acoustic source may contribute to both “noise” and 

specific events “signal”. So, assuming that we are interested in birds or cicadas 

recognition, then rain and wind might be regarded as noise. Finally there is another 

sense of noise which can be defined as any acoustic event that is not of interest.  

In some applications, background noise such as rain is not of interest and often 

discarded. In our study, background noise, in particular rain, represents our event 

(signal of interest). For ecologists, rain presents background noise when they are 

estimating species richness by sampling very long acoustic recordings. Avoiding 

periods having much background noise will improve the efficiency of audio 

sampling. For example, when ecologists analyse bird calls in audio recordings, rain 

makes it harder to annotate bird vocalisations. Therefore, whether birds are calling or 

not during rain, ecologists may not want to listen to that audio. Masking this 
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background noise will increase the efficiency and effectiveness of bioacoustics data 

analysis. This research aims to mark this background noise rather than discarding it 

as it may be useful in other cases such as frog call analysis.  

Figure 1.1 shows the structure of different environmental sounds, such as rain, 

thunder and bird calls. Figure 1.1(a) is a representation of heavy rain in time domain. 

The Figure 1.1(b), (c), and (d) are images/spectrograms in frequency domain; 

where x-axis represents time, the y-axis represents frequency and the grey scale 

represents acoustic intensity.  The green boxes in this Figure 1.1(b) highlight the rain 

drops when they hit the surfaces near the microphone. It shows that rain presents 

vertical lines in a spectrogram and it often occupies the whole frequency band. 

 

       (a) Waveform of heavy rain in time domain 

 

 

(b) Spectrogram of heavy Rain (vertical lines) in frequency domain 
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(c) Spectrogram of thunder (the energy is concentrated in the low frequency band) 
     

 

(d) Spectrogram of a crow call 

 

Figure 1.1 Environmental sounds representation 

 

Our eco-acoustics research group has researched and deployed different types 

of acoustic sensors (Mason et al., 2008) and collected a large amount of acoustic data 

(over 24Tb/5 years). Multiple automatic species recognisers have been developed for 

the ground parrot, male koala, Asian house gecko, whipbird, and other animals. 

Bioacoustic analysis has become an important field of study when monitoring 

environment changes. Instead of sending ecologists to the field to record sounds of 

the environment or making surveys, different types of sensors and audio recorders 

could instead be deployed in the field environment to help ecologists record any 

sound. This method has multiple advantages over standard surveys: 

 Saves time and effort, 

 Provides continuous and persistent recordings, 

 Scales over large area and long period. 

However, the acoustic data collected is not free from the background noise. 
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Wind and rain are frequently found in environmental recordings and are 

generally considered noise because they adversely affect the performance of 

automatic species recognisers, and mask useful information. Marking this 

background noise will increase the efficiency and effectiveness of bioacoustics data 

analysis. For example, if ecologists were interested in a particular bird species, our 

method will help them by telling them not to look into this part of audio because it 

has rain (and often when it rains animals and in particular birds are less active), but 

look into that part of audio (without rain) which is more probable to find birds or 

whatever animal they are interested in.  

1.2 AIMS AND OBJECTIVES 

The goal of the proposed research is to automatically classify the content of 

audio recordings into different classes. The purpose behind this classification is the 

detection of heavy rain in the acoustic recordings of the environment. Environmental 

sounds comprise all types of sound including speech, music, animal sounds and 

background noise, etc. There have been many studies on audio classification and 

segmentation using different machine learning techniques (Karbasi, Ahadi, & 

Bahmanian, 2011; Ma, Milner, & Smith, 2006; Vavrek, Cizmar, & Juhar, 2012). 

 In this work we investigate a new set of features previously used in 

environment monitoring to classify the content of acoustic recordings.  

The objectives of the study are: 

 (1) To explore a set of features originally used in environment monitoring but 

not evaluated on the classification of the content of acoustic recordings; 

 (2) To classify environmental sounds into multiple classes including heavy 

rain, cicada chorus, animal sounds (bird calls, frog-calls, koala bellow), and others 

(light rain and night silence/low activity);  

(3) To investigate different machine learning techniques on the detection of 

rain in the acoustic recordings.  

1.3 RESEARCH PROBLEM AND QUESTIONS 

The eco-acoustics research group at Queensland University of Technology has 

researched and deployed different types of acoustic sensors and collected a large 



5 

 

amount of acoustic data (over 24Tb/5 years) in order to monitor the environment’s 

health. Multiple automatic species recognisers have been developed for the ground 

parrot, male koala, Asian house gecko, whipbird, and other animals. However, the 

acoustic data collected is not free from the background noise. Wind and rain are 

frequently found in environmental acoustics and are generally considered as noise. 

They adversely affect the performance of automatic species recognisers, and mask 

useful information. The present research focuses on the detection and prediction of 

rain in environmental raw data.  

We approach rain detection in acoustic recordings as a classification task, 

where the goal is to avoid listening to audio content that contains rain since birds are 

less likely to vocalise in rainy condition.  

There are three key components in any classification system shown in Figure 

1.2:  

1) Dataset preparation;  

2) Feature extraction; and 

         3) Sound classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Flow chart for the classification process 

 

 

Acoustic recordings (heavy rain, 
cicadas, birds, koalas, frogs, 

night time, light rain) 

Preparation of 
different datasets 

Features 
extraction 

Classification 

Evaluation  
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The research questions for each component are outlined below: 

1) Dataset preparation 

 How to choose the data of interest from the existing data set? 

2) Features extraction 

 What features are more suitable for representing environmental sounds and 

what information do the features carry? 

 How to extract these features from the acoustic signals? 

3) Environmental sounds classification and regression 

 How can environmental sounds be automatically classified using one or a 

set of classifiers with high accuracy? 

 What algorithms yield best results for environmental sound classification? 

 How to estimate rainfall in audio recordings? 

1.4 RESEARCH SCOPE  

This research mainly focuses on the classification of several categories of 

environmental field data: heavy rain, cicada chorus, animal sounds (bird calls, koala 

bellow, frog calls), and others (night time and light rain). Firstly, we have classified 

the acoustic recordings into heavy-rain/non-heavy rain (binary classification) using a 

dataset recorded from the field and a certain set of features.  Secondly, we have 

performed a multi-class classification using the same dataset and same features as in 

the binary classification.  In addition to the classification tasks, we have extracted the 

same set of features from a long audio recording, conducted regression analysis and 

compared with the corresponding weather data (ground truth) recorded by a weather 

station. The result shows that these features are also good for estimating the degree 

of rainfall.  

1.5 CONTRIBUTIONS AND SIGNIFICANCE 

This research focuses on the classification of environmental sounds, such as 

heavy rain, cicada chorus, bird calls, koala bellow, frog calls, night time and light 
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rain, using different machine learning algorithms. We used raw audio data 

automatically recorded by sensors from the field. We explored a novel combination 

of a set of features, e.g. temporal and spectral entropies, which have been reported 

useful for the detection of bioacoustic activity and investigated them in the new 

application of environmental sound classification.  We have also investigated the 

effectiveness of these features in the novel application of rainfall estimation using 

acoustic recordings.  

In particular, the contributions of this research include: 

 The effectiveness of a novel combination of different features, namely: 

acoustic complexity index, acoustic entropy (both spectral and temporal); 

background noise, and spectral cover. 

 The comparison of multiple classifiers in the new application: binary rain 

classification. 

  The further investigation of novel application of rainfall estimation using 

acoustic recordings with the same feature set used for binary rain 

classification. We have tested the approach on a 24h-long recording to 

estimate rainfall and compared the results with the corresponding weather 

data for the same day and from the same location and the results are very 

promising. 

  The manual and careful preparation of a dataset consisting of 998 

different types of audio recordings.  

The significance of this research lies in: 

 This research result will significantly improve the efficiency and accuracy 

of automatic species recognisers. Audio recordings include multiple types 

of acoustic events such as various sounds produced by birds, insects, frogs, 

human, rain and airplane etc.  It is very important to detect automatically 

these noise-like sounds or events (e.g., rain and wind) and mark them 

because these sounds can mask content of interest, for example if we are 

interested in bird calls, then rain becomes an obstacle.  

 When combined with other acoustic event recognisers, the research result 

can also help with correlation analysis between animal behaviour and 
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weather information.  For example, most birds are less active during rain 

while frogs are more active during or after rain. 

1.6 THESIS OUTLINE 

This Thesis consists of the following chapters: 

Chapter 1 introduces the background and motivation of this thesis. 

Chapter 2 reviews the literature related to environmental sounds, audio 

classification, and the algorithms used for audio classification. 

Chapter 3 illustrates the structure of the designed classification system. 

Chapter 4 describes a series of experiments to evaluate the classification system. 

Chapter 5 conclusion and future work of this research. 
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Chapter 2: Literature Review 

In this part we review the most common audio features used in audio 

classification and explore the related classification techniques and algorithms.  

2.1 CONCEPTS 

2.1.1 List of definitions 

There are several important definitions in the proposed research. 

Acoustic Event: is a localised part/region of high intensity in a spectrogram. 

Acoustic index: is a statistic that summarizes some aspect of the structure and 

distribution of acoustic energy and information in a recording.  

Background Noise index: Estimated from the wave envelope using the method of 

Lamel et al. The value is given in decibels (Lamel, Rabiner, Rosenberg, & Wilpon, 

1981). 

Cross-validation (machine learning): it is a technique for estimating the 

performance of a predictive model. 

K-fold-Cross-validation: the data set is randomly partitioned into k folds (k1, k2, ..., 

k10) without overlap. Then at the first run, take k1 to k9 as training set and develop a 

model. Test that model on k10 to get its performance. Next takes k1 to k8 and k10 as 

training set. Train a model from them and test it on k9. In this way, use all the folds 

where each fold is used as test set at most one time. The performance from the folds 

then can be averaged (or combined) to produce a single estimation.  

2.1.2 Introduction to acoustics 

Acoustics is the interdisciplinary science that deals with the study of all mechanical 

waves in gases, liquids, and solids including vibration, sound, ultrasound and 

infrasound. The application of acoustics can be seen in almost all aspects of modern 

society with the most obvious being the audio and noise control industries. 

Because hearing and speech are two of the most important senses of human 

beings, it is no surprise that the science of acoustic spreads across so many facets of 

our society – music, architecture, industrial production, warfare and more. Likewise, 
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animal species such as birds and frogs use sound and hearing as a key element of 

mating rituals or marking territories. 

The following table shows the divisions of acoustics established in the PACS 

(Physics and Astronomy Classification Scheme) classification system. 

Table 2.1 The divisions of acoustics in Physics and Astronomy Classification 

Scheme (PACS). 

 

Physical acoustics Biological acoustics Acoustical engineering 

 Aeroacoustics 

 General linear 

acoustics 

 Nonlinear 

acoustics 

 Structural 

acoustics 

and vibration 

 Underwater sound 

 Bioacoustics 

 Musical acoustics 

 Physiological acoustics 

 Psychoacoustics 

 Speech 

communication (produc

tion; perception; 

processing and 

communication 

systems) 

 Acoustic 

measurements and 

instrumentation 

 Acoustic signal 

processing 

 Architectural 

acoustics 

 Environmental 

acoustics 

 Transduction 

 Ultrasonics 

 Room acoustics 

 

2.1.2.1 Audio frequency 

An audio frequency or audible frequency is characterized as a periodic 

vibration whose frequency is audible to the average human. It is the property of 

sound that most determines pitch and is measured in hertz (Hz). 

The generally standard range of audible frequencies is 20 to 20,000 Hz although the 

range of frequencies individuals hear is greatly influenced by environmental factors 

and by age. Frequencies below 20 Hz are generally felt rather than heard, assuming 

the amplitude of the vibration is great enough. Frequencies above 20,000 Hz can 

sometimes be sensed by young people. High frequencies are the first to be affected 

by hearing loss due to age and/or prolonged exposure to very loud noises. 

Frequencies above and below the audible range are called "ultrasonic" and 

"infrasonic", respectively. 
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Figure 2.1 Approximate frequency ranges corresponding to ultrasound  

The study of acoustics involves the generation, propagation and reception of 

mechanical waves and vibrations.  

 

 

 

Figure 2.2 Diagram of an acoustical event  

 

The steps shown in the above diagram can be found in any acoustical event or 

process. There are many kinds of causes, both natural and volitional. There are also 

many kinds of transduction proves that convert energy from some other form into 

sonic energy, producing a sound wave. The wave carries energy throughout the 

propagating medium. Eventually the energy is transduced again to other forms, in 

ways that again may be natural or volitionally contrived. The final effect may be 

purely physical or it may reach far into the biological or volitional domains. These 

five steps are found equally well in seismology, sonar or a band playing in a rock 

concert. 

2.1.3 Environmental audio data 

The study site of this research is the QUT Samford Ecological Research 

Facility (SERF) in the Samford Valley, at 25 minute drive northwest of QUT 

Gardens Point Campus in Brisbane, Queensland. The dominant vegetation is open-

forest to woodland comprised primarily of Eucalyptus tereticornis, E. crebra (and 

sometimes Esiderophloia) and Melaleuca quinquenervia in moist drainage. There are 

also small areas of gallery rainforest (with Waterhousea floribunda predominantly 

fringing the Samford Creek to the west of the property) and areas of open pasture 

along the southern boundary.  
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Regarding the present project, acoustic sensor surveys were conducted at four 

locations over five days. Sites were located in the eastern corner within open 

woodland, the northern corner within closed forest along Samford Creek, in the 

western corner within Melaleuca woodland, and in the southern corner where open 

forest borders cleared pasture (Figure 2.3). Each site was 100m x 200m and marked 

with flagging tape. In addition, a weather station was located in the northern section 

of the property. 

 

Figure 2.3 Samford Ecological Research Facility (SERF) with survey site positions 

marked with black squares and weather station position marked with blue diamond 

 

The sensors deployed by the QUT eco-acoustic research group have recorded a 

large amount of acoustic data at four outdoor sites (see details about these locations 

(Michael. Towsey & Planitz, 2010) ) in Queensland, Australia. Contrasted with audio 

data collected in the laboratories or quiet environments, environmental audio data 

also called real-world data is collected in the field, which often records a large 

number of vocalizations from various sound sources. These sources can be from 

birds, cicadas, rain, wind, thunder, airplane, and human activities (speech and 

traffic). The unwanted sounds, in particular rain are viewed as background noise in 

many applications.  However, rain is considered as sound of interest in this research 

as rain identification can have many applications. 
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2.1.4 Sound analysis 

Sounds are time-varying signals in the real world and all of their meaning is 

related to such time variability. Sound analysis techniques are developed to grasp at 

least some of the distinguished time-varying features, in order to ease the tasks of 

understanding comparison, modification and resynthesis for signals (Rocchesso, 

2003). The application areas of sound analysis have covered many aspects of 

acoustic environments: speech processing, video processing, bioacoustics analysis 

etc. 

The most important sound analysis techniques are Short-time Fourier 

Transform (STFT) and Linear Predictive Coding (LPC). STFT is performed on slices 

of the time-domain signal and the function of STFT is to transform signals from 

time-domain to frequency-domain (Griffin & Lim, 1984; Saunders, 1996) . LPC 

analysis is an efficient and effective mean to achieve synthetic speech and speech 

signal communication (Brigham & Morrow, 1967). 

One of the most useful visual representations of audio signals is the 

spectrogram. A spectrogram is a grey-scale or colour rendition of the magnitude of 

the STFT, on a 2D plane where x-axis represents time, y-axis represents frequency 

and the intensity or colour indicates the amplitude of a particular frequency at a 

particular time. An example of a spectrogram derived from a field recording can be 

seen in Figure 2.4 (a) and Figure 2.4 (b). 

 

 

 (a) Spectrogram of whipbird’s call 

 

Time (s) 

F
re

q
u

en
cy

 (
k

H
z)

 



14 

 

 

 

(b) Spectrogram of crow’s call 

Figure 2.4 Spectrograms of field recordings 

2.1.5 Acoustic event and background noise 

Acoustic event means timestamps in an audio stream (Zhuang et al., 2010). 

As we can see from Figure 2.4, there can be lots of events in one spectrogram. Some 

events are calls of interest while some are not. More specifically, calls of interest are 

called acoustic events in environmental acoustic studies. Whereas, those events that 

are out of interest are all called background noise.  Consequently, the definition of 

background noise is ambiguous (Planitz & Towsey, 2010). In our study we assume 

only continuous background noise through a time interval, such as might come from 

heavy rain sounds, the rustling of leaves or distant traffic. 

Background noises in some application are signals of interest in other 

applications. For example, in one audio recording, the aim of bird call classification 

is to find calls belonging to a specific species, which will consider other species calls 

as background noise, like cicadas. Therefore, the definition of noise is dependent on 

the application area. Generally, background noise is divided into natural and artificial 

noise. Natural noise might come from the rustling of leaves, wind and rain. Artificial 

noise comes from human activities: speaking, distant traffic and moving a chair, etc.   

2.1.6 Audio features 

Acoustic features can be classified into two classes: statistical and non-

statistical feature (Cheng, Sun, & Ji, 2010). Statistical features include the mean 

fundamental frequency, maximum fundamental frequency, minimum fundamental 

frequency, zero-crossing rate, short-time energy and signal bandwidth. Non-
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statistical features include linear prediction coefficients, mel-frequency cepstral 

coefficients, spectral flux, band energy ratio, etc.  

2.1.7 Features in time domain 

In the time domain, the short-time energy and average zero-crossing rate in the 

waveform are measured to classify speech and music events because speech and 

music have different spectral distribution and temporal changing patterns (Saunders, 

1996). However, according to Ye et al.,(2006) calculating the zero crossing rates and 

energy is not an effective way to detect voice signal in the recordings when the signal 

to noise ratio (SNR) is quite low. So they proposed a method which combines the 

geometrically adaptive energy threshold and Least-Square periodicity estimator to 

analyse the data with a low SNR. Since limited statistical features can be derived 

directly from the waveform (Wolff, 2008), many researchers turn to spectrograms for 

obtaining more frequency related features (non-statistical).  

 Zero-crossing rate (ZCR): has proved to be useful in characterizing different 

audio signals. It is used in many speech/music classifications algorithms. 

Zero crossing occurs when the amplitude of successive samples changes 

from positive to negative or vice versa. The ZCR is the average number of 

times the signal changes its sign within the short-time window (Srinivasan, 

Petkovic, & Ponceleon, 1999).  

 The short time energy (STE): is defined as the total energy in a signal frame 

(Pohjalainen, 2007). 

2.1.8 Features in frequency domain 

STFT is usually used for generating spectrogram, and multiple frequency-

related features are derived from spectrograms. 

MFCCs are one of the most widely used features for audio classification. The 

idea is to first compute Mel-frequency coefficients (MFCs) which are similar to the 

magnitude spectrum (the magnitude spectrum represents the intensity of the sound 

during a frame of signal at different frequencies), but in units of Mels rather than 

Hertz (Briggs, Raich, & Fern, 2009). Therefore, MFCC features are modelled based 

on the shape of the overall spectrum, making it more favourable for modelling single 

sound sources (speech). However, environmental sounds typically contain a large 
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variety of sounds, including conditions that are characterized by narrow spectral 

peaks, such as chirping of insects, rain drops, which MFCCs are unable to encode 

effectively (Chu, Narayanan, & Jay Kuo, 2008) . The filter-banks for MFCC are 

based on the human auditory system and have been shown to work particularly well 

for structured sounds, like speech and music, but their performance degrades in the 

presence of noise (Chu, Narayanan, & Kuo, 2009).  

Another commonly used feature is linear prediction cepstral coefficients 

(LPCCs) (Markel & Gray, 1982). The basic idea behind linear prediction is that the 

current sample can be predicted, or approximated, as a linear combination of 

previous samples, which would provide a more robust feature against sudden 

changes. 

In the following paragraph we describe some of other popular spectral features: 

 Band Energy Ratio: the ratio of the energy in a specific frequency-band to the 

total energy (Eronen et al., 2006).  

 Spectral flux (SF):  used to measure a spectral amplitude difference between 

two successive frames (Mitrović, Zeppelzauer, & Breiteneder, 2010).   

 Spectral roll-off: quantifies the frequency value at which the accumulative 

value of the frequency response magnitude reaches a certain percentage of the 

total magnitude. A commonly used threshold is 85% (Pfeiffer & Vincent, 

2001). 

There are also features that take into account more aspects of human auditory 

perception and are called also perceptual features, such as pitch, loudness and 

brightness. 

Many researchers have made efforts to improve the accuracy of the 

classification and recognition of environmental sounds using different type of 

features, a variety of classifiers and small feature set.  

In the thesis of Chu et al (2009), they used a new set of time-frequency features 

and consider the task of recognising environmental sounds for the understanding of a 

scene or context surrounding an audio sensor. They proposed a novel feature 

extraction method that uses Matching Pursuit algorithm (MP) to select a small set of 
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time-frequency features to analyse environment sounds. They adopted a Gaussian 

mixture model (GMM) classifier for classifying 14 types of environmental sounds. In 

their results, they have found that using MFCC and MP features separately gives a 

poor accuracy rate. By combining MFCC and MP features, the average accuracy rate 

obtained is 83.9% in discriminating fourteen classes.  

Li (2010) stated that the matching pursuit algorithm is a good technique for 

feature extraction, which can clearly describe the environmental sounds.  They have 

also demonstrated that the combination of the features MP and MFCC achieves a 

high accuracy rate. They use the support vector machine as a classifier for the 

environmental sound classification system. The accuracy rate of 92% was achieved. 

Mitrovic et al. (2009) have employed principal component analysis for the 

composition of an optimal feature set for environmental sounds and conducted 

retrieval experiments to evaluate the quality of the feature combinations. The 

retrieval results show that statistical data analysis gives useful hints for feature 

selection in environmental sound recognition.  

Barkana et al. (2011) explored the classification of a limited number of 

environmental sounds (engine, restaurant, and rain). They proposed a new feature 

extraction based on the fundamental frequency (pitch) of the sound. They used two 

different classifiers, SVM and k-means clustering to classify the different classes. 

The classifiers used in their research achieved recognition rates of 95.4% and 92.8%, 

respectively. 

Generally, pitch is a perceptual feature of sound and its perception plays an 

important part in human hearing and understanding of different sounds. In an 

acoustic environment, human listeners are able to recognise the pitch of several real-

time sounds and make efficient use of the pitch to acoustically separate a sound in a 

mixture (Bregman, 1994). However, noise-like non speech audio signals such as 

street noise, rain, a scream or a gunshot do not have a constant pitch but a range of 

values.  

Uzkent et.al (2012) introduced a new time-frequency feature set combined with 

a feature extraction method based on the pitch range (PR) of non-speech sounds and 

the autocorrelation function, to classify non- speech environmental sounds such as: 
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gunshot, glass breaking, scream, dog barking, rain, engine, and restaurant noise. 

They have compared the accuracies of the proposed features to MFCCs by using 

support vector machines and radial basis function neural networks classifiers. The 

new feature set provided a high accuracy rate when it’s used by itself and 

significantly improved when combined with MFCCs. They made a conclusion that 

both features methods are complementary. 

Most previous works use a combination of some features or even a larger 

feature set to characterise the audio signals. However adding more features is not 

always helpful. As the feature dimension increases, data points become sparser and 

there are potentially irrelevant features that could negatively impact the classification 

results. The work of Chu et al.(2006) and Colonna et al. (2012) have shown that 

using high feature set dimension for classification does not always produce good 

performance for audio classification problems. They used a simple feature selection 

algorithm to obtain a smaller feature set to reduce the computational cost and running 

time and achieve an acceptable classification rate. 

2.1.9 Other features  

Some of recent indices have been used for biodiversity, but not evaluated on 

rain classification in particular. The following indices are used as our main features 

and briefly described below. 

Acoustic entropy (H) is a measure of the dispersal of acoustic energy within a 

recording, either through time or frequency bands (Sueur, Pavoine, Hamerlynck, & 

Duvail, 2008). Sueur et al., (2008) acknowledge the difficulty of building individual 

species recognizers and therefore turn to indirect measures of biodiversity, making 

the simple assumption that the number of vocalizing species positively correlates 

with the acoustic heterogeneity of audio data within a locality. They conclude that 

acoustic entropy does correlate with acoustic heterogeneity. Their conclusion relies 

on artificially constructed recordings derived by concatenating a variety of 

individually isolated bird calls. 

Pieretti et al have developed an algorithm: Acoustic Complexity Index (ACI) 

to produce a direct quantification of the complex bird songs by computing the 

variability of the intensities registered in audio recordings, despite the presence of 

human generated noise (Pieretti, Farina, & Morri, 2011). This algorithm is based on 
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the assumption that bird or cicada songs are characterized by having a great change 

in the intensity, even in short period of time and in a single frequency bin. However, 

environmental sounds have an almost constant intensity value, which means the 

difference in the intensity values between two successive frames t and t+1 is small. 

In addition, their assumption on that ACI filters well the background noise is not 

proven. This reason motivated us to investigate this index. 

The ACI index measures the absolute difference  (  ) between two adjacent 

values of intensity (   and      ) in a single frequency bin (   ) :  

   |       | 

    ∑   
 
    is the sum of all the    contained in the recording’s length ( ). 

Where     ∑    
 
       number of     in    

In order to obtain the relative intensity, the result   is divided by the total sum 

of the intensity values recorded in  : 

             
 

∑   
 
   

   

The ACI obtained here is calculated in a single frequency bin (   ). 

 

Figure 2.5 Graph Acoustic Complexity Index 

  (Pieretti, et al., 2011) 

 

    is a single time fraction;     is a single frequency bin;      ( )is the 

intensity registred in    . 

The total ACI for the all frequency bins is calculated: 
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       ∑        (   )
 
     Where   is the number of the frequency bins 

(   )  in the whole recording. 

We assume that:  

 Birds or cicadas sounds have a significant change in intensity between 

frames within a single frequency bin producing a high value for ACI. 

 For noise like wind, rain, airplane, the change in the intensity is not that 

much; the variation in the intensity is approximately constant. Therefore, 

the ACI for these sounds is low. 

From this hypothesis, ACI might be a good discriminator for heavy-rain/non-

heavy rain. 

2.2 PREPROCESSING 

Pre-processing is an important step in a classification process. Its purpose is to 

form and enhance patterns to be recognized through various processes including 

signal processing, and noise removal. Because the collected data does not always 

have good quality, pre-processing is a necessary step for improving the results of 

subsequent processes.   

2.2.1 Signal processing 

Audio signals are supposed to be processed for constructing an appropriate 

representation. Generally, Short-Time Fourier Transform (STFT), Fast Fourier 

Transform (FFT), wavelet transform (WT) and Linear Predictive Coding (LPC) are 

three main ways to generate the signal representation.  Waveform is a basic form of 

signals in the time domain.  To explore more useful visual information of audio 

signals, Fourier transform is often used to transform time-domain signals into 

frequency domain signals. Especially, spectrums are formed by Fourier transform 

and spectrograms are generated by STFT (Cohen, 1995; Griffin & Lim, 1984; 

Roederer, 2008; Saunders, 1996). 
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Figure 2.6 Audio signal representation 

 

(b) Spectrogram of a cicada 

(c) Spectrum of a cicada 

(a) Waveform of a cicada 
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Figure 2.6 shows a recording of a cicada lasting for three seconds and 

generated by Audacity software. In Figure 2.6 (a), the x- axis represents time and y-

axis is the relative sound pressure level. In Figure 2.6 (b), the x-axis represents time, 

the y-axis represents frequency and the grey scale represents acoustic intensity. In 

Figure 2.6 (c), the x-axis represents frequency, and the y-axis represents the dB 

values of amplitude (power). 

In detail, a waveform figure is plotted in Figure 2.6 (a) through sampling 

signals derived from a small track of audio file, while a spectrogram in Figure 2.6 (b) 

and a spectrum in Figure 2.6 (c) are generated through Fourier transform. The 

spectrogram shows how the frequency values changes over the time, See details of 

spectrogram generation in the section of signal processing in (Michael. Towsey & 

Planitz, 2010). The mean spectrum is drawn by computing the average frequency 

values of an entire signal.                                                                                                                                                                                      

2.2.2 Noise removal 

It is important to note that, in the context of audio recordings of the 

environment, “noise” can have several meanings. Noise does not mean just electronic 

or microphone noise as engineers understand it. Wind and rain are frequently found 

in environmental acoustics recordings and are generally considered as noise.  

The contribution of noise to recordings of the environment typically declines 

with increasing frequency. However, we do not assume a standard pink noise model. 

Rather, we estimate the modal noise power independently for each of the frequency 

bins in the spectrogram of each one-minute recording. We use a modified version of 

the same adaptive level equalisation algorithm due to Lamel et al (1981). Adaptive 

level equalisation has the effect of removing continuous background acoustic activity 

and setting that level to zero amplitude. Thus it becomes possible to define a single 

absolute threshold for the detection of an acoustic event that spans multiple 

frequency bins. Note that this modified version can be applied regardless of whether 

the spectrogram values are converted to decibels or not. Having calculated a 

threshold intensity value for each frequency bin, we subtract it from each value in 

that bin (with truncation of negative values to zero), for more details see (M. 

Towsey, 2013). In our work, spectrograms were not converted to decibels in order to 

preserve values appropriate for subsequent calculation of ACI and the acoustic 
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entropy (spectral and temporal entropies). It should be re-emphasised that we 

performed noise reduction on the two dimensional spectrogram and not on the audio 

recording.  The noise removal result can be found in Figure 2.7. 

 

 

 

 

Figure 2.7 The spectrogram result of rain before and after noise removal 

 

Figure 2.8 Noise intensity versus frequency for a typical spectrogram (rain) 

Original and smoothed values are shown 
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2.3 FEATURE EXTRACTION AND SELECTION 

According to Cowling and Sitte (2003) feature extraction can be split into 

two broad types: stationary (frequency based) feature extraction and non-stationary 

(time-frequency based) extraction. Stationary feature extraction produces an overall 

result detailing the frequencies contained on the entire signal. With stationary feature 

extraction, no distinction is made on where these frequencies occurred in the signal. 

In contrast, non-stationary feature extraction splits the signal up into discrete time 

units. This allows frequency to be identified as occurring in a particular area of the 

signal, aiding understanding of the signal.  

Non-stationary feature extraction (Cohen, 1995; Hubbard, 1996; Vapnik, 1999; 

Zhuang, Zhou, Hasegawa-Johnson, & Huang, 2010) includes: 

 Short-time Fourier transform (STFT) 

 Fast (discrete) wavelet transform (FWT) 

 Continuous wavelet transform (CWT)  

 Wigner-Ville distribution (WVD) 

Stationary features extraction contain eight popular techniques (listed below) fitted 

for non-speech sounds (Markel & Gray, 1982; Picone, 1993; Rabiner & Juang, 

1993): 

 Frequency extraction(FE) 

 Cepstral coefficients (CCs) 

 Mel-frequency cepstral coefficients (MFCCs) 

 Linear predictive coding (LPC) 

 Linear prediction cepstral coefficients (LPCCs) 

 Mel-frequency LPC coefficients (MFLPCCs) 

 Bark frequency cepstral coefficients (BFCCs) 

 Bark frequency LPC coefficients (BFLPCCs) 

Feature selection is an important issue which must be addressed in designing 

the feature extraction module. It refers to deciding which features to include in the 
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feature vector representation. Often, the features are selected using a combination of 

domain knowledge and experimentation (Pohjalainen, 2007). 

In machine learning and statistics, feature selection is one of the most 

important tasks in a classification algorithm. It allows for a low computational load 

without increasing the misclassification error. The aim is to obtain an efficient and 

small vector of acoustic features which represent the input pattern for the 

classification algorithms being trained. 

2.4 MACHINE LEARNING 

Artificial Intelligence (AI) is a field of computer science whose objective is 

to build a systemm that exhibits intelligent behaviour in the tasks it performs. A 

system can be said to be intelligent when it has learned to perform a task related to 

the process it has been assigned to without any human interference and with high 

accuracy. Machine Learning (ML) is a sub-field of AI whose concern is the 

development, understanding and evaluation of algorithms and techniques to allow a 

computer to learn. ML interlinks with other disciplines such as statistics, finance, 

human psychology and brain modeling. Since many ML algorithms use analysis of 

data for building models, statistics plays a major role in this field. 

A process or task that a computer is assigned to deal with can be termed the 

knowledge or task domain (or just the domain). The information that is generated by 

or obtained from the domain constitutes its knowledge base. The knowledge base can 

be represented in various ways using Boolean, numerical, and discrete values, 

relational literals and their combinations. The knowledge base is generally 

represented in the form of input-output pairs, where the information represented by 

the input is given by the domain and the result generated by the domain is the output. 

The information from the knowledge base can be used to depict the data generation 

process (i.e., output classification for a given input) of the domain. Knowledge of the 

data generation process does not define the internals of the working of the domain, 

but can be used to classify new inputs accordingly.  

As the knowledge base grows in size or gets complex, inferring new relations 

about the data generation process (the domain) becomes difficult for humans. ML 

algorithms try to learn from the domain and the knowledge base to build 
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computational models that represent the domain in an accurate and efficient way. 

The model built captures the data generation process of the domain, and by use of 

this model the algorithm is able to match previously unobserved examples from the 

domain. 

The models built can take on different forms based on the ML algorithm 

used. Some of the model forms are decision lists, inference networks, concept 

hierarchies, state transition networks and search-control rules. The concepts and 

working of various ML algorithms are different but their common goal is to learn 

from the domain they represent.  

ML algorithms need a dataset to build a model of the domain. The dataset is a 

collection of instances from the domain. Each instance consists of a set of attributes 

which describe the properties of that example from the domain. An attribute takes in 

a range of values based on its attribute type, which can be discrete or continuous. 

Discrete (or nominal) attributes take on distinct values (e.g., color = brown, weather 

= sunny) whereas continuous (or numeric) attributes take on numeric values (e.g., 

distance = 3.5meters, rain = 40mm).    

Each instance consists of a set of input attributes and an output attribute. The 

input attributes are the information given to the learning algorithm and the output 

attribute contains the feedback of the activity on that information. The value of the 

output attribute is assumed to depend on the values of the input attributes. The 

attribute along with the value assigned to it define a feature, which makes an instance 

a feature vector. The model built by an algorithm can be seen as a function that maps 

the input attributes in the instance to a value of the output attribute. 

Huge amounts of data may look random when observed with the simple eye, 

but on a closer examination, we may find patterns and relations in it. We also get an 

insight into the mechanism that generates the data.  Witten and Frank (2005) define 

data mining as a process of discovering patterns in data. It is also referred to as the 

process of extracting relationships from the given data. In general data mining differs 

from machine learning in that the issue of the efficiency of learning a model is 

considered along with the effectiveness of the learning.  In data mining problems, we 

can look at the data generation process as the domain and the data generated by the 

domain as the knowledge base. Thus, ML algorithms can be used to learn a model 
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that describes the data generation process based on the dataset given to it. The data 

given to the algorithm for building the model is called the training data, as the 

computer is being trained to learn from this data, and the model built is the result of 

the learning process. This model can now be used to predict or classify previously 

unseen examples. New examples used to evaluate the model are called a test set. The 

accuracy of a model can be estimated from the difference between the predicted and 

actual value of the target attribute in the test set. 

WEKA (Witten, et al., 2005), stands for Waikato Environment for 

Knowledge Analysis. WEKA is a collection of various ML algorithms, implemented 

in Java that can be used for data mining problems. Apart from applying ML 

algorithms on datasets and analysing the results generated, WEKA also provides 

options for pre-processing and visualization of the dataset. It can be extended by the 

user to implement new algorithms.   

There are different ways an algorithm can model a problem based on the 

interaction with the input data. It is common in machine learning and data mining to 

consider the learning styles or learning procedures that an algorithm can adopt. These 

learning styles are defined as follow: 

Supervised learning: the input data is called training data and has known label. A 

model is prepared through a training process where it is required to make predictions 

and is corrected when those predictions are wrong. The training process continues 

until the model achieves a desired level of accuracy on the training data. Example 

problems are classification and regression.  

Unsupervised learning: Input data is not labelled and does not have a known result. 

A model is prepared by deducing structures present in the input data. Example 

problems are association rule learning and clustering.  

Semi supervised learning: Input data is a mixture of labelled and unlabelled 

examples. There is a desired prediction problem but the model must learn the 

structures to organize the data as well as make predictions. Example problems are 

classification and regression.  
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We describe in detail the classification and regression algorithms that have been used 

in this thesis in the following sub-sections. 

2.4.1 Classification techniques 

Algorithms that classify a given instance into a set of discrete categories are 

called classification algorithms. These algorithms work on a training set to come up 

with a model or a set of rules that classify a given input into one of a set of discrete 

output values. Most classification algorithms can take inputs in any form, discrete or 

continuous although some of the classification algorithms require all of the inputs 

also to be discrete. The output is always in the form of a discrete value. Decision 

Trees classifiers; rule based classifiers, support vectors machines and Naives Bayes 

classifiers are examples of classification algorithms. 

Classification examples include the recognition of bird species present in an 

audio recording (Duan et al., 2011; Somervuo, Harma, & Fagerlund, 2006; Michael 

Towsey, Planitz, Nantes, Wimmer, & Roe, 2012), categorizing a piece of sound as 

bird calls, rain, wind (M. W. Towsey & Planitz, 2011) etc.  

Many classification techniques have been used in speech and speaker 

recognition (Cowling & Sitte, 2003; Temko & Nadeu, 2006) such as: 

 Dynamic time warping (DTW). 

 Hidden Markov models (HMM). 

 Learning quantization vector (LVQ). 

 Artificial neural networks (ANN). 

 K-Nearest neighbour (kNN). 

 Gaussian mixture models (GMM).  

 Naives Bayes (NB) 

 Decision Tree (DT). 

 Support vector machines (SVM). 

Most of the research studies argue that supervised machine learning algorithms 

such as Decision Trees , Artificial Neural Networks , Hidden Markov Models, 

and Support Vector Machines (Acevedo, Corrada-Bravo, Corrada-Bravo, 
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Villanueva-Rivera, & Aide, 2009; Mitrovic, et al., 2009; Rokach & Maimon, 

2005; Vavrek, et al., 2012) are the best choice for audio classification and 

segmentation because of their high accuracy. In our research, different 

classification algorithms were used, a comparison of these algorithms was 

conducted. We describe in detail the classification algorithms that have been 

used in this thesis in the following sub-sections.   

2.5.1.1 Decision Tree 

A Decision Tree is a classifier expressed as a recursive partition of the instance 

space (Connell & Jain, 2001; Kotsiantis, Zaharakis, & Pintelas, 2007; Rokach & 

Maimon, 2005; Safavian & Landgrebe, 1991).  

 Decision Tree is a branching that represents a set of rules, distinguishing 

values in a hierarchical form. This representation can be translated into a set of IF-

THEN rules, which are easily understood. 

Generally the tree has three types of nodes: 

 A root node that has no incoming edges and zero or more outgoings edges. 

 Internal nodes, each which have exactly one incoming edge and two or more 

outgoing edges. 

 Leaf or terminal nodes, each which have exactly one incoming edge and no 

outgoing edges. 

In a Decision Tree, each leaf node is assigned a class label. The non-terminal nodes 

which include the root and other internal nodes, contain attribute test conditions to 

separate instances that have different characteristics. Instances are classified by 

navigating them from the root node of the tree down to a leaf node, according to the 

outcome of the tests along the path. 

For example, Figure 2.9 uses the attribute/feature temporal entropy to separate 

heavy-rain from non-heavy rain. The first split is on the temporal entropy 

attribute/feature, and then at the second level, the split is on temporal entropy again.  
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Figure 2.9 A Decision Tree for rain classification problem 

 
This example is performed on a dataset of 40 recordings manually labelled: heavy rain and non-

heavy rain equally, using two attributes/features namely temporal and spectral entropy and using 10 
fold-cross validation. 

 
 

In the tree structure, a colon introduces the class labels that have been 

assigned to a particular leaf, followed by the number of instances that reach that leaf, 

expressed as decimal number because of the way the algorithm uses fractional 

instances to handle missing values, (12.0) means that 12 instances reached that leaf, 

of which all the instances are classified as non-heavy rain. 

Note that this Decision Tree incorporates only numeric attributes. Given this 

classifier, we can predict whether an acoustic recording contains heavy rain or not 

(by sorting it down the tree). Each node is labelled with the attribute it tests, and its 

branches are labelled with its corresponding values.  

Naturally, decision-makers prefer less complex Decision Tree, since they 

may be considered more comprehensive (Rokach & Maimon, 2005). Furthermore 

according to (Breiman, Friedman, Stone, & Olshen, 1984) the tree complexity has a 

crucial effect on its accuracy performance. The tree complexity is explicitly 

controlled by the stopping criteria used and the pruning method employed. Usually, 

the tree complexity is measured by one of the following metrics: 

 The total number of nodes; 

 Total number of leaves; 

Root 

node 

Internal 

node 

Leaf 

nodes 

temporal.entropy 

temporal.entropy 
No (12.0) 

Yes (22.0/2.0) No (6.0) 

<=0.980315 >0.980315 

<=0.984016 >0.984016 
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 The depth and ; 

 Number of attributes used. 

2.5.1.2 Support vector machines 

Support vector machines (Fagerlund, 2007; Guo & Li, 2003; Huang, Yang, 

Yang, & Chen, 2009) are fundamentally binary classifiers, but any number of classes 

can be accommodated by combining binary SVM classifiers. The principle of SVM 

classification can be described by first considering linearly separable classes, i.e., 

two classes which can be perfectly separated using a linear hyperplane as a decision 

boundary. SVM training is based on the idea of maximizing the margin between any 

decision boundary and the closest observation at each side of the hyperplane, i.e., the 

goal is to maximize the distance from the closest class representative points to the 

decision boundary. These representatives are called support vectors. The 

optimization problem of designing a maximum margin hyperplane can be solved 

using Lagrange multipliers.  

In the general case in which the classes are not separable even with a nonlinear 

decision boundary, the nonlinear SVM classifier effectively maps the feature vectors 

into a higher dimensional space in which linear separation of the training set is 

possible. The margin is then maximized in the higher-dimensional space during the 

training procedure. Maximization of the margin in SVM training aims for improved 

generalization performance of the classifier when presented with previously unseen 

data. 

2.5.1.3 Naive Bayes classifier 

Naive Bayes classifier is a statistical classifier. It can predict class 

membership probabilities, such as the probability that a given sample belongs to a 

particular class (Good, 1965; Langley & Sage, 1994). Bayesian classification is 

based on Bayes theorem. Studies comparing classification algorithms have found a 

simple Bayesian classier known as the Naïve Bayesian Classifier to be comparable in 

performance with Decision Tree and neural network classifiers. The naive Bayes 

algorithm builds a probabilistic model by learning the conditional probabilities of 

each input attribute given a possible value taken by the output attribute. This model 

is then used to predict an output value when we are given a set of inputs. This is done 

by applying Bayes theorem on the conditional probability of seeing a possible output 
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value when the attribute values in the given instance are seen together. Before 

describing the algorithm we first define the Bayes theorem.  

Bayes theorem states that: 

 (   )  
 (   ) ( )

 ( )
 

Where P(A|B) is defined as the probability of observing A given that B occurs. 

P(A|B) is called posterior probability, and P(B|A), P(A) and P(B) are called prior 

probabilities. Bayes theorem gives a relationship between the posterior probability 

and the prior probability. It allows one to find the probability of observing A given B 

when the individual probabilities of A and B are known, and the probability of 

observing B given A is also known. 

 

The Naive Bayes algorithm uses a set of training examples to classify a new 

instance given to it using the Bayesian approach. For an instance, the Bayes theorem 

is applied to find the probability of observing each output class given the input 

attributes and the class that has the highest probability is assigned to the instance. 

The probability values used are obtained from the counts of attribute values seen in 

the training set.  

The Naive Bayes algorithm requires all attributes in the instance to be 

discrete. Continuous valued attributes have to be discretised before they can be used. 

Missing values for an attribute are not allowed, as they can lead to difficulties while 

calculating the probability values for that attribute. A common approach to deal with 

missing values is to replace them by a default value for that attribute. Bayesian 

classifiers have also exhibited high accuracy and speed when applied to large 

datasets (Hall et al., 2009; Kohavi, 1996). 

2.5.1.4 Lazy classifier 

 Lazy learners store the training instances and do no real work until 

classification time. IB1 is a basic instance-based learner that finds the training 

instance closest in Euclidean distance to the given test instance and predicts the same 

class as this training instance. If several instances qualify as the closest, the first one 

found is used.   
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Lazy IBk stands for Instance based learner with fixed neighbourhood k 

(Cufoglu, Lohi, & Madani, 2008). IBk is a k-nearest neighbour method which 

consists of assigning to the unlabelled feature vector the label of the training vector 

that is nearest to it in the feature space (Ke, Heng Tao, Kai, & Xuemin, 2006). In 

kNN, a training set T is used to determine the class of a previously unseen sample x. 

First, we determine the mean and maximum values in T, and similarly, for the unseen 

sample x. Then a suitable distance measure in the feature space is used to determine 

k elements in T closest to x. If most of these k nearest neighbours contain similar 

values, then x gets classified accordingly. The “Closeness” is defined in terms of 

Euclidean distance, where the Euclidean distance between two points   

(          ) and   (          ) is  (   )  √∑ (     ) 
 
    

This classification scheme clearly defines nonlinear decision boundaries and 

thus improves the performance. Furthermore, the feature distribution suggests that 

the number of data-points used in the example set T can be considerably reduced for 

faster processing; only those examples that are close to the decision boundary are 

actually required.  

Mporas et al. (2012) evaluated six different classification algorithms 

implemented in WEKA to classify seven species of birds. These classifiers namely 

are: the k-nearest classifier (IBk), 3-layer Multilayer perceptron (MLP), support 

vector machines (SMO), the Bayes network learning (Bayes Net). They used two 

temporal features (the frame intensity (Int) and the zero crossing rate (ZCR)). They 

used sixteen spectral features (12 first MFCCs, the root mean square energy of the 

frame (E), the voicing probability (Vp), the harmonics-to-noise ratio (HNR), and the 

dominant frequency (fd)). The highest recognition accuracy was achieved by bagging 

and boosting meta- classification algorithm, which used the pruned C4.5 Decision 

Tree as base classifier.  

2.4.2 Regression algorithms 

Algorithms that develop a model based on equations or mathematical 

operations on the values taken by the input attributes to produce a continuous value 

to represent the output are called of regression algorithms. The input to these 

algorithms can take both continuous and discrete values depending on the algorithm, 

whereas the output is a continuous value. 
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Regression algorithms have been used in many areas such as biodiversity 

prediction, forest fire detection, stream-flow, finance, health, etc. (Onyari & Ilunga, 

2010; Parra Jr & Kiekintveld, 2013). Forest fires are a major environmental issue, 

creating economical and ecological damage while endangering human lives. 

Detecting these fires is a key element in controlling such a phenomenon. Cortez et al 

(2007) have proposed to use real-time and non-costly meteorological data collected 

by sensors (in Portugal) instead of using satellite images, infrared/smoke scanners, 

satellite images combined with meteorological data which are costly, to predict the 

burned area (or size) of forest fires. They have conducted several experiments 

considering five data mining techniques including (multiple regression, Decision 

Trees, random forest, neural networks, and support vector machines), and four 

selection setup (using spatial, temporal, the fire weather index system and 

meteorological data). In their proposed solution they have used four weather 

variables (rain, wind, temperature and humidity) combined with SVM to predict the 

burned area of small fires, their method could be useful in fire management (e.g. 

resource planning). 

The methods we have seen in Decision Tree and rules work most with nominal 

attributes. They can be extended to numeric attributes either by incorporating 

numeric-value tests directly into the Decision Tree or rule-induction scheme or by 

pre-discretising numeric attributes into nominal ones.  We describe in detail the 

prediction algorithms that have been used in this thesis in the following sub-sections. 

2.5.2.1 Linear regression 

When the outcome or class is numeric, and all attributes are numeric, linear 

regression is a good technique to consider. 

The linear regression algorithm of WEKA (Wang & Witten, 1997) performs standard 

least squares regression to identify linear relations in the training data. This algorithm 

gives the best results when there is linear dependency among the data. It requires the 

input attributes and target class to be numeric and it does not allow missing attributes 

values. The algorithm calculates a regression equation to predict the output (x) for a 

set of input attributes/features a1, a2, ...., ak. The equation to calculate the output is 

expressed in the form of a linear combination of input attributes with each attribute 

associated with its respective weight w0, w1, ...., wk, where w1 is the weight of a1  and 
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a0 is always taken as the constant 1 (Witten, et al., 2005)  . The regression equation 

takes the form: 

                   

For our rain example the equation learned would take the form: 

        (     )  (     ) (      )  (      )  (     ) 

Once the math has been accomplished, the result is a set of numeric weights, based 

on the training data, which can be used to predict the class of new instances.  

2.5.2.2 M5P 

The M5P or M5Prime algorithm  (Wang & Witten, 1997) is a regression-

based Decision Tree algorithm, based on the M5 algorithm developed by (Quinlan, 

1992). M5P is developed using M5 with some additions made to it. We will first 

describe the M5 algorithm and then the features added to it in M5P. 

M5 builds a tree to predict numeric values for a given instance. The algorithm 

requires the output attribute to be numeric while the input attributes can be either 

discrete or continuous. A discrete attribute can be numeric (such as a number of 

birds) or categorical (such as the gender; male or female). For a given instance the 

tree is traversed from top to bottom until a leaf node is reached. At each node in the 

tree a decision is made to follow a particular branch based on a test condition on the 

attribute associated with that node. Each leaf has a linear regression model associated 

with it of the form:                   

 

 

 

 

 

 

 

 

Figure 2.10 A model tree for predicting rain in an audio recording 

The decision taken at a node is based on the test of the attributes mentioned at that node. Each 

model at a leaf takes the form                 where k is the number of input attributes. 
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Based on some of the input attributes a1,a2,.....,ak in the instance and whose 

respective weights w0,w1,....,wk are calculated using standard regression. As the leaf 

nodes contain a linear regression model to obtain the predicted output, the tree is 

called a model tree. When the M5 algorithm is applied on our rain example, the 

model tree generated will take a form as shown in Figure 2.10. 

To build a model tree, using the M5 algorithm, we start with a set of training 

instances. The tree is built using a divide-and-conquer method which works by 

recursively breaking down a problem into two or more sub-problems of the same (or 

related) type, until these become simple enough to be solved directly. The solutions 

to the sub-problems are then combined to give a solution to the original problem.  

At a node, starting with the root node, the instance set that reaches it is either 

associated with a leaf or a test condition is chosen that splits the instances into 

subsets based on the test outcome. A test is based on an attributes value, which is 

used to decide which branch to follow. There are many potential tests that can be 

used at a node. In M5 the test that maximizes the error reduction is used. For a test 

the expected error reduction is found using:  

         ( )  ∑
|  |

| |
     (  )

 

 

  

where S is the set of instance passed to the node, stdev (S) is its standard deviation, Si 

is the subset of S resulting from splitting at the node with the i
th

 outcome for the test. 

This process of creating new nodes is repeated until there are too few instances to 

proceed further or the variation in the output values in the instances that reach the 

node is small. 

Once the tree has been built, a linear model is constructed at each node. The 

linear model is a regression equation. The attributes used in the equation are those 

that are tested or are used in linear models in the sub-trees below this node. The 

attributes tested above this node are not used in the equation as their effect on 

predicting the output has already been captured in the tests done at the above nodes. 

The linear model built is further simplified by eliminating attributes in it. The 

attributes whose removal from the linear model leads to a reduction in the error are 

eliminated. The error is defined as the absolute difference between the output value 

predicted by the model and the actual output value seen for a given instance.  
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The tree built can take a complex form. The tree is pruned so as to make it 

simpler without losing the basic functionality. Starting from the bottom of the tree, 

the error is calculated for the linear model at each node. If the error for the linear 

model at a node is less than the model sub-tree below then the sub-tree for this node 

is pruned. In the case of missing values in training instances, M5P changes the 

expected error reduction equation to: 

    
 

| |
 [    ( )  ∑

|  |

| |
     (  )

  {   }

] 

where m is the number of instances without missing values for that attribute, S is the 

set of instances that reach this node. SL and SR are sets obtained from splitting on this 

attribute. 

2.5.2.3 RepTree 

RepTree builds a decision or regression tree using information gain/variance 

reduction and prunes it using reduced-error pruning. Optimised for speed, it only 

sorts values for numeric attributes once. It deals with missing values by splitting 

instances into pieces, as C4.5 algorithm does.  

You can set the minimum number of instances per leaf, the maximum tree 

depth (useful when boosting trees), the minimum proportion of training set variance 

for a split (numeric classes only), and number of folds for pruning. 

2.5.2.4 Multi-layer-perceptron 

A Multilayer Perceptron (MLP) (Bishop, 1995) is a neural network that is 

trained using back-propagation. Back-propagation is a supervised learning method 

where the algorithm works towards minimising the error between its output and the 

target. MLP consists of multiple layers of computational units that are connected in a 

feed-forward way forming a directed connection from lower units to a unit in a 

subsequent layer. The basic structure of MLP consists of an input layer, one or more 

hidden layers and one output layer. Units in the hidden layer are termed hidden as 

their output is used only in the network and is not seen outside the network. 

It is explained literature (Witten, et al., 2005) that it appears in practice that 

the back-propagation method leads to solutions in almost every case, although, the 
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error back-propagation method does not guarantee convergence to an optimal 

solution since local minima may exist. 

 MLP consist of multiple layers of computational units that are connected in a 

feed-forward way forming a directed connection from lower units to a unit in a 

subsequent layer. The basic structure of MLP consists of an input layer, one or more 

hidden layers and one output layer. Units in the hidden layer are termed hidden as 

their output is used only in the network and is not seen outside the network.  

2.5.2.5 Decision table 

Decision table builds a decision table majority classifier. It evaluates the 

feature subset using best-first search and can use cross-validation for evaluation 

(Kohavi, 1995). An option uses the nearest-neighbour method to determine the class 

for each instance that is not covered by a decision table entry, instead of the table’s 

global majority, based on the same set of features. 

2.5 EVALUATION METRICS 

2.5.1 Evaluating classification techniques 

It is very important to evaluate the performance of the classification algorithms 

that will be used in this research.  The following metrics can be used to evaluate the 

algorithms: True Positives (TP), True Negatives (TN), False Negatives (FN), False 

Positives (FP)  and F-score are defined followed the definition in the paper of 

(Picone, 1993):  

 TP: correctly recognized positives 

 TN: correctly recognized negatives 

 FN: positives recognized as negatives 

 FP: negatives recognized as positives  

 F-score is the mean of the precision and recall  

Precision and recall are two widely used statistical criteria. Precision can be 

seen as a measure of exactness or fidelity, whereas recall is a measure of 

completeness. They are defined in Table 2.2 (Olson & Delen, 2008). 
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Table 2.2 Metrics used to evaluate the performance of the classification algorithms. 

 

Performance Measures for Classification Algorithms 

            Precision                               
  

     
 

            Recall                                     
  

     
 

            Accuracy                          
                

 
                                                                 

            Fscore                                 
                  

                
 

 

 Confusion matrix is another well-known measure adopted in the literatures 

(Brandes, Naskrecki, & Figueroa, 2006; Giret, Roy, & Albert, 2011; Vaca-

Castaño & Rodriguez, 2010) to measure the confusion among different 

classes. In machine learning, a confusion matrix is a special table layout that 

allows the visualisation of the performance of an algorithm, typically 

supervised one where the class is predefined. Each column of the matrix 

represents the instance in a predicted class, while each row represents the 

instance in an actual class. 

2.5.2 Evaluating numeric predictions  

Several measures are used to evaluate the numeric predictions (Witten, et al., 

2005) and some of them are summarised in Table 2.3. 

The predicted values on the test instances are:          ; the actual values are 

        . Notice that    refers to the numerical value of the prediction for the test 

instance    . 
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Table 2.3 Measures used for the evaluation of numeric predictions. 

 

Performance Measures for Numeric Predictions 

Mean-squared error                                    
(     )

    (     )
 

 
 

Root mean-squared error  (RMSE)          √
(     )

    (     )
 

 
 

Mean-absolute error (MAE)                       
|     |   |     |

 
  

Relative-squared error                                
(     )

   (     )
 

(    ̅)
    (    ̅)

  

Root relative-squared error                     √
(     )

   (     )
 

(    ̅)
    (    ̅)

   

Relative-absolute error                             
|     |   |     |

|    ̅|   |    ̅|
    

Correlation coefficient (R2)                       
   

√    
, where      

∑ (    ̅)(    ̅) 

   
, 

                                                                           
∑ (    ̅)

 
 

   
 ,     

∑ (    ̅)
 

 

   
 

Here,  ̅ is the mean value over the training data.  
Here,  ̅  is the mean value over the test data. 

 

2.6 SUMMARY  

This Chapter first reviewed the literature on sound classification. The 

classification process relies on three steps which are pre-processing, feature 

extraction and classification. Many studies have been conducted on these tasks and 

researchers are attempting to explore new and effective algorithms or tools for 

specific applications.   

First of all, pre-processing is an important step in the early stage. It mainly 

covers two main tasks, signal processing and noise removal. Signal processing is a 

necessary task in this step for almost all classification processes. Thus, we will also 

pre-process the data used in our study. Feature extraction is a significant task which 

aims to reduce the original data into a small amount of feature vectors, and these 

features should be sufficient to discriminate different type of classes. Basically, four 

types of classification algorithms are summarized in Section 2.4.1, and five types of 
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prediction algorithms are summarized in Section 2.4.2. Each algorithm has its own 

advantages and disadvantages depending on the application.  We tested all these 

algorithms in our experiments in order to find out the most suitable ones for the 

problem considered in this research. 

We have summarized many studies on environmental sound classification, 

using different combination of features, different classes of environmental sounds 

and different combinations of features. However, there is no existing research that 

has investigated rain classification or prediction via acoustic analysis. In our work, 

we explore the new application of set of features used widely in environment 

monitoring: acoustic complexity index (ACI), temporal entropy (Ht), spectral 

entropy (Hf), background noise (BgN), and spectral cover (SC) for the detection of 

rain in acoustic recordings of the environment. The combination of these features 

hasn’t been investigated in previous works for rain classification or prediction. 
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Chapter 3: Research Plan 

This Chapter describes the design adopted by this research to achieve the aims 

and objectives stated in Section 1.3 of Chapter 1. Section 3.1 outlines the 

methodology used in the study, the stages by which the methodology was 

implemented, and the research design; Section 3.2 presents the procedure used in the 

study; Section 3.3 describes the preparation of different datasets; Section 3.4 

discusses feature extraction; Section 3.5 gives classifier selection; and finally Section 

3.6 describes the software tools used in this research.  

3.1 METHODOLOGY AND RESEARCH PLAN  

This Section outlines the specific research tasks for this research project in 

order to address the research questions outlined in Section 1.3. The research will rely 

on: selecting audio data, extracting useful features, exploring different machine 

learning techniques in classifying the content of acoustic recording based on the 

feature set extracted, and evaluating the performance of the classification system 

using different metrics. 

3.1.1 Procedures and approaches 

This research aims to detect and classify different types of environmental 

sounds using audio data directly collected from the field. It is composed of four main 

tasks: dataset preparation, feature extraction, classification and regression.  

Collecting sounds from the wild and analysing these sounds properly is 

important in environmental monitoring.  The first part of this research will focus on 

the classification of these environmental sounds (rain, cicadas, silence, animal 

sounds) using different machine learning algorithms (classification algorithms). The 

second part of this research is to explore different machine learning algorithms 

(regression algorithms) in detecting rain in acoustic recordings of the environment. 

The proposed research will address the research questions outlined in Section 1.3 and 

follow an iterative and incremental methodology. The basic classification and 

regression processes are shown in Figure 3.1. 
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Figure 3.1 Flow chart of the classification and regression processes 

 

This research uses an existing environmental dataset. However, the dataset 

needs to be pre-processed so that it can be used for evaluating the classification 

algorithms. In the first phase, the data collection is pre-processed, followed by audio 

features selection in the second phase. The third phase consisted of choosing a set of 

classification algorithms which use the extracted features (inputs for the algorithm) 

to select the class of the sound (outputs of the algorithm). Finally, the developed 

system is evaluated using some metrics and the results are used to refine and improve 

the feature selection and classification algorithms. 

3.1.2 Hardware for data collection 

Recordings were obtained using custom-developed acoustic sensors  (Wimmer, 

Towsey, Planitz, Roe, & Williamson, 2010). The recording equipment consisted of 

Olympus DM-420 (Olympus, Pennsylvania, USA) digital recorders and external 

omni-directional electret microphones. Data were stored internally in stereo MP3 

format (128 kbits/s, 22.05 kHz) on high capacity 32 GB Secure Digital memory 

cards. The units were stored in weatherproof cases and powered by four D cell 

Dataset preparation: 
Short audio recordings 

Features extraction 

Classification 

Evaluation  

 

Regression 

Dataset preparation: 
Long audio recording (24h) 

Features extraction 

Pre-processing (noise 
removal) 

Pre-processing (noise 
removal) 
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batteries, providing up to 20 days of continuous recording. Although MP3 is a lossy 

format, it is designed to reproduce sound accurately for the human ear. 

3.2 DATA SETS PREPARATION 

3.2.1 Description of heavy rain  

Rain in the spectrogram is seen as vertical lines, and often occupies the whole 

frequency band. When listening to the audio recording, heavy rain can be easily 

differentiated by human ear from other present sounds.  

3.2.2 Signal acquisition 

Signals were acquired using an acoustic data logger configured for continuous 

recording over 24 hours (Wimmer, et al., 2010). All recordings were sampled at 

22,050 Hz and a bit rate of 16. Long recordings were subsequently split into one 

minute segments. The signal is framed using a window of 256 samples (11.6ms) 

which offers a reasonable compromise between time and frequency resolution. A 

Hamming window function is applied to each frame prior to performing a Fast 

Fourier Transform (FFT), which yields amplitude values for 128 frequency bins, 

each spanning 86.13 Hz. A spectrogram is formed after FFT. Each pixel represents 

one frame covering 256 samples and one frequency bin spanning 86.13 Hz. 

3.3 DATA SETS SELECTION 

We have selected two different datasets: dataset A and dataset B. 

3.3. 1 Dataset A (manual segments labelling)  

Dataset A is used for the classification problems. Recordings were obtained by use of 

acoustic sensors from the Samford Ecological Research Facility (SERF) in bush-land 

on the outskirts of Brisbane city, Queensland, Australia. To make Dataset A more 

realistic, the recordings were selected from a wide variety of different sites, different 

days, and different time in the day (precisely 33 days and four sites in SERF). We 

used an audio browser which uses acoustic indices developed by Towsey (2012b) to 

scan through each of  the 24 hour recordings to find segments of interest. Interesting 

segments were examined in Audacity, which allowed for aural and visual inspection 

of the signal. Dataset A contains 998 five seconds-long segments. Five seconds were 

chosen empirically (based on observed patterns of rain starting and stopping) as the 
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classification resolution for this experiment. Each segment is manually labeled into 

one of seven classes: heavy rain, cicada chorus, bird calls, frog calls, koala bellow, 

light rain, and low-activity (night time/silence). Table 1 shows the composition of the 

Dataset A. 

   When inspecting the dataset, classes were created to discriminate between the 

types of acoustic data that were observed. For example most of the recordings 

include cicada choruses which are continuous (much like rain) but have different 

acoustic properties in the time-frequency domain. Rain presents as two different 

visual features in a spectrogram: The first, a general increase in background noise is 

produced by rain. The second distinct feature seen is vertical broadband lines on the 

spectrograms – these are percussive drops on the audio senor’s housing. Cicadas 

occupy a certain frequency band between 2kHz and 4kHz. Birds occupy a different 

frequency band and different species have different call structures. The acoustic 

Entropy feature can describe this information and constitutes the main feature for 

classifying these classes.  While labeling the training data for rain events, other 

acoustic classes were also labeled, originally to assist in explaining the classification 

results. Additionally labeled events include periods of night-time/silence/low activity. 

Table 3.1 Composition of Dataset A. 

 

Classes Count 

Dataset A.1 Dataset A.2 Dataset A.3 

2 Class-problem 3 Class-problem 4 Class-problem 

Heavy rain 244 1 1 1 

Cicada chorus 193 

2 

2 2 

Bird calls 483 

3 

3 Frog calls 16 

Koala bellow 2 

Light rain 17 
4 

Low-activity 43 

Total 998 244/754 244/193/561 244/193/501/60 

 

This part describes the construction of the different datasets. In total we 

constructed three datasets (83minutes each), as shown in Table 3.1.  

1) For the binary classification (Dataset A.1), we split the data into two 

classes: class1 (heavy rain), class2 (cicada chorus, bird calls, frog calls, 

koala bellow, light rain, night silence). 
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2) For the multi-class problem, we used tow datasets: 

 Dataset A.2 contains three classes: class1 (heavy rain), class2 (cicada 

chorus), and class3 (bird calls, frog calls, koala below, light rain, night 

silence).   

 

 

 

 

 

 

 Dataset A.3 contains four classes: class1 (heavy rain), class2 (cicada chorus), 

class3/animal sounds (bird calls, frog calls, and koala below), and class4 (light 

rain, night silence). 

 

 

 

 

 

 

3. 3.2 Dataset B (long audio recording) 

Dataset B is used for the regression technique quantitative prediction of 

rainfall.  

Dataset 
A.3 

Class1 (Heavy rain) Class2 (cicadas) Class3 (birds, frogs, 
koalas) 

Class4 (light rain 
and night silence) 

Dataset 
A.1 

Class1 (Heavy rain) Class2 (cicadas, birds, frogs, 
koalas, light rain and night silence) 

Dataset 
A.2 

Class1 (Heavy rain) Class2 (cicadas) Class3 (birds, frogs, koalas, light 
rain and night silence) 
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Dateset B is a 24-hour MP3 recording derived from north east of SERF (core 

vegetation plot site), on the 13th April 2013. Figure.2 is a false-color spectrogram of 

a 24-hour recording obtained using the method described by Towsey et al., (2014). 

The x-axis extends from midnight to midnight. Since the x-axis scale is one pixel-

column per minute, a greater than 2000x compression is achieved over the standard 

spectrogram. Note that the frequency scale is unchanged. The bottom image in 

Figure 3.2 is a grey-scale representation of the content of the environment of that 

particular day. The image shows that the source audio does not only contain rain, but 

also contain crickets, as well as other faunal vocalizations. 

 

 

 

 

 

Figure 3.2 Visualization of 24-hour long duration acoustic recordings of the 

environment. 

 

The steps taken to prepare the dataset B are summarized in Figure 3.3: 
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Figure 3.3 Flowchart for 24-hour long data preparation. 
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3. 3.4 Test dataset 

To test the usefulness of trained classifier on real world rainfall data, rainfall 

values were obtained from the weather station at SERF. Rainfall was measured at 

mm resolution over intervals of 5min. 

3.4 FEATURE EXTRACTION 

The general aim of feature extraction is to reduce the original audio data into a 

compressed amount of feature vectors. Selected features should provide 

characteristic information about a signal so that similar signals will be grouped 

together, and the dissimilar ones will be in difference class. A wide range of features 

have been explored for sounds classification. Basically they can be derived from 

either time domain or frequency domain.  

As discussed in Section 2.1.8, a large amount of features has been used in 

classifying environmental sounds.  For our purpose, we choose and extract five 

features for environmental sounds: acoustic entropy (H) for which we calculated 

spectral and temporal entropy (Hf, Ht) respectively, acoustic complexity index (ACI), 

background noise (BgN) and spectral cover (SC). These features were chosen 

because previous authors have shown that they are useful for discriminating acoustic 

activity due to biological sources  (Michael Towsey, Parsons, & Sueur, 2014). 

The features extracted are described in the following paragraph. 

A) The Temporal Entropy Index Ht and the Spectral Entropy Index Hf  are 

computed following their definitions in (Sueur, et al., 2008) : 

    ∑ ( )  

 

   

   
 
 ( ( ))     

 
( )   

    ∑  ( )    
 

 

   

( ( ))    
 
( )   

where n is the length of the signal in number of digitized points; A(t) is the 

probability mass function of the amplitude envelope; and S(f) is the probability mass 

function of the mean spectrum calculated using a short term Fourier transform 

(STFT) along the signal with non-overlapping Hamming window of N=512 points. 
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The following examples illustrate the temporal and spectral entropies: 

 Temporal Entropy (Ht): The acoustic energy is spread along the recording. 

Hence, the temporal entropy is high. Example: the spectrogram of a cicada 

which can be found in Section 2.2.1, Figure 2.6 (b) is a good illustration 

Spectral Entropy (Hf): The acoustic energy is concentrated in a certain 

frequency band. Example: the spectrum of a cicada which can be found in 

Section 2.2.1, Figure 2.6 (c) is a good example. 

B) The Acoustic Complexity Index (ACI) is based on the assumption that bird 

sounds are characterized by having a great change in the intensity, even in short 

period of time and in a single frequency bin. However, environmental sounds have 

smaller changes in intensity values, which means the difference in the intensity 

values between two successive frames t and t+1 is small. For noise like wind, rain, 

airplane, the change in the intensity is not that much; the variation in the intensity is 

approximately constant. Therefore, the ACI for these sounds is low. From this 

hypothesis, ACI might be a good discriminator for rain/non-heavy rain. Therefore, 

we choose ACI as one of the main features for rain/non-heavy rain classification.  

C) The Background Noise (BgN) is estimated from the wave envelope using a 

modification of the method of (Lamel, et al., 1981) as described by (M. Towsey, 

2012b) (the value is expressed in amplitude). Note that the term background noise 

has a technical definition. It is the acoustic energy removed using the method of 

Lamel.  

D) The Spectral Cover (SC) calculates the fraction of spectrogram cells where 

the spectral amplitude exceeds a threshold theta=0.015 (M. Towsey, 2012b). The 

suitability of this threshold was determined by trial and error. 

3.5 CLASSIFIERS SELECTION 

In this research we have investigated multiple classification algorithms for the 

environmental sound classification problem. These algorithms are namely: Decision 

Tree, Support Vector Machines, Naives Bayes and K-Nearest Neighbour. 

We also investigated a variety of regression algorithms for the prediction of 

rain in a long audio recording. These algorithms are namely: M5P which is a 

Decision Tree for numeric predictions, Multilayer Perceptron, Linear Regression, 
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decision Table and RepTree. Each algorithm has its advantages and disadvantages 

depending on the application. In our case we investigated different classification and 

regression algorithms to find out which techniques work well for our problem. We 

selected Decision Tree to be our classifier because DT is a fast learner and it gives 

explicit rule set so we can see which features are important.  

3.6 SOFTWARE TOOLS 

This research requires WEKA (Waikato Environment for Knowledge 

Analysis) software which is a collection of machine learning algorithms written in 

Java for data mining tasks. Weka contains tools for data pre-processing, 

classification, regression, clustering, association rules, and visualization. For most of 

the tests, the explorer mode of WEKA is used.  

We used R programming language to implement the algorithms for features 

extraction. The R language is widely used in statistics, data analysis and data mining. 

Seewave package for sound analysis is used widely in this study. Seewave provides 

functions for analysing, manipulating, displaying, editing and synthesizing time 

waves (particularly sound). This package processes time analysis (oscillograms and 

envelopes), spectral content, resonance quality factor, entropy, cross correlation and 

autocorrelation, zero-crossing, dominant frequency, analytic signal, frequency 

coherence, 2D and 3D spectrograms and many other analyses. 
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Chapter 4: Experiments and Discussion 

Our work is concerned with the classification and prediction of rain in 

environmental recordings. We present the novel application of a set of features for 

environmental acoustics classification: acoustic entropy (H), acoustic complexity 

index (ACI), spectral cover (SC) and background noise (BgN). In order to improve 

the performance of the rain classification system, we have investigated different 

classifiers use the Decision Tree classifier to automatically classify the 

environmental sounds into different classes and we compare its performance with 

other classifiers. The experimental results show that our system is effective in 

classifying the environmental sounds with an accuracy rate of 93% for the two class 

classification (heavy-rain/non-heavy rain). 

The previous Chapter discussed the construction of the different datasets, 

followed by the feature extraction and feature selection. The target of this Chapter is 

to introduce six series of experiments.  

4.1 EXPERIMENT 1: BINARY CLASSIFICATION 

The heavy rain events were classified by C4.5 Decision Tree (DT) classifier 

(J48 in Weka). The Dataset A.1 contained 244 recordings of heavy rain and 754 of 

non-heavy rain (cicadas, birds, koalas, frogs, low activity, and light rain). We 

performed 10 fold-cross validation on the data. To measure the classification 

accuracy, we used three measures: precision, recall and accuracy. Precision is 

defined as    (     ), recall as    (     ) and accuracy as (   

  )              , where TP, FP, TN, FN are true positive, false positive, true 

negative, and false negative respectively. The DT classifier was compared with three 

other classifiers: Naive Bayes, Lazy IBK (   ), and SMO. The purpose of this 

experiment is to find the best algorithm and the best feature set or combination of 

features. We run experiments that use different combinations of features and 

different classifiers to classify environmental sounds into two classes as shown in 

Table 3.1 (Dataset A.1). 
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Table 4.1 provides a summary of the results that we received from each algorithm for 

the two classes (heavy rain/non-heavy rain). It can be observed that the average 

classification accuracy of the Ht+Hf+ACI+BgN+SC features is the best. We noticed 

that combining only temporal and spectral entropy produces low classification 

accuracy in differentiating the classes. It is noticeable that combining more than two 

features increases the accuracy rate. From Table 4.1, we can see also that DT and 

lazy IBK perform better than the other algorithms. Despite similar performance 

between IBK and DT, we conclude that a DT is the best classifier because the 

classification rules are easily extracted and repurposed. The Ht+Hf+ACI+BgN+SC is 

the best feature set in our experiment. The classification accuracy achieved is 93%. 

Table 4.1 Total accuracy rate of Dataset A.1 using different types of classifiers and 

features. 
Feature Type 

 

Accuracy Rate (%) Average over  

4 classifiers NB IBK SMO DT 

Hf 77 82 76 88 80.75 

Ht 76 72 76 76 75 

ACI 89 81 88 89 86.75 

BgN 77 71 76 78 75.5 

SC 83 76 84 84 81.75 

Ht+Hf 89 84 76 88 85 

ACI+BgN 89 89 90 90 89.5 

Hf+Ht+ACI 91 90 91 92 91 

Hf+Ht+BgN 77 87 78 91 83.25 

Hf+Ht+SC 84 85 85 89 85.75 

ACI+BgN+SC 91 91 92 92 91.5 

Ht+Hf +ACI+BgN 90 92 91 92 91.25 

Ht+Hf +ACI+BgN+SC 91 93 92 93 92.25 

 

 

Figure 4.1 The relationship between two features in classifying the Dataset A.1 

(two-class-problem) with a Decision Tree classifier. 
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 Figure 4.1 shows the strong relationship between two features namely: acoustic 

complexity index (ACI) and temporal entropy (Ht) in distinguishing the two class 

heavy-rain/non-heavy rain (binary classification). It is apparent that a linear function 

can split the majority of instances into two classes. 

For evaluation of our binary classification system, we compared spectral 

feature set (ACI, Hf, BgN and SC) with the most feature used in audio classification, 

which is MFCCs feature.  

4.1.1. Experiment A: Exploration of spectral features for binary classification 

(heavy-rain/non-heavy rain) 

In Experiment 1 the features (ACI, Ht, Hf, BgN and SC) were calculated for each 

frequency bin and the average was taken over all the 256 frequency bins. In this 

experiment we calculate the average of each 16 frequency Bins for the spectral 

features namely: Hf, ACI, BgN, and SC; which means each feature will have 16 

values. The purpose of this experiment is to find the best classifier and the best 

feature set. We run experiments that use different combinations of features and 

different classifiers to classify environmental sounds into two classes as shown in 

Table 4.2. 

Table 4.2 Total accuracy rate of Dataset A.1 using different types of classifiers and 

spectral features (Experiment A). 

 
Feature Type 

 

Accuracy Rate (%) Average over  

4 classifiers NB  IBK(k=1) SMO DT 

Hf feature set 92 97 92 93 93.5 

ACI feature set  91 95 92 93 92.75 

BgN feature set  85 95 89 92 90.25 

SC feature set  84 93 86 91 88.5 

Hf+ACI 92 97 93 94 94 

Hf+BgN 93 97 95 94 94.75 

Hf+SC 91 96 94 94 93.75 

(Hf+ACI+BgN) feature set=>F1 92 98 95 95 95 

(Hf+ACI +SC) feature set 91 97 94 93 93.75 

(Hf+BgN+SC) feature set 92 97 96 94 94.75 

F1+SC feature set 91 97 96 94 94.5 

(Hf+ACI+BgN+SC)feature set=>F2 91 97 96 94 94.5 

 

From this table we can see that IB1 classifier gives the best accuracy rate for 

the classification with 98%, and the Hf+ACI+BgN is the best scoring feature set with 
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average accuracy rate of 95%. We can conclude that adding SC feature set to feature 

set F1 didn’t change the accuracy rate of the classification (F2 feature set). 

We also noticed an important difference between the results shown in Table 

4.1 and Table 4.2: that cutting down the spectra from 256 to 16 increases the 

accuracy of the classification.  

4.1.2. Experiment B: Exploration of the combination of spectral features with 

MFCC features for binary classification (heavy-rain/non-heavy rain) 

In this experiment we calculate the average of each 16 frequency Bins for the 

spectral features namely: Hf, ACI, BgN, and SC. Also we calculated 12 coefficients 

for MFFCs. The purpose of this experiment is to combine spectral features with 

MFFCs features to find the best classifier and the best feature set. We run 

experiments that use different combinations of features and different classifiers to 

classify environmental sounds into two classes. The results of this experiment are 

summarised in Table 4.3. 

Table 4.3 Total accuracy rate of Dataset A.1 using different types of classifiers, 

different spectral features, and MFCCs (Experiment B). 

  
Feature Type 

 

Accuracy Rate (%) Average over 

4 classifiers  NB IBK(k=1) SMO DT 

MFCCs feature set 90 98 93 95 94 

(MFCCs+Hf) feature set 94 99 97 95 96.25 

(MFCCs+ACI) feature set 93 99 96 95 95.75 

(MFCCs+BgN) feature set 89 98 94 94 93.75 

(MFCCs+SC) feature set 88 98 94 94 93.5 

MFCCs+Hf+ACI 93 99 97 95 96 

MFCCs+Hf+BgN 93 98 98 94 95.75 

MFCCs+ACI+BgN 93 98 96 95 95.5 

MFCCs+ACI+SC 91 99 97 96 95.75 

MFCCs+BgN+SC 88 98 96 95 94.25 

MFCCs+Hf+ACI+BgN 93 98 97 96 96 

MFCCs+Hf+ACI+BgN+SC 92 98 98 95 95.75 

 

Table 4.3 shows the classification rates for the heavy-rain/non-heavy rain classes 

using the combination of spectral features (Hf, ACI, BgN and SC) with MFCCs, and 

obtained by the classifiers: NB, SMO, IBk and DT. Clearly all the classifiers 

generate good results, we noticed that IBk classifier presents the highest accuracy 

rate with 99% and MFCCs+Hf+ACI is the best scoring feature set with average 

accuracy rate of 96%. We can notice that BgN and SC feature set didn’t change the 
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accuracy rate when combined with MFCCs+Hf+ACI feature set. The use of the 

feature set (Hf+ACI) and MFCCs are complementary. 

4.2 EXPERIMENT 2: MULTI-CLASS CLASSIFICATION 

The purpose of this experiment is to determine whether the feature set 

ACI+Ht+ Hf+BgN+SC can be used to distinguish other common sounds in 

environmental recordings (such as cicadas, animal sounds in general and heavy 

rain). Note that the features were calculated for each frequency bin and the average 

was taken over all the 256 frequency bins. To further understand the classification 

performance, we show results in the form of a confusion matrix, which allows us to 

observe the degree of confusion among different classes. 

Table 4.4 Confusion matrix for Dataset A.2 (3 class-problem) using Decision 

Tree classifier. 

 

 Animal sounds Heavy rain Cicadas 

Animal sounds 495 22 48 

Heavy rain 43 194 7 

Cicadas 40 5 144 

 

Table 4.5 Confusion matrix for Dataset A.3 (4 class-problem) using Decision Tree 

classifier. 

 

 Animal sounds others Heavy rain Cicadas 

Animal sounds 450 7 13 30 

others 16 41 0 4 

Heavy rain 48 0 194 2 

Cicadas 23 9 5 156 

 

A
ct

u
a
l 

cl
a
ss

 

A
ct

u
a
l 

cl
a
ss

 

Predicted as 

Predicted as 



56 

 

The confusion matrix given in Table 4.4 and Table 4.5 are constructed by applying 

the DT classifier to the Dataset A.2 (3 class-problem) and Dataset A.3 (4 class-

problem) respectively; and displaying the number of correctly/incorrectly classified 

instances. 

From Table 4.4 and Table 4.5, we can notice that the major misclassified instances 

are between “heavy rain”, “birds” and “cicadas”. The reasons lie in the fact that some 

bird calls have similar call structure as heavy rain (Figure 4.2) and some of the bird 

calls have similar call structure as cicadas (Figure 4.3). 

 

 

 

Figure 4.2 Five seconds audio segment labeled as “bird” but classified as “heavy 

rain”. 

 

        

  

 

Figure 4.3 Five seconds audio segment labeled as “cicada” but classified as “bird”. 

 

 

Waveform of bird call Spectrogram of bird call Spectrogram of heavy rain 
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The following figure shows the plot of four different classes using Decision 

Tree classifier. It is clear that our feature set is capable between the different classes. 

 
 

Figure 4.4 The relationship between two features in classifying the Dataset A.3 

(multi-class-problem) with a Decision Tree classifier. 
 

From this Figure 4.4, we can clearly see clearly that heavy rain class is easily 

differentiable from other classes. 

 

4.3 EXPERIMENT 3: COMBINATION OF MULTIPLE CLASSIFIERS FOR 

DATASET A.3 (FOUR CLASS PROBLEM) 

The purpose of this experiment is to combine multiple classifiers instead of one 

single classifier (as in Experiment 1) and find the best combination. The advantage 

of using a combination of multiple classifiers is that instead of one single classifier 

algorithm’s power we used three/four classification algorithm’s power; so the model 

induced by combining these multiple classifiers will be more reliable/correct or more 

sophisticated to identify/classify instances from the cross-fold validation set. We 

used the “vote classifier” to combine different classifiers.  

Table 4.6 Total accuracy rate obtained from the combination of multiple classifiers 

for Dataset A.3. 
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 Ht+Hf Ht+Hf 

+ACI 

Ht+Hf+BgN ACI+BgN+ 

SC 

Ht+Hf+ACI+ 

BgN 

Ht+Hf+ACI+ 

BgN+ 

SC 

NB+DT 75.85 75.05 76.96 76.36 80.36 83.47 

IB1+DT 69.83 75.55 76.45 75.85 83.67 85.27 

SMO+DT 73.94 80.26 78.46 77.36 83.47 84.77 

SMO+ 

IB1+DT 

72.34 79.36 77.86 78.96 84.27 86.38 

SMO+DT+ 

IB1+NB 

73.84 79.76 79.06 79.56 85.87 86.68 

 

From this table we notice that the combination of the different classifiers: 

SMO+DT+IB1+NB and the combination of different features: 

Ht+Hf+ACI+BgN+SC give the best accuracy rate of 86.68%. 

4.4 EXPERIMENT 4: DETECTION OF RAIN IN THE 24-HOUR LONG 

AUDIO RECORDING 

The aim of this experiment is to show the ability of regression techniques in 

predicting rain in the 24-hour long recording. We first split the 24-hour recording 

into one minute audio which yields to 1440 minutes, we further cut each one minute 

into five seconds, in total (             ) of five seconds segments. We 

extracted five features (the same features used in the Experiment 1) from each five 

seconds of audio, and then we averaged the feature values to produce five minutes 

blocks. This is done so the weather data, which has a five-minute resolution (287 

instances); can be directly used as ground truth data. We have explored a variety of 

prediction techniques in Weka, specifically: M5P, linear regression, RepTree, Multi-

layer-perecptron, and Decision table.  

Weka provides a variety of error measures, which are based on the 

differences between the actual and estimated values. Three measures were selected 

for comparison: correlation coefficients (R
2
), mean absolute error (MAE), and root 

mean square error (RMSE), which can be computed as follow: 

MAE and RMSE are regularly used as standard statistical metric to measure the 

model performance, lower values result in better predictive models. 

 The correlation coefficient measures the degree of correlation between the actual 

and estimated values. Table 3 summarizes three different statistical measures 

(MAE, RMSE and coefficient correlation) for the different algorithms using 10 

fold cross-validation. 
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M5P proved the best results in our case (Table 4.7) because of the nature of 

the problem considered as well as the type of data we are using. M5P is a Decision 

Tree for numeric prediction that stores a linear regression at each leaf to predict the 

class value of instances that reach that leaf. When the class attributes is numeric, 

M5P is found to be a good technique to handle such situations. In our case, the class 

attribute represents the amount of rain in mm over five minute periods; therefore, 

M5P is more suited for this problem than other techniques.  

Table 4.7  Correlation coefficients between actual and predicted rain, MAE and 

RMSE. 
 

Algorithms Correlation 

coefficients 

MAE RMSE 

M5P 0.78 0.07 0.14 

LR 0.75 0.08 0.15 

RepTree 0.68 0.08 0.17 

MLP 0.67 0.11 0.19 

DTB 0.69 0.07 0.17 

 

The M5P tree model developed with 10 fold cross-validation was realized to be the 

best model that predicted rain in the 24h-recording with RMSE of 0.14, and a 

correlation coefficient of the measured and predicted rain of 0.78. 

We present an example of the predictor we obtained for Rain using M5P; it can be 

seen that background noise was used by M5P as the main feature.  
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M5 pruned model tree: 

(using smoothed linear models) 

BgN.mean.vect <= 0.096 : LM1 (114/0%) 

BgN.mean.vect >  0.096 :  

|   BgN.mean.vect <= 0.236 : LM2 (112/36.832%) 

|   BgN.mean.vect >  0.236 : LM3 (61/111.638%) 

 

LM num: 1 

Rain =  

 -0.2039 * Ht.mean.vect  

 + 0.3176 * Hf.mean.vect  

 + 0.3064 * aci.mean.vect  

 + 0.1899 * BgN.mean.vect  

 - 53.8624 * cover.mean.vect  

 - 0.2406 

LM num: 2 

Rain =  

 -0.1399 * Ht.mean.vect  

 + 2.1356 * Hf.mean.vect  

 + 2.7744 * aci.mean.vect  

 + 0.3232 * BgN.mean.vect  

 - 87.622 * cover.mean.vect  

 - 3.0552 

LM num: 3 

Rain =  

 -0.1399 * Ht.mean.vect  

 + 13.1186 * Hf.mean.vect  

 + 13.7958 * aci.mean.vect  

 + 2.0925 * BgN.mean.vect  

 - 121.6197 * cover.mean.vect  

 - 18.6741 

Number of Rules: 3 
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Figure 4.5 An example for rain prediction using M5P. 

 

 

Figure 4.3 illustrates the power of the M5P algorithm in estimating rain 

amount in a 24h-long recording. The red series represents the M5P estimates while 

the black series is the ground truth (actual rain amount from weather station data). It 

can be seen that the M5P’s predictions correspond well with the ground truth data. 

We conclude that M5P is the best algorithm for this experiment, whereas 

MLP algorithm presents the poorest result with correlation coefficient of the 

measured and predicted rain of 0.67.  
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Chapter 5: Conclusions and future work 

This thesis has described the application of a new set of features for 

environmental sounds classification. In order to get a better accuracy rate, we 

explored different combination of features and applied different machine learning 

algorithms to the data.  

This chapter summarises the work presented, discusses the significance of the 

research outcomes and illustrates possible directions for future work. 

5.1 SUMMARY OF CONTRIBUTIONS 

This thesis has made the following contributions to the environmental sounds 

classification. 

We have presented an environmental sound classification system using five 

features and the Decision Tree classifier. Our comparison experiments show that the 

method presented is promising. The combination of five features provides better 

classification performance than using two features.  

  Another aim of this study was to show the ability of regression techniques in 

predicting rain in 24-hour long audio recordings collected by sensors in the field. 

The results showed that M5P has better predictability than the other techniques. Such 

a prediction tool could prove useful when ecologists are interested in analysing 

acoustic audio data, especially when the target fauna – such as many Anuran species 

have a vocalising relationship with rain events. 

 The major aim of this work was to classify environmental sounds into 

different type of classes using recordings directly collected from the field.  

  In this work, we have explored different features (Acoustic complexity 

index, spectral entropy, temporal entropy, background noise and spectral 

cover) used generally for environmental monitoring but not previously 

evaluated on rain detection in audio recordings; and propose the application 

of these features to discriminate different classes of environmental sounds.  
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 We have used a variety of machine learning algorithms such as classification 

algorithms (e.g., J48 Decision Tree, Support vector machines, Naive Bayes, 

and Lazy classifier), regression algorithms (e.g., Linear Regression, M5P, 

RepTree, MultiLayer Perceptron, and Decision table) to predict rain. The 

effectiveness and accuracy of these algorithms in predicting rain was 

analysed. 

 We have used the same feature set (Ht, Hf, ACI, BgN and SC) as in the 

binary classification and explored different regression algorithms to predict 

rain in long audio recordings (24h long). 

 Our features work well in differentiating heavy rain from non-heavy rain . 

The accuracy rate achieved in the two class-problems was 93%.  Even more, 

our feature set is good enough to predict rain in long audio recordings. 

5.2 LIMITATIONS 

Although our classification system including the feature set, the different 

machine learning techniques (classification and regression) show promising 

detection ability of rain in audio recordings. However, there are some limitations: 

 In the classification part, we have used audio recordings collected by 

sensors, these recordings are from different days, different times of day 

and from different sites at (SERF) in Queensland. However, the quality 

of acoustic recordings might be different if they were collected using 

different type of sensors and collected under different climate 

conditions. The audio recordings format is MP3 format which is 

designed to reproduce sound accurately for the human ear and has been 

found suitable for identifying bird calls (Rempel et al 2005). However 

we have not investigated the effect that MP3 compression might or 

might not have on the detection of rain in acoustic recordings. 

 The present study has explored a variety of classification and prediction 

algorithm to detect and classify the content of audio recordings. 

Although the experiments showed that these classification techniques 

are good in classifying the content of acoustic recordings based on the 
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extracted features, some of the used features are suitable to represent a 

particular class and not for others.  

 

5.3 FUTURE WORK 

This research aims to investigate classification techniques that predict rain in large 

datasets of audio collected by acoustic sensors. 

 

The research can be extended to overcome the identified limitations. Several 

interesting directions seem promising for improving the current techniques. 

First, future research can develop robust noise removal algorithms to enhance the 

accuracy of the classification/regression techniques. A noise removal algorithm plays 

an important role in the preprocessing phase of audio recordings. 

 

Second, our technique has been tested on a small dataset, in future work this 

technique could be applied to much larger datasets weeks, months and years in order 

to predict rain in audio recordings. 
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APPENDIX  

Using WEKA 

 

WEKA is a collection of machine learning algorithms for Data Mining tasks. It 

contains tools for data preprocessing, classification, regression, clustering, 

association rules, and visualization. WEKA has four different modes to work on: 

 Simple CLI: it provides a simple command-line interface that allows direct 

execution of WEKA commands. 

 Explorer: it is an environment for exploring data with WEKA. 

 Experimenter: it is an environment for performing experiments and 

conduction of statistical tests between learning schemes. 

 Knowledge Flow: it presents a “data-flow” inspired interface to WEKA. The 

user can select WEKA components from tool bar, place them on a layout 

canvas and connect them together in order to form a “knowledge flow” for 

processing and analyzing data.  

WEKA requires the data in the train/test file to be in ARFF format. The general 

format of an ARFF file is given in Table B1. The string @relation is used to mention 

the name of the dataset, @attribute is used to define the attributes name and type and 

@data is used to indicate the start of the data, which is in a comma-separated form. 

Following are the classifier_path for the machine learning algorithms that were used 

in this thesis along with their default options (classifier_options) 
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Table I: Format of an ARFF file. 

 
@relation 2ClassProblem 

 

@attribute temporal.entropy numeric 

@attribute spectral.entropy numeric 

@attribute ACIndex numeric 

@attribute BgNAverage numeric 

@attribute CoverAv numeric 

@attribute twoClasses (Onyari & Ilunga, 2010) 

 

@data 

0.959244,0.908879,0.598785,0.008447,0.147272,NoRain 

0.966025,0.910884,0.617509,0.008517,0.054524,NoRain 

0.977061,0.900393,0.598504,0.009731,0.031368,NoRain... 
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Table II. Classifier Algorithms in WEKA and their commands 

 
Classifier Algorithms in WEKA 

 Name Function Weka Command 

Bayes NaiveBayes 

Standard 
probabilistic 
Naïve Bayes 
classier 

Weka.classifiers.bayes.NaiveBayes 

Rules DecisionTable 

Builds a simple 
decision table 
majority 
classifier 

Weka.classifiers.rules.DecisionTabl

e –X 1 –S 

“weka.attributeSelection.BestFirst 

–D 1 –N5” 

 

Functio

ns 

SMO 

Sequential 
minimal 
optimization 
algorithm for 
support vector 
classification 

Weka.classifiers.functions.SMO –C 

1.0 –L 0.001 –P 1.0E-12 –N 0 –V -1 

–W 1 –K 

“weka.classifiers.functions.support

Vector.Polykernel –E 1.0 –C 

2500027” 

LinearRegressi

on 

Standard 
multiple linear 
regression 

Weka.classifiers.functions.LinearRe

gression -S 0 -R 1.0E-8 

 

MultilayerPerc

eptron 

Backpropagatio
n neural 
network 

Weka.classifiers.functions.Multilay

erPerceptron -L 0.3 -M 0.2 -N 500 -

V 0 -S 0 -E 20 -H a 

 

Lazy IBk 
k-nearest-
neighbours 
classifier 

Weka.classifiers.lazy.IBk –K 1 W 0 

–A 

“weka.core.neighboursearch.LinearNN

Search –

A\”weka.core.EuclideanDistance –R 

first-last\”” 

Trees 

J48 
C4.5 Decision 

Tree learner  
Weka.classifiers.trees.J48 -C 0.25 

-M 2 

M5P 
M5′ model tree 

learner 
Weka.classifiers.trees.M5P –M 4.0 

RepTree 

Fast tree 
learner that 
uses reduced-
error pruning 

Weka.classifiers.trees–M2 -V 0.001 –N 3 –S 
1 –L -1 –I 0.0 
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