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Abstract 

 

Investigations in Integrative and Molecular Bioscience 

 

John A. Hawkins, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisor: William H. Press 

Co-Supervisor: Ilya J. Finkelstein 

 
Modern biology is going through a revolution of new methods and insights resulting from 

the new availability of high-throughput DNA sequencing technology. I here present work 

contributing mathematical and computational methods for gaining insight from large DNA 

sequencing data sets at three distinct levels.  

 

First, I present a method for improving the accuracy and efficiency of DNA barcodes, short 

sequences of DNA used to label individual molecules in pooled samples. Many DNA 

sequencing applications depend on the use of DNA barcodes. However, errors in DNA 

synthesis and sequencing—substitutions, insertions, and deletions—confound the correct 

interpretation of these barcodes. I here present Filled/truncated Right End Edit (FREE) 

barcodes designed for barcode error-correction in the context of a downstream sequence.  

 

Second, I present the Chip-Hybridized Affinity Mapping Platform (CHAMP), a novel 

technology for repurposing used DNA sequencing chips to study the mechanism and 

sequence preferences of DNA-binding proteins. Since 2012, the CRISPR family of proteins 

have gained wide application for their efficiency and ease of use in editing genomes in 

vivo. Using CHAMP, I, in collaboration with experimentalists in Ilya Finkelstein’s lab, 
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investigated the mechanism and sequence preference of the CRISPR Cascade complex, 

and discovered a novel periodic lack of sequence specificity in DNA binding. I further 

determined specific nucleotides important for recruitment of and processing by the 

nuclease domain, Cas3.  

 

Third, I present a meta-analysis of the order Chiroptera, the order of bats, using the new 

wealth of DNA sequence information of eighteen bat species. The transcriptome 

sequencing data for two of these bats—Hypsignathus monstrosus and Rousettus 

aegyptiacus, bats associated with studies of the Ebola and Marburg viruses respectively—

is novel to this study. Using all this DNA sequence information, I reconstructed a high-

confidence Chiropteran phylogeny and found 299 genes with signatures of positive 

selection, a signature associated with viral antagonism. Further study of these genes may 

shed light on the mechanism through which several bat viruses relevant to human health 

hijack the cell, including SARS, Ebola, Hendra, and Nipah. 
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Introduction 

The world of modern biology has gone through a revolution in the past few years: the 

revolution of cheap DNA sequencing. In 2000, the first draft of the human genome project 

was completed, sequencing for the first time nearly all of the human genome. This project 

took more than 10 years and $2.7 billion to complete1. Following this milestone, initial 

improvements were promising, with progress similar to the exponential benchmark used 

in computer architecture, Moore’s Law2, which projects roughly a doubling of capacity for 

the same price every two years (Figure 1). However, between 2008 and 2011, the year I 

started graduate school, progress in DNA sequencing costs outpaced even Moore’s Law. 

While years of progress had brought the cost of sequencing a genome to $10 million by the 

end of 2007, by the end of 2011, just four short years later, the cost had plummeted three 

orders of magnitude to less than $10,000 per genome.  

 

 

Figure 1: The cost of sequencing a human genome over time.1 
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While this progress is often stated with reference to the cost of sequencing a human 

genome, the effects of this technology being cheap and broadly available are in fact much 

more diverse and profound. Cheap DNA sequencing has upended the way questions are 

asked and the scale of problems that are tackled across all fields of biology, from the study 

of subcellular structures to the study of whole populations of animals. For example, it has 

long been known that certain proteins, called transcription factors, initiate the process of 

transcribing DNA into RNA for use by the cell, but it has historically been very difficult to 

determine where such proteins bind the DNA on a genome-wide level. Now, with cheap 

DNA sequencing, technologies such as Chromatin ImmunoPrecipitation and sequencing 

(ChIP-seq)3 are able to sequence all locations in the genome which are bound by a 

transcription factor cheaply and in a single experiment. This has in turn expanded the scale 

of inquiry to studying not just where it might bind, but where it actually does bind in a wide 

variety of different specific cell types and conditions4. Meanwhile, on the other end of the 

biology spectrum, DNA sequencing has been used extensively in the tracking of 

populations of animals. Sequencing hair and droppings samples allows researchers to track 

whole populations of animals, each animal identified individually, with significantly 

reduced cost and effort5. At all scales of biology, cheap DNA sequencing has empowered 

new methods for high-throughput data collection. 

 

Turning mountains of new kinds of data into useful insights requires new mathematical 

models and computational techniques. Depending on overly simple methods can result in 

overlooking key insights, or in some cases can even lead to exactly the wrong conclusion6. 

Much work has already been done to address the exploding computational needs of the 

biological community, from sequence alignment7,8 to whole genome assembly9–12 to 

phylogenetic tree inference13–15. But much more work remains to be done. For my thesis, I 

here present work bringing more mathematical and computational methods to bear on DNA 

sequencing data at three distinct levels: 1) the informatics of DNA sequencing itself, with 
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the design of short DNA sequences called barcodes with provable error-correction 

properties, 2) the study of proteins on repurposed DNA sequencing platforms and use of 

novel data sets to build mathematical models of the functions of gene-editing proteins, and 

3) the study of an entire order of species, bats, and their history with viruses as seen through 

signatures left in their DNA. 
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Chapter 1: Error-correcting DNA barcodes for high-throughput 

sequencing* 

INTRODUCTION  

Many modern large-scale biology experiments use high-throughput DNA sequencing to 

study the behavior of individual biomolecules in pooled populations. These experiments 

encode the identity of individual members via DNA barcodes—short, unique DNA 

sequences that are coupled to each member in the population (Figure 2a). DNA barcode-

based identification is central to such diverse applications as single-cell genome and RNA 

sequencing16–22, gene synthesis23,24, high-throughput antibody screens25,26, and drug 

discovery27,28. Such experiments have been enabled by recent breakthroughs in massively-

parallel, pooled DNA synthesis29,30. For example, a recent study used DNA barcodes to 

discover small molecule inhibitors of enzymes by screening ~108 small molecules. Each 

small molecule was attached to a unique set of three DNA barcodes. The highest affinity 

ligands were enriched via multiple rounds of selection and then identified via high-

throughput  sequencing of the attached barcodes31. The rapid growth of such methodologies 

in all areas of biomedicine requires the development of large pools (>106 members) of 

unique DNA barcodes to identify individual members (e.g., cells, proteins, drugs) in 

heterogeneous ensembles.  

 

Every assay with DNA barcodes is subject to errors introduced during DNA synthesis and 

sequencing. These errors decrease experimental power and accuracy by confounding the 

identity of individual biomolecules in the population. The most common DNA synthesis 

                                                
* This chapter draws on material from Hawkins JA, Jones SK, Finkelstein IJ, Press WH. Error-correcting 

DNA barcodes for high-throughput sequencing. (Under review). J.A.H., I.J.F, and W.H.P. designed the 

research. J.A.H. wrote the software and analyzed the experimental data. J.A.H. and S.K.J. prepared the DNA 

for sequencing.  J.A.H., I.J.F., and W.H.P. wrote the paper. All authors commented on the manuscript. 
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error is a single-base deletion (Results). This is particularly challenging to decode because 

it causes a frameshift in all downstream sequencing. Substitutions and insertion errors are 

also common during massively-parallel pooled oligonucleotide synthesis (Results). Our 

own experimental results are consistent with manufacturer-advertised error rates of up to 1 

per 200 nucleotides (nt)32. For 20 base pair (bp) long barcodes with no error correction, 

this translates to a best-case scenario of 10% data lost or, worse, incorrectly interpreted. 

Next-generation sequencing also has error rates between 10-3 and 10-4. This alone 

represents errors in approximately 1% of our example 20 bp barcodes, which can be 

limiting for detection of rare events. These errors can be overcome through the use of error-

correcting DNA barcodes—DNA sequences that can correctly identify the underlying 

individuals in a pooled experiment even in the presence of sequencing and synthesis errors.  

 

Error-correcting barcodes must efficiently detect and correct all DNA sequencing and 

synthesis errors. Many current DNA barcode strategies repurpose error-correcting codes 

developed for computers33,34, such as Hamming or Reed-Solomon codes, to DNA 

applications35,36. Hamming distance, i.e., the number of substitutions between two 

sequences of equal length, is possibly the most used due to its simplicity. However, nearly 

all well-studied error-correcting codes developed in computer science—including the 

widely-used Hamming codes—were not designed to handle deletions and insertions, which 

are the most common errors in DNA synthesis. Such codes are generally used to only detect 

errors without correcting them, but even then there is a possibility that a single error (e.g., 

deletion) can convert one barcode into another. Levenshtein codes, also known as edit 

codes, can theoretically account for all three types of common error: substitutions, 

insertions, and deletions, but only when the corrupted length of each barcode after errors 

is known37,38. This is a critical limitation in real-world DNA barcode applications because 

errors can change the barcode length unpredictably, which leads to erroneous decoding of 

Levenshtein-based barcodes in the context of a longer read (Figure 2b). As a workaround, 

Levenshtein codes can be used at twice the level of error correction as desired for a given 
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application, for example using a 2 error-correcting code when a 1-error correcting code is 

desired, but this is inefficient and significantly decreases the number of valid barcodes for 

a given oligonucleotide length. In sum, existing DNA barcode strategies are unable to 

efficiently detect and decode real-world errors encountered during DNA synthesis and 

sequencing. 

 

Here, we develop and experimentally validate error-correcting Filled/truncated Right End 

Edit (FREE) barcodes. FREE barcodes can correct substitutions, insertions, and deletions 

even when the edited length of the barcode is unknown. These barcodes are designed with 

experimental considerations in mind, including balanced GC content, minimal 

homopolymer runs, and no self-complementarity of more than two bases to reduce internal 

hairpin propensity. We generate and include lists of barcodes with different lengths and 

error-correction levels that may be broadly useful in diverse high-throughput applications. 

For each barcode set, we calculate hairpin melting temperatures which can be used to select 

subsets of barcodes to match experimental conditions. Our largest barcode list includes 

>106 unique error-correcting barcodes usable in a single experiment. Moreover, appending 

two or more barcodes together combinatorially increases the total barcode set, producing 

>109-1012 unique error-correcting DNA barcodes. The included software for creating new 

barcode libraries and decoding/error-correcting observed barcodes is fast and efficient, 

decoding >120,000 barcodes per second with a single processor, and is designed to be user 

friendly for a broad biologist community.  
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Figure 2: Applications and error-correction strategies of DNA barcodes. 
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Figure 2: Applications and error-correction strategies of DNA barcodes. 
a. Illustrative examples of high-throughput sequencing assays that require large lists of error-correcting DNA barcodes. 

Barcodes are used to identify individual cells or molecules in pooled libraries (Klein, 2015; Fan, 2008; Melkko, 2004). 

b. Current strategies to correct synthesis and sequencing errors in DNA barcodes are confounded by insertions and 

deletions. Hamming distance can only handle substitutions. Levenshtein distance is confounded by the fact that barcodes 

are prepended to other sequences of interest. Indels thus produce phantom Levenshtein distance errors when bases from 

the remaining DNA molecule shift into or out of the barcode window. c. Examples of FREE divergence (this work) given 

the actual edit history. Levenshtein and Hamming distances are also shown for comparison. A substitution and insertion 

are correctly attributed as 2 edits by FREE divergence (first column). FREE divergence is a symmetric function, i.e., 

FreeDiv(E, O) = FreeDiv(O, E) (first and second columns). Different actual edit paths can result in the same observed 

sequence (second and third columns). Indels can have zero cost, particularly near the end of the barcode where they can 

occasionally be undone by fill or truncation (fourth column). Edits past the barcode end can matter since the fill/truncation 

step happens only upon observation (fifth column).  
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RESULTS 

Overview of Filled/truncated Right End Edit (FREE) Divergence  

After DNA synthesis and sequencing, a barcode of length n can be altered, and is not 

guaranteed to end after exactly n bases. Our goal is to design barcodes that can be 

unambiguously identified from the first n bases of the sequenced read. To begin, we define 

a filled/truncated right-end m-edit, hereafter written “FRE m-edit,” of a DNA sequence of 

length n to be the result of any m edits—substitutions (sub), insertions (ins), or deletions 

(del)—followed by truncating or filling with any random bases on the right (as from the 

unknown downstream read) as necessary to return to original length n (Figure 2b). For any 

two DNA sequences X and Y of the same length, we define the Filled/truncated Right End 

Edit (FREE) Divergence between X and Y, written FreeDiv(X, Y), to be the minimum m 

such that Y is a FRE m-edit of X.  

 

Figure 2c shows a typical example of how FREE divergence captures the actual number of 

barcode edits in the context of a longer read. An insertion has caused the final T to move 

out of the barcode window, but FREE divergence correctly accounts for its loss. FREE 

divergence is a symmetric function, i.e. FreeDiv(X, Y) = FreeDiv(Y, X) (Figure 2c). This 

is because reversing the edits and reversing the right-end fill or truncation step moves one 

from Y back to X in the same minimum number of steps, proved below. FREE divergence 

is defined as the minimum number of steps between the expected and observed barcode, 

but it is possible to accomplish the same transformation with more edits, for example via 

the identity ins-del = sub (Figure 2c). Also, insertions and/or deletions (indels) near the 

end of the sequence can result in a FREE divergence of zero if the inserted or filled bases 

match the truncated or deleted bases respectively. While Figure 2c shows this for deletions, 

inserting ‘GC’ instead of deleting it results in the same sequenced barcode. Finally, we 

note that FREE divergence is not a metric—a mathematically precise term for distance—

because edits outside the barcode window can lead to violation of the triangle inequality, 
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as we show below (Figure 2c). This requires us to use specialized code generation 

techniques that do not rely on the properties of a metric, and also underlies usage of the 

term divergence rather than distance throughout this work.  

 

Calculating FREE divergence 

FreeDiv(X,Y ) can be efficiently calculated with a modified Needleman-Wunsch 

algorithm39, where the last row and column of the matrix have zero penalty for insertion 

and deletion corresponding to right-end fill or truncation respectively. 

Symmetry and minimum paths 

FREE divergence is symmetric because any minimum filled/truncated right end edit path 

(FREE path) is invertible by inverting all the edits and then inverting the fill/truncation 

step. Substitutions are invertible with substitutions, while insertions and deletions are 

invertible with each other in the natural way, so edits by themselves are invertible. 

Invertibility with the fill/truncation step is less obvious, and requires no edit be truncated 

off the end. For example, a substitution in the last position followed by any insertion results 

in the substitution getting truncated off the end. Minimum FREE paths never have any edits 

truncated off the end, because any truncated edit can be omitted to create a shorter edit 

path. 

 

Let X and Y be barcodes and let P be any minimum FREE path from X to Y . If P has no 

fill or truncation, then the fill/truncation step is trivially invertible by doing nothing. 

Suppose P has a fill step which fills f bases at the end. Then starting at Y and inverting the 

edits results in exactly those f bases being outside the barcode window, so they are 

truncated to arrive at X. Suppose P has a truncation step which truncates t bases. Since P 

is a minimum edit path, none of the truncated bases were edited bases, so they are not 

needed for the inverted edit path starting at Y . After inverting the edits, t bases need to be 
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filled, which we fill with the last t bases of X. Hence, any minimum FREE path can be 

inverted in the same number of edits. Furthermore, since all minimum FREE paths from X 

to Y and from Y to X are invertible, FreeDiv(X, Y) ≤ FreeDiv(Y, X) and FreeDiv(Y, X) ≤ 

FreeDiv(X, Y). Therefore, FreeDiv(X, Y) = FreeDiv(Y, X) and any inverted minimum FREE 

path is itself a minimum FREE path. 

FREE divergence is not a metric 

We use the counter-example shown in the right column of Figure 2c. For FreeDiv(TAGA, 

ACGC ), the modified Needleman-Wunsch algorithm described above produces 

 
 

so, from the value in the last row and column, FreeDiv(TAGA, ACGC ) = 3. Hence, the 

following is a minimum filled/truncated right end edit path (FREE path) between TAGA 

and ACGC: 

 
 

The vertical bars (“|”) show the end of the barcode window, though the truncation step 

would not happen until after all actual edits. Now, the above FREE path shows that 

FreeDiv(TAGA, TACG) = FreeDiv(TACG, ACGC ) = 1. But FreeDiv(TAGA, ACGC ) = 3, 

a violation of the triangle inequality. 

 

We note that a previous paper attempted to solve this problem by defining Sequence-

Levenshtein codes, but the code generation technique depended on the Sequence-
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Levenshtein distance function being a metric, which it is not40. The resulting codes often 

decode erroneously as a result. 

 

FREE Codes 

With FREE divergence defined, building an error correcting barcode list is conceptually 

equivalent to packing spheres in the space of possible barcodes (Figure 3a). We set a 

barcode length n and call any DNA sequence of length n a word. For any word B, we call 

the set of all words W such that FreeDiv(B, W) ≤ m the m-error decode sphere of B, written 

as DecodeSpherem(B), or just DecodeSphere(B) if m is clear from context. Any observed 

DNA sequence within DecodeSphere(B) will by definition decode to (error-correct to) the 

center word B (Figure 3a.). Then, an m-error correcting FREE code is simply any set of 

barcodes such that the m-error decode spheres of all barcodes are disjoint, i.e., no two 

decode spheres overlap. Any corrupted barcode with up to m errors is thus in the decode 

sphere of exactly one barcode and can be decoded (error-corrected) uniquely (Figure 3a).  

 

Requiring disjoint decode spheres places a limit on the relationship between allowed m, 

the number of correctible errors, and n, the barcode length: to fit more than one non-

overlapping decode sphere in the space requires that 2m + 1 ≤  n. Proof: Suppose the 

contrary. Let L ≤ 2m be the length of the barcode. Then by definition every barcode is at 

most L substitutions from any other barcode by substituting all of the bases. For any two 

barcodes B1 and B2 define Bmid to be the barcode with the first m bases of B1 and the 

remaining L − m ≤ m bases of B2. Then Bmid ∈ DecodeSpherem(B1) and Bmid ∈ 

DecodeSpherem(B2). Since B1 and B2 were arbitrary, it is thus impossible to have two 

disjoint decode spheres. Therefore, it is impossible to have a non-trivial (i.e. more than one 

barcode) m-error correcting code of length less than 2m + 1 bp. 
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Efficient FREE barcode generation and decoding 

A software library accompanying this manuscript efficiently generates FREE barcodes 

with a given total length and error-correction level. The generation algorithm is 

conceptually very simple: iterate through the space of n-mers alphabetically, find the 

decode sphere for each candidate barcode, and reserve barcodes when their decode spheres 

do not overlap the decode spheres of any previously reserved barcodes (Figure 3a). This 

set of reserved barcodes by definition forms a valid FREE code. Additional algorithmic 

details make the process faster and more memory efficient (Methods). Adding valid code 

words in alphabetical order is a heuristic method previously observed to efficiently pack 

spheres41. Experimental synthesis and sequencing limitations are also incorporated during 

barcode selection. Candidate barcodes must have: (1) balanced GC content (40-60%); (2) 

no homopolymer triples (e.g., AAA); (3) no GGC (a known Illumina-based error motif42); 

and (4) no self-complementarity of >2 bases to reduce hairpin propensity. All of our 

software is available in the GitHub repository accompanying this manuscript 

(https://github.com/finkelsteinlab). 

 

The number of available error-correcting barcodes for a DNA sequence of length n will 

depend on the experimentally-required degree of error-correction (Figure 3b). We 

generated libraries of single-error correcting codes up to a 16-nucleotide length, containing 

>1,600,000 barcodes. In addition, we generated more robust, double-error correcting codes 

up to a 17-nucleotide length with >23,000 unique members (Table 2). Barcodes correcting 

m errors require length at least 2m + 1 bp, as shown above. Thus, the 1-error and 2-error 

correcting barcode libraries have minimum lengths of 3 bp and 5 bp respectively. The 

barcode decoding software runs in time proportional to the length of the barcodes but 

constant with respect to the number of barcodes in the library. Hence, 1-error and 2-error 

correcting codes decode at the same speed for a given barcode length even though the 1-

error libraries contain many more barcodes (Figure 3c). Even the slowest decodes 
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considered here, the 17-mer double-error correction barcodes, decode at >120,000 

barcodes × sec-1 on a desktop computer using a single processor. 

Comparison with current error-correcting DNA barcode strategies 

Current state-of-the art error correcting DNA barcoding applications often use Hamming 

or Levenshtein error-correction strategies35,38. Hamming codes only correct substitutions, 

and are thus insufficient for any DNA barcode applications with indels43. However, they 

are linear codes, meaning the code words form a well-structured lattice in barcode space. 

We tested an alternative hypothesis that pruning these well-packed Hamming decode 

spheres to subsets with disjoint FreeDiv decode spheres could result in a more efficient 

packing—more barcodes for a given barcode length—than our alphabetical generation 

strategy.  
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Figure 3: FREE barcode generation and decoding.  
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Figure 3: FREE barcode generation and decoding. 
a. Error-correcting barcode generation is a sphere packing problem. Around each accepted barcode B (e.g., “CTCA”), 

we reserve DecodeSpherem(B), the set of all sequences within FREE divergence m of B. That is, the set of all sequences 

with any combination of up to m errors from B, followed by fill or truncation as necessary. Any set of disjoint decode 

spheres is a valid FREE code (right). b. The number of single- and double-error correction barcodes generated for a range 

of barcode lengths. c. The accompanying software decodes more than 120,000 barcodes per second for all barcode lengths 

considered here. d. Comparison of FREE barcode counts against pruned Hamming codes and Levenshtein codes. 

Hamming codes were pruned to remove members that did not decode FREE divergence errors, while Levenshtein codes 

were produced at double the error-correction levels for the same purpose. FREE codes produce more barcodes than either 

of the other methods for all barcode lengths.  
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Generating a linear Hamming code for DNA strings of length n encoding raw messages of 

length k and which corrects up to e errors is equivalent to finding a parity check matrix H 

= (−PT |In−k) over Galois field 𝔽4 such that any subset of 2e columns is linearly 

independent44. Given such a matrix H, all barcodes can be expressed as mG, where m is 

any raw message vector of length k and G is the generation matrix G = (Ik |P). We found 

matrices P1 and P2, corresponding to single- and double-error correcting linear Hamming 

codes, via lexicographical search through possible columns of H, accepting new columns 

if they were linearly independent from all previous subsets of 2e − 1 columns. We found 

such P matrices for k up to length 100. The submatrices corresponding to codes up to length 

14, as used in Figure 3e, are given by 

 

 
 

The resulting linear Hamming codes were then pruned to subsets of valid FREE barcodes. 

We found that FREE codes generated using our heuristic lexicographic heuristic have 

about a factor of two more barcodes for a given length than our best pruning of Hamming 

codes (Figure 3d).  

 

Levenstein codes can be used directly (i.e., without pruning) because they account for 

indels, but must be used at 2-fold higher error correction for DNA barcode applications 
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(Figure 2b). We generated such over-corrected Levenshtein barcode sets in a manner 

similar to the FREE code generation strategy. This strategy produced even fewer barcodes 

than the pruned Hamming code sets. (Figure 3d, Methods). In sum, FREE codes offer a 

substantially larger number of usable barcodes for a given barcode length, when taking into 

consideration real-world errors such as deletions, insertions, and substitutions that are 

encountered during DNA sequencing and synthesis. 

 

Sphere packing bounds and code efficiency 

The optimal packing for an error-correcting code is not known in general. Typical code 

generating algorithms, including ours, are instead heuristics for finding relatively good 

codes. For reference, one can usually find a (typically impossible) upper bound on the 

maximum number of code words by calculating the volume of the space divided by the 

volume of a single decode sphere. This calculation is complicated here, however, by the 

fact that FREE divergence decode spheres do not have uniform volume due to degeneracy 

of insertions and deletions. For example, the sequence AACT only has three unique 

deletions because a deletion of either A generates the same resulting sequence. Figure 4a 

shows sphere volumes of 1- and 2-error codes for all words and for only valid code words 

after our FREE code synthesis and sequencing filters (no homopolymer runs, no triplet 

complementarity, etc.) for barcodes of length up to 12 bp.  

 

To find the sphere packing upper bound, then, we sorted the volumes of every sphere in 

the space and found the minimum number of barcodes at which the cumulative sum of 

barcode sphere volumes is smaller than the space. These upper bounds are shown in Figure 

4b, while the corresponding maximum sphere volumes are shown as black bars in Figure 

4a. The lower bound for sphere packing of a given code is the best efficiency achieved by 

any code generation method to date, which for FREE codes is simply the number of 
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barcodes reported in this paper. The actual maximum possible number of barcodes is 

somewhere between the two. 

 

Code efficiency is measured, where possible, in terms of a code rate, defined as the number 

of usable “message” bits that can be encoded in a single barcode divided by the actual 

number of bits in the sent barcode. In many standard codes, k message bits have r bits 

added for error correction, giving a code rate of k/(k + r). For n-mer barcodes, each sent 

base is two bits of information, so the denominator is 2n. The numerator is the effective 

number of message bits: the length of the largest binary number smaller than the number 

of barcodes, given by ëlog2(Number of barcodes)û. However, for our purposes the number 

of message bits does not need to be an integer, so we will refer to the previous as the actual 

message bits, while we are more interested in the “raw” message bits: log2(Number of 

barcodes) without a floor function. These correspond to raw and actual code rates, shown 

in Figure 4. 

 

The code rate of FREE codes increases with barcode length, and appears to asymptotically 

approach a maximal code rate determined by the properties of the decode sphere packing. 

We observe in Figure 3b that after some boundary effects at short barcode lengths, the 

number of raw message bits 

(log of the number of barcodes) increases linearly with the length of the barcodes. The 

slope of this line, up to a factor of 2 for the x-axis due to using base-4 instead of base-2, is 

an empirical estimate for the asymptotic code rate—message bits over sent bits—for our 

packing method. We show estimated asymptotic values for our single- and double-error 

correcting codes as dashed lines in Figure 4c. 
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Figure 4: Decode sphere volumes and code efficiency.  

a. Sphere volumes of 1- and 2-error codes for all words and for only valid code words after our FREE code synthesis and 

sequencing filters (no homopolymer runs, no triplet complementarity, etc.). Black lines show maximum sphere volume 

used for sphere packing upper bounds in (b). b. Optimal sphere packing bounds. We show the upper bound calculated 

for valid code words, as described in the text. The lower bound is the best efficiency achieved by any code generation 

method to date, which for FREE codes is simply the number of barcodes reported in this paper. c. Raw and actual code 

rates for each FREE barcode set included with this paper as well as the asymptotic values they approach. 

Error Correction in Real and Simulated Data 

We validated FREE barcodes generated in this study by both numerical simulation and 

experiment. Pooled oligonucleotide synthesis was used to produce a library of >8,000 
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oligos with double-error correcting barcodes at both ends (Figure 5a). The barcodes were 

arranged such that each left barcode should only ever be observed on the same oligo with 

one specific right barcode sequence, and similarly for right barcodes. Hence, we were able 

to measure the rate of incorrectly decoding barcodes from observing unexpected left-right 

barcode pairs (Methods). We sequenced 1.4 million copies of this library on an Illumina 

MiSeq for an average coverage of 159x using the standard Illumina workflow. 

 

Full-length, paired-end Illumina sequencing was used to measure the background synthesis 

and sequencing error rates (Figure 5b-c). Using full-length paired-end reads permitted 

discrimination between synthesis and sequencing errors (Methods). Substitution, insertion, 

and deletion error rates from library amplification using Q5 polymerase have previously 

been reported to occur at rates less than 10-5, and thus are a negligible fraction of the 

measured synthesis errors45. Measured errors were dominated by single-base synthesis 

deletions, which occured at rates of approximately 1 in 200 bp and 1 in 100 bp in the left 

and right barcode regions respectively (Figure 5b and Figure 29). The two-fold difference 

in synthesis error rates between the two sides is consistent with statements from the 

manufacturer regarding their synthesis error rates32. Sequencing error rates are between 10-

4 and 10-3, as advertised by Illumina (Figure 5c). In sum, experimental error rates are 

dominated by deletion errors. As Hamming codes are not designed to error-correct 

deletions in barcodes, they will perform very poorly in DNA-based experiments.  

 

We compared the experimentally-determined error rates to simulations of the overall 

decoding error rate, i.e., the probability of incorrectly demultiplexing a barcode. 

Simulations were used to analyze the decode error rate for several error-correcting codes 

as a function of the per-base error rate, perr (Figure 6). Simulations were performed in two 

different ways. First, we used a binomial model, which assumes independent and 

identically distributed errors at each base, to calculate the probability of observing more 

than 1- or 2-errors given per-base perr. Second, we directly simulated the errors directly 
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using our decoding software: for a given per-base perr, we randomly select barcodes and 

add errors with probability perr. For simplicity, we model insertion, deletion, and 

substitution error rates of perr /3 with no correlation between individual errors within a 

given barcode. The corrupted barcodes are then decoded using our software and the 

fraction of incorrectly decoded barcodes is used as a measure of the decode error rate.  

 

 

 

Figure 5: Experimental measurement of synthesis and sequencing error rates.  

a. Schematic of the DNA constructs used for barcode validation experiments. Each member in the synthetic library had 

a unique pair of left and right barcodes (green) drawn from a list of >8,000 17-nt FREE codes with double-error 

correction. By using the primer regions (brown) to distinguish the left and right ends from one another, we could 

determine whether the barcodes were correctly decoded (matching) or incorrectly decoded (mismatching). b. Synthesis 

error rates measured in this experiment, by intended reference base and error type—substitution (sub), deletion (del), and 

insertion (ins). c. Measured sequencing substitution error rates, by reference base. Insertions and deletions from Illumina 

sequencing are extremely rare and are omitted for clarity. 
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At experimentally-determined per-base error rates, perr, each increase in error correction 

level results in at least an order of magnitude improvement in the decoding error rate 

(Figure 6). For example, our experimental data showed an overall per-base perr of 

approximately 10-2 (Figure 5b-c). At this per-base error rate, the approximate uncorrected 

decode error rate (solid line) is 8% for length 8 barcodes and 15% for length 16 barcodes. 

Without error correction a best-case scenario would be that these errors could be 

successfully filtered out, representing a significant loss of data. In other scenarios, these 

data might be erroneously counted. For zero-, single-, and double-error correction length 8 

barcodes, the approximate decode error rate decreases from 8% to 0.3% to 0.005%. For 

length 16 barcodes, the approximate decode error rate decreases from 15% to 1% to 0.05%. 

A more comprehensive comparison of the various barcode lists is given in Figure 25-Figure 

27. The simulated results are consistently better than the binomial approximation because 

indels near the right end occasionally add the correct base and because insertions 

occasionally push other errors out of the barcode window (Figure 24). 

 

We validated FREE barcodes by measuring the decoding error rates for the experimental 

dataset described earlier (Figure 7). For double-error correction, we used mismatches in 

barcode pairs to identify erroneously decoded barcodes (Methods). After corrections, we 

observe error rates of 0.29% and 0.46% for left and right barcodes respectively. We 

counted the 0- and 1-error correction rates shown in Figure 7 by also counting the number 

of errors observed in each correctly decoded barcode. That is, 0-error correction decode 

error rates were calculated as the number of erroneously decoded barcodes plus the number 

of correctly decoded barcodes with 1 or 2 errors; 1-error correction errors were counted 

similarly. On the other hand, the theoretical model was calculated using the synthesis and 

sequencing error rates found in Figure 5 to calculate the decode error probability of each 

barcode depending on its base composition, and then combined for an overall error rate 

(Appendix C).  
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Figure 6: Decoding corrupted barcodes from simulated errors.  

Modeled and simulated decoding error rates given per-base error rate for length 8 (a) and length 16 (b) barcodes. Barcode 

sets are labeled according to length and number of errors corrected; for example, the 16-2 code is length 16 and corrects 

up to 2 errors. Solid lines show the error rate approximations using a binomial model. Circles and triangles show direct 

simulation error rates for single- and double-error correcting codes, respectively. Substitution, insertion, and deletion 

errors each have simulated error rate P(error per base)/3 for simplicity. 
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Figure 7: Decoding corrupted barcodes from experimental data.  

Observed decoding error rates compared with theoretical rates from the synthesis and sequencing error rates.  

 

The experimentally-observed decoding error rates follow the same trend as the simulated 

errors: decode error rates decrease by approximately an order of magnitude with each 

additional error-correction level. We also observed that experimental error rates are higher 

than the theoretical error rate. This is explained by two observations. First, the theoretical 

model assumes independent errors at each position along the barcode. This assumption is 

not observed in the experimental data (Figure 29). Second, the starting position of each 

barcode may not be defined exactly because the primer region can have errors. We are 

careful to identify the start of each barcode as precisely as possible (Appendix C), but any 

errors in starting position appear as spurious insertions or deletions during decoding. 

Nonetheless, even though per-base errors are not independent, the overall order-of-

magnitude decrease in decode errors per error-correction level is recapitulated in the 

experimental dataset. 

Combinatorially large barcode lists via concatenation 

State-of-the-art high-throughput sequencing applications already require >106 unique 

barcodes31. We anticipate that improvements in high-density pooled oligo synthesis, along 

with the continuing reduction in sequencing costs, will continue to push the need for even 
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larger error-correcting barcode sets. Below, we demonstrate that arbitrarily large barcode 

lists (>1015 unique members shown here) can be constructed from FREE barcodes by 

concatenating multiple FREE barcodes in a row.  

 

As a demonstration, we concatenated two or three barcodes from the same starting list of 

sub-barcodes (Figure 8). For the rest of this section we will refer to the original barcodes 

as sub-barcodes, while barcode will refer to the full length, concatenated barcode. Due to 

the possibility of insertions and deletions, the starting positions of the second and third sub-

barcodes are only known approximately, and that approximation worsens as more sub-

barcodes are added (Figure 8a). Decoding the sub-barcodes sequentially from left-to-right 

is a strategy to account for this ambiguity. The left-most sub-barcode is decoded first, and 

then the decoded sub-barcode is used to find the starting position of the next sub-barcode. 

The error-correction level of each FREE sub-barcode remain the same, such that, for 

example, three concatenated double-error correction sub-barcodes can each correct up to 

two errors for a maximum total of six corrected errors if and only if the errors are evenly 

distributed, two per sub-barcode. Overall concatenated barcode decoding error rates are 

given by the probability of any decoding error in any sub-barcode or -barcodes. 

Concatenated barcode error rates are thus slightly higher than for the individual sub-

barcodes (Figure 8b). The decoding process is performed automatically using the software 

accompanying this paper. 
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Figure 8: Combinatorial barcode libraries via concatenation of FREE barcodes.  

a. Concatenated barcodes can be decoded sequentially in a left-to-right order, even when the end position of each edited 

sub-barcode is not initially known. The decoded first FREE sub-barcode can be used to find the starting position of the 

next sub-barcode, and similarly for subsequent sub-barcodes. b. Concatenated barcode decoding error rates. Concatenated 

barcode labels use the following format: a 3x(16-1) barcode consists of three concatenated sub-barcodes, each of which 

is 16 bp long and can correct up to 1 error. c, d. Concatenating multiple barcodes combinatorially increases the numbers 

of effective FREE barcodes. Concatenated barcodes can correct the same number of errors per sub-barcode. When the 

errors are distributed evenly among the sub-barcodes, concatenated barcodes can correct a higher total number of errors 

than the individual sub-barcodes. (c) Concatenated single-error correcting barcodes. (d) Concatenated double-error 

correcting barcodes. Dashed lines: projected quantities calculated by sampling; dotted lines: log-linear projections.  
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Concatenating FREE barcodes results in combinatorially-large barcode sets that will be 

sufficient for even the most demanding high-throughput sequencing applications (Figure 

8). The concatenated barcodes were pruned to remain compatible with experimental 

constrains by removing DNA sequences that had triplet repeats of a single base or excess 

self-complementary (defined as any self-complementarity of any three or more bases). 

Even with these filters, we generated full lists of up to 1010 barcodes with concatenation of 

three single-error correcting codes (Figure 8). Beyond that, where possible, the projected 

total barcode count was estimated via subsampling. When even that was limited by 

available hard drive space, the projected total was estimated via log-linear fit, which went 

above 1015 barcodes for 3 x (16 bp single-error) barcodes. Due to their size, we do not 

include these concatenated barcode sets explicitly with this paper. They can be generated 

on demand using the included software package and single barcode lists. In sum, 

concatenating FREE codes produces a rapid and efficient strategy for further increasing 

the size of error-correcting barcode lists for pooled high-throughput sequencing 

experiments. 

DISCUSSION 

Here, we described the design and experimental validation of Filled/truncated Right End 

Edit (FREE) error-correcting DNA barcodes capable of correcting substitution, insertion, 

and deletion errors, even when the corrupted length of the barcode is unknown. We 

generated lists of FREE Divergence error correcting barcodes and provided software on 

GitHub for user-friendly generation and decoding of these DNA barcodes for real-world 

applications.  

 

Most high-throughput DNA sequencing applications require PCR-based amplification or 

reverse transcription (in the case of RNA) of the input nucleic acid libraries. The 

polymerase and reverse transcriptase enzymes used during library preparation perform best 

on libraries that avoid stable secondary structures and self-complimentary regions. To 
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improve the utility of our codes for such demanding applications, we used UNAFold to 

calculate the melting temperature of hairpins for the FREE barcodes included with this 

paper46. This information will allow users to prune out barcode sequences with a propensity 

to form stable hairpins in their specific experimental conditions (Figure 30).  Such 

experimental considerations will further increase the utility of FREE codes for demanding 

high-throughput sequencing applications.  

 

In validating the FREE barcodes, we measured the types and frequency of errors that are 

introduced during massively-parallel oligo synthesis and Illumina-based high-throughput 

sequencing. We observed that deletions during synthesis were the most frequent sources 

of error (~1 per 100 nucleotides), followed by substitutions and insertions (~1 per 1000 

nucleotides). These experimentally measured error frequencies were used to simulate and 

experimentally measure the decoding quality of FREE codes. Even though the observed 

decoding error rates do not follow a model that assumes independent errors at each base, 

we still obtain exponential improvement of the final decoding error rate with codes that 

correct for increasing numbers of errors. Importantly, the error-correcting decode software 

runs fast enough to handle the massive data sets involved in modern high-throughput 

sequencing applications, decoding hundreds of thousands of barcodes per second on a 

single processor for all barcode lists considered. 

 

While we have here focused exclusively on filled/truncated right end edit (FREE) codes 

prepended to the start of sequenced DNA reads, the current work applies equally to their 

natural mirrored counterpart, filled/truncated left end edit (FLEE) codes. This would be 

required for applications where the barcode appears at the end of each sequenced read 

rather than the beginning. In fact, the same codes can be used by simply taking the reverse 

complement of FREE codes before synthesis and again before decoding. Hence, FREE 

barcodes can be used equally well on the 5’ or 3’ end of pooled samples, as long as the 

orientation is chosen appropriately. 
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FREE barcodes are a powerful tool to correct DNA barcode errors, reducing measurement 

errors in modern, high-throughput experiments. We anticipate that the use of FREE 

barcodes will improve these assays in three key ways: (1) helping avoid spurious results; 

(2) decreasing the amount of discarded data; and (3) increasing experimental signal-to-

noise ratios. Decreasing spurious results and discarded data are important for any 

experiment involving DNA barcodes, but we are most excited by the new possibilities 

available with increased signal-to-noise ratios. The power to decrease error rates from 15% 

to 0.05%, as in Figure 6b, could open the door for entirely new assay designs. We anticipate 

that FREE barcodes will be broadly useful for the ever-growing set of pooled high-

throughput sequencing experiments in cell and molecular biology, protein engineering, and 

drug discovery. 

METHODS 

Definitions and Numerical Representation of DNA 

For any barcode system, the word length, n, is given. Any DNA sequence of length n is a 

word, and any word observed in the data is an observed word.  

 

We represent strings of DNA as base-4 numbers where A, C, G, and T correspond to 0, 1, 

2, and 3 respectively. So, for example, 

𝐴𝐴𝐺𝐶𝑇 = (00213)-./0	2 = 39		𝑙𝑒𝑛𝑔𝑡ℎ		5 
 

Here 39 is the word number and 5 is the word length. Note that the word length is required 

to uniquely convert numbers to DNA to account for leading A’s. For example, the word 

number from the example above, 39, with word length 3 is simply GCT. For word length 

n, the largest valid word number is 4n – 1. 
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For an m-error correcting code we define a decode sphere around a barcode B to be the set 

of all words with FreeDiv less than or equal to m, and we define an encode sphere to be 

the set of all words of FreeDiv less than or equal to 2m. We write these as DecodeSphere(B) 

and EncodeSphere(B). 

Barcode Generation 

FREE barcode sets are generated with a modified lexicographic code generation method. 

Lexicographic code generation consists of marching through all words lexicographically, 

alphabetically in this case, and adding new words to the list of barcodes whenever they are 

sufficiently far from all previous barcodes47. For Hamming codes, lexicographic codes are 

linear47, and more generally, lexicographic code generation has been shown to have 

relatively good sphere packing efficiency41. The first FREE modification to the procedure 

is to enforce the following sequencing and synthesis properties: 

 

• Balanced GC content (40-60%) 
• No homopolymer triples (e.g., TTT) 
• No triplet self-complementarity  
• No GGC (Illumina error motif42) 

 

For speed we iterate over these potential barcodes via recursive base addition: given a 

barcode prefix P, we add the next base only if it does not violate any of the above. We 

thereby skip large recursive subtrees in which all words violate one of the above conditions.  

 

For an m-error correcting code, the only requirement is that the decode spheres of all 

barcodes are disjoint. Because FREE divergence is not a metric, standard metric-based 

code generation methods cannot be used. Instead, we accomplish this directly with a sphere 

iterator (Appendix C). For every accepted barcode B, we iterate over DecodeSphere(B) and 

reserve all words therein as mapping to B. And for any potential new barcode P, we first 

verify no words in DecodeSphere(P) are reserved before accepting it as a new barcode.  
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This algorithm would be very slow because most decode sphere tests would run into 

reserved words and fail to add new barcodes. One further observation makes this process 

tractable. Given a barcode B and a proposed new barcode W, if FreeDiv(B, W) ≤ 2m, that 

is, if W is in EncodeSphere(B), then DecodeSphere(W) and DecodeSphere(B) overlap and 

W is not a valid new barcode. This implies the following algorithm: generate the code by 

lexicographically iterating over words while looking for new barcodes to add to the code. 

For each accepted new barcode B, we color any uncolored words in EncodeSphere(B) 

black, and then we color all words in DecodeSphere(B) red. Restricting encode sphere 

coloring to previously uncolored words avoids overwriting the decode spheres of all 

previous barcodes. All black- and red-colored words are guaranteed to not be valid 

barcodes, so addition of new barcodes is restricted to uncolored words. For an uncolored 

proposed new barcode W, DecodeSphere(W) is checked for red words. If no red words are 

found, W is added as a new barcode. 

 

The coloring of barcodes, decode spheres, and encode spheres is accomplished by having 

an array of 4n integers valued 0, 1, or 2: 0 for uncolored, 1 for black, and 2 for red. The 

location of each integer in memory itself represents the word, via the numerical 

representation of DNA given above. This is both memory and speed efficient. Memory 

efficiency is important, as it is a limiting resource for this method. The memory required 

for barcode generation is 4k bytes, which for this paper was up to 16Gb of random access 

memory (RAM). 

Barcode Decoding 

The decoding process builds the code book and looks up decoded words directly. We do 

this in a memory efficient fashion as follows. For each barcode in a list, the barcode index 

is defined as the index of that barcode within the list of barcodes. We again reserve a space 

of 4k integers to represent the code space. For each barcode B, we store the barcode index 

of B at every word of DecodeSphere(B). We store barcode indices rather than barcode 
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numbers because barcode indices require fewer bits per word. The memory required for 

barcode decoding is (1, 2, 𝑜𝑟	4) × 4@ bytes, requiring 1, 2, or 4 bytes to store each barcode 

index. For this paper, the maximum memory used for barcode decoding was 32Gb of RAM. 

Barcode Pruning 

Specific barcode lists from literature or elsewhere may sometimes be required for a given 

experiment, but require pruning to find a subset with error-correction. We accomplish 

barcode pruning via the same strategy as barcode generation, but only considering the input 

set of barcodes as potential new barcodes. This pruning method was also used to prune the 

linear Hamming codes. 

Simulation of Errors 

To test the error-correcting capacity of FREE barcodes, we wrote error-simulating code 

which adds a given number of substitutions, insertions, deletions, or all three randomly 

distributed. We used this to verify the correctness of each of the FREE m-error correcting 

codes by randomly selecting barcodes, adding m errors, and verifying that the decoded 

word matches the expected word. We used the same code for generating Figure 6 by 

randomly choosing the number of errors from a binomial distribution with probability of 

error perr.  

Levenshtein Barcodes 

Levenshtein barcodes were generated lexicographically using the standard technique of 

code generation with a metric. Briefly, for desired barcode length n and number of 

correctable errors e, we walk through the space of n-mers lexicographically adding any 

new word if it: (a) satisfies the same sequencing and synthesis properties as above, and (b) 

is Levenshtein distance at least 2e+1 from any previously accepted barcode. 
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Experimental Synthesis, Sequencing, and Decoding Error Rates 

Oligonucleotide pools were designed as in Figure 5a, with primers and barcodes on each 

end and a spacer in the middle (116 bp total length). To test the FREE method, 8,634 

barcodes of length 17 and double-error correction were used in 8,634 unique pairs. Oligos 

were synthesized (CustomArray), and the oligo pool was amplified for twenty cycles with 

Q5 polymerase (NEB) and sequenced on an Illumina MiSeq machine with 2x150 bp 

paired-end reads. Maximum likelihood sequences were inferred using both reads.  

 

The left and right primer sequences were used to determine both the read orientation and 

the starting position of each barcode (Appendix C). Each barcode was then decoded using 

the FREE decoding software. Matching barcodes identified correctly decoded barcodes, 

while mismatching barcodes indicated an error. The FREE method was powerful enough 

to reveal a surprising and unrelated source of error: the creation of oligo chimeras, 

sequences with the left part of one oligo and right part of another, which we then also 

accounted for (Appendix C). 

 

Once each oligo had been identified from its barcodes, the observed sequence was aligned 

with the reference sequence. At each base where the two reads agreed with each other but 

not with the reference sequence we counted a synthesis error, at each base where the reads 

disagreed and one read matched the reference sequence we counted a sequencing error, and 

at each base where the reads disagreed and neither matched the reference sequence we 

counted a synthesis and a sequencing error.  

 

Observed synthesis and sequencing error rates for each reference base were used to find 

theoretical decoding error rates for each barcode given its base composition. These were 

then used to estimate overall expected error rate. 
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Decode error rate model 

The decoding error rate of an m-error correction code is the probability of seeing more than 

m errors in a given barcode. For error analysis, we model each barcode as a queue of 

intended bases. At each read position, an intended base is popped off the queue and 

attempted to be added. One of four things will happen: 1) the correct base will be added, 

2) an incorrect base will be added, 3) the base will be deleted, or 4) another base will be 

inserted and the intended base will go back to the top of the queue. The first three options 

do not return the base to the queue, resulting in the same structure of expected output 7→ 

observed output. However, insertions cause the intended base to return to the top of the 

queue, and the output was never expected in the first place. For this reason, it must be 

modeled differently from the other three. Assuming independent errors of all types and 

positions, we model insertions with a negative binomial distribution and the correct bases, 

deletions, and substitutions with a multinomial distribution, using our measured error rates 

per reference base, shown in Figure 5. 

 

Let a barcode be given and let B be the 1-by-4 row vector with counts of each of the bases 

ACGT in the given barcode. Let I be the 1-by-4 row vector of insertion counts for each of 

the four bases. Further, let CDS be the 3-by-4 matrix with columns corresponding to the 

DNA bases, and rows corresponding to all non-insertion outputs: correct bases, deletions, 

and substitutions. We will occasionally refer to the rows of CDS individually as C, D, and 

S, but we leave it in matrix form as they are tightly connected. In fact, it must be true that 

C + D + S = B. 

 

We use the measured error rates given reference base shown in Figure 5. Insertion and 

deletion rates, pi(b) and pd(b), are taken directly from synthesis error rate measurements. 

Substitution rates, ps(b), are calculated as the probability of not observing the event {no 

synthesis substitution and no sequencing substitution} nor the event {synthesis substitution 

to another base c and correcting synthesis substitution back to b}, and are thus given by 
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Now let pc(b) = 1 − pd(b) − ps(b) be the probability of correctly adding a base, let N be the 

random variable for the total number of errors, let nerr be given, and let ni, nd, and ns be the 

number of insertions, deletions, and substitutions respectively. Then, from our assumption 

of independent error rates given reference base, we get for each reference base the 

previously mentioned negative binomial distribution for insertions and multinomial 

distribution for the rest: 

 

 
 

Finally, we marginalize the above over barcode identity, 

 

 
 

and sum over nerr as required. 
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Chapter 2: CHAMP: A Massively Parallel Protein-DNA Interaction 

Mapping Platform† 

INTRODUCTION 

CRISPR systems, composed of clustered regularly interspaced palindromic repeats 

(CRISPR) of DNA at specific CRISPR genomic loci and a number of CRISPR-associated 

(Cas) proteins, provide bacteria and archaea with adaptive immunity against invading 

phages and other foreign nucleic acids49,50. To provide adaptive immunity, cells assemble 

a CRISPR RNA (crRNA) and a Cas protein or proteins into an RNA-guided nucleoprotein 

complex that recognizes specific foreign DNA targets. After target DNA recognition, a 

CRISPR-specific effector protein degrades the foreign nucleic acids. CRISPR systems also 

confer immunity against future infections by acquiring foreign DNA sequences and 

inserting them as the eponymous spacers (between palindromic repeats) in the CRISPR 

locus51. Recent breakthroughs with diverse CRISPR-Cas systems have enabled 

microbiologists to program DNA/RNA targeting, leveraging this microbial immune 

strategy for diverse biotechnological and medical applications52,53. 

 

Intense interest in emerging CRISPR-Cas systems has driven the development of high-

throughput methods for characterizing crRNA-guided binding and cleavage activities. 

Current strategies typically use deep sequencing to identify off-target binding (e.g., ChIP-

Seq, pulling down short stretches of protein-bound DNA with protein-specific antibodies 

                                                
† This chapter draws on material from Jung C, Hawkins JA, Jones SK, Xiao Y, Rybarski JR, Dillard KE, 

Hussmann J, Saifuddin FA, Savran CA, Ellington AD, Ke A, Press WH, and Finkelstein IJ. Massively 

Parallel Biophysical Analysis of CRISPR-Cas Complexes on Next Generation Sequencing Chips. Cell 170, 

35–47.e13 (2017).48  J.A.H., C.J., S.K.J., J.R.R., C.S., W.H.P., and I.J.F. designed research. J.A.H., C.J., 

S.K.J., Y.X., J.R.R., K.D., M.A.S., and C.S. performed research. J.A.H., J.H., and J.R.R. wrote the software. 

J.A.H., C.J., S.K.J., Y.X., and J.R.R. analyzed the data. J.A.H., C.J., S.K.J., W.H.P., and I.J.F. wrote the 

paper. All authors commented on the manuscript. 
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and then deep sequencing) and cleavage (e.g., Digenome-Seq, digesting genomic DNA 

with a nuclease of interest and then deep sequencing)54–59. Alternative strategies include in 

vivo fluorescent reporters for CRISPR-Cas protein binding or for the repair of resulting 

DNA double strand breaks55,58,60,61. These methods frequently detect off-target binding and 

cleavage activities, but also have several limitations62. For example, readouts such as green 

fluorescent protein (GFP) production or DNA break repair may vary with cell cycle stage 

and genomic context. Similarly, pulldown methods can be influenced by antibody quality, 

the degree of chemical crosslinking, and the chromatin state of a given target. Most of these 

strategies are also limited to identifying genomic off-target DNA cleavage sites, thereby 

making it difficult to place the results in a quantitative biophysical framework. In short, 

methods that aim to identify off-target sites in vivo are not optimal for probing the 

molecular mechanisms underlying CRISPR-Cas activities. 

 

Here, I describe a chip-hybridized affinity-mapping platform (CHAMP) for 

comprehensively profiling protein-nucleic acid interactions on already-sequenced next 

generation sequencing (NGS) chips, which I developed in collaboration with an 

experimental group (Dr. Cheulhee Jung and Dr. Stephen K. Jones Jr., in Dr. Finkelstein’s 

lab). The most widely adopted NGS sequencers fluorescently image clusters of DNA 

molecules covalently affixed to the surface of a microfluidic chip. CHAMP leverages these 

chips—normally discarded after sequencing—to quantitatively measure protein-DNA 

interactions. Importantly, CHAMP does not require any hardware or software 

modifications to older NGS sequencers, as has been reported previously63–65. Instead, it 

uses the modern and ubiquitous Illumina MiSeq instrument to generate chips and 

sequencing data. Protein-DNA profiling experiments are then performed independently on 

a standard fluorescence microscope. In short, NGS sequencing provides information about 

the position and identities of millions of different DNA molecules, while the microscopy 

experiments quantitatively measure the apparent binding affinity of the proteins to these 

DNA sequences.  
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We used CHAMP to quantitatively profile interactions between the T. fusca Type I-E 

CRISPR-Cas (Cascade) effector complex and a diverse library of target DNA molecules. 

The Type I system accounts for approximately 50% of bacterial CRISPR systems, and has 

been used to control gene expression and cell fate66–69. Using CHAMP, we profiled three 

aspects of Cascade-DNA interaction: protospacer adjacent motif (PAM) recognition, 

tolerance of mismatches in the target sequence, and recruitment of the Cas3 nuclease 

subunit.  

 

First, we considered recognition of the protospacer-adjacent motif (PAM). In all CRISPR-

Cas systems, the PAM flanks target DNA that is complementary to the crRNA and is 

recognized in a sequence-specific fashion by the protein alone. The PAM is crucial for 

facilitating interrogation of the target DNA by the Cascade complex. Diverse PAMs can 

also bias CRISPR-Cas systems towards DNA degradation (interference) or spacer 

acquisition (adaptive immunity)70–74. Early studies proposed that Cascade recognizes a 

three nucleotide PAM on the 5’ end of the target74–76. However, recent structural and 

sequencing studies of the E. coli Cascade complex suggested that the Cse1 subcomplex is 

sensitive to an extended PAM69,77. CHAMP profiling of a synthetic nucleotide library 

demonstrated that Cascade indeed recognizes an extended, six-nucleotide PAM.  

 

Second, CHAMP profiling of DNA-binding against sequences with mismatches in the 

target sequence reveals a three-nucleotide periodicity of decreased specificity in Cascade-

DNA interactions, as well as an overall decline in sequence-specificity with distance from 

the PAM.  

 

Finally, using a three-color experiment, we demonstrated that recruitment of the nuclease 

subunit Cas3 is sensitive to the identity of the PAM sequence and PAM-proximal DNA-

RNA mismatches, providing evidence for a novel DNA-guided proofreading mechanism.  
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These results accurately reproduced in vivo interference experiments, reflecting the 

strength of CHAMP for mapping protein-DNA interactions. More broadly, this study 

provides an experimental and computational framework for comprehensive analysis of 

protein-DNA interactions for diverse CRISPR systems, RNA-guided nucleases, and other 

DNA-binding proteins. 

RESULTS 

A chip-hybridized affinity-mapping platform (CHAMP) for profiling CRISPR-Cas 

DNA interactions 

The CHAMP assay is conceptually quite simple (Figure 9A). First, we generate a DNA 

library of interest and sequence it on an Illumina NGS sequencer, a MiSeq sequencer in 

the present work. At the end of the DNA sequencing run, the surfaces of the Illumina NGS 

chips are decorated with millions of spatially registered, unique DNA clusters of known 

sequence. Using a total internal reflection fluorescence (TIRF) microscope, we then image 

protein-DNA binding with fluorescently labeled proteins at a series of increasing 

concentrations. We finally use an image alignment and analysis software pipeline to infer 

sequence-specific protein-binding affinity for each sequence identity in our library. 

CHAMP’s strength lies in its platform independence and its software pipeline. 

 

After sequencing but before flowing protein onto the chip, there are some additional steps 

of interest required to prepare the chip. After sequencing, the chip is covered in residual 

fluorescent nucleotides left over from the sequencing process that would confound imaging 

if left on the chip. These are specific to the DNA strand not covalently attached to the chip 

surface. So first, we strip away said fluorescent nucleotides and regenerate dark double-

stranded DNA (dsDNA) in the ~20 million DNA clusters on the surface of a sequenced 

NGS chip (Figure 9A, Figure 31). Second, to facilitate alignment of fluorescent clusters 
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with their DNA sequences, we hybridize a fluorescent oligonucleotide primer to a known 

subset of the DNA clusters for use as an alignment marker in the downstream image-

processing pipeline (Figure 9A).  

The main challenge for CHAMP is the precise mapping of each fluorescent DNA cluster 

to an underlying DNA sequence. This information is partially encoded in the sequencing 

output generated by all Illumina sequencers, reported in text files called FASTQ files. 

However, CHAMP utilizes images obtained via conventional TIRF microscopy rather than 

an Illumina sequencer (Figure 9A, right). These images are transformed by an arbitrary 

translation, scaling, and rotation relative to the coordinate system used in the Illumina 

software. Alignment between the Illumina output and CHAMP images is further 

confounded by false-positive (e.g., spurious fluorescent signals) and false-negative cluster 

coordinates (e.g., fluorescent signals that are filtered out by the Illumina pipeline). To 

overcome this, CHAMP uses alignment markers with known DNA sequences to match the 

spatial position of all fluorescent clusters to a corresponding record in the sequencing 

output file (Figure 16A). We utilized a library made of PhiX bacteriophage genome as our 

alignment marker. The PhiX library is included as an internal control on every Illumina 

chip, and typically comprises 5-10% of all sequenced DNA clusters. This library also 

contains a unique adapter, which can be selectively illuminated with a fluorescent primer 

(Figure 31). Mapping the alignment markers and protein-bound clusters to their sequences 

requires two stages: first, a rough alignment using Fourier-based cross correlation methods 

is performed, followed by a precision alignment using what I call constellation mapping, 

which consists of determining constellations of FASTQ points and imaged clusters which 

represent the same points in the two spaces followed by least squares fitting between the 

two constellations (Figure 16 and Computational Methods). This is a specialized example 

of the image registration problem79–81, and allows CHAMP to function with any sequencing 

platform and TIRF microscope.  
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Figure 9. A chip-hybridized affinity-mapping platform (CHAMP).  
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Figure 9. A chip-hybridized affinity-mapping platform (CHAMP). 
(A) Overview of the CHAMP workflow. DNA is regenerated on a sequenced NGS chip. A subset of clusters is hybridized 

to fluorescent oligonucleotides (alignment markers, magenta). Fluorescent proteins are incubated in the chip (green) and 

the fluorescent intensities at each DNA cluster are recorded via TIRF microscopy. A computational pipeline uses the 

alignment markers to identify the DNA sequences of all fluorescent clusters. (B) A schematic representation of the T. 

fusca Cascade protein complex. Cse1 is shown in purple, Cas7 subunits are shown in alternating blue and yellow, and all 

other subunits are collectively represented in gray. The target DNA is gray, the protospacer adjacent motif (PAM) and 

seed regions are black, while the crRNA is red. (C) Increasing concentrations of fluorescent Cascade complexes are 

incubated in the regenerated NGS chip and (D) the apparent binding affinities for each DNA sequence are obtained by 

fitting the fluorescent intensities to the Hill equation. Each curve represents the apparent binding affinity calculated from 

at least five unique DNA clusters. The lowest-affinity curve in (D) reports non-specific binding of Cascade to off-target 

DNA clusters. (E) Illustration of the synthetic oligonucleotide library used for CHAMP. The PAM and protospacer 

regions are randomized during library synthesis. (F) Overview of the randomized library used for these studies. The bar 

graph represents the number of unique sequences used in the CHAMP experiments with increasing substitutions from 

the ideal PAM and protospacer sequence. The bars are shaded to indicate the percent coverage of the relevant sequence 

space. Violin plots indicate the number of DNA clusters observed per sequence in the CHAMP dataset. Only sequences 

represented by five or more unique DNA clusters are included in the analysis (dashed line). (G) CHAMP experiments 

were highly repeatable between two independently sequenced NGS chips. The gray zones indicate ABAs that fell outside 

of our experimentally defined cutoff for non-specific binding. The r-value was calculated omitting gray zones. (H) A 

rank-ordered list of all 35,968 ABAs that were measured via CHAMP. The gray line represents the standard deviation as 

measured by bootstrap analysis78.   

 

  



44 

Using CHAMP, we profiled the PAM specificity and off-target binding affinity of the 

mesophilic T. fusca Type I-E CRISPR-Cas (Cascade) complex (Figure 9B). Experiments 

were carried out on regenerated MiSeq chips that contained a synthetic oligonucleotide 

library encoding substitutions within the PAM and the target DNA sequence. DNA binding 

was imaged at eleven Cascade concentrations ranging from 63 pM to 630 nM (Appendix 

D). At each concentration, the mesophilic Cascade complex was first incubated in the chip 

at 60˚C to promote DNA binding. Next, unbound complexes were flushed out of the chip, 

and DNA-bound Cascade was rapidly cooled to room temperature and labeled in situ with 

fluorescent anti-FLAG antibodies (Figure 9C). The T. fusca Cascade complex included a 

triple FLAG epitope on the C-terminus of the Cas6 subunit. We confirmed that this epitope 

tag did not alter DNA binding by the T. fusca Cascade (Figure 32), as reported for the E. 

coli Cascade complex82–85. We did not observe significant Cascade loss or photobleaching 

during the course of image collection (~15 minutes per protein concentration) (Figure 33).  

 

With this data, we then determined the apparent binding affinity, defined below, of Cascade 

to each sequence. First, apparent Kd values were determined by fitting the fluorescence 

intensities of each DNA cluster at the eleven Cascade concentrations to the Hill equation 

(Figure 9D and Computational Methods). Non-specific DNA binding was observed via a 

random DNA sequence that was also included in the chip. This negative control sequence 

had an apparent Kd that was lower than our highest measured concentration (Figure 9D, 

dashed curve). I used these fits to define apparent binding affinity (ABA), the difference 

in apparent ΔG between the negative control sequence and a sequence of interest 

(Computational Methods). Positive values indicate stronger binding, and negative values 

were discarded as non-specific DNA binding. DNA sequences with at least 5 unique 

fluorescent clusters were included in the analysis, which provided average error of 

approximately 0.2 kBT for the apparent binding affinity (Figure 18).  
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Figure 10. Cascade recognizes an extended protospacer adjacent motif (PAM).  

(A) Overview of the randomized DNA library used for profiling extended PAM recognition. (B) A PAM landscape plot 

summarizes the ABAs for all non-zero six-nucleotide PAM sequences. The plot is organized into three concentric rings 

(top). These rings are organized by the sequence of the minimal, three nucleotide PAM. The inner ring represents all 64 

ABAs obtained by randomizing the PAM-4 to PAM-6 positions for the strongest minimal PAM (e.g., N-6N-5N-4A-3A-2G-

1). The outer rings show ABAs for all extended PAMs that are related by one or two nucleotide substitutions to the 

minimal A-3A-2G-1 PAM. The heights of the bars and the color map represent the ABAs. (C) Maximum percent reduction 

in ABA due to a single substitution at a given PAM position. For each set of sequences varying only in the indicated 

position (other positions held constant), the difference between the maximal and minimal ABAs was calculated, adjusted 

to remove possible differences due to error in ABA measurements (95% confidence). Violin plots show the distribution 

of resulting percent reductions for all such sets of sequences. (D) Illustration of the plasmid-based T. fusca Cascade/Cas3 

in vivo interference assay. Degradation of the target DNA plasmid by Cascade/Cas3 removes streptomycin resistance. 

(E) In vivo interference is strongly correlated with the ABAs measured via CHAMP. Error bars represent three biological 

replicates (in vivo assays) or the standard deviation of the ABAs determined via bootstrapping. 
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This CHAMP dataset resulted in ~36,000 unique DNA sequences with ABAs that were 

above the non-specific DNA binding threshold (Figure 9H). We sequenced ~16 million 

target DNA sequence clusters, giving complete coverage of all possible six-nucleotide 

PAM variants, as well as all single- and double-nucleotide substitutions along the entire 

target DNA (Figure 9E, Figure 9F). Paired-end reads of linearly amplified synthetic 

oligonucleotide libraries were used to minimize biases and errors from library construction, 

synthesis, and sequencing with maximum a posteriori base identification using a Bayesian 

model I developed (Figure 35). To avoid chip-specific biases, we performed experiments 

on two independent MiSeq chips, which recapitulated the measured ABAs (r=0.88) (Figure 

9G). With this dataset, we next set out to determine the guiding principles of Cascade-DNA 

interactions. 

 

Quantitative profiling of the protospacer adjacent motif (PAM) 

We used CHAMP to determine the apparent binding affinity of Cascade towards six 

nucleotide PAMs when the target DNA is fully complementary to the corresponding 

crRNA (Figure 10A). CHAMP profiling of all 4,096 unique six nucleotide PAMs resulted 

in 950 sequences that had a positive apparent binding affinity (ABA). In order to reduce 

the dimensionality of this data, I adapted the graphical technique of sequence specificity 

landscapes to visualize the complete set of all PAM preferences (PAM landscape, Figure 

10B)86. The PAM landscape displays all PAM-dependent ABAs as a series of concentric 

rings (Figure 10B, top). The highest-affinity sequence for the first three PAM positions is 

well documented (A-3A-2G-1) and is included in the center of the concentric rings. This 

innermost dataset displays the ABAs for all 6-nucleotide PAM sequences that contain a 

perfect match to the highest affinity three-nucleotide “minimal” PAM (N-6N-5N-4A-3A-2G-

1 for T. fusca Cascade: 64 unique sequences). The height and color of each peak on the 

individual rings corresponds to the ABA. A grey line above each peak represents the 
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standard deviation of each measurement, as determined by bootstrap analysis. The vertical 

bars are sorted from the highest to lowest affinity sequences for each minimal PAM. When 

paired with AAG, variation in the -6 to -4 position contributes minimally to the ABA. The 

next ring in the landscape shows ABAs for six nucleotide PAMs that vary from A-3A-2G-1 

by a single nucleotide in the first three positions (e.g., N-6N-5N-4C-3A-2G-1). The final ring 

shows PAMs that vary from A-3A-2G-1 by two nucleotides (e.g., N-6N-5N-4C-3C-2G-1). We 

did not detect any measurable binding affinity to PAMs with three substitutions relative to 

A-3A-2G-1; this circle is not displayed in Figure 10B. This representation gives a high-level 

overview of the entire PAM sequence space, reducing the high-dimensionality of CHAMP 

datasets for rapidly comparing the binding affinity to various PAMs.  

 

I determined the relative importance of each base in the extended PAM by computing the 

maximum change in the ABA when only that base was varied (Figure 10C). For example, 

one data point in the PAM Position -6 distribution is the maximum difference between the 

four sequences with PAMs of NAAAAA. These results show that the PAM-2 position is 

the most critical for defining the highest-affinity T. fusca PAM. In contrast, the closely-

related E. coli Cascade complex has promiscuous recognition at the PAM-2 position77 

(Figure 10C). Both PAM-1 and PAM-3 make similar contributions to the ABA. Subsequent 

positions in the extended PAM typically contribute less to ABA (PAM-2 > PAM-1 ≈ PAM-

3 > PAM-4 > PAM-5 > PAM-6). These results also highlight that PAMs with intermediate 

ABAs are the most sensitive to the identity of nucleotide positions -4 to -6. The importance 

of these positions is significant for PAM sequences such as NNNGAG, where apparent 

binding affinity increases over 60% from 2.7 kBT for GGAGAG to 4.4 kBT for CACGAG. 

The PAM-4 position is likely decoded by direct interactions with the PAM-interacting 

subunit, Cse1, as reported for the E. coli Cascade structure77. Contributions of PAM-5 and 

PAM-6 may be due to indirect effects such as changes in the shape of the DNA minor 

groove.  
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We next compared the CHAMP results with in vitro electrophoretic mobility shift assays 

(EMSAs) and in vivo interference assays. EMSAs showed excellent agreement with the 

CHAMP datasets (r=0.96) over three orders of magnitude in concentration (Error! 

Reference source not found.). As expected, purified Cascade complexes lacking the PAM-

interacting Cse1 subunit did not exhibit any target DNA binding via EMSAs or CHAMP. 

Next, I compared the results obtained via CHAMP with plasmid-based interference assays 

obtained for a variety of PAM sequences87. In this assay, T. fusca Cascade, along with Cas3 

nuclease, is induced in cells that also harbor a target plasmid (Figure 10D). Degradation of 

the target plasmid yields loss of antibiotic resistance. After a brief outgrowth without 

antibiotics, interference efficiency is scored as the relative amount of antibiotic-resistant 

colonies. The results showed a strong correlation (r=0.89), indicating that CHAMP-derived 

binding affinities are also predictive of interference activity in vivo (Figure 10E). 

Moreover, our observations also help to rationalize the T. fusca self-avoidance mechanism. 

T. fusca encodes two Type I-E CRISPR loci. The first locus has a 5’-GGACCG PAM 

(ABA lower than our detection limit), whereas the second is 5’- GCTCAC PAM (ABA: 

~1.9 kBT). These are some of the lowest affinity PAMs and are predicted to strongly 

disfavor Cascade binding and R-loop formation. In sum, CHAMP profiling recapitulates 

DNA binding affinities measured via EMSAs in vitro and is highly correlated with in vivo 

interference activity. 

Profiling off-target CRISPR-Cas DNA binding activity 

To delineate the sequence determinants that influence Cascade-DNA interactions, I next 

analyzed the ABA for all DNA molecules with single or double substitutions along a 35-

nt region that includes the first three positions of the PAM and the target DNA (Figure 11). 

CHAMP profiling yielded information for all possible single-base substitutions with an 

average 3,000-fold coverage (Figure 11A). As expected, substitutions in the PAM region 

reduced the ABA substantially, with the second position being most critical for Cascade 
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binding (Figure 11A). Prior structural and biochemical studies have established that every 

sixth nucleotide is unpaired and flipped out in the Type I-E Cascade-DNA complex77,88–90. 

A clear signature for these flipped-out base positions is also evident in the CHAMP 

profiling data (Figure 11A). A recent report identified that flipped out bases interact with 

a molecular relay of Cse2-encoded arginines91. Interestingly, our results indicate that 

substituting flipped-out bases with a thymidine mildly stabilized the Cascade complex. 

This interaction highlights additional Cascade-specified sequence preferences at the 

flipped out nucleotide positions.  

 

I developed a simple model to better quantify how substitutions along the PAM and the 

target DNA affect Cascade binding (Figure 11B-D). This model considers a position-

dependent penalty for all single base substitutions (Figure 11C) and a position-independent 

weight that accounts for the identities of each target and substituted base (Figure 11D). 

This model has fewer parameters than position weight matrices92, but nonetheless 

described ~90% of the variance in the experimental data (Figure 11B). To further constrain 

this model, we acquired a second CHAMP dataset with a second crRNA-Cascade complex 

targeting a different DNA sequence. The model accurately described both independent 

CHAMP datasets acquired with two different crRNAs and corresponding DNA libraries (r 

= 0.91) (Figure 11B). Analysis of the base substitution penalties clearly highlights the 

importance of the PAM, as well as the PAM-proximal nucleotides (i.e. seed region) in 

modulating the affinity of Cascade for DNA. The overall substitution penalties decrease 

with increasing distance from the PAM (Figure 11C).  This pattern has been recently 

observed for other CRISPR-Cas systems,93, and likely reflects the initiation and directional 

formation of an R-loop starting from the seed region82,84. As expected from structural 

studies of the E. coli Cascade complex, the five flipped-out bases do not contribute to RNA-

DNA interactions. Hence, substitutions at these sites may even be stabilizing, possibly due 

to DNA-protein interactions (Figure 11C). Overall, substitutions from any nucleotide to 

thymidine were mildly preferred, whereas substitutions from thymidine to any other 
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nucleotide were further destabilizing, though this should be considered in light of the 

preference for thymidines at flipped-out base positions (Figure 11A). I also analyzed the 

ABAs for all double nucleotide substitutions along the same 35-nt PAM and target DNA 

region (Figure 11E). The data highlights the importance of the PAM-2 position for 

controlling Cascade binding, as well as the easy tolerance of having any two flipped out 

base substitutions. In the seed region, single substitutions are already poorly tolerated and 

reduce ABAs significantly. Therefore, a second mismatch in the seed reduces the ABA to 

near-background levels, while a second mismatch in PAM-distal positions are often 

tolerated. Two substitutions in the PAM-distal sequence only marginally destabilized the 

Cascade-DNA complex.  

 

Surprisingly, our data and model also reveal an additional periodicity in base-substitution 

penalties centered between the flipped-out bases (Figure 11C, Figure 11E). This periodicity 

results in an overall decrease in mismatch penalties every three nucleotides (e.g., at +3, +6, 

+9, etc.). A close inspection of the high-resolution E. coli Cascade structure reveals that 

every third base pair is puckered due to steric clashes between the RNA-DNA duplex and 

several residues in the Cas7 subunit (Figure 11F, Figure 11G). Six repeats of the Cas7 

subunits polymerize along the crRNA to form the backbone of the Cascade complex. These 

subunits are likely to give rise to the three-nucleotide periodicity observed in our model 

and dinucleotide ABA data. Moreover, these residues are highly conserved amongst 

divergent Type I-E CRISPR-Cas systems (Figure 37), suggesting that they may play a role 

in Cascade assembly. Overall, our results highlight an unanticipated three-nucleotide 

periodicity in Cascade-DNA binding penalties that reduce the overall fidelity of RNA-

DNA binding.  
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Cas3 recruitment requires perfect base pairing in the seed region 

Complementary base pairing within an eight nucleotide PAM-proximal seed region is 

necessary for efficient interference in vivo76,94–96. However, CHAMP profiling revealed 

pervasive off-target DNA binding by Cascade (Figure 11). Therefore, we reasoned that 

subsequent binding of the Cas3 nuclease may constitute an additional sequence-dependent 

proofreading mechanism. We investigated this possibility with three-color CHAMP 

experiments that measured the degree of Cas3 recruitment to DNA-bound Cascade (Figure 

13A). Fluorescent Cascade, Cas3, and alignment markers were spectrally separated into 

three distinct emission channels. After adding alignment markers, Cascade was introduced 

into the chips at a sufficiently high concentration to bind the majority of DNA clusters. 

Next, a saturating concentration of Cas3 was introduced into the same chip and CHAMP 

data was acquired (Figure 13B, see Appendix D). While most clusters showed a high 

degree of Cas3 recruitment, a large subset of the clusters showed lower than expected Cas3 

fluorescence (Figure 13B, inset). As expected, we did not see any Cas3 binding to the DNA 

clusters when Cascade was omitted from the chip, or on clusters that did not bind Cascade. 

These results suggest that Cas3 is recruited to Cascade in a DNA sequence-dependent 

manner. 
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Figure 11. Comprehensive profiling of Cascade-DNA interactions.  
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Figure 11. Comprehensive profiling of Cascade-DNA interactions. 
(A) The change in ABA for all 105 possible single-base substitutions along the minimal PAM and the target DNA. 

Negative values indicate a reduced ABA relative to the best PAM and perfectly paired DNA target. Error bars: S.D. 

obtained via bootstrapping. (B) CHAMP profiling was performed on two distinct DNA libraries (blue and red dots). The 

resulting data was used to construct a minimal binding model shown in (C) and (D) that accurately describes the data 

obtained from both CHAMP datasets. (C) Position-dependent substitution penalties and (D) position-independent 

nucleotide preferences obtained from the binding model. The model recapitulated the importance of the PAM, the PAM-

proximal ‘seed’ region, as well as the occurrence of the flipped-out bases. A  surprising three-nucleotide periodicity and 

a strong preference for thymidines at mismatched positions was also observed. (E) ABAs for all dinucleotide substitutions 

obtained with target A. The triangular matrix represents the average of CHAMP measurements acquired on two 

independent chips. The PAM is in the upper left-hand corner. Gray regions indicate insufficient data. (F) A schematic 

representation of T. fusca Cascade highlighting contribution of PAM positions -1 to -6, and the three-nucleotide 

periodicity. (G) Models representing the three nucleotide periodicity imposed by the protruding Cas7 finger (residues 

193-211) (top) and steric clash with adjacent amino acids (R19, M173, D183 and K271) (bottom) based on E. coli 

Cascade77. 
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We analyzed ~646,000 DNA clusters representing 10,810 unique DNA sequences to 

determine the requirements for efficient Cas3 recruitment. This dataset represented all 

extended PAM and single-nucleotide substitution variants, as well as 94% of double-

nucleotide substitution variants along the target DNA sequence (Figure 9F). 

Approximately 450 DNA sequences showed a reduced ratio of Cas3 to Cascade fluorescent 

intensities relative to that of the fully complementary DNA target sequence. To better 

understand why Cas3 was not recruited at the same level to all DNA clusters, I focused on 

DNA sequences with single nucleotide substitutions along the PAM and the target DNA 

(Figure 13C). Comparing the Cas3 and Cascade fluorescent signals indicated that most 

DNA sequences fell on a diagonal line that indicates stoichiometric Cas3 recruitment, 

while those below the diagonal line indicate sub-stoichiometric Cas3 to Cascade ratios. 

The line of stoichiometric Cascade/Cas3 intensity was fit to all single-mismatch data with 

a mismatch in the fourth target position or greater. As expected, we did not observe any 

points above the diagonal (Figure 13C). Cas3 recruitment was partially compromised at 

nearly all non-AAG PAMs, as well as for target DNAs with a substitution in the first three 

PAM-proximal positions (Figure 13C). Using this information, I computed how sequence-

dependent substitutions in the target DNA impact Cas3 recruitment. Their results are 

expressed as a Cas3 recruitment penalty calculated as the observed Cas3 average intensity 

minus the expected stoichiometric intensity given average Cascade intensity (Figure 13D). 

Surprisingly, our results revealed that mismatches in PAM-1 and +1 target positions 

strongly compromised Cas3 recruitment (Figure 13D). These data implicate the PAM, as 

well as the first few nucleotides in the seed region, as critical for Cas3 binding to a Cascade-

DNA complex. 
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Figure 12. Profiling off-target Cascade binding in a human exome.  

(A) The CHAMP-Exome analysis pipeline. Human genomic DNA is randomly sheared and enriched for exome 

sequences (blue) using standard oligonucleotide hybridization and bead pull-down protocols. After enrichment and 

adapter ligation, the exome is sequenced on a MiSeq chip, which is then used for CHAMP. Apparent Binding 

Affinities (ABAs) at each position in the exome were measured via CHAMP. (B) Maximum ABA values in each gene, 

ordered by rank. The dashed line indicates ABAs that fell outside of the experimentally defined cutoff for non-specific 

binding. Inset: histogram of genes that show measurable off-target binding. The gray zone indicates genes that had ABAs 

greater than 3 kBT. Red dots in (B) indicate three representative genes with strong off-target binding sites, further 

described in (C). (C) Example high-affinity peaks. ABA is measured at each position in each gene using all reads 

overlapping that position. A high-affinity site thus appears as a peak in ABA whose width is a function of the DNA 

shearing length distribution. Shown are the measured ABAs at each position in a few genes containing high-ABA 

peaks. The ABAs spanning each gene are shown in blue (left y-axis) and the sequencing coverage in purple (right y-

axis). Exon boundaries are shown as the minor ticks along the x-axis, and cause sharp changes in displayed ABA and 

coverage values. (D) Sequence logo generated from a 210-bp window centered around each of the ABA peaks > 

3 kBT. Image generated with WebLogo (Crooks et al., 2004). 
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Profiling off-target CRISPR-Cas binding in human genomic DNA 

CHAMP uses a standard Illumina workflow and is immediately compatible with any 

nucleic acid library, including those derived from genomic preparations. We therefore 

extended CHAMP to profile CRISPR-Cas binding on human genomic DNA (Figure 12). 

To enrich for gene-coding regions, exome capture was used in conjunction with paired-end 

sequencing on an Illumina MiSeq sequencer (Figure 12A). The resulting sequenced MiSeq 

chip had an average 11-fold coverage for 17,862 human protein-coding regions from 7 

million unique high-quality DNA clusters. This MiSeq chip was used to quantitatively 

assay off-target CRISPR-Cas binding. Remarkably, 37 genes showed at least one high-

affinity CRISPR binding site (defined as ABAs > 4 kBT) and ~200 genes showed moderate-

affinity ABAs (> 3 kBT). The precision of the off-target DNA sequence is defined by both 

the length distribution of the sheared exome fragments and the depth of coverage at each 

position (Figure 12B). Nonetheless, most genes harboring off-target sites showed a single, 

well-resolved ~200 bp-wide peak (Figure 12C).  

 

The peaks with the highest ABAs represent genomic high-affinity off-target DNA binding 

sites. A subset of these peaks may also represent a combination of two lower affinity 

binding sites that are closer than our nominal resolution of 210 bp. Nonetheless, a logo 

analysis of all peaks with ABAs > 3 kBT revealed a consensus sequence that matches 

closely with the expected critical determinants of off-target binding observed in our 

synthetic DNA libraries (Figure 12D). The consensus off-target site had a strong preference 

for an AAG PAM, with the second adenine giving the strongest signal (compare to Figure 

10C). Second, off-target sites were highly enriched for the first eight basepairs of the target 

DNA sequence. One notable exception is the flipped-out base in the sixth position, which 

does not base pair with the crRNA (also see Figure 11). Consistent with binding data 

obtained from synthetic DNA arrays (Figure 11), mismatches are also tolerated at the third 

base, which has reduced basepairing with the crRNA. This data also highlights that an eight 

nucleotide PAM-proximal “seed” region is necessary for efficient binding, as has been 
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previously observed in vitro and via in vivo interference assays76,94–96. Here we demonstrate 

that CHAMP can profile off-target CRISPR-Cas binding sites in human genomic DNA, 

paving the way for rapid and quantitative profiling of off-target binding sites in patient-

specific genomes. 

 

Figure 13. Three-color CHAMP reveals DNA sequence-dependent Cas3 recruitment.  

(A) Experimental strategy overview. Fluorescent Cascade is first incubated in the regenerated chips. Next, fluorescent 

Cas3 is introduced into the same chip. (B) Most DNA-bound Cascade complexes readily bind Cas3 (white arrow, right 

inset). However, a small subset of clusters shows reduced Cas3 binding (green arrow, right insert).  (C) Analysis of the 

fluorescent Cascade and Cas3 intensities at all sequences with a single nucleotide mismatch. Points below the diagonal 

indicate reduced Cas3 binding. Color bar indicates the position of the mismatch and the labels indicate the identity of the 

substituted bases. The gray point is a negative control indicating the background fluorescent intensity, as measured at 

non-specific DNA sequences on the same chip. Error bars: SEM of at least 213 independent clusters. (D) Analysis of the 

position-dependent Cas3 recruitment penalties. The solid line is an average of the three possible substitutions measured 

at each nucleotide position. Error bars: SEM.  

 



58 

Sequence-specific loss of Cse1 decreases the Cascade interference efficiency 

We next used EMSAs and nuclease assays to further determine the mechanism of DNA-

guided Cas3 recruitment (Figure 14). Cascade readily binds target DNA containing an A-

3A-2G-1 PAM. Surprisingly, the Cascade-DNA complex migrated as a faster mobility 

species when either this PAM was changed or when the +1 DNA position was mismatched 

relative to the crRNA (Figure 14A). Indeed, a DNA:RNA mismatch in the +1 position 

converted 80% of the Cascade complexes to the faster-migrating species. These effects 

were additive, as changing the PAM and the +1 position simultaneously resulted in nearly 

100% of the faster-migrating sub-complex. Consistent with previous studies, we confirmed 

that this faster migrating species represents Cascade lacking the Cse1 subunit (Figure 

36)87,97. Indeed, adding a large excess of free Cse1 could restore the mobility back to that 

of a complete Cascade complex (Figure 36). Cse1 physically interacts with Cas3 and loads 

the nuclease onto the target DNA87. Adding Cas3 resulted in a super-shift, but only when 

Cse1 was part of the Cascade complex (Figure 14A, Figure 14B). As expected, impaired 

Cas3 recruitment also reduced Cas3 nuclease activity when ATP and Co+2 were added to 

the reaction mixtures (Figure 14C and Figure 14D). Consistent with these in vitro studies, 

disrupting either the PAM or first few seed nucleotides also caused strong reduction in the 

plasmid-based in vivo interference assays (Figure 14E). These results reveal that DNA 

sequence-specific loss of Cse1 abrogates Cas3 recruitment and provides an additional 

proofreading mechanism for modulating CRISPR interference. 
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Figure 14. DNA-sequence dependent Cse1 dissociation provides an additional 

proofreading mechanism.  

(A) Cse1 dissociation from the Cascade complex bound to DNAs with mismatches at the +1, -1, and -3 positions. Cas3 

recruitment is Cse1-dependent, and is more impaired at mismatched sites containing these substitutions. Note that 

substitutions at the +1 position strongly promote Cse1 dissociation and abrogate Cas3 recruitment. DNA, Cascade, and 

Cas3 concentrations were 2 nM, 39 nM, and 1.1 µM, respectively. (B) Quantification of three replicates similar to (A). 

(C) Cas3 nuclease activity is strongly abrogated when mismatches are present in the +1 or PAM positions. Cas3 activity 

was Cascade, Co+2, and ATP-dependent. DNA, Cascade, and Cas3 concentrations were 2 nM, 39 nM, and 650 nM, 

respectively. (D) Quantification of three replicates of (C). (E) In vivo interference is reduced when mismatches are present 

in the +1 or PAM positions. These results also agree with in vitro assays (r=0.79). 
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Figure 15. A DNA-sequence dependent proofreading mechanism by the Cascade/Cas3 

effector complex.  

Cascade first interrogates target DNA for an extended PAM sequence. Next, an R-loop is directionally extended from 

the PAM along the length of the crRNA. Cascade dissociation may be triggered by multiple mismatches between the 

RNA and DNA. An additional proofreading mechanism retains the Cse1 subunit only when the R-loop is properly formed 

within the ‘seed’ region. Finally, Cse1 recruits Cas3 for downstream CRISPR interference.  

Cascade Binding and Interference Summary 

Our findings reveal the biophysical parameters governing PAM recognition and DNA-

binding at partially complementary target DNAs (Figure 15). T. fusca Cascade first 

identifies an extended PAM, possibly via hydrogen bonds with the PAM-4 nucleotide77. 

Further readout of the PAM-5 and PAM-6 positions may be mediated by indirect effects, 

such as changes in the major and minor groove widths at the PAM-proximal bases. These 

results are also broadly consistent with recent plasmid-based PAM-profiling experiments, 
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which also highlighted that diverse CRISPR-Cas systems—including the E. coli Type I-E 

Cascade—all decode an extended PAM69. 

 

Following PAM recognition and target DNA unwinding, an R-loop extends along the 

complementary target DNA. We utilized CHAMP to understand the effects of multiple 

sequence substitutions on Cascade-DNA interactions. In addition to identifying the 

importance of the PAM, “seed,” and flipped-out bases, our analysis and modeling revealed 

an unanticipated three-nucleotide periodic interaction that reduced the relative penalty for 

having DNA-RNA mismatches at these positions. This periodicity likely arises due to a 

steric clash between basepairs in the R-loop and residues in each of the six Cas7 subunits. 

We speculate that these periodic contacts allow the crRNA to act as a scaffold during 

Cascade assembly. Indeed, a crRNA is required for assembly of the E. coli Cascade 

complex90. The crRNA is held in a conformation that maximizes interaction with the target 

DNA, possibly avoiding secondary structure formation by targets, as has been 

demonstrated in other RNA-guided nucleases90,98–101. The periodic mismatch tolerance also 

results in a much shorter ‘effective’ guide length (24-27 bp). Tolerating mismatches allows 

Cascade to recognize a wider array of targets, which is critical when defending against 

rapidly evolving phages.  

 

Finally, by performing multi-color CHAMP imaging, we uncovered what appears to be a 

novel DNA-sequence dependent proofreading mechanism by the Cascade/Cas3 effector 

complex (Figure 15). Cas3 recruitment is dependent on the identity of the PAM, as well as 

perfect complementarity between crRNA and DNA in the +1 and +2 positions. These 

nucleotides interact with the Cse1 subunit of the Cascade complex. EMSAs and in vitro 

nuclease assays revealed that T. fusca Cse1 appears to dissociate from Cascade at 

intermediate PAMs or when there are mismatches between the crRNA and the first three 

nucleotides of the target DNA. The functional significance of this position was further 

confirmed with in vivo plasmid interference assays. The sensitivity of Cse1 retention and 
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subsequent Cas3 association increases the specificity of the overall system for the seed and 

PAM regions, recapitulating in vivo results (Figure 10E and Figure 14E). 

COMPUTATIONAL METHODS 

Aligning Fluorescent Images and FASTQ Points: Overview 

To identify the DNA sequence of each cluster, I developed an image-processing pipeline 

to process images collected by our TIRF microscope (Figure 16A-B). To decode each 

cluster’s sequence, its position was correlated to the corresponding record in the FASTQ 

file generated at the end of each MiSeq run. For each identified cluster, the FASTQ file 

reports the specifying lane, tile, and relative x-y coordinates, as shown in Figure 17. This 

FASTQ-supplied spatial information is reported in an arbitrary coordinate system that is 

scaled, rotated, and translated relative to our fluorescent images. An additional 

confounding factor is that FASTQ files do not report all fluorescent clusters (e.g., clusters 

that did not pass Illumina-specified quality control filters). In addition, some Illumina-

reported clusters may also not light up in our fluorescent images. This may occur due to 

errors in the Illumina cluster identification pipeline, or possibly due to incomplete 

fluorescent labeling of the cluster during our experiments. As such, the mapping problem 

required finding the rotation, scale, x-offset, y-offset, and chip surface (both surfaces are 

imaged in a MiSeq chip) which best align the FASTQ points and imaged clusters. I 

accomplished this through two alignment stages: rough alignment and precision alignment, 

discussed below. 
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Figure 16. Cluster identification and linear discriminant analysis (LDA).  

(A) Flow chart for cluster identification. (B) An example alignment. The first image shows a synthetic image representing 

the alignment marker coordinates, each represented by a symmetric Gaussian. These coordinates are found by mapping 

all reads against the PhiX genome, and aligning the mapped reads with the second image, a TIRF microscope image with 

fluorophores attached to all alignment markers. The third image shows the overlap of the synthetic and experimental 

images (overlap seen as white). (C) Example 7x7 pixel images centered on aligned FASTQ points for targeted and non-

targeted clusters. (D) Linear discriminant analysis (LDA) was used to train pixel weights using sub-images as in (C) from 

sequences known to be on or off. Shown are the trained weights. 7x7 pixels sub-imaged were found to be optimal. To 

calculate intensity scores for Kd calculations, these weights, with negative values set to zero, are multiplied by the 

corresponding pixel values and summed. (E) The ROC (receiver operating characteristic) curve using LDA scores from 

(D) for classification of a test set of approximately 75,000 points. Perfect target A sequences were used as true positive 

rates (FPR), and non-target sequences as false positive rates (TPR). The extremely high area under the curve (AUC) of 

0.999 indicates both very good alignment of the sequence coordinates and microscope images, as well as high fidelity of 

the chemistry in illuminating the correct clusters and only the correct clusters. 
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For the purposes of internal calibration, Illumina requires a percentage of each MiSeq run, 

typically 5-10% of all clusters, to be DNA from the small, thoroughly characterized phiX 

bacteriophage genome. Separate adapter chemistry is used for this phiX library, which can 

be accurately and specifically illuminated on any chip using complementary 

oligonucleotides. The phiX clusters do not contain a run-specific index barcode and are 

thus not demultiplexed as normal reads, but can be determined by mapping reads to the 

phiX genome. These phiX clusters provide a convenient resource for a variety of purposes, 

including alignment, categorization and intensity training, and as a control. We illuminated 

the phiX clusters by hybridizing them to a dye-conjugated oligo (Atto647-PCP or Cy3-

PCP) during cluster re-generation and used the resulting fluorescent signals to align our 

fluorescent images with the corresponding FASTQ records.  

Stage 1: Rough Alignment 

The rough alignment was performed through cross-correlation of FASTQ points and 

images using fast Fourier methods102. Briefly, each FASTQ tile was converted to an image, 

with each cluster represented as a radially symmetric Gaussian with σ of 0.25 μm, a typical 

cluster size. Cross-correlation was then performed via the formula  

𝐶𝑟𝑜𝑠𝑠	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 	 |ℱGH[(ℱ𝐹)∗ ∙ ℱ𝑇]| 
 

with zero-padding sufficient to accommodate any offset, where ℱ and ℱ-1 are the fast 

forward and inverse 2D Fourier transforms, * is the complex conjugate, F is the FASTQ 

image, and T is the TIRF image. This allowed consideration of all x-y offsets (translation) 

in a computationally efficient manner, though did not inherently consider rotation or scale. 

The log-polar transform has been used in some applications to incorporate rotation and 

scale information into cross-correlation methods, but did not work well here. For each 

TIRF image, the maximum cross-correlation was first found against two FASTQ tiles 

known from their position to not overlap the TIRF image in order to measure background 

noise level, after which correlations above a signal-to-noise cutoff of choice, 1.4 in the 
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current work, indicated a good alignment. In order to achieve our first alignment, I first 

found good initial guesses for rotation and scale. I then exhaustively sampled a local grid 

around these estimates of rotation, scale, and parity to find the first alignment. With 

reasonable estimates for these parameters, the Fourier-based alignment can be performed 

within 45 seconds on a desktop computer.  

 

Figure 17. Illumina MiSeq Chip Coordinates.  

(A) An Illumina MiSeq chip. (B) A schematic of the MiSeq microfluidics channel and v3 coordinate system. On Illumina 

machines, the location of each DNA cluster is specified by lane number, tile number within that lane, and x-y coordinates 

within that tile. A MiSeq chip has only one lane, Lane 1. Within the lane, tiles are numbered with four digits which 

indicate, in order, surface (both surfaces are imaged), swath (MiSeq has only one swath), and position along the swath, 

which in MiSeq v3 goes from 01 through 19. This comes to a total of 38 tiles per MiSeq v3 chip. Finally, x-y coordinates 

within each tile have a consistent, though arbitrary, footprint, with an x range of approximately (1700, 30000) and y range 

of approximately (1800, 25300). The orientation of the x and y axes is shown.  

Stage 2: Precision Alignment 

Following rough alignment in the alignment marker channel, I performed precision 

alignment via what I call constellation mapping in all channels. First, cluster location 

information was extracted from the TIRF images. I used the astronomy software Source 

Extractor to fit two-dimensional Gaussian functions to the fluorescent clusters103. Next, I 

found the nearest neighbors of FASTQ points in imaged cluster space and vice-versa using 

kd-trees104. Two points which were nearest neighbors of each other in both directions were 

termed a mutual hit. Due to accrued noise – missing data in FASTQ space, missing data in 
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imaged cluster space, and imperfect Gaussian calling – mutual hits were not by themselves 

high-confidence mappings. I further subcategorized mutual hits by the statuses of other 

nearby clusters. If cluster A and FASTQ point B were mutual hits and no other cluster X 

or FASTQ point Y consider A or B nearest neighbors, then the mutual hit was termed an 

exclusive hit. If there was another cluster X whose nearest neighbor was FASTQ point B, 

or another FASTQ point Y whose nearest neighbor was cluster A, then the status of hit AB 

was determined by the distance to the closest such X or Y. If the closest such X or Y was 

more than 1.25 microns away – the diameter of a typical cluster – AB was termed a good 

mutual hit; otherwise AB was called a bad mutual hit. Using exclusive hits and good mutual 

hits, we have approximately the same constellation of points in the two spaces. I then 

performed linear least squares fitting between these two constellations to determine the 

final alignment. The precision alignment process, including both constellation 

identification and least squares fitting, is typically performed within 2.5 seconds on a 

desktop computer. 

Calculating Cluster Intensity 

Machine-learned linear weighting of pixels was used to calculate the fluorescent intensity 

of each cluster. (see Figure 16C-E) For training, I used an experiment with only phiX 

clusters illuminated and restricted the analysis to exclusive and good mutual hits. Seven by 

seven pixel squares were extracted around each of these FASTQ points and linearized into 

feature vectors. Linear Discriminant Analysis (LDA) was then used to find pixel weights 

that best capture the intensity of a given cluster and penalize the intensity of neighboring 

clusters. The positive weights were used to calculate raw cluster intensities. To correct for 

variation in laser intensities across fields of view, cluster intensities were normalized within 

each run. The mode of pixel intensities of each image was calculated, and the intensity 

calculations in each image normalized by the mode of the given image divided by the 

median of all modes. 
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Calculating the apparent dissociation constant and binding affinity 

Calculation of the apparent Kd value was performed for each sequence via curve fitting to 

the Hill equation (without cooperativity): 

 

𝐼O-/ =
𝐼P.Q − 𝐼PS@

1 + 𝐾V𝑥
+ 𝐼PS@ 

 

where Imin is the background intensity, Imax is the typical intensity of a fully saturated 

cluster, and the concentration values x and cluster intensity values Iobs are derived from the 

concentration gradient experiment. Imin is calculated as the median intensity of negative 

control clusters in the lowest concentration point. Imax is determined separately for each 

concentration to normalize small systematic errors between concentrations. The key 

observation is that due to very slow photobleaching rates, at higher concentrations where 

the perfect target sequence clusters have become saturated with Cascade, the perfect target 

sequence clusters can be used as a reference to normalize between concentrations. To this 

end, Imax is calculated in two steps, using only clusters of the perfect target sequence. First, 

the Kd and a temporary, constant Imax , call it Imax,const, are fit jointly on the perfect target 

sequence clusters using information from all concentrations. Second, for each 

concentrations where median Iobs is greater than 90% of the fit Imax,const, Imax is solved for 

from the above equation, using the observed median cluster intensity as Iobs. At all 

preceding concentrations, Imax,const is used. These values of Imin and Imax are then used to fit 

Kd for all other sequences. Finally, given a Kd from a particular sequence and from a 

negative control sequence, call it Kd,NC, the apparent binding affinity (ABA) is given by 

 

𝐴𝐵𝐴 = ln[𝐾V,\]^ − 	ln	(𝐾V), 
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chosen so that more positive indicates more binding. Error bars indicate the standard 

deviation of bootstrap Kd and ABA values. Figure 18 shows example average and 90% 

confidence errors for ABA as a function of number of clusters. 

 

 

Figure 18. Estimating the error in the ABA.  

Bootstrap ABA values were fit with all numbers of clusters between 3 and 100. Shown are the average errors compared 

with ABA (blue points), as determined for all clusters and 90% confidence intervals (red points). The gray dotted line 

shows our cutoff of 5 clusters, with average ABA error of approximately 0.2 kBT. Solid lines indicate a fit to the data. 

The source code for cluster identification, spatial registration, and binding affinity 

calculations is available via GitHub (https://github.com/finkelsteinlab/champ).  

Position-Transition Model 

In order to reduce dimensionality and aid insight regarding binding affinity changes from 

nucleotide substitutions in the PAM and target sequences, I developed what I call the 

position-transition model for change in apparent binding affinity (ΔABA), which can be 

written as: 
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ΔABA =	b𝑝S	𝑡(𝑟S, 𝑠S)
de

SfH

 

 

where pi is the penalty, ri is the reference base, and si is the sequenced base in the ith 

position, and t(x, y) is the position-independent transition weight from x to y. The 

summation is carried out over all 35 positions in the minimal three-nucleotide PAM and 

the protospacer. 

 

For computational efficiency, I cast this in matrix form. I represented each sequence as a 

35-by-12 indicator matrix S with rows representing each sequence position and columns 

representing each non-identity transition. The position penalties and transition weights 

were represented as vectors p and t. Then the above is written as 

ΔABA = 𝑆: (𝑝⊗ 𝑡) 
 

where : is the Frobenius inner product and ⊗ is the outer product. This was linearized and 

concatenated into multiple-sequence sparse matrices in the natural way and fit using non-

linear least squares. I removed model degeneracy by having multiple reference sequences 

and normalizing the transition vector to have mean value one.  

DISCUSSION 

CHAMP repurposes sequenced and discarded chips from modern next-generation Illumina 

sequencers for high-throughput association profiling of proteins to nucleic acids. A key 

difference between CHAMP and prior NGS-based approaches is that it does not require 

any hardware or software modifications to discontinued Illumina sequencers63,65,64. In 

CHAMP, all association-profiling experiments are carried out on sequenced MiSeq chips 

and imaged in a conventional TIRF microscope. CHAMP’s computational strategy uses 

phiX clusters as alignment markers to align the spatial information obtained via Illumina 

sequencing with the fluorescent association profiling experiments. This strategy offers 
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three key advantages over previous approaches. First, using a conventional fluorescence 

microscope opens new experimental configurations, including multi-color co-localization 

and time-dependent kinetic experiments. The excitation and emission optics can also be 

readily adapted for FRET, and other advanced imaging modalities. Second, complete 

fluidic access to the chip allows addition of other protein components during a biochemical 

reaction. Third, the computational strategy for aligning sequencer outputs to fluorescent 

datasets is applicable to all modern Illumina sequencers, including the MiSeq, NextSeq, 

and HiSeq platforms. Indeed, we also used the CHAMP imaging and bioinformatics 

pipeline to regenerate, image, and spatially align the DNA clusters in a HiSeq flowcell, 

providing an avenue for massively parallel profiling of protein-nucleic acid interactions on 

both synthetic libraries and entire genomes. Future extensions will leverage on-chip 

transcription and translation (e.g., ribosome display) to facilitate high-throughput studies 

of RNA or peptide association landscapes. These studies will permit quantitative 

biophysical studies of diverse protein-nucleic acid interactions. 

Cascade interrogates an extended PAM and recognizes mismatched DNA targets 

Using CHAMP, we profiled the biophysical properties governing interactions between 

target DNA and the Type I-E CRISPR-Cas effector complex. Our findings reveal the 

biophysical parameters governing PAM recognition and DNA-binding at partially-

complementary target DNAs. T. fusca Cascade first identifies an extended PAM, possibly 

via hydrogen bonds with the PAM-4 nucleotide as suggested by a recent high-resolution 

structure of the E. coli Cascade-DNA complex77. Further readout of the PAM-5 and PAM-

6 positions may be mediated by indirect effects, such as changes in the major and minor 

groove widths at the PAM-proximal bases. These results are also broadly consistent with 

recent plasmid-based PAM-profiling experiments, which highlighted that diverse 

CRISPR-Cas systems—including the E. coli Type I-E Cascade—all decode an extended 

PAM69. 
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Following PAM recognition and target DNA unwinding, an R-loop extends along the 

complementary target DNA. Using CHAMP, we probed the effects of multiple sequence 

substitutions on Cascade-DNA interactions. In addition to identifying the importance of 

the PAM, “seed,” and flipped-out bases, our analysis and modeling revealed an 

unanticipated three-nucleotide periodic interaction that reduced the relative penalty for 

DNA-RNA mismatches at these positions. A re-analysis of previously reported E. coli 

Cascade plasmid interference assays also shows the same three-nucleotide periodicity94. 

Here, we propose that this is likely a general structural feature shared by other Type I-E 

systems and that it likely arises due to a steric clash between basepairs in the R-loop and 

residues in each of the six Cas7 subunits. The crRNA is required for assembly of the E. 

coli Cascade complex90, and we speculate that these periodic contacts allow the crRNA to 

act as a scaffold during Cascade assembly. The crRNA is held in a conformation that 

maximizes interaction with the target DNA, possibly avoiding secondary structure 

formation by targets, as has been demonstrated in other RNA-guided nucleases90,99,101. This 

periodic mismatch tolerance was also confirmed at off-target sites mapped to the human 

exome, further highlighting the importance of quantitatively mapping the influence of 

mismatches on CRISPR-DNA interactions with both synthetic and genomic DNA 

substrates.  

A DNA sequence-dependent mechanism underlies Cse1 loss and CRISPR 

interference 

By performing multi-color CHAMP imaging, we uncovered that Cas3 recruitment is 

dependent on the identity of the PAM, as well as perfect complementarity between crRNA 

and DNA in the +1 to +3 positions (Figure 13). These nucleotides interact with the Cse1 

subunit of the Cascade complex. EMSAs and in vitro nuclease assays revealed that T. fusca 

Cse1 dissociates from Cascade at intermediate PAMs or when there are mismatches 

between the crRNA and the first three nucleotides of the target DNA. The functional 

significance of this position was further confirmed with in vivo plasmid interference assays 
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and also recapitulates previously published in vivo interference results with the E. coli 

Cascade complex94.  

 

In addition to identifying foreign DNAs, Cascade and Cas3 also promote primed spacer 

acquisition, where additional spacers are rapidly acquired from foreign DNAs that already 

contain a spacer in the CRISPR locus. Spacer acquisition requires the Cas1-Cas2 protein 

complex, which binds protospacer DNA and uses its integrase activity to insert the 

protospacer within the CRISPR array. Cascade can promote target acquisition at both 

perfectly matched spacers and mismatch-containing spacers that do not elicit strong 

interference105–108. Conformational control of the Cse1 subunit is emerging as a key 

paradigm for recruiting Cas1-Cas2 and redirecting the Cascade-Cas3 complex towards 

primed acquisition108. Here, we speculate that Cse1 undergoes a DNA-sequence dependent 

conformational change that renders it labile in the absence of Cas1-Cas2 complex. Future 

CHAMP studies with fluorescent Cas1-Cas2 and FRET-reporters of Cse1 conformational 

state will shed light on the mechanisms and sequence requirements for primed spacer 

acquisition. 

Leveraging CHAMP for mapping protein-nucleic acid interactions on human 

genomes 

Because CHAMP uses the standard Illumina workflow, it is immediately compatible with 

any nucleic acid library, including synthetic DNA, RNA, or genomic preparations. 

However, mapping CRISPR-DNA interactions on sequenced genomes presents additional 

computational challenges due to the random shearing lengths and uneven sequencing 

coverage. To address this challenge, we developed a bioinformatics pipeline that 

successfully identified off-target binding sites within a human exome with a ~200 bp 

effective resolution at an average 11-fold coverage depth. Higher resolution mapping can 

be readily achieved by shorter DNA fragments and greater sequencing coverage. Thus, 

CHAMP can be used to probe off-target CRISPR-Cas binding in any genome prior to 



73 

performing genome-editing. Further extensions will allow direct observation of both 

binding and cleavage at these off-target sites. As CRISPR-Cas systems continue to be 

developed for human gene modification, CHAMP and similar methods may become useful 

tools for rapidly and quantitatively assaying target specificity on individual patient’s 

genomes.  
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Chapter 3: A meta-analysis of bat genomes and transcriptomes‡ 

INTRODUCTION 

The bat order Chiroptera is one of the most common and diversely adapted orders of 

organisms on Earth. Bats form a disproportionately large portion of the number of mammal 

species, representing 925 of approximately 4,600 of all known mammal species, about 

20%109.  Several characteristics of bats make them inherently interesting, most uniquely 

including their ability to fly and echolocate. Bats have also gained notoriety for being 

important reservoirs of several deadly zoonotic viruses. They are established or conjectured 

viral reservoirs for the SARS coronavirus, Nipah virus, Hendra virus, and the Ebola 

virus109,110.  

 

Unfortunately, the diversity that makes bats interesting also makes them more difficult to 

study. Compare the flying fox, Pteropus vampyrus, a fruit eating Southeast Asian giant 

with a wingspan up to 1.5 meters, with the vampire bat, Desmodus rotundus, a South 

American bat which feeds primarily on blood, has the ability to run over ground, and 

weights just 25-40 grams111–113. In genetic studies, genes are often isolated using primers 

designed from closely related species, and this amount of divergence within the order 

Chiroptera makes isolating genes of interest from novel bat species very tedious and 

expensive. At the same time, the large divergence, paired with the relatively sparse data 

often used, has led to difficulty establishing the topology of the phylogenetic tree. 

 

                                                
‡ This chapter draws on material from Hawkins JA, Kaczmarek ME, Press WH, Sawyer SL. A meta-analysis 

of bat genomes and transcriptomes. (In preparation). J.A.H., M.E.K., W.H.P., and S.L.S. designed the 

research. J.A.H. performed all computational methods and analyses. M.E.K. prepared the RNA for 

sequencing. J.A.H., W.H.P., and S.L.S. wrote the paper. All authors commented on the manuscript. 
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There are two principle phylogenic analyses with bats across the entire order Chiroptera. 

In 2002, Jones et al. combined 105 previous phylogenetic studies of Chiropteran families 

and subfamilies from publications as far back as 1970, placing 925 bats into one tree using 

supertree parsimony methods114. In 2011, Agnarrson et al. built a phylogeny de novo using 

molecular Bayesian methods on a single gene, cytochrome b (CytB), from 648 species115. 

These trees agree on much of the history of Chiroptera, but due to the host of different 

methods represented and the relative sparsity of the data, they unsurprisingly differ on a 

number of points with regard to the basic backbone of the tree. Since the time of these two 

analyses, a number of bats across the order Chiroptera have benefitted from the explosion 

of data that is next generation sequencing, suggesting the time is ripe to revisit the backbone 

of the Chiropteran phylogeny through use of the sequence information from all available 

genes.  

 

The same data we wish to use to find the phylogenetic tree—namely, multiple sequence 

alignments (MSAs) of all available genes—is also highly valuable for guiding research 

into mechanisms of viral antagonism. To infect a cell, a virus must hijack healthy cellular 

proteins in order to enter the cell and replicate within it. Through natural selection, any 

host which has proteins too easily tricked by a given virus will tend to be replaced by hosts 

with mutations resistant to the virus. The virus, then, is under selective pressure to find a 

mutation in its own genome allowing it to hijack the new protein variant. And back and 

forth it goes through evolutionary time in what has become known as the host-virus arms 

race, with the amino acids at the interface in a state of constant flux116,117. This constant 

selective pressure, known as positive selection, leaves its imprint on the DNA sequences 

of the host species by producing an unusually high ratio of mutations which change the 

protein sequence to those that do not, known as dN/dS118,119. We can use multiple sequence 

alignments to measure this ratio and look for signatures of positive selection. Identifying 

Chiropteran genes under positive selection is of particular interest to human health due to 

the several bat viruses which are deadly for humans120,121. 
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To address the above problems with the new wealth of sequencing data, we set out to 

perform a meta-analysis of available Chiropteran annotated genomes and transcriptomes, 

with three principal goals: a curated set of orthologous gene families, a high-confidence 

phylogeny, and positive selection measurements for each family of orthologous genes.  

 

To this analysis, I, in collaboration with Maryska Kaczmarek in Dr. Sara Sawyer’s lab, 

have also added new transcriptomic data and annotation for two African bats of interest, 

associated with the Ebola virus and its relative the Marburg virus: Hypsignathus 

monstrosus and Rousettus aegyptiacus. H. monstrosus, the hammer-headed bat, is known 

for its likely connection to the Ebola virus. Proving that a given species of any organism is 

the reservoir for Ebola has proven elusive, but many believe that bats are the reservoir since 

Leroy et al.'s 2005 paper in which they performed a broad test of more than a thousand 

small vertebrates near sites of recent Ebola outbreaks122. Live virus was not extracted in 

large quantity from any of the organisms, but several organisms were found to have 

immunoglobin G (IgG) specific to the Ebola virus. Chief among them were the bats, and 

chief among the bats was H. monstrosus. R. aegyptiacus, meanwhile, is an established 

reservoir for the Marburg virus123,124. 
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Species Genome / 

Transcriptome 

Annotated 

Genes 

N50 %GC Assembly 

Count 

Artibeus jamaicensis Transcriptome 10,071 2,166 53.4 16 

Carollia brevicauda Transcriptome 3,954 1,284 51.3 12 

Cynopterus sphinx Transcriptome 6,232 1,653 49.8 12 

Desmodus rotundus Transcriptome 9,019 2,115 52.8 18 

Eptesicus fuscus Genome 13,248 2,235 54.2 n/a 

Hypsignathus monstrosus Transcriptome 7,875 2,040 49.8 17 

Macrotus californicus Transcriptome 4,375 1,557 51.9 12 

Miniopterus schreibersii Transcriptome 11,089 2,202 53.4 19 

Murina leucogaster Transcriptome 9,267 2,055 53.6 14 

Myotis brandtii Genome 12,674 2,229 53.1 n/a 

Myotis davidii Genome 12,353 2,223 53.2 n/a 

Myotis lucifugus Genome 12,386 2,214 53.2 n/a 

Myotis ricketti Transcriptome 4,868 1,401 51.1 12 

Pteropus alecto Genome 13,295 2,235 52.4 n/a 

Pteropus vampyrus Genome 13,145 2,232 52.3 n/a 

Rhinolophus ferrumequinum Transcriptome 6,764 1,761 53.8 12 

Rousettus aegyptiacus Transcriptome 9,714 2,235 52.8 18 

Tadarida brasiliensis Transcriptome 6,128 1,869 51.4 12 

Homo sapien Genome 13,206 2,301 52.2 n/a 

Sorex araneus Genome 12,190 2,280 55.7 n/a 

Table 1. Chiroptera data overview.  

Each species analyzed in this study, along with basic information concerning their data, including data type (genomic or 

transcriptomic), the number of genes here placed in orthologous gene sets, N50 and GC content of said genes, and, for 

bats with transcriptomic data, the number of assemblies constructed and analyzed. Transcriptomic data were all 

assembled and annotated as part of this study, while genomic data and annotations were all downloaded from RefSeq. 
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RESULTS 

Data collection and assembly 

The bat species analyzed in this study and the type of data associated with each are shown 

in Table 1. For each bat with annotated genomes, we downloaded the relevant RefSeq 

database from the National Center for Biotechnology Information (NCBI) website and 

extracted the protein and coding sequence of the longest isoform of each gene. More 

consistent isoforms were found after orthology search (see Methods). Genome assembly 

accession numbers, as well as basic assembly statistics, for each genome are given in Table 

3. Human and common shrew, Sorex araneus, genomes were also included for use as 

outgroups. We collected RNA-seq data for H. monstrosus and R. aegyptiacus ourselves, 

sequenced on Illumina HiSeq machines (see Methods). For all other bats with available 

transcriptome data, we downloaded the raw sequencing reads from the Short Read Archive 

(SRA)125–136.  

 

For the sake of consistency, we used only transcriptome assemblies constructed using our 

own pipeline, even in the rare cases where authors made assemblies publicly available. 

Briefly, our pipeline consisted of removing adapter sequences with Trimmomatic137, 

followed by using two of the most popular transcriptome assemblers, the De Bruijn graph-

based Trinity138 and TransAbyss139 assemblers, with a range of input parameters. This 

resulted in multiple tentative assemblies per bat (see Table 1, Methods)137–140. The best-

assembled contig for each gene among these assemblies was selected in the orthologous 

gene finding stage.  
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Figure 19. Use of multiple assembly methods improves recovered gene counts.  

For each species, the number of genes placed in an orthologous gene family based on all assemblies is reported (blue), 

as well as the number of genes which could have been found from the best single assembly alone, had it been known a 

priori (yellow). Which assembly was best for each species is shown as the labels for yellow bars, where TrinAll indicates 

the Trinity assembly using all reads and TranskXX indicates the Trans-Abyss assembly using the De Bruijn graph of k-

mers of length XX. Number of genes added through use of multiple assemblies over the best assembly and percentage 

increase are shown right of the bars. Use of multiple assemblies added 9-22% more annotated orthologs per species 

relative to the best single assembly. 
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Orthologous Gene Families 

The search for orthologous genes was performed in two primary steps. First, we searched 

for orthologs in the genomic data sets. With genomic data, one is able to use syntenic 

information to predict orthology rather than paralogy. We used all-v-all Blast reciprocal 

best hits (RBH) of the protein sequences, filtered using three sources of syntenic 

information: public orthology predictions from BioMart, proximity via whole genome 

alignment, and proximity of similar neighboring genes141–143. Second, we searched for 

orthologs in transcriptomic data sets. We selected the best Blast RBHs of transcriptomic 

data against genes found in the genomic orthologous gene sets, filtered by search using 

HMMER144, a hidden Markov model based homology search software package, and 

filtered by match length (see Methods). 

 

My final results place 192,686 transcripts into 12,611 orthologous gene sets, of which 

1,334 contain genes from all species and outgroups. Figure 19 shows the number of 

transcriptomic genes found by species. Also shown in Figure 19 is the number of genes we 

would have found in each species had we known a priori which assembly would perform 

the best for each bat and only assembled that one. With the additional work of analyzing 

multiple assemblies per bat, we were able to identify 9-22% more genes per bat relative to 

the best single assembly, representing thousands of added transcripts and improvements to 

the completeness of the gene network. 

 

Multiple Sequence Alignment Cleaning 

Manual inspection of many multiple sequence alignments (MSAs) of orthologous genes 

revealed a non-random source of error: the species were biased toward segregating by data 

type (Figure 19a). I.e., genomic data and transcriptomic data would tend to agree within 

data type but disagree between data types. Furthermore, the splits were observed to happen 

at sharp boundaries highly suggestive of exon boundaries. This effect is naturally explained 
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by the fact that we chose the longest isoforms for genomic species, even though the longest 

isoforms might not be expressed at high enough levels to appear in the transcriptomic data 

sets. Any systematic artifacts in transcriptomic or genomic data assembly and annotation 

would also contribute to this effect. 

 

To ameliorate this bias, we developed a two-step cleaning algorithm for the MSAs (Figure 

19b). First, we revisited each genomic gene and replaced it, if necessary, with the isoform 

closest to the consensus sequence. This resulted in improvements to 3,444 transcripts, with 

transcripts improving their match to the consensus sequence by an average of 8%, though 

there was a wide range of percent improvements (Figure 19c). Second, we removed exons 

if the species did not all agree on the exon structure. Specifically, we removed exons if all 

species did not agree on the aligned exon boundaries or if exon sequences differed in length 

by more than 10%. This cutoff was chosen because we observed it to be a transition point 

to high-gap exons in our data (Figure 38). Note that we intentionally did not use sequence 

identity or agreement to select for good or bad exons. One of the analyses we wish to 

perform is positive selection analysis, which measures the ratio between non-synonymous 

and synonymous mutations. Filtering exons based on whether the sequences matched 

would directly bias the data in favor of synonymous mutations. 
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Figure 20. Multiple sequence alignment cleaning.  
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Figure 20. Multiple sequence alignment cleaning. 
(a) During manual inspection, multiple MSAs were observed to have isoform selection biased toward separation of 

genomic and transcriptomic data, consistent with the observation that longest isoforms, used for genomic data, need not 

be expressed at high enough levels to be present in transcriptomic data. This produces non-random, non-gapped errors 

segregating by the artifact of data type. (b) To clean the alignments, we first revisit each genomic gene to choose the 

isoform which best matches the consensus alignment sequence. We then filter exons, where exons with disagreement 

about boundary positions in the alignment and exons with too many gaps are filtered out. (c) 3,444 genomic isoform 

selections were improved in the first cleaning step, shown as a function of the improvement in percent matching the 

consensus sequence, i.e. (percent matching after) – (percent matching before).  (d) Our exon filtering strategy enriches 

for conserved sequences, filtering more weakly conserved sites at higher rates, even though the filtering strategy 

intentionally does not consider sequence composition. “Strong”, “Weak”, and “None” conservation categories are as 

defined by Clustal. Percentages show percent reduction in MSA column counts. (e) Column conservation of the first 

2,000 columns of the longest 2,000 alignments before and after exon filtering. 
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To verify that our exon-filtering strategy improved the quality of the alignments, we 

checked that the filtered sequences have improved overall sequence conservation. Our 

strategy, as hoped, preferentially discriminates against more weakly conserved sites, 

filtering nearly 60% of non-conserved sites vs. only 28% for unanimous sites (Figure 19d). 

Gapped sites, being directly relevant to the filtering process, are nearly 99% removed. 

Figure 19e shows the positions and distribution of conserved sites in the first 2,000 MSAs. 

Many of the bad exons are at the ends of the alignments. There are a few reasons to expect 

this. The main reason is that the ortholog finding process scores sequences based on length 

of agreement, which naturally tends to include matching sections in the center. The ends 

are then more free to vary, with variability expected due to differences in isoform selection, 

as well as due to incomplete or incorrect transcript assembly. Transcripts tend to have less 

coverage near the ends, resulting in worse assembly. Incomplete assembly at the ends also 

helps explain why so many unanimous sites end up being filtered: correctly matched exons 

will still be filtered if partial assembly results in exons of different lengths. From these 

results, as well as manual inspection, the alignments have significantly fewer erroneous 

alignment columns after exon filtering. 

 

Phylogenetic Analysis 

I constructed the phylogenetic tree of our considered species using multiple strategies and 

software packages. First, using the 1,334 genes found in all species, we constructed the 

species tree with a partitioned nucleotide analysis—one partition per gene—in Mr. Bayes13. 

Next, using the same genes, we constructed the species tree with concatenated data using 

Mr. Bayes and RAxML14. Finally, we constructed the 1,334 gene trees with all species 

using Mr. Bayes and determined the species tree via quartet parsimony as implemented in 

ASTRAL15. Gene trees were computed with both nucleotide and amino acid sequence. 
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The final tree is shown in Figure 21a, with reported posterior probabilities given from the 

Mr. Bayes partitioned analysis. We refer to the final tree instead of a specific version of 

the final tree due to the strong consensus between methods. Methods used include Mr. 

Bayes with a partitioned model sampling over gamma model space; Mr. Bayes with 

concatenated data also sampling over model space; RAxML with concatenated data; and 

quartet parsimony of gene trees via the ASTRAL software package on several inputs, 

including nucleotide CDSs, amino acid sequence, and restrictions to the three codon 

positions. A summary of how the methods agreed or disagreed is shown in Figure 21b. All 

methods converged on nearly the same species tree. In fact, due to the large amount of data, 

all nodes resolved with 100% reported posterior probability in both Mr. Bayes analyses. 

The only species not consistent in every analysis were C. sphinx and M. leucogaster.  

 

Also included in Figure 21b are comparisons with trees of Agnarsson, et al and Jones, et 

al115,145. All species placements in our final tree agree with these trees, with the exception 

of two previously controversial species, R. ferrumequinum and M. schreibersii; one 

particularly close node, C. sphinx; and one surprising placement, M. leucogaster. 

 

The placement of R. ferrumequinum addresses the first branching of the order Chiroptera. 

The traditional division of order Chiroptera into Mega- and Microchiroptera, the large and 

small bats respectively, has been challenged in recent years as molecular phylogenetic 

analyses have gained prominence. An alternative history has been proposed, dividing bats 

into two suborders named Yinpterochiroptera and Yangochiroptera146. The microbat 

families Rhinopomatidae, Rhinolophidae, Hipposideridae and Megadermatidae are joined 

with the megabats to form the new clade Yinpterochiroptera, while the rest of the microbats 

form Yangochiroptera. This restructuring has gained recent support. See 147–149. R. 

ferrumequinum, a member of family Rhinolophidae, is the only bat in our data which falls 

into this contested group. Our results side firmly with the division into Yinptero- and 
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Yangochiroptera, with the placement of R. ferrumequinum with the megabats in 

Yinpterochiroptera, the clade subtended by node B in Figure 21a.  

 

The placement of M. schreibersii has also been unclear. Agnarsson’s cytochrome B based 

phylogeny places the M. schreibersii just outside node H on our phylogeny. On the other 

hand, our placement of M. schreibersii agrees with the Jones phylogeny, as well as Hoofer 

et al., who argued that due to this placement and the large divergence, Miniopteridae 

deserved to be its own family150.  

 

The most surprising placement in our tree is that of M. leucogaster. In all of our trees, with 

100% reported posterior probability where calculated, M. leucogaster disrupts the 

monophyly of genus Myotis. One must keep in mind, however, that the quantity of data 

here considered is so large it will tend to produce results with 100% probability at each 

node, pushing the question of credibility further upstream to the quality of the data. No 

data assembly and cleaning strategy, including our own, is perfect, and it is possible that 

sufficient errors remain in our data as to result in an erroneous topology of such closely 

related species. It at first even seems suggestive, given our previous observations of bias 

by data type, that the two Myotis species placed with M. leucogaster—M. davidii and M. 

ricketti—are both also transcriptomic while the other two Myotis species are genomic. 

However, if data type were the explanation for this placement, we would expect M. 

leucogaster to be the outgroup to M. davidii and M. ricketti, not between them. 

Furthermore, the relationships between the ranges of the bats in this clade roughly match 

our consensus phylogeny: M. ricketti lives in southeast Asia, M. leucogaster lives in 

southeast Asia and central China, M. davidii lives in central China, M. brandtii lives across 

Europe and parts of northern Asia, and M. lucifugus lives in North America151–155. These 

results suggest the classification of M. leucogaster may merit reconsideration. 
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Figure 21. Consensus Chiroptera phylogeny.  
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Figure 21. Consensus Chiroptera phylogeny. 
(a) The consensus phylogeny for the bats considered in this study. Node labels give a name for each node as well as the 

reported posterior probability for the node under the Mr. Bayes partitioned analysis with full codon model, which agrees 

at all nodes with the consensus tree, and from which branch lengths are also reported. (b) Comparison of trees constructed 

by various methods with the consensus tree. For each tree listed on the left, the rectangle at each node indicates agreement 

or disagreement with the consensus tree on the implied split at the node. Various techniques for building phylogenies 

from our orthologous gene families are shown in the upper section, comparison with the trees from Jones et al. and 

Agnarrson et al. in the lower. CDS indicates coding sequence, AA amino acid sequence, C1-3 the coding sequence 

restricted to those bases in the first, second, or third codon position respectively. All our analyses agree on all species 

except C. sphinx and M. leucogaster, the former of which was in three instances placed outside node C, the latter of 

which was in four instances switched with M. davidii. The trees from Jones and Agnarrson both place R. ferrumequinum 

above node G and place C. sphinx above node C. Agnarrson also places M. shreibersii just above node H and M. 

leucogaster just above node N. 
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One final species placement of note is D. rotundus. The family Phyllostomidae here 

consists of the bats below node H. Wetterer, et al. proposed that the genus Desmodus be 

placed sister to the rest of the phyllistomids, which were to have formed the sub-family 

Phyllostominae156. Our placement of M. californicus sister to D. rotundus, however, 

disrupts Phyllostominae, in agreement with the tree proposed by Rojas, et al.157 

Positive Selection Analysis 

Finally, we looked for signatures of positive selection, using the PAML software 

package158 to estimate dN/dS. To account for effects of gene length on dN/dS calculations, 

we calculated the maximum value of dN/dS in any 30 amino acid window for each gene 

(Figure 22). As expected, most genes were under overall purifying selection with 

maximum dN/dS < 1. However, we found 299 genes with patches of dN/dS > 1, indicating 

positive selection.  

 

To take a look at what kinds of proteins are under positive selection, we used the 

GO_MWU package159 to look at the gene ontology (GO) classifications—molecular 

functions, cellular components, and biological processes—which are over-represented in 

the genes with dN/dS > 1 (Figure 23). The molecular function most highly associated with 

the positively selected genes is receptor binding, primarily of cytokines, and the biological 

processes associated are thus unsurprisingly dominated by immune responses, response to 

stimulus, and cell recognition. Such receptors are often coopted for viral invasion into the 

cell, so identification of these genes will hopefully prove useful to the bat and virology 

communities. 
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Figure 22. Distribution of dN/dS in all genes.  

Maximum dN/dS value for any 30 amino acid patch in each of the 11,572 gene families with ≥ 6 species and ≥ 30 amino 

acid positions in the MSA. 

DISCUSSION 

Understanding the molecular history of bats is important not just for the study of 

Chiropteran zoology, but also for the study of several major zoonotic viruses for which 

bats provide a viral reservoir. In this study, we set out to look at both the history of 

speciation and of positive selection in all genes in 18 species of bats. Using both genomic 

and transcriptomic data, we were able to find 12,611 orthologous gene families. We 

ourselves provided novel transcriptome data for two of these bats, Hypsignathus 

monstrosus and Rousettus aegyptiacus, for which we annotated 7,125 and 8,570 genes 

respectively. We furthermore developed a novel, general data cleaning method for filtering 

exons with non-random structural errors, in this case observed to result from genomic vs. 

transcriptomic data. The MSAs of these gene families, both before and after exon filtering, 

are available for use by the wider bat and virology communities.  

 



91 

 

Figure 23. GO categories over-represented in genes under positive selection.  

Font size and weight reflects false discovery rate-adjusted p-values. Fractions at the start of each GO category indicate 

the number of genes under positive selection in that category over the total number of genes in the category. The tree on 

the left shows the hierarchical relationships between the GO categories within the gene ontology. 
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Using these orthologous gene families, we were able to reconstruct the phylogeny of the 

order Chiroptera using multiple methods. Due to the sheer scale of the data, we resolved 

each node in the tree with 100% reported posterior probability, though the topology 

differed slightly depending on the analysis method. Our results support the division of 

Chiroptera into the two suborders Yinpterochiroptera and Yangochiroptera, in 

disagreement with the traditional division into Mega- and Microchiroptera. We 

furthermore provide evidence for the placement of Miniopterus schreibersii, in which we 

agree with Hoofer and Bussche, supporting their proposal for the separation of 

Miniopteridae into its own family150. We also provide evidence for the disruption of 

proposed subfamily Phyllostominae by Desmodus rotundus. And most intriguingly, we 

saw Murina leucogaster placed in the Myotis family, which will require further 

investigation. 

 

We performed positive selection analysis on each orthologous gene family, identifying 299 

genes with dN/dS values characteristic of positive selection. Interestingly, these genes were 

most significantly associated with receptor binding, which could be indicative of a history 

of viral antagonism. Further study of these genes could shed light on mechanisms for viral 

entry into and activity inside the cell, including host mechanisms of viral resistance and 

infection mitigation. We hope identification of these genes will be useful to the virology 

community for further exploration of bats and their viral antagonists, particularly including 

those relevant to human health. 

METHODS 

Sequencing of H. monstrosus and R. aegyptiacus  

H. monstrosus RNA was acquired from lung tissue, converted to cDNA, enriched for 

mRNA via poly-A pull down, and  sequenced in two runs on Illumina HiSeqs 2000 and 

2500 respectively, both 2x101 bp paired end reads. R. aegyptiacus RNA was acquired from 
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kidney tissue, similarly processed, and sequenced in two runs on Illumina HiSeq 2000 and 

NextSeq, with 2x101 bp and 2x151 bp reads.  

Data Cleaning and Assembly 

Sequencing data was first cleaned to remove sequencing adapters and low-quality bases 

with Trimmomatic, with appropriate settings for each data set. Trinity was run with all 

reads, all reads with in-silico normalization, and with ~35 million read subsamples for 

those bats with large data sets as recommended in Francis, et al160. Trans-ABySS was run 

with k-mer lengths of 32, 64, and all multiples of five from 25 to 60.  

 

For genomic data, loci annotated as alternative loci were ignored, as well as readthrough 

genes. A few instances appeared with isoforms labeled as separate genes; these were 

manually reduced to one longest isoform. 

Ortholog Search 

First, we found orthologs between all species using only the genomic datasets, where 

syntenic evidence helps confirm orthology rather than paralogy (see below). The first step 

was all-vs-all blasting, filtered for e-values no higher than 10-5. Reciprocal blast hits were 

considered as tentative ortholog predictions141. Tentative predictions were further filtered 

by including evidence from public ortholog annotation in Biomart, and where available, 

syntenic evidence. The resulting ortholog prediction graphs for each gene were filtered to 

remove any connected components with paths connecting two genes from the same species. 

In the resulting ortholog sets, there were a few cases where genes with the same name in 

two species were placed in different ortholog prediction groups. In these cases, all 

incriminated groups were simply removed.  

 

Next, we added orthologs from the transcriptomes. First, genomic transcripts were 

translated to amino acid sequence and blastx-tblastn reciprocal blast hits were found 
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between all genomic high-quality orthologous genes and all transcriptome assemblies, 

again using an e-value cutoff of 10-5. We then created HMMER models of each of the 

genomic orthologous gene sets and searched within the reciprocal blast hit contigs for the 

best HMMER hit for each gene, filtering for those hits with e-value below 10-10, extracting 

only the portion of each contig specified in the HMMER hit. We then filtered all transcripts 

which differed in length from the median genomic sequence length by more than 25%.  

 

Syntenic Evidence 

Whole genome alignments were performed following a procedure described on the UCSC 

Genome Browser wiki, which for our purposes only required aligning, chaining, and 

netting. Alignment was performed using Lastz161, while chaining and netting were 

performed with kentUtils143. Tentative orthologs are considered to have evidence of 

synteny if they are in syntenic regions, as defined by the top-level nodes of the net. 

 

The algorithm used for determining gene-proximity evidence of synteny is a simple 

extension of the algorithm in Jarvis, et al142. Let species A and species B have genes a1 and 

b1 respectively which are tentatively orthologs. Then let a2 be the nearest gene to a1 on the 

same chromosome which has a tentative ortholog in species B, b2. If the number of genes 

between a1 and a2 and the number of genes between b1 and b2 are both less than 5, then we 

consider the ortholog pair a1-b1 to have syntenic evidence. If there are at least 5 genes in 

each direction, but the above is not true, then there is evidence against synteny. In the case 

of not enough genes to either side, it is undetermined. 

Multiple Sequence Alignments and Best Genomic Isoforms 

Multiple sequence alignments were generated on amino acid sequences with MAFFT L-

INS-i, the slower but more accurate version of the popular MAFFT alignment software162. 

Manual inspection revealed that while the HMMER models had quite consistently found 
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the same isoform from all the transcriptomic data sets, the genomic data were slightly less 

consistent. This is not surprising, as different species can have different annotated longest 

isoforms. So, for each gene in each species with genomic data, we went back and found 

the isoform most similar to the consensus isoform.  

 

The algorithm for finding best splice variant for a gene g in a given orthologous set S is as 

follows. First, find the consensus sequence of S from the MAFFT L-INS-i alignment. The 

consensus sequence is simply the identity in each column of the amino acid identity which 

is found in a majority of transcripts, or X if no single value is the majority. Next, align all 

splice variants of gene g against the consensus sequence, again using MAFFT L-INS-i, and 

score each by the number of non-gap, non-X positions in agreement with the consensus. 

Select the splice variant with the highest score. This resulted in improved selection of 3,444 

splice variants.  

 

Finally, we realigned for final gene alignments. Corresponding cds alignments were 

created using pal2nal163. 

Phylogenetic Analyses 

Partitioned and unpartitioned analyses in Mr. Bayes otherwise used the same parameters: 

2 runs with 4 chains run for 1,000,000 steps sampled every 500 steps and a burnin of 

400,000 steps. Gamma models were also subsampled, resulting in a >99% reported 

posterior probability for the gtrsubmodel[123145] model in both cases. RAxML was run 

with the rapid bootstrapping and ML algorithm, the GTRGAMMA model, and with 100 

different starting trees. Gene trees were created using Mr. Bayes using 20,000 steps 

sampled every 10 steps with 500 step burnin and an inverse gamma model. Gene tree node 

support statistics were calculated using dendropy. 
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Positive Selection Analysis 

Positive selection was measured for each gene with PAML using the M8 model and F61 

codon model. This model finds an expected dN/dS value for each codon position. We 

averaged these expected dN/dS values over a sliding window 30 amino acids wide, and 

reported the maximum such value for each gene. 

GO Analysis 

GO terms were assigned to each gene using the annotations associated with the gene name 

from Homo sapien downloaded from the Gene Ontology Consortium164,165. These GO 

annotations, as well as binary positive selection classification for each gene (dN/dS > 1) 

were input to the GO_MWU R package159, which collapses very similar GO categories, 

performs Fisher’s exact test for each category, reports false discovery rate-adjusted p-

values, and plots results. 

Software Versions 

Software versions used in this project were Trimmomatic 0.32, Trinity 20140717, Trans-

ABySS 1.5.1, BLAST 2.2.29+, HMMER 3.1b2, MAFFT 7.221beta, Lastz 1.02.00, 

kentUtils 302, Mr. Bayes 3.2.6, RAxML 8.2.6, ASTRAL 4.7.8, PAML 4.8, GO_MWU 

commit 568e4f5.  

  



97 

Appendices 

APPENDIX A: SUPPLEMENTAL FIGURES 

 

 

Figure 24. Error rate simulations by error type.  

a-b. The simulations performed for Figure 6, repeated for each error type—substitutions, deletions, insertions—

individually. Shown for length (a) 8 and (b) 16 barcodes. Barcode sets are labeled according to length and number of 

errors corrected; for example, the 16-2 code is length 16 and corrects up to 2 errors. Mismatches follow the binomial 

approximation closely, while deletions and especially insertions perform slightly better than the binomial approximation. 
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Figure 25. Error rate comparison with constant barcode length.  

The binomial approximation of the decode error rate as a function of the error rate per base, grouped by given barcode 

length.  
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Figure 26. Error rate comparison with constant barcode number of errors corrected.  

The binomial approximation of the decode error rate as a function of the error rate per base, grouped by given number of 

errors corrected. 
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Figure 27. Error rate comparison with constant number of barcodes.  

The binomial approximation of the decode error rate as a function of the error rate per base, grouped by number of 

barcodes. Numbers of barcodes were not precisely equal. Rather, each panel starts with the number of 2-error correcting 

barcodes and uses the smallest 0- and 1-error correcting barcode sets with at least as many barcodes.  
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Figure 28. Barcoding experiment sequencing coverage.  

Coverage histogram and statistics for the FREE code validation experiment. Each of the 8,684 oligos was observed with 

average coverage of 159x. 
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Figure 29. Maximum error run length probabilities.  

The probability distribution of maximum consecutive-error run lengths from a model assuming independent errors 

(Appendix C) and from our data. The two differ significantly because errors in our data are not independent. 
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Figure 30. Barcode hairpin melting temperatures.  

Hairpin melting temperature CDFs are shown for all barcodes libraries included with this manuscript. The barcodes 

included here nearly all have Tm < 60◦C, and users can further filter the barcode sets to avoid hairpins in their specific 

experimental conditions.  
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Figure 31. Regenerating DNA clusters on a sequenced MiSeq chip.  

After sequencing, the chip contains residual fluorescence in all emission channels (left). The residual fluorescence and 

sequenced DNA strands are stripped with NaOH and the DNA is regenerated (middle two panels). Finally fluorescent 

Cascade is incubated in the chip and binds a subset of the DNA clusters (right, green). PhiX clusters are labeled with a 

fluorescent oligonucleotide (magenta) for downstream image alignment (see Computational Methods). 
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Figure 32. Comparison of Kd values between Cascade with FLAG and without FLAG.  

(A) Both Cascade proteins were purified and verified via SDS PAGE gel electrophoresis. EMSA was performed with 

both Cascade proteins and dsDNAs for “GAAG” PAM sequence and Kd values were calculated. Radiolabeled-dsDNA 

(0.1 nM) for “GAAG” PAM sequence was incubated with titrated Cascade (1: 0.025 nM, 2: 0.063 nM, 3: 0.16 nM, 4: 

0.39 nM, 5: 1 nM, 6: 2.5 nM, 7: 6.3 nM, 8: 16 nM, 9: 39 nM, 10: 100 nM) and resolved with an 2.5 % agarose gel (B) 

and Kd was calculated by fitting the fraction of Cascade/dsDNA and Cascade concentration (C). Kd values were 

calculated with duplicate experiments. 
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Figure 33. Fluorescent signal loss for Cascade-bound clusters using CHAMP.  

10 nM Cascade was incubated on a prepared NGS chip for 10 minutes at 60˚C, then washed and labeled with anti-FLAG 

Alexa488 antibody. Images were then collected every five minutes for one hour. The intensity of clusters containing ideal 

target sequence was determined (mean ± SEM), and fit to an exponential decay curve (dashed line). 
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Figure 34. Electrophoretic mobility shift assays (EMSAs) correlate with ABAs.  

EMSAs were performed with Cascade and dsDNAs for 8 different PAM sequences and then Kd values were calculated. 

Radiolabeled-dsDNA (0.1 nM) with a GAAG PAM sequence was incubated with titrated Cascade (C: No Cascade, 1: 

0.025 nM, 2: 0.063 nM, 3: 0.16 nM, 4: 0.39 nM, 5: 1 nM, 6: 2.5 nM, 7: 6.3 nM, 8: 16 nM, 9: 39 nM, 10: 100 nM) and 

(A) resolved with a 2.5 % agarose gel and (B) the Kd was calculated by fitting the titration curve to a Hill equation. (C) 

Kd was calculated from three replicates as in (B). (D) For 8 PAM sequences, Kd values obtained from EMSA were 

plotted with ABA values from CHAMP. 
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Figure 35. Mapping sequence scores to error probabilities.  
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Figure 35. Mapping sequence scores to error probabilities. 
Information from both reads was used to produce high confidence inferred sequences. I developed a simple Bayesian 

model for inferring each base, assuming independent errors in each position and a flat prior. For each position, this gives: 

𝑃(𝑡S = 𝑏	|	𝑅HS, 𝑄HS , 𝑅nS , 𝑄nS) 	∝ 𝑃(𝑅HS	|	𝑡S = 𝑏, 𝑄HS) 	 ∙ 𝑃(𝑅nS	|	𝑡S = 𝑏, 𝑄nS)	 

 
where i is the position in the aligned sequence, ti is the true sequence base, b is a base identity (A, C, G, or T), R1i and R2i 

are the read bases, and Q1i and Q2i are the Phred scores.  Maximum a posteriori (MAP) values were taken as the inferred 

sequence. Shown above are all values for P(R = r | t = b, Q) observed from 10 billion read bases in PhiX reads mapped 

without gaps to the Illumina PhiX genome, observed to have the following mutations relative to the NCBI PhiX genome 

gi|9626372: G587A, G833A, A2731G, C2811T, C3133T. The grey dashed line shows the implied probability for each 

mismatch given the Phred score, and was used wherever observed values were not available. Base reads other than A, C, 

G, or T and bases with Phred scores less than or equal to 2, which Illumina reserves for special use, were discarded as 

missing data.  
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Figure 36. Cse1 dissociates from the Cascade complex.  

(A) EMSA of a DNA with a TTAC PAM and perfectly-paired protospacer. Cse1 is dissociated from 50% of the Cascade-

DNA complexes (lane 2). Adding excess Cse1 can drive its re-association with the nucleoprotein complex. (B) 

Quantification of three replicates similar to (A). Light gray: Cascade/dsDNA, gray: Cascade without Cse1, dark gray: 

free dsDNA. Error bars indicate S.D. [DNA]: 2 nM, [Cascade]: 39 nM, additional [Cse1]: 0, 0.11, 0.22, 0.43 and 0.87 

µM. All components were incubated together at 62 °C for 10 min. 
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Figure 37. Cas7 sequence alignment.  

The crRNA-exposed face of T. fusca Cas7 is highly conserved. Both T. fusca Cas7 sequences were aligned to Cas7s 

from five distant species including Escherichia coli, Streptomyces avermitilis, Streptomyces bottropensis, 

Thermonospora curvata, and Seratia viridis. T. fusca encodes two Cas7 variants in two distinct CRISPR operons. 

Alignment was performed using CLC Sequence Viewer 7.7. Letter coloring indicates polarity (red: acidic, blue: basic, 

green: polar, black: nonpolar). Pink bars show percent sequence conservation. Grey shading indicates peptides within 6 

Å of the crRNA, based on E. coli Cascade in complex with dsDNA (Hayes et al., 2016). Yellow shading identifies 

peptides within 6 Å of ribonucleotides forming the observed 3-nt periodicity centered between flipped-out bases. 
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Figure 38. Exons accepted vs. length difference cutoff. 
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APPENDIX B: SUPPLEMENTARY TABLES 

 
Barcode Length 1-Error Correction 2-Error Correction 

3 2 - 

4 3 - 

5 10 2 

6 27 2 

7 67 4 

8 213 7 

9 554 12 

10 1,903 31 

11 6,161 75 

12 17,214 179 

13 56,736 468 

14 157,197 1,156 

15 518,509 3,183 

16 1,636,418 8,777 

17 - 23,025 

Table 2. Numbers of FREE barcodes.  

Number of FREE barcodes for each barcode set included with this paper, by barcode length and number of errors 

corrected. 
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Species Assembly Accession 

Number 

Total bp Scaffold 

Count 

Scaffold 

N50 

Eptesicus fuscus EptFus1.0 2,026,629,342 6,789 13,454,942 

Myotis brandtii ASM41265v1 2,107,242,811 169,750 3,225,832 

Myotis davidii ASM32734v1 2,059,799,708 101,769 3,454,484 

Myotis lucifugus Myoluc2.0 2,034,575,300 11,654 4,293,315 

Pteropus alecto ASM32557v1 1,985,975,446 65,598 15,954,802 

Pteropus vampyrus Pvam_2.0 2,198,284,804 36,094 5,954,017 

Table 3. Genome assembly accession numbers and statistics.  

Basic information and statistics for each bat genome assembly, including the genome assembly accession number, total 

number of base pairs, number of scaffolds, and scaffold N50. N50 is the length of the contig at which half of assembled 

bases are in contigs of equal or greater length, a standard assembly statistic. 
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APPENDIX C: FREE BARCODES SUPPLEMENTAL MATERIALS 

Sphere iterator 

Central to our generation and decoding algorithms is the ability to deterministically iterate 

over decode and encode spheres. Recursive iteration is far too slow for practical use due to 

redundancy. For example, attempting to find DecodeSphere2(B) by finding 

DecodeSphere1(W) of all words W in DecodeSphere1(B) results in iterating over each 2-

error word at least twice, by switching the order of added edits. As the number of edits, m, 

grows, the redundancy grows as m! due to edit permutations. 

 

So, to iterate over a sphere centered at barcode B, we instead built a method to iterate over 

all words at a given FREE divergence d from B and then iterate over d as needed. We 

additionally exploit the following identities regarding substitution (sub), insertion (ins), 

and deletion (del) edits to optimize iteration: sub-del = del, ins-del = del-ins = sub, ins-sub 

= sub-ins, and in the last position, ins = del = sub. Note that use of these identities assumes 

we are only interested in solid spheres, so will for example iterate over a sequence at 

divergence d with an ins-del sequence during the previous d − 1 divergence sphere with a 

sub. 

Use of encode spheres 

The algorithm used for efficient code generation relies on the fact that if a word W is in 

EncodeSphere(B), then DecodeSphere(B) and DecodeSphere(W) overlap. That is, there 

exists a word U such that U ∈ DecodeSphere(B) and U ∈ DecodeSphere(W). Let W ∈ 

EncodeSphere(B). If W ∈ DecodeSphere(B), then U = W and by symmetry we are done. 

Suppose W 6∈ EncodeSphere(B). By the definition of encode spheres, there exists a 

filled/truncated right end edit path (FREE path) with at most 2m edits from B to W. Let U 

be the filled or truncated sequence m edits along this path from B. With this choice, 

FreeDiv(B,U) ≤ m, where the less than or equal sign is in case of any fill/truncation effects. 
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Furthermore, there are at most m more edits along the path to W by choosing the fill or 

truncation for word U to allow use of the same FREE path to W. Then, by use of symmetry, 

FreeDiv(W,U) ≤ m, and we are done. 

Primer processing 

Primers were used both chemically for library amplification and informatically to 

distinguish left from right sides. However, the possibility of insertions and/or deletions in 

these primer sites introduced some uncertainty in the starting position of the DNA 

barcodes. To address this, we wrote a custom adaptation of the Smith-Waterman algorithm 

for overhanging sequences. The user specifies an expected primer sequence, a full-length 

observed read, and a maximum allowable number of errors, which we chose to be 2 for 

both the left (19 bp) and right (18 bp) primers. Using the modified Smith-Waterman 

algorithm with unity penalties for all error types, we identified the highest scoring prefix 

of the observed sequence which matches the expected sequence. If two or more possible 

lengths had the same score, we chose the one closest to the expected length. If the number 

of edits is less than or equal to 2, this best inferred length then determines the position to 

be used as the start of the barcode sequence. 

Experimental decode errors 

Decode errors are detected by whether or not the left and right barcodes, as shown in Figure 

5a, match an intended left/right barcode pair. There are two possible ways to decode 

incorrectly: either by decoding to a wrong barcode or by decoding to “None” if the 

observed barcode is not in any decode sphere at all. If a barcode decodes to “None”, then 

that decode is obviously an error. If a barcode decodes to an incorrect barcode, then the 

observed output is that the left and right barcodes mismatch but it is unclear which is 

actually the decode error. We determine which barcode is in error by measuring the edit 

distance of the entire oligo against the two possible intended sequences, accepting the one 

with lowest edit distance. To measure the 0- and 1-Error correction data in Figure 7, we 
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then measured the edit distance of each observed barcode to the intended barcode using the 

primer processing algorithm described above. 

 

This analysis resulted in the detection of chimera oligos, oligos with the left side of one 

intended oligo and the right side of another. Most of the barcodes which decoded to wrong 

barcodes matched the wrong barcode with zero errors, which was very unexpected. The 

decode spheres for 17-mer, 2-error correcting codes contain ∼104 barcodes, of which ∼102 

are 1-error away and exactly 1 is the 0-error wrong barcode (Figure 4a). Furthermore, the 

wrong barcode with zero errors is the center word, furthest from the sphere boundary and 

other barcodes. Thus, seeing a barcode decode to a wrong barcode with zero errors should 

be vanishingly rare compared with 1 and 2 errors. These together imply that we are not 

observing random errors. We instead appear to be generating chimera oligos. This is likely 

explained by degeneracy in the spacer region: the spacers are all different, but have 

stretches of identical sequences around 20 bp long. Incomplete PCR products could then 

act as primers for this sequence in later rounds of PCR, creating chimera sequences. To 

correct for these chimeras, we conservatively assumed the distribution of the number of 

errors in chimera barcodes is the same as that for correct barcodes, though it is likely higher. 

The observed number of wrong barcodes with zero errors was < 104, the approximate size 

of a decode sphere, so we accepted that as an approximation for how many chimera oligos 

had barcodes with zero errors. We then used this number and the distribution of correct 

barcode errors to approximate how many of the wrong barcodes 1-error and 2-errors away 

from the wrong barcode were chimera oligos. These were then omitted from 

analysis. 

Maximum error run lengths 

The error models used in this paper, both the simpler binomial model and that derived 

above, assume independent errors at each position, understanding that this is an 

oversimplification. A quick way to see that the errors in our experimental data are definitely 
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not independent and to show why this impacts our work directly is to check the distribution 

of maximum error run lengths, i.e., the maximum number of consecutive errors in a given 

oligo. We consider the binomial model where each position is either an error with 

probability p or correct with probability q = 1 − p. We wish to know the probability that in 

a sequence of length n the maximum run of errors will be r bases long. This is a well-

studied problem, and we use Simpson’s solution as presented by Hald [4]. Briefly, let Zn 

be the probability that the maximum run of errors in a sequence of length n is at least r 

bases long and let zn be the probability that the first run of r errors ends at the nth position. 

Then 

Zn = z1 + z2 + ··· + zn. 
 

For n < r, Zn = zn = 0 trivially, since there are not enough bases, and for n = r, Zn = zn = pr 

since they must all be errors. For n > r, 

zn = (1 − Zn−r−1)qpr 

 

by definition of zn, since this is the probability that no run of length ≥ r in the first n − r − 

1 bases, then there is a correct base followed by r errors. One can then recursively find Zcr+i 

for increasing c, resulting in the general formula 

 

. 
 

Finally, for fixed n and p, P(maximum run length = r) = Zn(r)−Zn(r+1), shown in Figure 29 

using our oligo length, n = 116, and measured probability of error, p = 0.005 (Figure 5). 

Our experimental data are similar to this model for maximum runs of zero and one errors, 

but deviate significantly for maximum runs of more than one error because our errors are 

not, in fact, independent. This helps explain the deviation of our experimental barcode 

decoding error rates from the model predictions in Figure 7, since our experimental errors 
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clump together, increasing the probability of having more than two, say, in a single 

barcode. 
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APPENDIX D: CHAMP EXPERIMENTAL PROCEDURES 

Protein Cloning and Purification 

T. fusca Cascade and Cas3 were over-expressed and purified as described previously87. 

Briefly, the Cascade complex and crRNA were expressed from pET-based plasmids that 

were co-transformed into BL21 star (DE3) cells (Thermo-Fisher). Cse1 contained a 

His6/Twin-Strep/SUMO N-terminal fusion, while Cas6 contained an N-terminal triple 

FLAG epitope for fluorescent labeling. Single colonies were used to inoculate LB + 

Kanamycin/Carbenicillin/Streptomycin media. At OD600 0.8, cells were induced with 1 

mM IPTG overnight at 25°. Cells were then lysed in 20 mM HEPES [pH 7.5], 500 mM 

NaCl, 2 µg mL-1 DNase (GoldBio) and 1x HALT protease inhibitor (Thermo-Fisher), and 

the clarified lysate was applied to a hand-packed Strep-Tactin Superflow gravity column 

(IBA Life Sciences) for purification via the Twin-Strep tagged Cse1. The Cascade complex 

was eluted with 20 mM HEPES [pH 7.5], 500 mM NaCl, 5 mM desthiobiotin, and then 

concentrated by centrifugal filtration (30 kDa Amicon, Millipore). The concentrate was 

then incubated overnight at 4°C with 3.3µM SUMO protease to remove tags from Cse1. 

The complex was further fractionated over a HiLoad 16/600 Superdex 200 column (GE 

Healthcare) equilibrated in storage buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM 

DTT). Fractions containing the full Cascade complex were determined by SDS-PAGE, 

pooled, and concentrated to ~5-10 µM (30 kDa centrifuge concentrators, Millipore). Small 

aliquots were flash frozen in liquid nitrogen and stored at -80˚C.  

Antibodies 

Cascade and Cas3 were fluorescently labeled with mouse anti-FLAG M2 (F3165, Sigma) 

and Rabbit anti-HA (RHGT-45A-Z, ICL labs), respectively. Antibodies were conjugated 

to Alexa488 or Alexa647 at a ratio of ~1:3 antibody:dye according to the manufacturer’s 

instructions (Alexa Fluor antibody labeling kits, Thermo Fisher Scientific). The antibody 

to dye conjugation ratio was measured using a NanoDrop (Thermo Fisher Scientific) 
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according to the manufacturer-provided protocol. Fluorescent antibodies were stored in 

PBS buffer (pH 7.2, with 2 mM sodium azide) at -20 °C.  

DNA libraries 

All oligonucleotides were purchased from IDT or IBA. Pooled custom DNA libraries were 

purchased from CustomArray. To profile off-target Cascade recruitment, we designed 

custom DNA libraries containing a randomized target DNA sequence (e.g., protospacer 

adjacent motif (PAM) and/or protospacer). A synthetic oligonucleotide with six 

randomized bases was purchased from IDT and used to profile the extended six nucleotide 

PAM. To measure the effects of mismatches along the entire sequence, we used “doped” 

libraries where a given position in the library contained the starting sequence at 91% 

frequency, and each of the other three nucleotides at 3% frequency each (3% doping). This 

doping frequency was chosen to provide comprehensive coverage for sequence variants 

with a Hamming distance less than three on a typical MiSeq chip (representing ~20-25 

million unique reads). Insertions and deletions were measured on libraries designed by 

pooled oligonucleotide synthesis (CustomArray). 

Chip regeneration and addition of alignment markers 

Custom DNA libraries were sequenced on a MiSeq (Illumina) using a 2x75 or a 2x300 

paired end reagent kit (v3). After sequencing, MiSeq chips were stored at 4˚C in TE buffer 

(10 mM Tris-Cl pH 8.0, 1 mM EDTA). All imaging and chip regeneration steps were 

carried out in a custom-built microscope stage adapter with integrated microfluidic 

interconnects. Detailed blueprints of all components are also available via GitHub 

(https://github.com/finkelsteinlab/champ). Temperature was controlled by PiWarmer, a 

home-built Raspberry Pi-controlled heating element. PiWarmer was also used to run the 

heating and cooling cycles required for cluster regeneration. Schematics and code for 

assembling the temperature controller, as well as protocols for chip regeneration are 

available via GitHub (https://github.com/finkelsteinlab/piwarmer).  
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To regenerate the DNA clusters, the MiSeq chip was first washed with 0.1 N NaOH for 5 

minutes, followed by flowing TE buffer to neutralize the chip surface for 5 minutes. A flow 

rate during a whole experiment is fixed at a 100 µl/min. Washing with NaOH also removes 

residual fluorescent dyes that remain adsorbed to the chip surface after NGS (see Figure 

31). After denaturation, the chip was heated to 85˚C and incubated with 500 nM of a user 

primer (UP) in hybridization buffer (75 mM Trisodium Citrate, pH 7.0, 750 mM NaCl, 

0.1% Tween-20). The UP primer was annealed at 85°C for 5 min, followed by ramping 

down to 40°C for 40 min and then washed with a washing buffer (4.5 mM Trisodium 

Citrate, pH 7.0, 45 mM NaCl, 0.1% Tween-20) at 40°C for 10 min. The UP primer binds 

to all user clusters but does not target phiX clusters. The UP primer was extended in a 1X 

isothermal amplification buffer (20 mM Tris-HCl, pH 8.8, 10 mM (NH4)2SO4, 50 mM KCl, 

2 mM MgSO4, 0.1% Tween-20) containing a 0.08 U/ul of Bst 2.0 WarmStart DNA 

polymerase (New England Biolabs) and 0.8 mM of dNTPs by incubating at 60 °C for 10 

min. Bst 2.0 WarmStart DNA polymerase was flushed out by washing the chip with a 

hybridization buffer for 5 minutes at 60 ˚C. Finally, we annealed a phiX primer labeled 

with Atto647 or Cy3 (atto647-PCP / Cy3-PCP) using a hybridization buffer with the same 

reaction condition as described above. The resultant fluorescent phiX clusters were used 

for aligning the FASTQ points to imaged clusters (see Figure 31). 

 

Fluorescence microscopy 

All fluorescence images were collected using a Nikon Ti-E microscope in a prism-TIRF 

configuration equipped with a Prior H117 motorized stage. Each sequenced MiSeq chip 

(Illumina) was loaded into the microscope stage adapter described above prior to imaging. 

The chip was illuminated with 488 nm (Coherent), 532 nm (Ultralasers), or 633 nm 

(Ultralasers) lasers through a quartz prism (Tower Optical Co.). To minimize spatial drift, 

the microscope was assembled on a floating optical table (TMC). Data were collected with 
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a 100 ms exposure through a 60X water-immersion objective (1.2NA, Nikon) paired with 

(i) a quad-band filter (89401 Chroma), a 638 nm dichroic beam splitter, and either a 600 

nm long-pass filter or 500 nm long pass / 600 nm short pass filters (Chroma), or (ii) a dual-

band filter (ZET532/660m Chroma), a 640 nm dichroic beam splitter, and either a 655 nm 

long-pass filter or ET4585/65m band pass filter (Chroma), which allowed multi-channel 

detection through two EMCCD cameras (Andor iXon DU897, cooled to -80°C). Images 

were collected using Micro-Manager Open Source Microscopy software166 and saved in an 

uncompressed TIFF file format for later analysis via a custom written image-processing 

pipeline (see below). 

CHAMP assays 

Increasing concentrations of the Cascade complex (0.063, 0.16, 0.39, 1, 2.5, 6.3, 16, 39, 

100, 250, and 630 nM) were injected into a regenerated MiSeq chip and incubated at 60 °C 

for 10 min in imaging buffer (40 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM MgCl2, 1 

mM DTT, 0.2 mg ml-1 BSA, 0.1% Tween-20). After the incubation, excess Cascade was 

rapidly flushed out while the DNA-bound proteins were fluorescently labeled by injecting 

a 100 µl of a 20 nM solution of fluorescently-conjugated anti-FLAG antibodies at room 

temperature. Control experiments that omitted Cascade indicated that the fluorescent 

antibody did not bind to the chip surface. 

 

For each Cascade concentration, we imaged up to 812 fields of view spanning nearly 50% 

of the total sequenced MiSeq chip surface area (Prior ProScan II). The chip was illuminated 

with 20, 40 or 30 mW of laser power at 488, 532, or 633 nm, respectively (measured at the 

front face of the TIRF prism). To prevent photobleaching, the lasers were shuttered 

between subsequent fields of view (Vincent Associates) during the ~15 minutes of image 

acquisition. No appreciable Cascade dissociation or cluster photobleaching occurred 

during this time (see Figure 33). In order to avoid pixel saturation at high protein 

concentrations, ten 100 ms images were captured at each field of view. These images were 
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summed into a final image and stored in hdf5 files by channel and position. Care was taken 

to minimize experiment-to-experiment variation by acquiring all concentrations of a 

titration series in a single day. Following each experiment, the MiSeq chips were de-

proteinized with 32 units of Proteinase K (New England Biolabs) in washing buffer 

overnight at 25˚C and the chip showed no sign of degradation even after twelve Proteinase 

K treatments. The DNA in a chip could be denatured and re-synthesized up to five times 

using the regeneration protocol described above. 

Electrophoretic mobility shift assay (EMSA) 

All EMSAs were performed with radioactively or fluorescently labeled PCR products 

containing the indicated PAM and protospacer, as well as flanking sequences used in the 

CHAMP experiments (i.e., Illumina adapters). PCR was performed using 1 ng of template 

plasmid containing the desired PAM/protospacer, 500 nM of P5 primer for radioactive-

labeling or Cy5-P5 primer for fluorescent-labeling, 500 nM of UP primer, 200 µM of 

dNTPs and 0.5 unit of Q5 high-fidelity DNA polymerase (New England Biolabs) in a 25 

µl reaction on an MJ Research PTC-200 Thermal Cycler. The PCR product was purified 

using a PCR purification kit (Qiagen) and quantified on a Nanodrop spectrophotometer 

(Thermo Fisher Scientific). For radioactive assays, PCR products were labeled with γ32P-

ATP (PerkinElmer) using T4 polynucleotide kinase (New England Biolabs). The labeled 

PCR products were purified with MicroSpin G-25 columns (GE Healthcare). 

 

Cascade binding assays were performed by incubating 0.1 nM of 32P-labeled dsDNA with 

increasing Cascade concentrations (0.025, 0.063, 0.16, 0.39, 1, 2.5, 6.3, 16, 39, 100, 250, 

630 nM) for 30 min at 62°C in binding buffer. The reactions were resolved on a 2.5% 

agarose gel run with 0.5X TBE buffer. Gels were dried and DNA was visualized using a 

Typhoon scanner (GE Healthcare). ImageQuant software (GE Healthcare) was used to 

quantify the bound and unbound DNA amounts. The fraction of bound DNA was fit to the 

Hill equation to obtain Kd values. All experiments were repeated in triplicate. 
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To observe Cas3 binding, Cascade (39 nM) and target dsDNA were pre-bound for 30 min 

at 62°C in a binding buffer. Then, Cas3 and AMP-PNP (Sigma) were added into the EMSA 

reaction for final concentrations of 1.1 uM and 2 mM, respectively and incubated for 10 

min at 62°C. The reactions were resolved on a 5% native PAGE gel containing 0.5X TBE 

buffer and visualized using a Typhoon scanner (GE Healthcare).  

Cas3 nuclease assays 

Cascade (39 nM) was first incubated with Cy5-labeled target dsDNA (2 nM) for 30 min at 

62°C in a binding buffer. Then, Cas3, CoCl2 (Sigma) and ATP (Sigma) were added into 

the EMSA reaction at final concentrations of 650 nM, 111 µM and 1.9 mM, respectively 

and incubated for 30 min at 62°C. The reaction was quenched with 50 mM EDTA and 

deproteinized with proteinase K. The reactions were resolved on a 10% denaturing PAGE 

gel containing 0.5X TBE buffer and visualized using a Typhoon scanner (GE Healthcare).  

Plasmid loss assays  

The Cascade expression construct was generated by insertion of the Cascade gene cassette 

(encoding all protein subunits) into a pBAD (ApR) vector. The pre-crRNA expression 

cassette containing five identical CRISPR units for target A was cloned into the pACYC-

Duet-1 (CmR) vector. A 127-bp fragment containing a protospacer and a PAM for target 

A was cloned into the pCDF-Duet-1 (SmR) vector to serve as the target DNA. All plasmids 

were sequence verified. In vivo assays were performed with T. fusca Cascade and Cas3 

plasmids as described previously87. 
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