
Decision Boundary Setting and Classifier
Combination for Text Classification

Moch Arif Bijaksana

A Thesis submitted for the degree of Doctor of Philosophy

Science and Engineering Faculty

Queensland University Of Technology

March 2015



ii



Abstract

Text classification is a popular and important text mining task. Many document

collections are multi-class and some are multi-label. Both multi-class and multi-

label data collections can be dealt with by using binary classifications. A big

challenge for text classification is the noisy text data. This problem becomes

more severe in corpus with small set of training documents, moreover accom-

panied by few positive documents. A set of natural language text contains a lot

of words. This results another important problem for text classification, namely,

high dimension data. Therefore we must select features. A classifier must identify

boundary between classes optimally. However, after the features are selected, the

boundary is still unclear with regard to mixed positive and negative documents.

Recently, relevance feature discovery (RFD) has been proposed as an effective

pattern mining-based feature selection and weighting model. Document weights

are significant for ranking relevant information. However, so far, an effective way

to set the decision boundary for ranking relevant information for classification has

not found. This thesis presents a promising boundary setting method for solv-

ing this challenging issue to produce an effective text classifier, called RFDτ . A

classifier combination to boost effectiveness of the RFDτ model is also presented.

The experiments carried out in the study demonstrate that the proposed classifier

significantly outperforms existing, including state of the art, classifiers.
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Chapter 1

Introduction

1.1 Background

In the age of the internet, people and organisations face more and more informa-

tion. Text mining, which is the automatic extraction of implicit and potentially

useful information from text, has therefore become increasingly important. Sev-

eral important techniques in text mining include clustering, classification, and as-

sociation mining. Text classification is used in many areas such as the filtering of

unwanted information (spam web pages, spam email), the filtering of specific in-

formation (information filtering), organising personal email, sentiment detection

(automatic classification of a movie or product review as positive or negative), and

vertical searching (searches on a specific topic) [105].

The text classification task is to assign a Boolean value to each pair 〈dj, ci〉 ∈
D× C where D is a domain of documents and C = {c1, . . . , cC} is a set of prede-

fined classes/categories. The task is to approximate the true function Φ: D×C→
{1, 0} by means of a function Φ̆ = D× C→ {1, 0}, such that Φ̆ and Φ ‘coincide

as much as possible’. The function Φ is called a classifier, and the coincidence is

the effectiveness of the classifier [51, 144].
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A text classification system normally includes three components, namely, ini-

tial preprocessing, document representation, and classification models [144]. In

the initial preprocessing, which involves parsing, stemming, cleaning, and stop

word removal, standard methods usually provide satisfactory classification per-

formance. In document representation, the important issue in preprocessing is

feature weighting and selection. A lot of research has been conducted on the term

weighting and selection problem. Different classification models are used in the

classifiers, such as support vectors in support vector machines (SVM), centroids

in Rocchio, probability in Naive Bayes, and tree in C4.5 [144].

In real life, many classification problems are multi-class and multi-label. A

multi-class dataset has two or more classes, and each document has one class.

In a multi-label dataset, one or more classes can be assigned to a document.

A dataset can be both multi-class and multi-label. Problem of multi-class and

multi-label classification is commonly solved by splitting into several single-label

binary-class (or in short, binary class) classification problems [76]. The binary

classification is a special multi-class with two classes, i.e., C = {c1, c2}. A binary

classification is theoretically more generic than the multi-class classification or

multi-label classification [144]. This thesis focuses on the binary classification,

where each document is assigned to a class or its complement C = {c, c̄}.

The important research issue for text classification is how to significantly im-

prove the effectiveness of classifiers in order to handle the large amount of noisy

data and address the need for scalability to deal with large-scale text data collec-

tions. With noisy text, the correspondence between the feature and class is fuzzy

[178]. This problem becomes more severe in deciding relevant and non-relevant

information. The important problem related to this issue is how to select relevant

features to determine a clear decision boundary between relevant and non-relevant

information. The process of text feature selection contains some uncertainties;

2



Series1 

n 

Figure 1.1: Decision boundary in a binary classification.

therefore, most feature selection methods use a weighting function to describe the

importance of features. These weights are significant for ranking relevant infor-

mation; however, so far, an effective way to integrate these weight functions with

the existing classifiers has not been found.

Figure 1.1 shows an example of a real binary class dataset topic “Ferry boat

sinkings” classified by the Rocchio classifier with inverted triangle markers iden-

tifying the optimal decision boundary. In this figure, a plus represents a relevant

document and a cross represents a non-relevant document. The number of non-

relevant documents is typically much higher than the number of relevant docu-

ments. As can be seen in the figure, most of the mixed relevant and non-relevant

documents are around the decision boundary. In these documents, a word such as

“ferry” appears but not for sinking ferry, or word “sink” appears but not in relation

to ferry.

Due to the presence of noisy terms in text documents, the identification of

useful features for classification purposes is a challenging issue. Data mining

techniques have recently been used for text feature selection, in which the rel-

evance feature discovery (RFD) model [99] has demonstrated excellent perfor-

mance. One of the interesting findings in relation to RFD is that the best set of

features include both specific and general terms; however, most general terms

are used in both relevant and non-relevant information, and this leads to an un-

clear decision boundary between the relevant and non-relevant information. RFD

largely reduces noisy terms and achieves excellent performance for ranking doc-

uments. However, the use of RFD features to produce a binary classification by

setting a decision boundary is not an easy problem.
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The text classification process can be conducted by scoring/ranking and de-

cision boundary setting. Decision boundary or threshold setting is often con-

sidered as a trivial process and thus is under-investigated. Yiming Yang [175]

suggested that the threshold setting is important for text classification, and an ef-

fective threshold setting strategy can significantly improve the effectiveness of

classification.

A two-stage decision model for information filtering was introduced by Li

et al. [103]. In this research, a decision boundary is used in the first stage to solve

the mismatch problem. The model used the second stage to solve the overload

problem. The problem is that a single threshold can only be used to solve the

mismatch problem, but it cannot be used to solve the overload problem.

1.2 Research Questions

After features are selected from a training set, document representations are pro-

duced. In this thesis, a document is represented by a weight (or score). Training

documents are then ranked based on their scores. After that, a decision boundary

is set. In some cases, positive and negative training documents are clearly sep-

arated; however, in most cases there are regions in which positive and negative

documents are mixed, and on those cases decision boundary is uncertain. With an

uncertain boundary, the classification problem is more complex.

In order to solve this issue, this research addresses the following questions:

Research Question 1: How can a model be developed to describe the decision

boundary, especially the uncertain decision boundary, and produce an effective

binary text classification from an existing feature selection model?

To address this question, a boundary region for each topic is explored. Then,

with the information about this region (especially the fences of the region), the

4



decision boundary is calculated. The initial decision boundary is set and then

adjusted based on the region’s fences. This approach makes minimal usage of

experimental parameters. Furthermore, in the case of uncertain boundary, this

boundary region is used to identify which new incoming documents should be

swapped in the decision based on the specific and generic document vectors.

Reseach Question 2: How can proposed classifier is combined with current

other classifiers to be boost classification effectiveness?

After the decision boundary has been set to generate an effective classifier,

a further investigation is needed to increase the classification effectiveness. A

potential alternative to address this issue is the combination of the proposed text

classifier with a current classifier. In the classifier combination, current lower

performance classifiers can be used.

This thesis proposes a novel boundary setting method to solve this challeng-

ing issue to produce an effective text classifier called RFDτ . The RFDτ model

views the incoming document into three regions (namely, low score, boundary

and high score regions) rather than two classes (relevant and non-relevant). It also

uses an uncertain decision boundary (two thresholds) rather than a clear decision

boundary (one threshold) to identify the lower boundary and upper boundary. The

RFDτ model then groups the features into three categories and represents a doc-

ument in three vectors to change better decisions for documents in an uncertain

decision boundary. This thesis also presents a classifier combination to boost the

effectiveness of RFDτ , using a recall-oriented classifier combined with RFDτ .

In order to evaluate the proposed model, substantial experiments are con-

ducted on a popular text classification corpus based on the Reuters Corpus Volume

1 (RCV1). The performance of RFDτ is compared with the performance of nine

types of classifier including state of the art classifiers. The results show that the

5



proposed model outperforms the baseline classifiers.

1.3 Contributions and Significance

The main contribution of this thesis is the development of an effective model that

deal with the uncertain decision boundary for text classification. The proposed

decision boundary model uses only training set with minimal experimental pa-

rameters, which makes it efficient. Using existing pattern-based feature selection

RFD, the proposed decision boundary setting produces the RFDτ classifier. Even

the initial decision boundary setting version developed in this study with no ex-

perimental parameters produces better performance than baseline models.

Another contribution of this thesis is the proposition of a two stage approach

to combine two existing classifiers. This combination is used to increase the per-

formance of the proposed RFDτ classifier.

This research produced an effective text classifier. Text classification is an

important task in text mining. With the abundance of text in real world, this

research has significant contribution.

The main evaluation criterion in this thesis is classifier effectiveness, com-

pared to popular and state of the art classifiers. The conducted experiments show

that the proposed RFDτ classifier outperforms baseline classifiers.

In proposed decision boundary setting, clear and uncertain boundary are iden-

tified. In clear boundary, the minimum score of the training relevant document is

higher than the maximum score of training non-relevant document; otherwise the

boundary is uncertain. With different actions for clear and uncertain boundary,

decision boundary setting is more effective. In proposed classifier combination,

an effective classifier was produced by combine recall oriented and precision ori-

ented classifiers.
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1.4 Publications

Based on the work conducted in this thesis, the following publications have been

produced:

• Moch Arif Bijaksana, Yuefeng Li, and Abdulmohsen Algarni. Scoring

thresholding pattern based text classifier. In Proceeding of the 5th Asian

Conference on Intelligent Information and Database Systems (ACIIDS 2013),

Springer Lecture Notes in Computer Science, Berlin, Germany, pages 206-

215, 2013.

• Moch Arif Bijaksana, Yuefeng Li, and Abdulmohsen Algarni. A pattern

based two-stage text classifier. In Proceeding of the 9th International Con-

ference on Machine Learning and Data Mining (MLDM 2013), Springer

Lecture Notes in Computer Science, Berlin, Germany, pages 169-182, 2013.

• Moch Arif Bijaksana, Yuefeng Li, Laurianne Sitbon. A Decision Boundary

Setting for Text Classifier. To be submitted to Decision Support System

journal.

• Yuefeng Li, Abdulmohsen Algarni, Yan Shen, Mubarak Albathan and Moch

Arif Bijaksana. Relevance Feature Discovery for Text Mining, 2014 online

published, DOI: http://dx.doi.org/10.1109/TKDE.2014.2373357.

1.5 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2 provides a comprehensive review of related works on text classifi-

cation.
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Chapter 3 introduces current pattern-based feature selection model used and

its implementation to classification.

Chapter 4 explains the main concept of the proposed decision boundary set-

ting model. This chapter describes how an effective decision boundary for text

classification is set.

Chapter 5 presents a technique to increase classification performance by com-

bining classifiers. The proposed classifier model is combined with an existing

classifier to produce higher performance.

Chapter 6 presents benchmark dataset, performance measures, baseline mod-

els setting, and experiment results. A detailed discussion of the result of experi-

ment is also presented.

Chapter 7 concludes the thesis by summarising important points and findings,

and suggests directions for future work.

8



Chapter 2

Literature Review

This literature review covers four topics that are relevant to the present research:

(1) binary classification; (2) document representation; (3) classifier and classifica-

tion models; and (4) decision boundary setting.

2.1 Binary Classification

Text classification or text categorisation (TC) involves the automatic labelling of

text using predefined labels or categories automatically based on a model. The

model is constructed from labelled examples of text in a similar problem domain.

More formally, text categorisation is a task of assigning a Boolean value to each

pair 〈dj, ci〉 ∈ D× C where D is a domain of documents and C = {c1, . . . , cC} is

a set of predefined classes/categories [51, 144].

In this thesis, we concentrate on binary classification where each document

dj ∈ D must be assigned either to category ci or to its complement, c̄i. Theo-

retically, binary classification is a general form of classification. Multi-class and

multi-label problems can be solved by using binary classifications [144].

The SVM and AdaBoost algorithms were originally designed for binary classi-
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fication [155]. Most artificial neural network classifiers are best suited to learning

binary function [41]. Theoretical studies of learning have focused almost entirely

on learning binary functions [115, 166].

Many real world datasets, including text are multi-class and multi-label. The

most popular text corpora for classification are multi-class, and many of them are

also multi-label.

There are many ways to reduce a (single-label) multi-class problem to a binary

problem. The most popular and simple ways are comparing each class to the rest

(one-against-rest), comparing the classes (one-against-one) [65], and using error

correcting codes (ECOC) [41, 56, 155]. After being processed in binary, the result

must be combined [155]. Allwein et al. [3] presented comprehensive information

on this method, and proposed a unifying approach.

In the one-against-rest approach, a binary dataset for classification is created

for each class. In this dataset, all instances that belong to that class are considered

to be positive (or relevant) examples, while the remaining instances are consid-

ered to be negative (or non relevant) examples. In the one-against-one approach,

a binary classification is created for each class with a pair of classes (i.e. that

class and another class). Each classifier is used to distinguish between that pair

of classes. To get the final decision, a voting scheme is typically employed to

combine the predictions, where the class that receives the highest number of votes

is assigned to the test instance [155]. A problem appears when the voting result

is tied. To solve this problem, a probability value is generated for each decision

[155, 159].

For example, to illustrate the one-against-rest and one-against-one approaches,

we use a toy multi-class dataset with 10 documents and three classes (see Figure

2.1). This table can be transformed into the one-against-rest approach (see Figure

2.2) and the one-against-rest approach (see Figure 2.3). A binary classification
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Document Class

d1 c1
d2 c3
d3 c2
d4 c1
d5 c1
d6 c2
d7 c3
d8 c1
d9 c2
d10 c1

Document Class

d1 Pos
d2 Neg
d3 Neg
d4 Pos
d5 Pos
d6 Neg
d7 Neg
d8 Pos
d9 Neg
d10 Pos

Document Class

d1 Neg
d2 Neg
d3 Pos
d4 Neg
d5 Neg
d6 Pos
d7 Neg
d8 Neg
d9 Neg
d10 Neg

1

Figure 2.1: Original table for multi-class example.

process is applied for each transformed binary dataset.

ECOC employs a distributed output code, which was pioneered by Sejnowski

and Rosenberg [145]. In ECOC, each class is assigned a unique binary string

of length n referred to as the “codewords” [41]. Then n binary classification is

used to predict each bit of codeword string. The final result is defined by the

closest Hamming distance of codewords produced by the binary classifiers [41].

An important issue in ECOC is how to design an optimal codeword. An additional

advantage of using ECOC is that it can provide reliable class probability estimates

[41].

For example, consider a three-class problem with classes c1, c2 and c3. Sup-

pose we encode the classes using a four-bit codeword as illustrated in Figure 2.4.

For the multi-class problem in Figure 2.1 and the codeword in Figure 2.4, four

datasets can be built for each bit of codeword (Figure 2.5). If a test instance is

classified as (1,1,1,1) by these binary classifiers, then this will be predicted as c3

because its Hamming distance is lowest. The Hammimg distances of that test

instance and c1, c2 and c3 are 2, 3 and 1 respectively.

Many text classification applications are binary, such as information filtering

[8] and email spam filtering [32]. Basic spam email filtering, it has two classes:

spam and no-spam.
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Document Class

d1 c1
d2 c3
d3 c2
d4 c1
d5 c1
d6 c2
d7 c3
d8 c1
d9 c2
d10 c1

Document Class (c1)

d1 Pos
d2 Neg
d3 Neg
d4 Pos
d5 Pos
d6 Neg
d7 Neg
d8 Pos
d9 Neg
d10 Pos

Document Class (c2)

d1 Neg
d2 Neg
d3 Pos
d4 Neg
d5 Neg
d6 Pos
d7 Neg
d8 Neg
d9 Neg
d10 Neg

1

(a)

Document Class

d1 c1
d2 c3
d3 c2
d4 c1
d5 c1
d6 c2
d7 c3
d8 c1
d9 c2
d10 c1

Document Class (c1)

d1 Pos
d2 Neg
d3 Neg
d4 Pos
d5 Pos
d6 Neg
d7 Neg
d8 Pos
d9 Neg
d10 Pos

Document Class (c2)

d1 Neg
d2 Neg
d3 Pos
d4 Neg
d5 Neg
d6 Pos
d7 Neg
d8 Neg
d9 Neg
d10 Neg

1

(b)

Document Class (c3)

d1 Neg
d2 Pos
d3 Neg
d4 Neg
d5 Neg
d6 Neg
d7 Pos
d8 Neg
d9 Neg
d10 Neg

Table 1: Baseline models.

No Model Abbreviation

1 SVM with linear kernel SVM linear
2 SVM with polynomial kernel SVM poly

Document Class (c1 − c2)

d1 c1
d3 c2
d4 c1
d5 c1
d6 c2
d8 c1
d9 c2
d10 c1

Document Class (c1 − c3)

d1 c1
d2 c3
d4 c1
d5 c1
d7 c3
d8 c1
d10 c1

2

(c)

Figure 2.2: One-against-rest approach.

Document Class (c3)

d1 Neg
d2 Pos
d3 Neg
d4 Neg
d5 Neg
d6 Neg
d7 Pos
d8 Neg
d9 Neg
d10 Neg

Table 1: Baseline models.

No Model Abbreviation

1 SVM with linear kernel SVM linear
2 SVM with polynomial kernel SVM poly

Document Class (c1 − c2)

d1 c1
d3 c2
d4 c1
d5 c1
d6 c2
d8 c1
d9 c2
d10 c1

Document Class (c1 − c3)

d1 c1
d2 c3
d4 c1
d5 c1
d7 c3
d8 c1
d10 c1

2

(a)

Document Class (c3)

d1 Neg
d2 Pos
d3 Neg
d4 Neg
d5 Neg
d6 Neg
d7 Pos
d8 Neg
d9 Neg
d10 Neg

Table 1: Baseline models.

No Model Abbreviation

1 SVM with linear kernel SVM linear
2 SVM with polynomial kernel SVM poly

Document Class (c1 − c2)

d1 c1
d3 c2
d4 c1
d5 c1
d6 c2
d8 c1
d9 c2
d10 c1

Document Class (c1 − c3)

d1 c1
d2 c3
d4 c1
d5 c1
d7 c3
d8 c1
d10 c1

2

(b)

Document Class (c2 − c3)

d2 c3
d3 c2
d6 c2
d7 c3
d9 c2

3

(c)

Figure 2.3: One-against-one approach.
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Document Class (c3)

d1 Neg
d2 Pos
d3 Pos
d4 Pos
d5 Neg
d6 Neg
d7 Pos
d8 Pos
d9 Pos
d10 Pos

Document Class (c3)

d1 Neg
d2 Pos
d3 Pos
d4 Pos
d5 Neg
d6 Neg
d7 Pos
d8 Pos
d9 Pos
d10 Pos

Table 2: Experiment results (including their recall and precision) with TFxIDF
term weight for baseline models (best performance).

Class
Codeword

f1 f2 f3 f4

c1 1 0 0 1
c2 0 0 1 0
c3 1 1 1 0

4

Figure 2.4: A four-bit error correcting output code for a three-class problem.

Document Class (f1)

d1 1
d2 1
d3 0
d4 1
d5 1
d6 0
d7 1
d8 1
d9 0
d10 1

Document Class (f2)

d1 0
d2 1
d3 0
d4 0
d5 0
d6 0
d7 1
d8 0
d9 0
d10 0

Document Class (f3)

d1 0
d2 1
d3 1
d4 0
d5 0
d6 1
d7 1
d8 0
d9 1
d10 0

5

(a)

Document Class (f1)

d1 1
d2 1
d3 0
d4 1
d5 1
d6 0
d7 1
d8 1
d9 0
d10 1

Document Class (f2)

d1 0
d2 1
d3 0
d4 0
d5 0
d6 0
d7 1
d8 0
d9 0
d10 0

Document Class (f3)

d1 0
d2 1
d3 1
d4 0
d5 0
d6 1
d7 1
d8 0
d9 1
d10 0

5

(b)

Document Class (f1)

d1 1
d2 1
d3 0
d4 1
d5 1
d6 0
d7 1
d8 1
d9 0
d10 1

Document Class (f2)

d1 0
d2 1
d3 0
d4 0
d5 0
d6 0
d7 1
d8 0
d9 0
d10 0

Document Class (f3)

d1 0
d2 1
d3 1
d4 0
d5 0
d6 1
d7 1
d8 0
d9 1
d10 0

5

(c)

Document Class (f4)

d1 1
d2 0
d3 0
d4 1
d5 1
d6 0
d7 0
d8 1
d9 0
d10 1

6

(d)

Figure 2.5: Example of binary dataset for ECOC.
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Document Class (c2 − c3)

d2 c3
d3 c2
d6 c2
d7 c3
d9 c2

Document Class

d1 c1
d2 c1, c3
d3 c2, c3
d4 c1, c3
d5 c1, c2
d6 c2
d7 c3
d8 c1, c2, c3
d9 c2, c3
d10 c1, c3

Document Class (c1)

d1 Pos
d2 Pos
d3 Neg
d4 Pos
d5 Pos
d6 Neg
d7 Neg
d8 Pos
d9 Neg
d10 Pos

Document Class (c2)

d1 Neg
d2 Neg
d3 Pos
d4 Neg
d5 Pos
d6 Pos
d7 Neg
d8 Pos
d9 Pos
d10 Neg

3

Figure 2.6: Original table for multi-class example.

For a multi-class dataset with many classes, such as in RCV1 data collection

[96] with 103 topic classes, transforming the multi-class into a binary class faces

the problem of imbalanced class distribution, where ci is much smaller than c̄i. A

popular solution for the imbalanced class problem is sampling [74].

For the multi-label problem, some transformations to the binary problem can

be employed [27, 163, 164]. At least four approaches to transform a multi-label

dataset into a single-label dataset have been presented [27], namely, the all label

assignment (ALA) approach, no label assignment (NLA) approach, largest label

assignment (LLA) approach, and smallest label assignment (SLA) approach. The

ALA (also referred to as the binary relevance approach) is a popular transforma-

tion method and is usually considered to be the best [27, 164]. It is similar to the

one-against-rest approach for multi-class transformation. Classifiers implement-

ing binary relevance for multi-label datasets include ML-kNN [185] and SVM

[57].

Figure 2.6 shows a simple multi-label dataset. Binary relevance transforma-

tion creates three binary datasets, as illustrated in Figure 2.7.
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Document Class (c2 − c3)

d2 c3
d3 c2
d6 c2
d7 c3
d9 c2

Document Class

d1 c1
d2 c1, c3
d3 c2, c3
d4 c1, c3
d5 c1, c2
d6 c2
d7 c3
d8 c1, c2, c3
d9 c2, c3
d10 c1, c3

Document Class (c1)

d1 Pos
d2 Pos
d3 Neg
d4 Pos
d5 Pos
d6 Neg
d7 Neg
d8 Pos
d9 Neg
d10 Pos

Document Class (c2)

d1 Neg
d2 Neg
d3 Pos
d4 Neg
d5 Pos
d6 Pos
d7 Neg
d8 Pos
d9 Pos
d10 Neg

3

(a)

Document Class (c2 − c3)

d2 c3
d3 c2
d6 c2
d7 c3
d9 c2

Document Class

d1 c1
d2 c1, c3
d3 c2, c3
d4 c1, c3
d5 c1, c2
d6 c2
d7 c3
d8 c1, c2, c3
d9 c2, c3
d10 c1, c3

Document Class (c1)

d1 Pos
d2 Pos
d3 Neg
d4 Pos
d5 Pos
d6 Neg
d7 Neg
d8 Pos
d9 Neg
d10 Pos

Document Class (c2)

d1 Neg
d2 Neg
d3 Pos
d4 Neg
d5 Pos
d6 Pos
d7 Neg
d8 Pos
d9 Pos
d10 Neg

3
(b)

Document Class (c3)

d1 Neg
d2 Pos
d3 Pos
d4 Pos
d5 Neg
d6 Neg
d7 Pos
d8 Pos
d9 Pos
d10 Pos

4

(c)

Figure 2.7: Binary relevance transformation for multi label dataset.

2.2 Document Representation

Natural language text is semi-structured data that cannot be directly used as input

for a learning process. A text document has to be transformed into structured data,

usually as a set of independent feature values. To illustrate how a document is

represented in a feature space, suppose feature set F is extracted from a document

d, d
F−→ {f1, f2, . . . , f|F |}. Each document dj is represented by a feature vector as

#»

d j = (w1,j, w2,j, w3,j, .., wn,j), where wi,j is the weight of the feature. The weight

reflects the relative importance of the features.

The features can be simple structures (words), complex linguistic structures

(e.g., phrases, lexical dependencies, part of speech), statistical structures (e.g. n-

gram, patterns (termsets)) or properties of the document (e.g., document’ length).

The set of features consists of one or more types. Most systems use only one
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kind of feature (e.g., term); however, many works have found that more than one

types of feature can increase classification performance [111, 117, 143].

A document representation should cover as much information as possible from

the document. On the other hand, it must be suitable as the input representation

for a learning algorithm.

2.2.1 Term Features

Term 1 is the most common type of feature in document representation. A complex

natural language document is transformed into a set of simple independent terms.

Using the simple term feature makes the classification efficient. However, the

relational information among the terms is lost [150].

A topic might have clues (good indicators) to represent the topic. These clue

terms can be seen as keywords. A keyword has more weight than other terms.

The number of clues can be few or many. For example, in the TREC-11 RCV1

corpus, the topic “Economic espionage” (e.g., “spy”, “espionage”, “industry”)

has a lower number of good indicators than the topic “Progress in treatment of

schizophrenia” (a lot of treatment’ jargon). The result of our experiment showed

that most classifiers have much higher classification effectiveness for the topic

“Economic espionage” than the topic “Progress in treatment of schizophrenia”.

In topics with a large number of clues, the term-based approach might not be

able to capture the theme of the document, so the classification effectiveness is

low [142]. As a solution to this problem, the term co-occurrence approach can be

used. Schütze et al. [142] utilised latent semantic indexing.

Another problem when using terms as features is the semantic ambiguity. This

can be a polysemy, whereby terms can be used to express different things in dif-

1Terms are normalised words. Word normalisation handles superficial differences, such as
accents and diacritics, capitalization/case-folding, and other issues in a language ( e.g., color vs.
colour in English) [105].
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ferent contexts (e.g., driving a car and driving results). This type of ambiguity

affects precision. It is also manifested as a synonymy, whereby terms can be used

to express the same thing (e.g., espionage and spying), which will affect recall.

A more complex statistical form is the n-gram (of terms or characters). Most n-

gram based categorisation methods are less efficient, and their effectiveness is not

better than term-based methods [25, 144]. However, in a more recent experiment,

Ifrim et al. [71] proposed an effective new method with variable-length n-grams

that consider both word-level n-grams to capture phrases and character-level n-

grams to capture morphological variations (stemming, transcription from non-

Latin alphabets, misspelling, etc.).

2.2.2 Natural Language Knowledge Usage

Stavrianou et al. [154] discussed natural language particularity issues for com-

prehensive text mining. There are at least two ways in which natural language

knowledge participates in document representation: directly as features, and in-

directly as references in the feature weighting process. When natural language

knowledge participates directly as features, the features created are complex lin-

guistic features [111]. Complex linguistic features include document Lemmas,

that is, base forms of morphological categories, like nouns (e.g., bank from banks)

or verbs (e.g., work from worked,working); phrases (sentence fragments as word

sequences); and word senses (i.e. different meanings of content words, as defined

in dictionaries). When natural language knowledge participates in document rep-

resentation indirectly as references in the feature weighting process, the natural

language knowledge, such as the role of semantic in [149], is used to create a

structure which is then used in the word feature weighting process. Here, each

sentence is labelled by a semantic role labeller to first identify the semantic role

in that sentence. The weight of term is calculated based on the term’s role in that
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sentence.

Complex linguistic features can be used as the only feature in document rep-

resentation or as an addition to existing word features. Most existing works use

complex linguistic features together with word features in document representa-

tion, rather than purely complex linguistic features, because it is more effective

for categorisation [94, 111, 117].

2.2.3 Phrase-Based Representation

In grammatical terms, a phrase is defined as “a group of words which is part

rather than the whole of a sentence” [169], such as “take away” and “pull out”.

Phrases have been used intensively in information retrieval (IR); however, at least

in early works, it was not effective [94]. Lewis [95] explained that the phrase

is not a good feature because it does not fit the four criteria of a good feature:

(i) a small number of indexing terms, (ii) flat distribution of values for indexing

terms, (iii) lack of redundancy among terms, and (iv) low noise in indexing term

values. However, like other “failed” natural language knowledge forms, there are

no detailed quantitative analysis examining why phrases do not successfully im-

prove categorisation effectiveness compared to single word features. Other works

[111, 143] explained the failure of phrases in document representation in text

classification; however, those analyses are short and descriptive. Regarding crite-

ria (i), Lewis [94] wrote that he used automatic syntactical phrase identification in

his experiment and found 32,521 phrases, while only 22,791 words were found.

More recent works concluded that syntactical phrases improved precision and re-

call [52], and helped in generating high-precision classification in a large data

collection [6].

Word sense is used to overcome the synonym, polysemy and homonym prob-

lems, which are related to word meanings (senses). For example, in case of pol-
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ysemy, the word “phone” can be a noun referring to a device and a verb meaning

to communicate. In English, a popular lexical database which provides the senses

of English words is WordNet [108]. Kehagias et al. [82] used a WordNet-based

annotated (by linguists) corpus to compare word-based and sense-based features

for categorisation. Using a small training set (182 documents), they found that

sense-based features did not improve effectiveness significantly. Moschitti [110]

concluded that the word-sense feature was not sufficient to improve text cate-

gorisation effectiveness. However, another investigation indicated that WordNet’s

Synsets relationship hierarchy usage helped categorisation performance [123].

2.2.4 Word-Clustering

The word clustering method is a feature construction approach; it creates a new,

reduced-size feature set by joining similar words into clusters. Instead of the

words clusters or a representative of them may be used as features in document

representation. Some of the earliest works on word clustering for text categorisa-

tion were conducted by Lewis [94, 95] and concluded that traditional word cluster-

ing was unlikely to contribute to a significant improvement in text categorization.

The distributional clustering of words scheme was introduced by Pereira et al.

[124]. Based on an information-theoretic approach, words are represented as dis-

tributions over the document class where they appear. An early implementation

of distributional-word clustering for feature selection in text categorisation was

[5], which used Naive Bayes as the learning algorithm. Slonim and Tishby [151]

used the agglomerative approach of information bottleneck method for clustering

words, along with Naive Bayes. The information bottleneck method was pro-

posed by Tishby et al. [161]. To improve the performance, Bekkerman et al. [7]

used SVM, instead of Naive Bayes.
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2.2.5 Latent Semantic Indexing

The latent semantic indexing (LSI) method was developed by Deerwester et al.

[38] based on latent semantic analysis (LSA) [43]. In that early work, Deerwester

et al. used LSI for document similarity analysis. Briefly, LSI is an implementation

for indexing (initially in IR, then in text mining, word sense disambiguation etc).

LSI uses a linear algebra’s matrix factorisation, called singular value decom-

position, to transform original high-dimensional data to a new lower, orthogonal

dimension approximation by applying truncated singular value decomposition to

the word-document matrix. This new space is a more compact document repre-

sentation. Words and documents that are closely associated will be placed near

one another in a new “semantic space”. LSI can also be seen as soft clustering

[105].

These various representations can be higher for document collection produced

by several different people. The new set of vectors can be viewed as pseudo

document vectors. However the created features are not intuitively interpretable.

If there are a lot of different terms which all contribute to specific information,

then it is harder for a term-based classifier to perform with high effectiveness

[142]. In natural language text, the user can express a given object using various

terms, where a common and obvious phenomenom is the word synonym. For

example, in a group of documents discussing cars, besides “cars”, we may use

“automobile”, “auto” or “vehicle”. In the bag of words model, each of these

words will be separated features. Theoretically, synonymity will affect recall [38],

especially in IR, because a document cannot be relevant to a query which has

different terminologies even when it has the same meaning.

However, if there are a small number single terms providing a have strong

“clue” for the class label, then the term-based feature can easily obtain high effec-
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tiveness. For example, in the TREC topic 133 about Hubble Space Telescope, a

single word “Hubble” is a good indicator for prediction [142]. On the other hand,

LSI may group this key word with other words which makes prediction harder.

The availability of such clue terms is higher on a low frequency class.

Another natural language challenge is polysemy, where a word has multiple

meanings such as the word “book” that has many different meanings. It can be

refer to “text” (noun) as in the sentence “I borrowed this book from university

library” and “arrange” (verb) as in “He booked us tickets to see the performance”.

Many researchers have stated that LSI helps to minimise the synonym and poly-

semy affects; however, in fact it does not work well for polysemy [38]. Synonym

in LSI is a loose meaning for the term co-occurrence.

The LSI features could be additional features on top of other term-based or

background knowledge [182].

Another probabilistic model is the latent dirichlet allocation model [15]. The

basic idea of this model is that documents are represented as random mixtures

over latent topics, where each topic is characterised by a distribution over words

[15].

2.2.6 Pattern-Based Document Representation

As term suffers from the problem of synonymy and polysemy, some works use

phrases (concatenation of two or more words which must occurs in text separated

only by white space) to represent documents. However, phrase-based representa-

tion don’t yield significant performance improvement. Phrases have large num-

bers of redundant and noisy phrases among extracted phrases in the documents

[143, 144]. Another drawback of phrase is language dependency.

A new approach to document representation is using a set of terms. A set of

term in data mining is usually called a termset or pattern. A pattern can be seen
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as a statistical phrase[144]. Pattern mining is a popular type of data mining [63].

Pattern mining has been extensively studied in data mining communities for many

years. Many efficient algorithms has been proposed.

A pattern-based document representation is pattern taxonomy model (PTM)

[99, 171, 188]. PTM uses the intra-document-based frequent closed sequential

pattern with the paragraph as the working unit (in data mining it is usually called

a transactional unit). A pattern is called a frequent pattern if its frequency is

greater than a user-specified threshold. A pattern is closed if none of its immedi-

ate supersets have exactly the same support count. The pattern taxonomy model

defines closed patterns as meaningful patterns because most of the sub-sequence

patterns of closed patterns have the same frequency, which means they always

occur together in a document. Smaller patterns in the taxonomy, are usually more

general because they have a high occurrence frequency in both positive and neg-

ative documents; but larger patterns are usually more specific since they have a

small chance of being found in both positive and negative documents [99]. The

pattern taxonomy model prunes non-closed patterns from document representa-

tion in an attempt to reduce the size of the feature set by removing noisy patterns.

2.2.7 Feature Selection and Weighting

Two related tasks in document representation are feature selection and feature

weighting. The more information, the more accurate a learning system; however,

in the real world, some information can be useless information (e.g., noisy, unin-

formative, redundant information). In text categorisation, a high-dimension (large

feature set) might affect categorisation performance and, reduce effectiveness be-

cause of over-fitting and decreases efficiency because of complex computation.

Many term weighting methods in text mining are derived from IR, such as

term frequency (tf) and inverse document frequency (idf) [135] and from theoret-
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ical and statistics based term weighting methods [37], such as information gain,

mutual information, and chi-square. A lot of work has been done on term weight-

ing. There are many current works on weighting methods, including relevance

frequency method [88] which is a supervised inter-document method exploiting

the distribution of relevant documents in the collection, and the distributional fea-

ture method [173], which is an intra document method for words.

In the relevance frequency method, an effective term weighting function is

simply calculated based on the number of documents in the positive category that

contain this term and the number of documents in the negative category that con-

tain this term [88]. The distributional features method includes the compactness

of the appearances and the position of the first appearance of the word. The com-

pactness measures whether or not the appearances of a word concentrate in a

specific part or are spread throughout the document. A less compact word has

more weight, because it is more likely to be related to the document’s topic [173].

The second consideration in the distributional feature method is the position of the

first appearance of the word. In a news article this is characterised as an inverted

pyramid structure [119]. Therefore, as Xue and Zhou [173] stated if a word is

mentioned earlier, it will be more important than other words that are mentioned

later.

2.3 Classification Model

2.3.1 Probabilistic Based Classifiers

Probabilistic classifiers use a modelling of probabilistic relationship among fea-

tures. The probability of a document to its class is computed by the Bayes theo-

rem. The Bayes theorem is a statistical principle of combining the prior knowl-

edge of classes with new evidence from data [144, 155].
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In the Bayes theorem, the conditional probability of class ci for a document dj

is:

P (ci | dj) =
P (ci)× P (dj | ci)

P (dj)

As stated in the discussion on section 2.2, a document is represented by a

vector of binary or weighted terms
#»

d j = (w1,j, w2,j, w3,j, .., wn,j)

2.3.2 Naive Bayes

The Naive Bayes is a popular Bayesian classifier, with it has a long history as a

core technique in information retrieval [93]. Naive Bayes classifiers have been

investigated by many authors including Calders and Verwer [24], Langley et al.

[91].

The Naive Bayes classifier simplifies learning by assuming that features are

independent, and that independence is generally a poor assumption. In spite of

the naive simplified assumptions, Naive Bayes classifiers work quite well in many

complex real-world situations [26, 78, 130], including text classification [155].

Naive Bayes is often comparable in classification effectiveness with other clas-

sifiers [42]. It is an efficient and scalable approach [129] Naive Bayes is very

popular in binary classification problems of anti-spam e-mail filters [106].

2.3.2.1 Bayes Network

The Bayesian belief network, also referred to as the Bayes Network or Bayes Net

provides a flexible approach by allowing users to set some of the pairs of features

to be directed acyclic dependent [68, 155]. The Bayes Net at least has four advan-

tages [67]: it can handle situations where some data entries are missing; it can be

used to learn causal relationships; it is an ideal representation for combining prior
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knowledge and data; and it is an efficient approach for avoiding the overfitting of

data [67].

2.3.3 Support Vector Machines

The support vector machines (SVM) has its roots in Vapnikk’s [167, 168] statisti-

cal learning theory. SVM works well in many areas including in data with high di-

mensionality such as text [76, 144]. The basic idea of the SVM is to find a decision

boundary between two classes that is maximally far from any point in the train-

ing data (maximal margin hyperplane) [23, 33, 105]. It represents the decision

boundary using a small subset of training data, known as support vectors. Many

articles on SVM have been published, including works by Bennett and Campbell

[10], Burges [23], Hearst et al. [66], Schölkopf and Smola [141], Tsochantaridis

et al. [162].

Joachims [76, 77] introduced SVM method for text classification. Followed

by others, including Dumais and Chen [44], Dumais et al. [45], Klinkenberg and

Joachims [84].

The decision function in the SVM is defined as:

h(x) = sign(w · x+ b) =


+1 if (w · x+ b) > 0

−1 otherwise

where x is the input object. The training phase of the SVM involves estimating

the parameters w and b of the decision boundary from the training data. b ε <2 is

a threshold and w =
∑l

i=1 yiαixi for the given training data: (xi, yi), ..., (xl, yl),

where xi ε <n and yi = +1(−1), if document xi is labelled positive (negative).

2< represents real number
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αi ε < is the weight of the sample xi and satisfies the constraint:

∀i : αi ≥ 0 and
l∑

i=1

αiyi = 0

2.3.3.1 Sequential Minimal Optimization

Sequential minimal optimization (SMO) is an algorithm for training an SVM.

SMO exploits datasets which contain a substantial number of zero elements. SMO

works particularly well for sparse data sets, with either binary or non-binary input

data [125].

2.3.4 Decision Tree-Based Classifiers

A decision tree text classifier is a tree in which internal nodes are labelled by

features, and leaves are labelled by categories [144]. Overviews of decision tree

classifiers can be found in the articles by Breslow and Aha [20], Buntine [22],

Moret [109], Murthy [114], Rokach and Maimon [132], Safavian and Landgrebe

[134].

Examples of some popular decison tree classifiers include CART [19], ID3

[127], C4.5 [128], and CHAID [81].

For example, Figure 2.8 illustrates a decision tree built by J4.8, a variant of

C4.5, for a dataset topic number 102 used in this thesis. This topic contains in-

formation pertaining to crimes committed by people who have been previously

convicted and later released or paroled from prison.

The main process in the training phase is tree growing (building). In building

a decision tree classifier, a decision tree classifier chooses one feature at each

node of the tree that most effectively splits into two or more subsets. In this tree

growing process internal nodes are split using a splitting function. ID3 and C4.5
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Figure 2.8: A decision tree produced by J4.8 for topic 102.

use entropy, CART uses the Gini index, and CHAID uses statistical χ2 for the

splitting function.

Most decision trees have two branches in node splitting (binary tree) [144].

Most trees split one attribute at a time, in a top-down approach [155]. Landeweerd

et al. [90], Pattipati and Alexandridis [120] investigated the bottom up approach.

A common problem in decision tree classifiers is an incorrect generalisation

called overfitting [105]; in this case, the problem is classifier overfit (perfectly fit

or tuned) for the training set [144]. This problem usually occurs in a complex tree.

In a complex tree, overfitting also learns from noise in the training set [105].

A common solution to reduce overfitting is tree pruning [137]. Tree pruning

removes the overly specific branches [47, 126]. Therefore, the training phase can

involve two sequence processes, namely, tree growing followed by pruning [144].

2.3.5 Decision Rule Based Classifiers

Decision rules are a collection of “IF...THEN..." rules. The left-hand side is the

rule antecedent or precondition, and the right-hand side is the rule consequent
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IF rapist  > 0 THEN Pos  
ELSE IF imprison <= 0.401 AND lejeun  <= 0.286 AND earli  <= 0.442 AND convict  <= 0 THEN Neg  
ELSE IF bodi  > 0 THEN Pos 
ELSE IF june  <= 0 THEN Neg  
ELSE Pos 
 

(a) PART 
 
 
IF  rapist <= 0 AND june <= 0 THEN Neg 
ELSE IF convict <= 0  AND kill <= 0.349 THEN Neg  
ELSE Pos 
 

(b) RIPPER 
 
 

 
IF  rapist <= 0 AND june <= 0 THEN Neg 
ELSE IF convict <= 0  AND kill <= 0.349 THEN Neg  
ELSE Pos 
 
 

Figure 2.9: Decision rule sets produced by (a) PART and (b) RIPPER for topic
102.

which contains the predicted class. The antecedent takes the conditional disjunc-

tive normal form (DNS) if < DNFformula > then < category >.

Decision rules can be generated from decision tree-based classifiers. How-

ever, rule-based classifiers tends to generate more compact rules than decision

tree classifiers [144].

After a rule set has been produced, a pruning phase to reduce overfitting is

applied, where the ability to correctly classify all the training examples is traded

for more generality [144].

Some rule-based classifiers have been introduced, for example 1R [69], IREP

[53], CN2 [28], and PART [48]. 1R is a simple form of rule-based classifier with

only a single rule. However, 1R performs just as well as other classifiers in many

datasets. PART builds a partial C4.5 decision tree in each iteration and makes the

“best” leaf into a rule. Some decision rule-based classifiers have been applied to

text classification, including CHARADE [112], DL-ESC [97], RIPPER [29–31],

and SCAR [113].

For example, Figure 2.9 illustrates decision rule sets built by PART and RIP-

PER for a dataset topic number 102 used in this thesis.
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2.3.6 Representative Based Classifiers

One type of classification model is class representation, where there are two rep-

resentations in each class. The format of the class representation in principle is the

same as that of document representation. Among the classifiers discussed in this

literature review, there are two classifiers that have classification models in class

representation, namely, the Rocchio [72] and pattern-based PTM [171]. Rocchio

classification is an adaptation of Rocchio’s formula for relevance feedback in in-

formation retrieval that was pioneered by Hull [70].

In Rocchio, the class representation is a centroid. The Rocchio algorithm

[131] has been widely adopted in the areas of text categorisation. It can be used to

build the profile for representing the concept of a topic which consists of a set of

relevant (positive) and irrelevant (negative) documents. The centroid ~c of a topic

can be generated by using

~c = α
1

|D+|
∑
~d∈D+

~d

||~d||
− β 1

|D−|
∑
~d∈D−

~d

||~d||

where α and β are empirical parameters, α + β = 1; and ~d is a document

vector.

A centroid is the centre of mass of all the documents in that class. Therefore,

the Rocchio classifier is also called a centroid-based classifier [61, 157] or cluster-

based classifier [73].

To predict a new document, the Rocchio classifier calculates the cosine sim-

ilarity, or the Euclidean distance of the normalised document vector between the

new document and the class centroids. With such a simple process, the Rocchio

classifier is very efficient, during both the training and prediction process. How-

ever, Sebastiani [144] showed that the Rocchio classifier is less accurate for text.
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According to Manning et al. [105] and Yang [174], the Rocchio is inaccurate in

datasets with classes that are not approximately spheres with similar radii (or mul-

tiple clusters).

Several studies have shown that Rocchio effectiveness can be improved with

some adjustments, such as utilising near positive training documents [138] or with

a normalized summed centroid calculation [158].

By producing class representatives, classifiers have obvious advantages in

terms of interpretability, as such representatives are more readily understandable

by a human [144].

2.3.7 Neural Networks-Based Classifiers

Artificial neural networks or neural networks (NNs) are inspired by biological

brain neural systems. As in the brain system, an NN is composed of an intercon-

nected assembly of nodes and directed links. The simplest model of an NN is a

linear classifier called a perceptron [36] which has only input and output nodes.

A more complex NN is the nonlinear multi-layer perceptron (MLP) which has

one or more additional layers [87, 118, 133]. With hidden layers, the MLP can

accommodate a more complex relationship between the input and output variables

that the network is able to learn.

In the text domain, the input units represent terms, while the output units repre-

sent the category or categories of interest, and the weights on the edges connecting

the units represent the dependence relations[144].

For example, Figure 2.10 illustrates an architecture of MLP for a dataset topic

number 102 used in this thesis with 10 terms.

30



 

belgian 

bodi 

chid 

dutroux 

girl 

kidnap 

marc 

polic 

sex 

two 

Pos 

Neg 

Figure 2.10: MLP architecture for topic 102 with 10 terms.

2.3.8 Instance-Based Classifiers

Most classifiers construct an explicit classification model from the data in the

training phase ( eager learners). The instance-based classifier delays the classifi-

cation model construction from the training data until it is needed to classify new

instances (lazy learner) [4, 155]. It means that the lazy classifier does not maintain

a classification model.

A popular instance-based approach is the k nearest neighbours (kNN) tech-

nique, which uses k number of nearest neighbours (k training instances) to iden-

tify a new test document to decide the class for a new instance. Therefore, the

kNN requires a proximity measure to determine the similarity or distance between

two instances. To identify the nearest neighbours, the classifier ranks the training

set, and finds the k most similar (k neighbours). A popular similarity function in
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document is cosine similarity.

Creecy et al. [34] pioneered the application of instance-based classifiers in the

text domain [144], followed by others, including Soucy and Mineau [153], Tan

[156], Yang and Liu [177], and Aha et al. [1].

An important issue in kNN is choosing the right value of k. Overfitting can

occur because of noise(for too small k) and misclassification can occur because

of similar training data (for too large k)[155]. Other issues realted to kNN are its

inefficiency at classification time [144], sensitivity to the choice of the algorithm’s

similarity function [1], and the finding nearest neighbours efficiently. [80].

2.3.9 Classifier Combination

A classifier combination is a combination (or ensemble) of multiple base clas-

sifiers. It is called also a meta classifier. In a classifier combination, individual

decisions are combined in some way (typically by weighted or unweighted voting)

to classify new instances [40].

There are two necessary conditions for a classifier combination to perform bet-

ter than a single classifier: the base classifiers should be as uncorrelated/independent

of each other as possible [85, 86, 165], and the base classifiers should do better

than a classifier that performs random guessing [155]. In other words, the base

classifiers must be accurate and diverse [39, 64]. Two classifiers are diverse if

they make different errors on new data points [40].

A popular survey of the classifier combination is in [40], while a survey of

commonly used ensemble-based classification techniques is in [79]. An annual

conference has been held in the area of classifier combinations since 2000 3.

Classifier combinations are constructed at least four ways [155]: by manip-

3Conference proceedings can be found in
http://www.informatik.uni-trier.de/ Ley/db/conf/mcs/index.html
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ulating the training set (e.g., with boosting such as AdaBoost), by manipulating

the input features (e.g., Random Forest), by manipulating the class labels, and by

manipulating the learning algorithms.

The most popular classifier combination methods are bagging and boosting.

Bootstrap aggregating (bagging) was proposed in [17]. Bagging is a simple ensemble-

based algorithms; however, it has good performance [17]. The same base learning

methods (weak learner) is used with different variations. A diversity of classifiers

in bagging is obtained by different subsets of the training set, which are randomly

drawn with replacements from the training dataset. The final result is obtained by

voting with equal weight.

Similar to bagging, boosting [139, 180] also creates an ensemble of classifiers

by resampling the data, which are then combined by majority voting. However,

in boosting, the same learning methods (weak learners) are sequentially trained,

and the training instances that previous models misclassified are emphasised. An

example of a popular boosting method is AdaBoost [50].

Random Forests are a combination of tree predictors such that each tree de-

pends on the values of a random vector sampled independently and with the same

distribution for all trees in the forest. After a large number of trees is generated,

they vote for the most popular class [18].

The classifier combination has been applied to text classification; for example,

by Al-Kofahi et al. [2], Bell et al. [9], Bennett et al. [11], Bi et al. [13], Larkey and

Croft [92], Li and Jain [101], Yang et al. [179], and Schapire and Singer [140].

2.3.10 Rough Set

Rough set theory dealing with uncertainty and imprecision, it was developed by

Pawlak [121] in early eighties. Rough set is an important mathematical tool for

managing uncertainty. Information about rough set theory in data mining can
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be found in [190]. Rough set theory can be used for classification to discover

structural relationships within imprecise or noisy data [62].

Rough Set-based has been used for data mining, such as information filtering

by Li and Zhong [98], genetic algorithms by Kim [83], rule based classifier by

[104, 191]. Sarkar [136] introduced fuzzy-rough uncertainty to enhance classifi-

cation performance of the kNN algorithm. Pawlak [122] used rough-set theory in

the Bayes theorem classifier. Miao et al. [107] proposed a hybrid algorithm based

on rough set to combine kNN and the Rocchio to produce a better classification

performance.

Some application of rough set based classifiers for text were introduced, in-

clude for email spam filtering [187] and news classification [184]. In some classi-

fiers, rough set is used to reduce the number of attribute [75, 100].

2.4 Decision boundary setting

The classification process can be performed in two ways: fully automated classi-

fication (“hard” classification) and semi-automated (ranking) classification [144].

In an automated classification process, new incoming instances are automatically

labelled by the classifier. In a semi-automated classification process, new incom-

ing instances are ranked. In a semi-automated classification process, classifiers

usually produce a score value for each instance. For a text classification with

dataset D, the function Scorei : D → weight(D). For example, given a new

document dj , the classifier returns a score for it. Documents are then ranked ac-

cording to the Scorei value [144].

For some automated classifiers like Naive Bayes and Rocchio, the classifica-

tion process can be viewed as producing score. In Naive Bayes, Scorei(dj) is

defined in terms of a probability; whereas in Rocchio, Scorei(dj) is a measure of

34



the vector closeness to centroids [144, 175]. These classifiers then perform the

decision boundary (threshold) setting, for which default decision boundary value

is usually used (e.g., 0.5 for Bayes classifier [58].

For automated classification, the decision boundary setting is often consid-

ered a trivial process and is not important; therefore, it has tended to be under-

investigated [175]. However, Yang [175] proved that decision boundary setting

is important and not simple. Using kNN, Yang [175] proved that an effective de-

cision boundary setting strategy produces significantly better performance than

other decision boundary setting strategies.

Existing works on decision boundary setting strategies are generally in the

context of the post-processing automatic classification of or for multi-label clas-

sification problems, such as [46, 58, 175]. However, in principle, these decision

boundary setting strategies can be used to transform ranking (semi-automatic)

classification to “hard” (automatic) classification.

If a classifier based on the value of scores can result in effective classification

in the expected measurement (e.g., F measure), there is no need to calculate the

threshold experimentally [144] (e.g., probability in Bayes classifier [144, 175]).

However, according to [175] (based on [12, 55, 176]), the probability values gen-

erated by the Bayes classifier are not fully reliable. The Bayes probability value

tends toward one or zero exponentially if the number of features in the represen-

tation of the documents increase.

Another approach to transforming the classifier score into a class prediction

is by transforming the classifier score into a probability estimate [12, 172, 181];

however this is not an easy method [175].

The question that arises is how to calculate the decision boundary experi-

mentally in the training process in order to maximise effectiveness. Yang [174,

175] identified three decision boundary setting strategies, namely, ranking-based,
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score-based, and proportional-based strategies. Yang [174, 175] referred to them

as RCut (rank-based thresholding), SCut (score-based local optimisation), and

PCut (proportion-based assignment), respectively. Ranking-based decision bound-

ary setting is referred as fixed decision boundary setting by Sebastiani [144] and

as “k-per-doc" decision boundary setting by Lewis [94]. Score-based decision

boundary setting is referred to as CSV decision boundary setting by Sebastiani

[144] and Schapire et al. [138].

Ranking-based decision boundary setting is used for category-based ranking
4 [144, 175]. With the validation set (separate from the training set and test set),

the k largest category score is selected for each selected document, leading to

maximum evaluation. There will be the same number of category (k) for each

document.

In score-based decision boundary setting, the decision boundary values are

local per category. In the validation set, with descending order based on the score,

the classifier looks for a decision boundary value in order to get the maximum

performance for that category.

Proportional-based decision boundary setting, uses the test set, so this decision

boundary setting strategy cannot be applied to online classification (where the new

documents appear one by one). In this strategy, it is assumed that the proportions

among the categories in the test and training sets are the same. The scores are

sorted in the test set. For each category ci, top-k: kj = P (ci)× x×m documents

are labelled ci, where P (ci) is the prior probability of ci (calculated from the

training set), x is a real value for the decision boundary, and m is the number of

categories. Then, the decision boundary value is set at x so that the performance

on the validation set reaches a global optimum for the classifier.

To improve SVM performance, Shanahan and Roma [147, 148] and Zhai et al.

4There are two types of ranking: category ranking and document ranking. The work in this
thesis is related to document-ranking.
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[183] adjusted the SVM’ decision boundary based on utility models and the rank-

ing properties of classifiers using the beta-gamma decision boundary setting tech-

nique. The beta-gamma decision boundary setting algorithm relaxes the SVM de-

cision boundary from zero and translates the SVM hyperplane towards the denser

class (i.e., the class with more training data).

Genkin et al. [54] presented a simple Bayesian logistic regression approach

that uses a Laplace prior to avoid overfitting and produces sparse predictive mod-

els for text data, with a novel decision boundary setting named tuned decision

boundary setting. In this decision boundary setting technique, decision boundary

for each category is set to get the highest training performance. Tuned decision

boundary setting outperforms default decision boundary setting for linear regres-

sion [160], ridge logistic regression [186] and SVM for text classification.

I many informaytion filtering problems, with only access to the positive train-

ing dataset, Li et al. [102] and Zhou et al. [189] proved that the decision boundary

can be calculated theoretically based on the training set. In this case, the deci-

sion boundary is mainly used to filter the negative documents that are not similar

to a positive document. It is assumed that the negative document characteristics

are not similar or close to the common features of the topic (positive documents).

The similar negative document identification process is also performed on the

semi-supervise learning process [51]. Using the rough sets approach to calculate

the score of the document, Li and Zhong [98] found that the decision boundary is

the minimum weight of the positive documents (all the document in the positive

region have a weight at least the same as the minimum weight of the positive doc-

uments). Li et al. [102] and Zhou et al. [189] concluded that the topic common

features/theme can be obtained from the average weight of positive documents in

the training set. Therefore, the decision boundary is the mean of total document

weight in positive training documents. However, in a real situation it might be
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skew of the documents’ weight distribution. So, the decision boundary value is

threshold = m̄ + γ(α + skew), where α is the standard deviation and γ is the

experimental parameter.

2.5 Summary

In this chapter, we have reviewed several topics related to our project, namely, bi-

nary classification, document representation (feature weighting, selection, feature

type, dimensionality reduction), classifiers and decision boundary setting.

Binary classification is a popular way to solve multi-class problems. Many

studies have used this method.

The selection of document representation affects text classification perfor-

mance. How a complex text document is transformed into a simple representation

is an important and challenging question. A large number of studies on feature

weighting and selection can be found. The pattern-based approach is a promising

document representation alternative especially for fine tuning. There are many

challenging work to optimise the usage of patterns for text classification. Pattern-

based feature improves the effectiveness of binary classifiers by identifying useful

features, especially when noisy information in text classification is present.

For classification, most research studies have used existing machine learning

classifiers. Many of them proved that SVM is the best performer. However, sev-

eral others classifiers also have also been shown to be competitive.

Decision boundary setting is an important and difficult work in the classifica-

tion process. The review of literature conducted for the purposes of the present

study found that there few studies on decision boundary setting. The existing

works show that optimal decision boundary setting can improve classification ef-

fectiveness for automated classification. Only a few studies have been conducted
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on decision boundary setting in order to make a ranked classification method pro-

duce decision labels on incoming documents. Most existing existing boundary

setting strategies are based on validation and test set. With a validation set, the

size of the training dataset will be decreased; this makes training process sub-

optimal, especially if the the dataset contains a small number of training set. When

using a testing set, classifying new documents cannot be done online. In an exist-

ing training set based boundary setting strategy, the decision boundary had to be

set for every category This motivate us to calculate decision boundaries based on

training set for all existing categories.

Several classifier combination models have been proposed, an important issue

is how to choose base weak classifiers.

39



40



Chapter 3

Pattern-based Feature Selection and

Its Application to Classification

Pattern-based feature selection has been developed as an effective scheme in [99,

102, 171]. In this pattern-based feature selection, it uses sequential closed pat-

terns.

3.1 Pattern

For a given topic, the objective of relevance feature discovery in text documents

is to find a set of useful features, including patterns (termsets), terms and their

weights, in a training set D, which consists of a set of relevant (positive) docu-

ments, D+, and a set of irrelevant (negative)documents, D−. A document d has a

set of paragraphs PS(d).

Let T1 = {t1, t2, . . . , tm} be a set of terms which are extracted from D+.

Given a termset X , a set of terms, in document d, coverset(X) is used to denote

the covering set of X for d, which includes all paragraphs dp ∈ PS(d) such that

X ⊆ dp, i.e., coverset(X) = {dp|dp ∈ PS(d), X ⊆ dp}. Its absolute support
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Table 3.1: Pattern based document representation.

Doc Patterns
d1 〈carbon〉4, 〈carbon, emiss〉2, 〈air, pollut〉2
d2 〈greenhous, global〉3, 〈emiss, global〉2
d3 〈greenhous〉2, 〈global, emiss〉2
d4 〈carbon〉3, 〈air〉3, 〈air, antarct〉2
d5 〈emiss, global, pollut〉2

is the number of occurrences of X in PS(d), that is supa(X) = |coverset(X)|.
Its relative support is the fraction of the paragraphs that contain the pattern, that

is, supr(X) = |coverset(X)|
|PS(d)| . A termset X is called a frequent pattern if its supa (or

supr) ≥ min_sup, a minimum support.

Given a termset X , its covering set coverset(X) is a subset of paragraphs.

Similarly, given a set of paragraphs Y ⊆ PS(d), it can be defined its termset,

which satisfies

termset(Y ) = {t|∀dp ∈ Y ⇒ t ∈ dp}.

The closure of X is defined as follows:

Cls(X) = termset(coverset(X)).

A pattern X (also a termset) is called closed if and only if X = Cls(X).

Let X be a closed pattern, so

supa(X1) < supa(X) (3.1)

for all patterns X1 ⊃ X .

These definitions can also be found in [99, 102, 171].

Table 3.1 illustrates document representation in pattern-based model. In this

table d1 has three pattern features 〈carbon〉4 , 〈carbon, emiss〉3, and 〈air, pollut〉2.
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Subscripted values are support values which represents weight. It means that in

d1 there are four paragraphs contain pattern 〈carbon〉, three paragraphs contain

pattern 〈carbon, emiss〉, and two paragraphs contain pattern 〈air, pollut〉.

3.2 Deploying higher level patterns on low-level terms

For term-based approaches, weighting the usefulness of a given term is based on

its appearance in documents. However, for pattern-based approaches, weighting

the usefulness of a given term is based on its appearance in discovered patterns.

To improve the efficiency of the pattern taxonomy mining, an algorithm, SP-

Mining(D+,min_sup) [170], was proposed (also used in [102, 171]) to find

closed sequential patterns for all documents ∈ D+, which used the well-known

Apriori property in order to reduce the searching space. For all relevant documents

di ∈ D+, the SPMining algorithm can discover all closed sequential patterns, SPi,

based on a given min_sup.

Let SP1, SP2, ..., SP|D+| be the sets of discovered closed sequential patterns

for all documents di ∈ D+(i = 1, · · · , n), where n = |D+|. For a given term t,

its deploying support, called weight, the discovered patterns can be described as

follows [102, 171]):

weight1(t,D
+) =

n∑
i=1

supi(t) =
n∑
i=1

|{p|p ∈ SPi, t ∈ p}|∑
p∈SPi |p|

(3.2)

where |p| is the number of terms in p.

3.3 RFD Model

RFD model [99] for relevance feature discovery describes the relevant features

in relation to three groups, namely: positive specific terms, general terms and
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negative specific terms based on their appearances in a training set.

3.3.1 Specificity function

In the RDF model, a term’s specificity (referred to as relative specificity) was

defined [99] according to its appearance in a given training set. Let T2 be a set

of terms which are extracted from D− and T = T1 ∪ T2. Given a term t ∈ T ,

its coverage+ is the set of relevant documents that contain t, and its coverage−

is the set of irrelevant documents that contain t. It is assumed that the terms

frequently used in both relevant documents and irrelevant documents are general

terms. The terms that are more frequently used in the relevant documents are

classified into the positive specific category; the terms that are more frequently

used in the irrelevant documents are classified into the negative specific category.

Based on the above analysis, it is defined the specificity of a given term t in

the training set D = D+ ∪D− as follows [99]:

spe(t) =
|coverage+(t)| − |coverage−(t)|

n
(3.3)

where coverage+(t) = {d ∈ D+|t ∈ d}, coverage−(t) = {d ∈ D−|t ∈ d},
and n = |D+|. spe(t) > 0 means that term t is used more frequently in relevant

documents than in irrelevant documents.

Classification rules for determining its general termsG, positive specific terms

T+, and negative specific terms T−:

G = {t ∈ T |θ1 ≤ spe(t) ≤ θ2},

T+ = {t ∈ T |spe(t) > θ2}, and

T− = {t ∈ T |spe(t) < θ1}.
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where θ1 and θ2 are experimental coefficients.

3.3.2 Weighting features

To improve the effectiveness, RFD uses irrelevant documents in the training set

in order to remove the noises. Most models can rank documents (see the ranking

function in Equation (3.2) using a set of extracted features. If an irrelevant docu-

ment gets a high rank, the document is called an offender [98]. The offenders are

normally defined as the top-K ranked irrelevant documents. The basic hypoth-

esis is that the relevance features should be mainly discovered from the relevant

documents. RFD sets K = n
2
, as half of the number of relevant documents.

The RDF model uses both the terms’ supports and the terms’ specificities to

define the terms’ weights as follows:

weight2(t) =



w(t,D+)(1 + spe(t)) t ∈ T+

d_sup(t,D+) t ∈ G
d_sup(t,D+)(1− |spe(t)|) t ∈ T1
−d_sup(t,D−)(1 + |spe(t)|) otherwise

(3.4)

where the d_sup function is defined in Equation (2).

A document can be seen as a vector of term weights
#»

d = 〈w1j, w2j, . . . w|T |j〉,
where wij is weight of term tijin document. For example in Table 3.1, D+ =

{d1, d2, . . . , d5}, term global (which appears in document d2, d3, . . .d5), has rank(global,D+) =

2
4

+ 1
3

+ 1
3

= 7
6
.

3.4 Application to Text Classification

The advantage of pattern-based feature selection RFD is that it can provide an

effective document ranking function for information filtering. Document-ranking
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function has been derived by exploiting the patterns in the pattern taxonomy. The

ranking model sorts a set of documents according to their relevance. Pattern-

based approach RFD is better at capturing semantic information without natural

language processing. RFD provided a solution to the problems of pattern-based

methods which are the low-support problem and misinterpretation problem that

means the measures used in pattern mining. The main process of RFD consists of

two steps: offender selection (a negative relevance feedback), and the revision of

the weights of low-level features (terms) based on both their appearances in the

higher level features (patterns). An offender can be used to reduce the side effects

of noisy features. This pattern-based feature selection approach outperforms term-

based models which are widely used approaches. By using negative relevance

feedback, the effectiveness of information filtering can be significantly improved.

RFD is an effective ranking function, therefore an effective text classification

is potentially supported by RFD. However, it is hard to use an effective document

ranking function for effective text classification. This study proposes a text clas-

sification model to extend RFD for effective classification. For a given ranking

function, after training documents are ranked, a decision boundary is unlikely de-

cided for a clearly binary classification. The decision boundary can be set based

on training documents, verification documents or testing documents. With small

number of training set, assigning some of training documents for verification set

will harm the performance. While using testing set for decision boundary setting

makes online classification cannot be performed. Therefore it is a challenge to uti-

lize RFD for an effective text classification by using only training set for decision

boundary setting.
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Chapter 4

Decision Boundary Setting

To achieve the best performance in SVM, the objective is to create the decision

boundary with the maximum margin. This maximum margin is used to minimize

the over-fitting problem. In the Rocchio classifier, the decision boundary is deter-

mined from the centroids of each class, where each class has a centroid as a class

representative. The decision boundary has the equal distance from two adjacent

centroids. The Rocchio classifier uses the criterion cosine similarity or Euclidean

distance function. The NB classifier uses probability as the score of documents.

In NB, with normalised probability (i.e. the total probability of all classes is one),

the decision boundary is basically similar to the Rocchio approach. The decision

boundary has equal probability deviation from each class.

After the features are selected and weighed by using pattern-based feature

selection and weighting, the weighted terms are then used as document represen-

tation, as in many other classifiers. Some classifiers such as Naive Bayes (NB),

Rocchio and SVM apply a decision boundary to identify incoming documents.

This chapter presents a new effective boundary setting. An overview of the

decision boundary setting approach for a classifier is first provided. The notion of

the decision boundary region is then presented. Issues regarding how to set and
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adjust the decision boundary based on the decision boundary region are discussed.

Finally, further efforts to improve classification performance are explained.

At least three issues arise in decision boundary setting, namely, the dataset

used, the calculation function, and the number of experimental parameters. For

the dataset, a training set, validation set or testing set can be used. When using a

validation set, the size of the training dataset will be decreased; this makes training

process sub-optimal, especially if the dataset contains a small number of training

samples. When using a testing set, classifying new documents cannot be done

online. Therefore, the ideal choice for decision boundary setting is to use training

set, because of both using training set and validation set. For the calculation func-

tion, the calculation can be complex (such as finding decision boundary based on

the maximum performance of the training set), or it can be simple (such as find-

ing the minimum of document weight). The simpler calculation function can be

the more efficient and the more portable. The number of experimental parameters

is similar to the calculation function, that is, the fewer number of experimental

parameter can be the more efficient and the more portable.

To clearly understand the concept of the structure used in the proposed model,

three regions in the training set are defined. A method for using the three regions

in the testing set is then discussed.

4.1 Three Regions

Let D be a training set of documents, which consists of a set of relevant docu-

ments,D+ ; and a set of non-relevant documents,D−; and T = {(t1, w1), (t2, w2),

. . . , (tm, wm)} be a set of term-weight pairs produced by the pattern-based feature

extraction method in D (see Chapter 3).

Let U be a testing set of documents. The score of a document d in either D or

48



U can be calculated based on terms in the document as follows:

score(d) =
∑
ti∈d∩T

wti

Both the training set and the testing set can be separated into three regions

based on the document scores. Three regions are defined in the training set, D,

namely, the low score region (L), the boundary region (B) and the high score

region (H). The ranges of these boundaries are defined as follows:

DL = {d ∈ D|score(d) < τlow}

DB = {d ∈ D|τlow ≤ score(d) ≤ τhigh}

DH = {d ∈ D|score(d) > τhigh}

where τlow and τhigh are the lower boundary and upper boundary of B and are

calculated based on the scores of the training documents.

4.2 Boundary Region

An effective way to decide the lower and upper boundaries is based on the min-

imum score of the relevant documents (τP ) and the maximum score of the non-

relevant documents (τN ).

τP = min
d∈D+

{score(d)}

τN = max
d∈D−

{score(d)}
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The values of τlow and τhigh are calculated as follows:

τlow = min(τP , τN)

τhigh = max(τP , τN)

Figure 4.1 shows that a good document scoring models produce a trend of

classification effectiveness (F1 and Acc) with a maximum peak. The maximum

peak is in a region between the minimum and the maximum of training doc-

uments score, that is mind∈D{score(d)} < score(d) < maxd∈D{score(d)}.
With mind∈D{score(d)} < τlow < maxd∈D{score(d)} and mind∈D{score(d)} <
τhigh < maxd∈D{score(d)}, it means that classification effectiveness will be bet-

ter around the middle of the document weight distribution where the boundary

region most probably located.

The examples in Figure 4.1 use artificial data with |U+| ≈ |U−|. The figure

shows six different probability combinations of positive documents and negative

documents in a testing set. In the leftmost tables in the figure, the vertical axis (Y

coordinates) represents the positive decision probability value of the documents

(documents are predicted as positive) on the horizontal axis (X coordinates). For

example, the top chart shows the random case, where the probability of all the

documents is 0.5. Further analysis for this phenomenon is set out in Chapter 6.

4.2.1 Use of the Three Regions in the Testing Set

Let UL be the low score region of the testing set U , UH be the high score region of

U , and UB be the boundary region of U . For incoming documents in U , the simply

way is to use the lower and upper boundaries to classify U into three regions:
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Figure 4.1: Performance in several different decision boundaries.

UL = {d ∈ U |score(d) < τlow}

UB = {d ∈ U |τlow ≤ score(d) ≤ τhigh}

UH = {d ∈ U |score(d) > τhigh}

It means that the decision boundary values calculated in the training set can be

applied directly for the testing set.

Usually the size of the testing set U is larger than the size of the training set

D. Therefore, the region UB determined in the above equation is only a subset of

the real boundary region. Figure 4.2 shows a possible case for the three regions in

both the training set and the testing set.
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Figure 4.2: Low score, boundary, and high score regions.

4.3 Decision Boundary Setting

After the boundary region has been identified, the next step is finding decision

boundary (τ ) in and around the near boundary region. First, the initial decision

boundary (τ ′) is selected; then, it is adjusted to improve the classification perfor-

mance.

4.3.1 Initial Decision Boundary (τ ′) Setting

To minimise the experimental parameters, the parameters are chosen among the

borders of the boundary region, τlow, τhigh, τP , or τN as alternatives for initial

decision boundary (τ ′).

Based on [98], with only the scores of the positive training documents D+

available, the optimal threshold is τP . In a real dataset, in most cases the maximum

score of the negative testing document is more than the minimum score of the

positive testing document (see Figure 4.3). Therefore, τ ′ < τP . A simplified

version is τP ≤ τ ≤ τN . With both D+ and D− available, the most suitable initial

decision boundary is found to be: τ ′ = τlow.

4.3.2 Decision Boundary Adjustment

To optimise the performance, the initial decision boundary should be adjusted.

With the final decision boundary (τ ) in boundary region τlow ≤ τ ≤ τhigh, the
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Training set, case A 

Figure 4.3: Training and testing cases. Case A is a non-overlap training score
τP > τN , case B is an overlap training τP < τN . In both case A and case B testing
score are overlap, and usually ∆3 < ∆4.
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Figure 4.4: Outlier in training set.

adjustment can be calculated based on:

τ = τ
′
+ (γ × (τhigh − τlow))

where γ is an experimental parameter.

4.3.2.1 Outlier Handling

In the previous section, the initial decision boundary was adjusted directly based

on τlow and τhigh. To make a better adjustment, some distribution of the weight of

the training documents should be considered. This section discusses the influence

of outliers in the training dataset on the decision boundary adjustment.

In statistics, an outlier is an observation that lies an abnormal distance from

other variables [59]. Figure 4.4 illustrates a positive document that is potentially
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an outlier. A popular definition of statistical outlier is based on the quartiles of a

ranked set of data values. The first/lower quartile (Q1) is defined as the middle

number between the smallest number and the median of the data set. The second

quartile (Q2) is the median of the data. The third/upper quartile (Q3) is the middle

value between the median and the highest value of the data set. The difference

between the upper and lower quartiles is called the interquartile range (IQR). The

outer fences are Q1 - 3 IQR (lower fence), and Q3 + 3 IQR (upper fence), while

the inner fences are Q1 - 1.5 IQR (lower fence), and Q3 + 1.5 IQR (upper fence).

All the observations outside the fences are possible outliers; an observation is a

suspected/mild outlier if it is outside the inner fence, and an observation is an

outlier if it is outside the outer fences [49, 146].

A simple approach to considering outliers in the decision boundary calculation

is to remove the outliers. It means that a training document which is considered as

an outlier cannot be assigned as τhigh or τlow. However, a potential problem with

this approach can arise when the number of training documents, especially |D+|,
is very low.

4.4 Performance Improvement

In the previous section, the training and testing set were divided into three re-

gions, namely, the low score L, high score H, and boundary B regions. Among

these three regions, B has the highest blended of positive and negative documents.

Therefore, the effort to improve classifier perfomance are concentrated on B.
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𝜏𝑃 
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Figure 4.5: Clear and uncertain boundary.

4.4.1 Improving Performance Using Positive, Negative, and Gen-

eral Vectors in Uncertain Boundary

For most real data, documents with different classes cannot be clearly separated.

There is a class mixed or interleaved region, especially around the decision bound-

ary. This problem occurs because some documents are outlier or noisy, or because

the document representation itself cannot perfectly reflect the semantic meaning

of the documents.

To deal with this mixed class issue, instead of using only a clear boundary

such as in some other classifiers, the proposed method employs an uncertain

boundary which has a high rate of mixed documents with different classes. The

boundaries are determined based on the score of training documents. There are

two benefits of using an uncertain boundary. Firstly, the selected features for rep-

resenting relevant (or non-relevant) information can be clearly understood; sec-

ondly, another representation method it can be introduced to further classify the

uncertain boundary.

The boundary region can be uncertain where τP < τN , or clear where τP >

τN (see Figure 4.5). In Figure 4.5 and in the subsequent figures, the positive

and negative symbols represent documents. A positive symbol (+) represents a

relevant document, and a negative symbol (-) represents a non-relevant document.
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Documents are sorted based on their score, descending from the right.

It is obvious that the conditions for a clear boundary are τlow = τN and τhigh =

τP . However, for an uncertain boundary, the conditions are τlow = τP , and τhigh =

τN . The uncertain and clear boundaries also have the following properties:

Property 1. For the clear boundary, we have B = ∅,H = D+, and L = D−.

Property 2. For the uncertain boundary, we have B 6= ∅,H ⊆ D+, andL ⊆ D−.

In the case of the uncertain boundary, B 6= ∅ and UB is usually larger than B.

Therefore, it is impossible to make a clear binary decision even in B by using the

decision boundary τ (see Eq. 4.3.2).

To improve the performance of the classifier, in the uncertain boundary UB

we decompose each document vector into three vectors. As described in Chapter

3, the set of terms T can be grouped into three categories (i.e., T+, G and T−)

by using the classification rules. Therefore, for a given document vector
#»

d =

{(wt1), (wt2), . . . , (wtm)}, we can obtain the three vectors, namely, the positive

vector, general vector, and negative vector:

#»

d T+ = {(wti) ∈
#»

d |ti ∈ T+}
#»

dG = {(wti) ∈
#»

d |ti ∈ G}
#»

d T− = {(wti) ∈
#»

d |ti ∈ T−}
(4.1)

Three scores are then calculated for document d:

score(
#»

d T+) =
∑

(wti )∈
#»
d T+ ,ti∈dw,

score(
#»

dG) =
∑

(wti )∈
#»
dG,ti∈dw,

score(
#»

d T−) =
∑

(wti )∈
#»
d T− ,ti∈d

w.

(4.2)

Finally, the following decision rules for swapping documents d ∈ UB are

known:
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(α× (score(
#»

d T+) + score(
#»

dG))) < score(
#»

d T−)⇒ d ∈ U−

(score(
#»

d T+) + score(
#»

dG)) > (α× score( #»

d T−)⇒ d ∈ U+)

where α is an experimental parameter.

4.4.2 Algorithms

The proposed classification model is called RFDτ . Algorithm 1 and Algorithm 3

describe RFDτ in the learning phase and classifying phase, respectively.

Algorithm 1 describes the learning process of the proposed model by using

the scoring of the pattern-based feature selection, RFD, and the decision bound-

ary setting based on training documents. For the input of the algorithm, both

positive (D+) and negative (D−) training documents are required. An experimen-

tal parameter, γ, is needed to find the decision boundary. The main outputs of

the learning algorithm are the decision boundary value τ , the minimum value of

positive training document score τP , and the maximum value of negative training

document score τN . Meanwhile τlow and τhigh, are derived from τP and τN and are

used to calculate τ and to improve classification performance in the classifying al-

gorithm. The first steps in the learning phase (steps 1-3) are the score calculations

of all the training documents based on the documents’ term weights. The weights

of the terms are calculated based on patterns. Thereafter, in steps 4 and 5, τP and

τN , and then τlow and τhigh are calculated. Finally in step 6, the decision boundary

value τ is calculated based on τlow,τhigh, and experimental parameter γ. The time

complexity of this algorithm is O(|T | × |d| × |D|).

Algorithm 2 describes learning with outliers removal, so it prevents outliers to

be τP and τN . However if the number of positive or negative training document

is small, there will be no outlier removal. Step 5-12 identify outlier for positive
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Input : A training set, D = D+ ∪D−; and
experimental parameter, γ.

Output: Decision boundary value, τ ;
minimum score of training positive document, τP ;
maximum score of training negative document, τN ; and
border values of boundary set, τlow, τhigh.

1 forall the d ∈ D do
2 score(d) =

∑
t∈D weight2(t)

3 end
4 τP = mindi∈D+{score(di)}; τN = maxdi∈D−{score(di)} ;
5 τlow = min(τP , τN); τhigh = max(τP , τN) ;
6 τ = τlow + (γ × (τhigh − τlow));

Algorithm 1: RFDτ Learning

training documents for |D+ > m|, while step 15-22 identify outlier for negative

training documents for |D− > n|. Where m and n are experimental parameters.

Algorithm RFDτ Classfiying (Algorithm 3) shows how to apply RFDτ model.

This algorithm applies decision boundary value calculated in Algorithm 1 for

new incoming documents. For the input of algorithm are testing set U , decision

boundary value τ and its related values τP , τN , τlow, τhigh, and an experimental

parameter γ. The output of this algorithm are sets of positive and negative label

of training docs, POS and NEG. In step 1, it starts with assign new empty sets

POS and NEG. Then, for all testing set, as stated in step 3, score of documents

are calculated. After that in step 4-6, if the document score less than or equal to

decision boundary the document is assigned as negative, otherwise positive. Then

start from step 8 to 16, is applied if the topic is uncertain topic and document is

in boundary region. Steps 9-11 if an incoming document is initially predicted as

positive, but has strong characteristics as negative then this document is swapped

from positive to negative. The similar case describes in step 12-14 for when an

incoming document is initially predicted as negative, but has strong characteristics

as positive then this document is swapped from negative to positive.
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Input : A training set, D = D+ ∪D−; and
experimental parameters, m,n, γ.

Output: Decision boundary value, τ ;
minimum score of training positive document, τP ;
maximum score of training negative document, τN ; and
border values of boundary set, τlow, τhigh.

1 forall the d ∈ D do
2 score(d) =

∑
t∈D weight2(t);

3 end

// Identify outlier for positive training docs.
4 if D+ > m then
5 let D+ = {d+0 , d+1 , . . . , d+m} in ascending ranking order,
6 Q+

1 = |D+| × 0.25;
7 Q+

3 = |D+| × 0.75;
8 d+Q1

= {d | d ∈ D+, rank(d) = dQ+
1 e};

9 d+Q3
= {d | d ∈ D+, rank(d) = dQ+

3 e};
10 IQR+ = score(d+Q3)− score(d+Q1);
11 D+

outlier = {di | d ∈ D+, score(di) < ((score(d+Q1)− 1.5× IQR+))};
12 D+ ← D+ −D+

outlier;
13 end

// Identify outlier for negative training docs.
14 if D− > n then
15 let D− = {d−0 , d−1 , . . . , d−n } in ascending ranking order,
16 Q−1 = |D+| × 0.25;
17 Q−3 = |D+| × 0.75;
18 d−Q1

= {d | d ∈ D−, rank(d) = dQ−1 e};
19 d−Q3

= {d | d ∈ D−, rank(d) = dQ−3 e};
20 IQR− = score(d−Q3)− score(d−Q1);
21 D−outlier = {di | d ∈ D−, score(di) > ((score(d−Q1) + 3.5× IQR+))};
22 D− ← D− −D−outlier;
23 end

24 τP = mindi∈D+{score(di)}; τN = maxdi∈D−{score(di)} ;
25 τlow = min(τP , τN); τhigh = max(τP , τN) ;
26 τ = τlow + (γ × (τhigh − τlow));

Algorithm 2: RFDτ Learning with outlier removal
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In document swapping it use score of term specific (see Eq.4.2). The time

complexity of this algorithm is O(|T | × U).

Input : New incoming unlabel documents in testing set, U ;
decision boundary value, τ ;
experimental parameter α;
minimum score of training positive document, τP ;
maximum score of testing negative document, τN ; and
border values of boundary set, τlow, τhigh.

Output: Sets of positive and negative label of training docs, POS and
NEG.

1 NEG = ∅, POS = ∅;
2 forall the d ∈ U do
3 if score(d ≤ τ ) then
4 NEG = NEG ∪ {d};
5 else
6 POS = POS ∪ {d};
7 end
8 if τP < τN and d ∈ UB then
9 if score(d) ≥ τ and

(α× (score(
#»

d T+) + score(
#»

dG)) < score(
#»

d T−)) then
10 POS = POS - {d}; NEG = NEG ∪ {d} ;
11 end
12 if score(d) < τ and

((score(
#»

d T+) + score(
#»

dG)) > α× score( #»

d T−)) then
13 NEG = NEG - {d}; POS = POS ∪ {d} ;
14 end
15 end
16 end

Algorithm 3: RFDτ Classifying
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Chapter 5

Boosting Performance using the

Classifier Combination

After the decision boundary has been set to produce an effective text classifier,

the next challenge is to boost the performance of RFDτ . This chapter illustrates

the method of increasing the RFDτ effectiveness by combining it with another

existing classifier. A report on initial work of this combination was provided in

[14]. In order to fully discuss the boosting method in this chapter, an overview

of the classification combination is first provided. The system architecture and

algorithms are then presented.

5.1 Classifier Combination

A classifier combination (also referred to as an ensemble, committee or meta-

classifier) is a combination of two or more existing classification systems in order

to improve effectiveness. The construction of a classifier combination can oc-

cur in at least four ways [155]: by manipulating the training set (e.g. boosting

such as AdaBoost), by manipulating the input features (e.g. Random Forest), by
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Table 5.1: Combination of two classifiers

Classifier1
Pred P Pred N

Classifier 2 Pred P Pred P Pred N or P
Pred N Pred P or N Pred N

Table 5.2: Combination of two classifiers: main and booster classifier.

Booster classifier
Pred P Pred N

Main classifier Pred P Pred P Pred N or P
Pred N Pred P or N Pred N

manipulating the class labels, and by manipulating the learning algorithms.

The basic idea of a classifier combination is that a problem requiring expert

knowledge will be better solved by a committee of experts rather than by an indi-

vidual expert [144]. For example, a strong boosting classifier [140] can be built

from a combination of the same weak classifiers (weak learners). In this thesis,

the approach to constructing a classifier combination by manipulating the learning

algorithms is taken. A classifier is chosen to increase effectiveness of RFDτ . This

classifier can be said to be a booster classifier for RFDτ , with RFDτ as the main

classifier.

In combining of two classifier models, the main concern is what will happen

when the classifiers make different decisions. For two binary classifiers, if one

classifier predicts a new document as positive and the other classifier predicts a

new document as negative, then the final prediction can be positive or negative

(see Table 5.1).

In this thesis, the idea of combining of two binary classifiers is used to in-

crease the performance of RFDτ , as set out in Table 5.1. An existing classifier

that is weaker in overall effectiveness (e.g., F1 or accuracy) but has strong par-
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Figure 5.1: Positive P , and negative N1 (near positive), N2 in a binary class.

Table 5.3: Classifier combination: recall oriented

Booster classifier: recall oriented
Pred P Pred N

Main classifier Pred P Pred P Pred N
Pred N Pred N Pred N

tial effectiveness (e.g., recall and precision 1) is used to boost the effectiveness of

RFDτ especially in the hard near positive region.

The set of negative documents has a variety of topics. The set of negative

documents N is divided into two parts, N1 and N2. N1 (near negative documents)

are documents that have close similarity to positive documents P (see Figure 5.1),

while N2 are the remaining documents in the set.

In a combination like the one shown in Table 5.2, a conflicting prediction can

be solved by using a weighted parameter, or simply by basing on the decision on

one base classifier as shown in Table 5.3 and Table 5.4.

The booster classifier can be low score-oriented or high score-oriented (see

Figure 5.2). Low score-oriented classifiers concentrate on low score; that means

1For F1, accuracy, recall and precision will be presented more detail later in Chapter 6

Table 5.4: Classifier combination: precision oriented

Booster classifier: precision oriented
Pred P Pred N

Main classifier Pred P Pred P Pred P
Pred N Pred P Pred N
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 Concentrate on low score: minimize pos doc in low score area, not two short low 

score area 

 FN ~ 0, FP low => concentrate to predict neg 
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 Concentrate on high score: minimize neg doc in high score area, not two short 

high score area 

 FP ~ 0, FN low => concentrate to predict pos 

 

Low score area 

High score area 

Figure 5.2: Low high areas.

 

Testing dataset 

𝜏2 

𝜏1 

High score 
Low score 

Figure 5.3: Recall oriented

minimising the positive documents in the low score area, but with not too short

low score area, FN ≈ 0, and low FP (concentrating on the prediction of new

documents as negative). Meanwhile, high score-oriented classifiers concentrate

on high score; that means minimising negative documents in high score area, but

with not too short high score area, FP ≈ 0, and low FN (concentrating on the

prediction of new documents as positive).

A recall-oriented classifier is a low score-oriented type, and a precision-oriented

classifier is a high score oriented type. A recall (or precision) oriented classifier

has high recall (or precision) with a moderate precision (or recall). In a classi-

fier combination with recall-oriented booster classifier (see Table 5.3), all new

documents that are predicted as negative by booster classifier will be predicted

as negative in the final decision of classifier combination. Figure 5.3 illustrates

a recall oriented prediction. In the top case, with decision boundary τ1 high re-

call but low precision is produced; meanwhile, the case with decision boundary τ2

produces lower recall and higher precision.
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Table 5.5: Classifier combination: detail.

Booster classifier: recall oriented
TPbooster FPbooster TNbooster FNbooster

TPmain TP FN
Main classifier FPmain FP TN

TNmain TN TN
FNmain FN FN

A more detailed contingency table for a recall-oriented classifier combination

is shown in Table 5.5. The goal is to increase final true prediction (TP and TN)

and to decrease false prediction (FP and FN).

5.2 System Architecture and Algorithm

Figure 5.4 shows the classification combination framework proposed in this study.

By using the same training set, each stage produces a classification model. In the

classifying phase, the classification model on classifier one (booster classifier)

concentrates on identifying negative documents. At this stage, the documents that

are predicted as negative documents are grouped into TN1 (true negative group

one) if the documents are true negative, or grouped into FN1 (false negative group

one) if the documents actually are positive documents. At this stage, the priority

is to minimise the FN rate, with acceptable FP (false positive, i.e. negative doc-

uments falsely predicted as positive documents) rate. Then, classification model

two, which is produced in stage two, is used to identify the documents that were

positively predicted in stage one. In the proposed classifier combination model,

true negative TN = TN1 +TN2, false negative FN = FN1 +FN2, true positive

TP , and false positive FP .

The proposed classifier combination (RFDCC) uses a recall-oriented Rocchio

classifier to boost the RFDτ classifier. The learning and classifying phases of
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Figure 5.4: Two-stage framework.

Input : A training set, D = D+ ∪D−.
Output: Rocchio classification model; and

threshold value, τ .

// Learn training dataset using Rocchio
classifier, get Rocchio model.

1 ModelRocchio = ClassifierRocchio(D) ;
// Calculate the score of training documents using

RFD.
2 Dscore = RFD(D,min_sup, θ1, θ2) ;
// Calculate the threshold value, τ.

3 τ = Thresholding(Dscore) ;
Algorithm 4: RFDCC Learning
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Input : A new unlabel document;
Rocchio classification model; and
threshold value, τ .

Output: Class label for unlabel document.

// Predict label the new documents dunlabeled by using
Rocchio model.

1 dlabeled = Rocchio(dunlabeled,ModelRocchio) ;
// If Rocchio label it as negative, so the final

label of the documen is negative
2 if dlabeled is negative then label of d is negative;
// If Rocchio label it as positive, so the final

label of the documen is depend on RFDτ

3 else dlabeled = RFDτ (dunlabeled,ModelRocchio) ;
Algorithm 5: RFDCC Classifying

the RFDCC algorithms are outlined in Algorithm 4 and Algorithm 5. For Algo-

rithm 4, in step 1 the algorithm start with build model from Rocchio classifier.

Then, generate RFDτ model with generate score for all training documents (step

2) and calculate decision boundary τ (step 3). In Algorithm 5 The first step in

classifiying phase (step 1) is class label prediction of the incoming document with

Rocchio classifier. If Rocchio classifier predicts the document as negative, then

the document is labeled as negative (step 2); otherwise, the label of the document

depends on prediction from RFDτ (step 3).
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Chapter 6

Evaluation

This chapter addresses the design issues in the experiments for evaluating the pro-

posed models. The experiments conducted to evaluate the proposed classification

models and assess the proposed hypotheses are described. The dataset, evalua-

tion metrics and baseline models are described, and the experimental results are

presented. At the end of the chapter, the results are analysed and discussed.

The preceding chapters introduced the decision boundary setting and classifier

combination models. Two hypotheses have been proposed in this research:

• A decision boundary can be set based on training data for an effective text

classification model.

• A classifier combination can be used to improve effectiveness of text clas-

sification.

A popular version of the Reuters document collection is chosen from among

several versions as our benchmark dataset. Standard performance measures, namely,

the F measure and accuracy with macro-averaging and micro-averaging [116,

144], are used to evaluate the experimental performance. Macro-averaging com-

putes a simple average over classes. Micro-averaging pools per-document deci-
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sions across classes, and then computes an effectiveness measure based on the

pooled contingency table. The experiment results are compared with a compre-

hensive baseline model. The discussion and analysis of the experiments are pre-

sented in two parts based on the models in the previous chapters.

Regarding the first hypothesis, the results led to the following main point: the

performance of the proposed classification model (RFDτ ) is significantly better

compared to the baseline classification models based on effectiveness. Regard-

ing the second hypothesis, the performance of a classification combination model

(Rocchio-RFDτ ) is better than base classification model (RFDτ ) in effectiveness.

The prototype of proposed models, and two baseline models (Rocchio and

Rough Set) are coded in Java programming language. For all other baseline mod-

els, Weka software [60] is used. For SVM, the present study used LibSVM pack-

age 1 run from Weka. All experiments reported in this thesis were conducted on

a PC equipped with an Intel Core2 Duo 3.00GHz,3.21 GB of RAM running a

Windows XP operating system.

6.1 Dataset

For text classification, some standard benchmark collections are publicly avail-

able for experimental purposes. The most widely used is the Reuters collection,

consisting of a set of new articles. The Reuters collection accounts for most of

the experimental work in text classification to date [144]. The existing Reuters

collections are Reuters-22173, Reuters-21578 2, and the latest is Reuters Corpus

Volume 1 (RCV1) [96]. RCV1 is a collection of English language news arti-

cles which were produced by Reuters journalist for the period between 20 August

1996 and 19 August 1997. These documents are formatted using a structured

1http://svmlight.joachims.org/
2http://www.daviddlewis.com/resources/testcollections/reuters21578/
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<top> 
<num> Number: R101 
 
<title> Economic espionage 
 
<desc> Description: 
What is being done to counter economic espionage internationally? 
 
<narr> Narrative: 
Documents which identify economic espionage cases and provide action(s) 
taken to reprimand offenders or terminate their behavior are relevant. 
Economic espionage would encompass commercial, technical, industrial or 
corporate types of espionage.  Documents about military or political 
espionage would be irrelevant. 

Figure 6.1: Topic statement for the first topic (Topic number 101).

XML scheme.

The present study used TREC-11 Filtering Track RCV13, a binary classifi-

cation version of RCV1. TREC (Text REtrieval Conferene) has developed and

provided 100 topics. The first 50 topics were composed by human researchers

and the rest were formed by intersecting two Reuters topic categories. The asses-

sor topics typically more reliable than the artificial intersection topics [152]. The

50 assessor topics of dataset contains 21,605 documents, which is a reasonable

number of documents for text classification experiment. According to Buckley

and Voorhees [21], 50 topics are stable and enough for high quality experiments.

Each topic in the dataset is binary class with its own positive and negative set.

Each topic has topic statement. Figure 6.1 illustrates a topic statement.

Figure 6.2 shows an RCV1 document. Each document is identified by unique

item ID, title and content. The content is divided in paragraphs. The main statis-

tics of dataset are shown in Table 6.1. As shown in the table, the dataset is im-

balanced as the number of negative documents is much higher than the number of

positive documents. The imbalance rate around 20%.

3http://trec.nist.gov/data/t2002_filtering.html
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Figure 6.2: An RCV1 XML document.

The documents are treated as plain text documents by preprocessing the doc-

uments. The tasks of removing stop-words by reference to a given stop-words list

and stemming terms by applying the Porter Stemming algorithm are conducted.

Table 6.1: Statistics of TREC-11 RCV1 dataset.

Topic ID
Training Set Testing Set

|D+| |D| |D+|
|D| |U+| |U | |U+|

|U|

101 7 23 0.30 307 577 0.53
102 135 199 0.68 159 308 0.52
103 14 64 0.22 61 528 0.12
104 120 194 0.62 94 279 0.34
105 16 37 0.43 50 258 0.19
106 4 44 0.09 31 321 0.10
107 3 61 0.05 37 571 0.06
108 3 53 0.06 15 386 0.04
109 20 40 0.50 74 240 0.31
110 5 91 0.05 31 491 0.06
111 3 52 0.06 15 451 0.03
112 6 57 0.11 20 481 0.04
113 12 68 0.18 70 552 0.13
114 5 25 0.20 62 361 0.17
115 3 46 0.07 63 357 0.18
116 16 46 0.35 87 298 0.29

Continued on next page
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Table 6.1 – continued from previous page

Topic ID
Training Set Testing Set

|D+| |D| |D+|
|D| |U+| |U | |U+|

|U|

117 3 13 0.23 32 297 0.11
118 3 32 0.09 14 293 0.05
119 4 26 0.15 40 271 0.15
120 9 54 0.17 158 415 0.38
121 14 81 0.17 84 597 0.14
122 15 70 0.21 51 393 0.13
123 3 51 0.06 17 342 0.05
124 6 33 0.18 33 250 0.13
125 12 36 0.33 132 544 0.24
126 19 29 0.66 172 270 0.64
127 5 32 0.16 42 238 0.18
128 4 51 0.08 33 276 0.12
129 17 72 0.24 57 507 0.11
130 3 24 0.13 16 307 0.05
131 4 31 0.13 74 252 0.29
132 7 103 0.07 22 446 0.05
133 5 47 0.11 28 380 0.07
134 5 31 0.16 67 351 0.19
135 14 29 0.48 337 501 0.67
136 8 46 0.17 67 452 0.15
137 3 50 0.06 9 325 0.03
138 7 98 0.07 44 328 0.13
139 3 21 0.14 17 253 0.07
140 11 59 0.19 67 432 0.16
141 24 56 0.43 82 379 0.22
142 4 28 0.14 24 198 0.12
143 4 52 0.08 23 417 0.06
144 6 50 0.12 55 380 0.14
145 5 95 0.05 27 488 0.06
146 13 32 0.41 111 280 0.40
147 6 62 0.10 34 380 0.09
148 12 33 0.36 228 380 0.60
149 5 26 0.19 57 449 0.13
150 4 51 0.08 54 371 0.15

Total 639 2704 3484 18901
Max. 135 199 0.68 337 597 0.67

Continued on next page
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Table 6.1 – continued from previous page

Topic ID
Training Set Testing Set

|D+| |D| |D+|
|D| |U+| |U | |U+|

|U|

Min. 3 13 0.05 9 198 0.03
Average 12.8 54.1 0.2 69.7 378 0.19

6.2 Baseline Models and Setting

In order to make a comprehensive evaluation, nine types of classifier for the base-

line model were chosen (Table 6.2, Table 6.3), with a total of 22 models (Ta-

ble 6.4). The proposed model is referred to as the RFDτ .

6.2.1 Parameter Setting

6.2.1.1 SVM

We used all variants of available kernel types:

Model 1: linear (u′ ∗ v)

Model 2: polynomial (γ ∗ u′ ∗ v + coef0)
degree

Model 3: radial basis function ( exp(−γ ∗ |u− v|2))

Model 4: sigmoid (tanh(γ ∗ u′ ∗ v + coef0))

Other parameters, we used defaults:

• SVM type: C-SVC
4We use LibSVM implementation, http://www.csie.ntu.edu.tw/~cjlin/libsvm/
5J48 is an open source Java implementation of the C4.5 algorithm [128] in the Weka data

mining tool
6In Weka implementation, polynomial function in SMO kernel is different with polynomial

function in LibSVM
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Table 6.2: Type and algorithm of baseline models.

Type Classifier

Function based SVM4, SMO
Classifiers committee based AdaBoost
Decision tree based J485, Random Forest
Probabilistic based Naive Bayes, BayesNet
Instance-based (lazy learner) IBk (KNN)
Neural network based Multi Layer Perceptron
Decision rule based PART
Representative based Rocchio
Information retrieval based Rough set

Table 6.3: Algorithm of baseline models and their parameters.

Classifier Parameters

SVM, SMO Kernels function
AdaBoost Base classifiers
J48 Tree pruned and unpruned
Naive Bayes Distribution for numeric attributes
IBk (KNN) The number of nearest neighbours
Multi Layer Perceptron The number of hidden layers
Rough set Threshold setting
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Table 6.4: Baseline models.

No Model Abbreviation

1 SVM with linear kernel SVM linear
2 SVM with polynomial kernel SVM poly
3 SVM with radial basis function kernel SVM radial
4 SVM with sigmoid kernel SVM sigmoid
5 SMO with normalized polynomial kernel SMO norm-poly
6 SMO with polynomial kernel 6 SMO poly
7 SMO with Puk kernel SMO Puk
8 AdaBoostM1 with decision stump as its base classifiers ABM1 base d. stump
9 AdaBoostM1 with decision J48 as its base classifiers ABM1 base J48
10 J48 with pruned tree option J48 pruned
11 J48 with unpruned tree option J48 unpruned
12 Bayesian Network BayesNet
13 Naive Bayes with normal distribution for numeric attributes NB normal distr
14 Naive Bayes with kernel density estimator for numeric attributes NB kernel density
15 Random Forest Random Forest
16 IBk with the number of nearest neigbours is one IBk k=1
17 IBk with the number of nearest neigbours is two IBk k=2
18 Multilayer Perceptron with the number of hidden layer is one MLP hidden=1
19 Multilayer Perceptron with the number of hidden layer = a MLP hidden = a

where a = (the number of attribs + the number of classes) / 2)
20 PART PART
21 Rocchio Rocchio
22 Rough Set RS
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• degree in kernel function = 3.

• γ: in kernel function = 1/number of fatures.

• coef0 in kernel function = 0.

• the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

• the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

• no normalize input data.

• the epsilon in loss function of epsilon-SVR = 0.1.

• tolerance of termination criterion = 0.001.

6.2.1.2 SMO

We used all variants of kernel types:

Model 1: Normalized Polykernel.

Model 2: Polykernel.

Model 3: Puk.

Other parameters, we used defaults:

• The complexity constant C = 1.

• Normalize training data.

• The tolerance parameter = 1.0e-3.

• The epsilon for round-off error = 1.0e-12.

• The number of folds for the internal cross-validation (use training data).
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• The random number seed = 1.

• For kernel function Polykernel

– The Exponent to use = 1.0.

– Not using lower-order terms.

• Normalize training data.

• The tolerance parameter =1.0e-3.

6.2.1.3 AdaBoostM1

We used variants of base classifiers: Decision Stump and J48.

Model 1: Base classifier: Decision Stump.

Model 2: Base classifier: J48.

Other parameters, we used defaults:

• Use resampling for boosting.

• Random number seed = 1.

• Number of iterations = 10.

6.2.1.4 J48

We used variants of tree pruning options:

Model 1: Pruned tree.

Model 2: Unpruned tree.

Other parameters, we used defaults:
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• Do collapse tree.

• Confidence threshold for pruning = 0.25.

• The minimum number of instances per leaf = 2.

• Don’t reduced error pruning.

• The number of folds for reduced error pruning = 3. One fold is used as

pruning set.

• Do not use binary splits only.

• Perform subtree raising.

• Clean up after the tree has been built.

• Don’t use Laplace smoothing for predicted probabilities.

• Use MDL correction for info gain on numeric attributes.

• The number of seed for random data shuffling: 1.

6.2.1.5 Naive Bayes

We used all default values:

• Estimator algorithm: SimpleEstimator.

• Do not use ADTree data structure.

• Search algorithm: K2.
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6.2.1.6 Bayesian Network

We used variants of numeric attributes handling:

Model 1: Use kernel density estimator for numeric attributes.

Model 2: Use normal distribution for numeric attributes.

Other parameter, we used default:

• Use supervised discretization to process numeric attributes.

6.2.1.7 Random Forest

We used all default values:

• Number of trees to build=10.

• Number of features to consider=0.

• Seed for random number generator=1.

• The maximum depth of the trees is unlimited.

6.2.1.8 IBk

We used variants of the number of nearest neighbours:

Model 1: The number of nearest neighbours = 1.

Model 2: The number of nearest neighbours = 2.

Other parameters, we used defaults:

• No distance weighting.

• Use linear search for nearest neighbour search algorithm
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6.2.1.9 Multilayer Perceptron

We used variants of the number of hidden layer:

Model 1: The number of hidden layer = 1.

Model 2: The number of hidden layer = a. Where a = the number of attribs

+ the number of classes.

Other parameters, we used defaults:

• Learning Rate for the backpropagation algorithm = 0.3.

• Momentum Rate for the backpropagation algorithm = 0.2.

• Number of epochs to train through = 500.

• Percentage size of validation set to use to terminate training (if this is non

zero it can pre-empt num of epochs = 0.

• The value used to seed the random number generator = 0.

• The consequetive number of errors allowed for validation testing before the

netwrok terminates = 0.

• Normalizing a numeric class.

• Normalizing the attributes.

• Learning rate decay will not occur.

6.2.1.10 PART

We used all default values:

• Minimum number of objects per leaf = 2.
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• Confidence threshold for pruning = 0.25.

• Seed for random data shuffling = 1.

• Number of folds for reduced error pruning = 3.

• Do not use binary splits only.

• Use MDL correction for info gain on numeric attributes.

6.2.1.11 Rocchio

We used cosine similarity to compare two vectors (documents or centroids).

6.2.1.12 Rough Set

We used variants of threshold setting:

Model 1: min(min(weight(D+)), max(weight(D−))).

Model 2: average(weight(D+)).

Model 3: min(weight(D+)).

Model 4: max(weight(D−)).

Model 5: use proportional threshold setting, that is U+

U
= D+

D
.

6.3 Feature Weighting and Selection

The feature weighting scheme and selection are important aspects in text classi-

fication [89]. Some popular term weighting methods in text mining are derived

from information retrieval, such as term frequency (TF) and inverse document

frequency (IDF) [135].
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In this study, two term weighting schemes were used for the baseline model,

namely, traditional term weighting scheme, TF×IDF, and a current text categori-

sation term weighting relevance frequency (RF) scheme [88]. TF×RF is an ef-

fective and efficient term weighting scheme for text classification. It shows a

consistently better performance than other term weighting methods [88].

The experiment involved 10, 50, 100, 150, 200 and 250 selected terms, and

all terms. In the experiment, the best performance was chosen for each term

weighting schema (with priority to the F1 macro-average for each model).

6.4 Measures

Text classification effectiveness is measured by two different means, namely, Fβ

and accuracy (Acc), with Fβ being the more important metric [144]. Fβ is a

harmonic mean of recall (R) and precision (P ):

Fβ =
(β2 + 1)× (P ×R)

β2 × (P +R)

The parameter β = 1 was used in the experiment, which means that the recall and

precision were weighed equally:

F1 =
2× P ×R
P +R

With the use of the harmonic mean, F places an emphasize on the importance of

small values. For example, if the recall is one and the precision near zero, then

the arithmetic mean is 0.5, while the harmonic means will be close to zero [35].

To obtain the final result for several topics, two different ways were adopted,

namely, micro-averaging (F µ
1 ) and macro-averaging (FM

1 ) [116, 144] (Table 6.5

and Table 6.6).

83



Table 6.5: The Contingency table for topic Ci.

Category Expert judgment
ci Yes No

Classifier Yes TPi FPi
judgment No FNi TNi

Table 6.6: The global contingency table.

Category Expert judgment
C = {ci, . . . ,c|C|} Yes No
Classifier Yes TP =

∑|C|
i=1 TPi FP =

∑|C|
i=1 FPi

judgment No FN =
∑|C|

i=1 FNi TN =
∑|C|

i=1 TNi

The differences between the two methods can be significant. Macro-averaging

gives equal weight to each class, whereas micro-averaging gives equal weight to

each per-document classification decision [105]:

F µ
1 =

2× (P µ ×Rµ)

(P µ +Rµ)

where

P µ =
TP

TP + FP
=

∑|C|
i=1 TPi∑|C|

i=1(TPi + FPi)

Rµ =
TP

TP + FN
=

∑|C|
i=1 TPi∑|C|

i=1(TPi + FNi)

TP (true positive) refers to the number of documents which the system correctly

identifies as positives; TN (true negative) refers to the number of documents

which the system correctly identifies as negatives; FP (false positive) refers to

the number of documents which the system falsely identifies as positives; FN

(false negative) refers to the number of positive documents which the system fails

to identify; and |C| is the number of topics:

FM
1 =

∑|C|
i=1 F1,i

|C|
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Table 6.7: Example 1 Macro- and micro-averaging.

MODEL 1
Topic TP FP TN FN Recall Precision F1

1 200 10 50 120 0.625 0.952 0.755
2 3 1 5 1 0.750 0.750 0.750

0.688 0.851 FM1 = 0.752
Sum 203 11 55 121 0.627 0.949 Fµ1 = 0.755

MODEL 2
Topic TP FP TN FN Recall Precision F1

1 300 10 50 20 0.938 0.963 0.952
2 1 1 5 3 0.250 0.500 0.333

0.594 0.734 FM1 = 0.643
Sum 301 11 55 23 0.929 0.965 Fµ1 = 0.947

where F1,i is the F1 for topic i.

The accuracy is calculated by the following equations:

Acc =
TP + TN

TP + FP + TN + FN

Accµ =

∑|C|
i=1(TPi + TNi)∑|C|

i=1(TP + FP + TN + FN)

AccM =

∑|C|
i=1Acci
|C|

Table 6.7 and Table 6.8 present examples of the differences in the macro-

average and micro-average of F1. These examples use a two-topic dataset. In

the first example (Table 6.7), the macro-average of model one outperforms model

two; however, the micro-average of model two is better than the micro-average of

model one. The second example (Table 6.8) shows two cases. In this example,

a difference in the decision only exist in topic one. The result in the first case is

FM
1 < F µ

1 , while the result in the second case is FM
1 > F µ

1 . The results of case

one and case two are significantly different.
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Table 6.8: Example 2 Macro- and micro-averaging.

CASE 1
Topic TP FP TN FN Recall Precision F1

1 200 10 50 20 0.909 0.952 0.930
2 1 1 5 2 0.333 0.500 0.400

0.621 0.726 FM1 = 0.665
Sum 201 11 55 22 0.901 0.948 Fµ1 = 0.924

CASE 2
Topic TP FP TN FN Recall Precision F1

1 20 10 50 200 0.091 0.667 0.160
2 1 1 5 2 0.333 0.500 0.400

0.212 0.538 FM1 = 0.280
Sum 21 11 55 202 0.094 0.656 Fµ1 = 0.165

.

The statistical method, the paired two-tailed Student t-test, is also used to anal-

yse the experimental results [16]. In statistical hypothesis testing, a probability

value (p-value) is used to decide whether there is enough evidence to reject the

null hypothesis and whether the research hypothesis is supported by the data. If

the associated p-value is low (< 0.05), it shows that the difference in means across

the paired observations is significant.

6.5 Evaluation of Decision Boundary Setting

6.5.1 Evaluation Procedures

The proposed model can be applied to the task of text classification to evaluate

its effectiveness. The classification process, including evaluation, is illustrated

in Figure 6.3. Cleaning (removing single letters that are not meaningful terms),

stop-word removal, and stemming are done in the pre-processing stage. In the

document representation process, documents are converted to document weights
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Table 6.9: Balance vs. imbalance testing set.

Testing set Predict all P Predict all N
Rec Prec F1 AccM Accµ Rec Prec F1 AccM Accµ

Original imbalance 100% 0% 0% 19% 18% 0% 0% 0% 81% 82%
Balance 100% 0% 0% 50% 50% 0% 0% 0% 50% 50%

(scores). This document weight is the representation of a document. The output

of the training process is a decision boundary (τ ) as its classification model. In

the testing process the weight of the testing documents and the decision boundary

were compared.

To measure accuracy, under-sampling was used on |U | to make |U+| = |U−|.
Therefore, if |U+| < |U−|, then U− was randomly selected, and if |U+| > |U−|,
then U+ was randomly selected. Five sets of random under-sampling were used

for each topic. For accuracy, the use of the original testing dataset with an imbal-

anced number of positive and negative documents, produced a misleading mea-

surement. An example in the TREC-11 RCV1 dataset is shown in Table 6.9.

Table 6.9 shows if all the testing documents as negative, the recall obtained

is 0%, precision is 0%, F1 is 0%, AccM is 81%, and Accµ is 82%. If all the

testing documents are predicted as positive, the recall obtained is 100%, precision

is 0%, F1 is 0%, AccM is 19%, and Accµ 18%. Therefore, the average of five

random balanced testing was used, where the number of positive documents and

the number of negative documents was the same. In the balanced testing set, if all

the testing document are predicted as negative, the recall obtained is 0%, precision

is 0%, F1 is 0%, AccM ≈ 50%, and Accµ ≈ 50%. If all the testing documents

are predicted as positive, then recall obtained is 100%, precision is 0%, F1 is 0%,

AccM ≈ 50%, and Accµ ≈ 50%.

The evaluation processes were conducted with TF×IDF and TF×RF term

weighting schemes. For each term weighting scheme, the evaluation processes

were performed seven times with a different number of selected terms (10, 50,
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100, 150, 200, 250, and all terms). For TF×IDF term weighting the terms were

selected based on DF; while for TF×RF term weighting the terms were selected

based on TF×RF.

6.5.2 Results

This section presents the experiment results from comparing the proposed model

RFDτ with the baseline models. Figures 6.4 to 6.11 7 and Tables 6.10 and 6.11

present the results of the experiments using the TF×IDF and TF×RF term weight-

ing. The performance of the RFDτ model was based on an updated of decision

7Proposed model RFDτ use 150 terms with TF×TDF term weighting scheme, however to
make a clearer comparison with baseline models RFDτ is also presented in these Figures.
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Figure 6.4: Experiment result with TF×IDF scheme for baselines: F1 macro av-
erage.

boundary (see Table 6.19). The best results for each baseline model are presented

in Table 6.12 and Table 6.13. The values in bold represent the best results in

a measurement, while the underlined values represent the results of the baseline

models which were better than the proposed model. As shown in the results, the

proposed model outperformed almost all the models in all measurements, except

the micro-average F1 for five models with TF×IDF and two models with TF×RF

(indicated by underlining).

Table 6.14 shows that our proposed model outperforms Rough Set model in

several threshold settings. Rough Set use 150 terms using TF×IDF term weight-

ing scheme.
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cro average.
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Figure 6.8: Experiment result with TF×RF scheme for baselines: F1 macro aver-
age.
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Figure 6.9: Experiment result with TF×RF scheme for baselines: F1 micro aver-
age.
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Figure 6.10: Experiment result with TF×RF scheme for baselines: Accuracy
macro average.

92



45% 

50% 

55% 

60% 

65% 

70% 

75% 

10 50 100 150 200 250 All 

A
cc

 m
ic

ro
 a

ve
ra

ge
 

#term 

SVM linear 

SVM poly 

SVM radial 

SVM sigmoid 

SMO norm-poly 

SMO poly 

SMO Puk 

ABM1 base d. stump 

ABM1 base J48 

J48 pruned 

J48 unpruned 

BayesNet 

NB normal distr 

NB kernel density 

Random Forest 

IBk k=1 

IBk k=2 

MLP hidden=1 

MLP hidden=a 

PART 

Rocchio 

RFDτ 

Figure 6.11: Experiment result with TF×RF scheme for baselines: Accuracy mi-
cro average.

Table 6.10: Experiment results with TF×IDF term weighting scheme for baseline
models.

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDτ 0.428 0.688 0.537 0.711
SVM linear 10 0.123 0.532 0.355 0.552

50 0.311 0.603 0.547 0.650
100 0.337 0.611 0.549 0.656
150 0.329 0.612 0.552 0.663
200 0.296 0.590 0.498 0.625
250 0.280 0.582 0.504 0.626
All 0.172 0.546 0.445 0.584

SVM poly 10 0.043 0.500 0.199 0.500
50 0.041 0.500 0.197 0.500

100 0.039 0.500 0.196 0.500
150 0.039 0.500 0.196 0.500
200 0.039 0.500 0.196 0.500
250 0.039 0.500 0.196 0.500
All 0.049 0.500 0.218 0.500

Continued on next page
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Table 6.10 – continued from previous page

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

SVM radial 10 0.075 0.511 0.254 0.516
50 0.095 0.517 0.332 0.528

100 0.081 0.512 0.332 0.521
150 0.075 0.510 0.323 0.517
200 0.075 0.511 0.322 0.516
250 0.077 0.513 0.328 0.518
All 0.064 0.504 0.325 0.507

SVM sigmoid 10 0.054 0.503 0.215 0.504
50 0.054 0.504 0.211 0.504

100 0.054 0.508 0.215 0.514
150 0.069 0.509 0.320 0.515
200 0.066 0.504 0.324 0.509
250 0.065 0.503 0.323 0.508
All 0.067 0.505 0.330 0.508

SMO norm-poly 10 0.153 0.552 0.413 0.586
50 0.199 0.570 0.500 0.623

100 0.172 0.560 0.472 0.608
150 0.163 0.556 0.455 0.601
200 0.150 0.550 0.417 0.587
250 0.148 0.550 0.418 0.587
All 0.095 0.529 0.329 0.558

SMO poly 10 0.190 0.560 0.451 0.592
50 0.347 0.616 0.548 0.661

100 0.345 0.616 0.557 0.661
150 0.320 0.607 0.562 0.664
200 0.297 0.597 0.531 0.645
250 0.289 0.592 0.536 0.643
All 0.191 0.558 0.481 0.608

SMO Puk 10 0.139 0.544 0.368 0.574
50 0.066 0.516 0.222 0.531

100 0.054 0.509 0.219 0.516
150 0.050 0.503 0.219 0.505
200 0.050 0.502 0.217 0.503
250 0.050 0.502 0.219 0.502
All 0.049 0.500 0.218 0.500

ABM1 base d. stump 10 0.260 0.581 0.442 0.606
Continued on next page
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Table 6.10 – continued from previous page

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

50 0.355 0.616 0.563 0.656
100 0.350 0.623 0.568 0.658
150 0.340 0.619 0.539 0.672
200 0.354 0.623 0.580 0.676
250 0.348 0.617 0.568 0.669
All 0.341 0.620 0.577 0.673

ABM1 base J48 10 0.306 0.599 0.450 0.626
50 0.367 0.625 0.535 0.659

100 0.377 0.628 0.536 0.656
150 0.372 0.630 0.574 0.677
200 0.355 0.622 0.537 0.657
250 0.355 0.619 0.530 0.654
All 0.356 0.623 0.523 0.651

J48 pruned 10 0.221 0.581 0.407 0.606
50 0.343 0.617 0.512 0.637

100 0.354 0.626 0.502 0.645
150 0.337 0.619 0.534 0.665
200 0.327 0.615 0.523 0.657
250 0.324 0.615 0.520 0.657
All 0.345 0.616 0.524 0.651

J48 unpruned 10 0.276 0.577 0.408 0.611
50 0.379 0.631 0.516 0.648

100 0.370 0.630 0.493 0.646
150 0.353 0.625 0.530 0.668
200 0.336 0.618 0.518 0.658
250 0.331 0.616 0.515 0.657
All 0.345 0.616 0.525 0.652

BayesNet 10 0.155 0.545 0.449 0.571
50 0.251 0.589 0.470 0.602

100 0.262 0.593 0.483 0.610
150 0.285 0.605 0.495 0.627
200 0.281 0.599 0.484 0.614
250 0.281 0.599 0.476 0.614
All 0.310 0.603 0.495 0.623

NB normal distr 10 0.303 0.590 0.418 0.607
50 0.269 0.582 0.453 0.613

Continued on next page
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Table 6.10 – continued from previous page

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

100 0.227 0.568 0.424 0.600
150 0.185 0.551 0.360 0.579
200 0.167 0.547 0.335 0.568
250 0.154 0.544 0.318 0.563
All 0.141 0.537 0.338 0.557

NB kernel density 10 0.203 0.564 0.462 0.593
50 0.172 0.550 0.445 0.585

100 0.161 0.551 0.429 0.582
150 0.144 0.547 0.368 0.578
200 0.135 0.542 0.357 0.572
250 0.137 0.544 0.347 0.570
All 0.136 0.538 0.397 0.566

Random Forest 10 0.280 0.588 0.457 0.615
50 0.276 0.582 0.514 0.620

100 0.277 0.582 0.543 0.630
150 0.235 0.569 0.517 0.622
200 0.240 0.574 0.489 0.618
250 0.233 0.566 0.473 0.604
All 0.157 0.538 0.438 0.571

IBk k=1 10 0.300 0.592 0.410 0.607
50 0.326 0.600 0.512 0.647

100 0.325 0.600 0.512 0.643
150 0.297 0.587 0.499 0.633
200 0.268 0.576 0.471 0.617
250 0.261 0.569 0.469 0.607
All 0.149 0.534 0.352 0.548

IBk k=2 10 0.338 0.618 0.446 0.638
50 0.363 0.619 0.513 0.647

100 0.363 0.614 0.529 0.652
150 0.343 0.599 0.524 0.640
200 0.310 0.586 0.491 0.622
250 0.303 0.576 0.483 0.607
All 0.204 0.545 0.435 0.565

MLP hidden=1 10 0.307 0.591 0.410 0.601
50 0.359 0.627 0.541 0.664

100 0.357 0.623 0.561 0.667
Continued on next page
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Table 6.10 – continued from previous page

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

150 0.320 0.610 0.559 0.666
200 0.297 0.598 0.534 0.648
250 0.285 0.590 0.538 0.642
All 0.063 0.504 0.336 0.510

MLP hidden=a 10 0.316 0.593 0.416 0.608
50 0.365 0.628 0.549 0.669

100 0.359 0.624 0.567 0.671
150 0.323 0.608 0.563 0.665
200 0.301 0.599 0.541 0.648
250 0.275 0.585 0.530 0.637
All NA NA NA NA

PART 10 0.287 0.586 0.433 0.618
50 0.372 0.626 0.518 0.647

100 0.376 0.635 0.518 0.655
150 0.360 0.631 0.549 0.677
200 0.340 0.621 0.537 0.665
250 0.335 0.620 0.527 0.664
All 0.343 0.621 0.522 0.651

Rocchio 10 0.270 0.565 0.312 0.569
50 0.329 0.610 0.375 0.627

100 0.334 0.615 0.379 0.637
150 0.337 0.622 0.375 0.643
200 0.344 0.626 0.377 0.648
250 0.346 0.637 0.378 0.651
All 0.362 0.654 0.403 0.675
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Table 6.11: Experiment results with TF×RF term weighting scheme for baseline
models.

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDτ 0.428 0.688 0.537 0.711
SVM linear 10 0.299 0.599 0.396 0.619

50 0.341 0.623 0.419 0.635
100 0.326 0.617 0.409 0.625
150 0.417 0.621 0.473 0.637
200 0.340 0.623 0.448 0.643
250 0.356 0.631 0.457 0.649
All 0.313 0.607 0.401 0.619

SVM poly 10 0.019 0.501 0.095 0.501
50 0.029 0.500 0.163 0.500

100 0.029 0.500 0.163 0.500
150 0.039 0.500 0.196 0.500
200 0.039 0.500 0.196 0.500
250 0.039 0.500 0.196 0.500
All 0.039 0.500 0.196 0.500

SVM radial 10 0.170 0.557 0.302 0.580
50 0.062 0.518 0.154 0.530

100 0.043 0.507 0.137 0.510
150 0.042 0.507 0.135 0.510
200 0.038 0.506 0.138 0.510
250 0.042 0.508 0.177 0.516
All 0.040 0.500 0.197 0.501

SVM sigmoid 10 0.120 0.537 0.240 0.561
50 0.037 0.505 0.119 0.506

100 0.025 0.502 0.104 0.503
150 0.020 0.501 0.096 0.501
200 0.018 0.500 0.094 0.500
250 0.016 0.500 0.092 0.500
All 0.039 0.500 0.196 0.500

SMO norm-poly 10 0.272 0.588 0.492 0.635
50 0.126 0.538 0.288 0.563

100 0.110 0.529 0.304 0.550
150 0.094 0.524 0.280 0.543
200 0.091 0.523 0.280 0.542

Continued on next page
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Table 6.11 – continued from previous page

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

250 0.075 0.517 0.279 0.534
All 0.022 0.502 0.116 0.505

SMO poly 10 0.299 0.602 0.385 0.616
50 0.322 0.611 0.416 0.619

100 0.311 0.604 0.410 0.613
150 0.334 0.617 0.461 0.633
200 0.333 0.617 0.464 0.631
250 0.334 0.615 0.470 0.631
All 0.241 0.576 0.343 0.586

SMO Puk 10 0.204 0.573 0.402 0.614
50 0.105 0.522 0.242 0.532

100 0.085 0.522 0.227 0.532
150 0.072 0.517 0.206 0.526
200 0.068 0.515 0.211 0.524
250 0.062 0.512 0.220 0.521
All 0.049 0.500 0.218 0.500

ABM1 base d. stump 10 0.240 0.576 0.366 0.586
50 0.228 0.573 0.299 0.565

100 0.241 0.581 0.348 0.573
150 0.236 0.571 0.384 0.580
200 0.268 0.586 0.401 0.597
250 0.260 0.584 0.435 0.596
All 0.279 0.598 0.443 0.604

ABM1 base J48 10 0.331 0.615 0.512 0.655
50 0.329 0.617 0.504 0.643

100 0.342 0.619 0.528 0.655
150 0.351 0.624 0.559 0.660
200 0.353 0.628 0.531 0.654
250 0.359 0.631 0.532 0.657
All 0.354 0.628 0.523 0.650

J48 pruned 10 0.313 0.603 0.488 0.648
50 0.326 0.615 0.513 0.651

100 0.338 0.617 0.514 0.653
150 0.344 0.618 0.545 0.654
200 0.337 0.612 0.538 0.643
250 0.339 0.616 0.518 0.649

Continued on next page
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Table 6.11 – continued from previous page

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

All 0.332 0.613 0.510 0.646
J48 unpruned 10 0.313 0.603 0.488 0.648

50 0.330 0.618 0.509 0.653
100 0.338 0.617 0.515 0.653
150 0.339 0.615 0.537 0.650
200 0.334 0.609 0.530 0.637
250 0.339 0.615 0.513 0.647
All 0.333 0.613 0.511 0.646

BayesNet 10 0.235 0.582 0.303 0.578
50 0.234 0.573 0.336 0.570

100 0.240 0.572 0.330 0.566
150 0.242 0.569 0.376 0.562
200 0.241 0.571 0.371 0.567
250 0.247 0.576 0.374 0.573
All 0.249 0.576 0.377 0.572

NB normal distr 10 0.321 0.619 0.370 0.623
50 0.322 0.612 0.381 0.618

100 0.312 0.599 0.396 0.602
150 0.309 0.585 0.405 0.601
200 0.308 0.593 0.419 0.608
250 0.294 0.583 0.421 0.606
All 0.293 0.697 0.374 0.703

NB kernel density 10 0.265 0.588 0.328 0.590
50 0.277 0.588 0.374 0.605

100 0.258 0.580 0.385 0.594
150 0.244 0.570 0.384 0.596
200 0.251 0.579 0.408 0.610
250 0.226 0.562 0.394 0.595
All 0.196 0.545 0.306 0.557

Random Forest 10 0.282 0.592 0.428 0.614
50 0.235 0.570 0.364 0.583

100 0.215 0.560 0.359 0.576
150 0.193 0.550 0.305 0.562
200 0.202 0.557 0.407 0.586
250 0.187 0.549 0.362 0.565
All 0.133 0.524 0.338 0.538

Continued on next page
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Table 6.11 – continued from previous page

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

IBk k=1 10 0.260 0.583 0.334 0.591
50 0.190 0.549 0.229 0.554

100 0.160 0.536 0.195 0.540
150 0.145 0.530 0.208 0.537
200 0.149 0.528 0.224 0.536
250 0.146 0.531 0.208 0.539
All 0.158 0.540 0.352 0.562

IBk k=2 10 0.272 0.593 0.364 0.601
50 0.227 0.564 0.272 0.567

100 0.207 0.551 0.276 0.557
150 0.194 0.543 0.293 0.554
200 0.196 0.539 0.302 0.549
250 0.197 0.545 0.300 0.554
All 0.213 0.556 0.426 0.578

MLP hidden=1 10 0.299 0.615 0.372 0.622
50 0.265 0.591 0.327 0.580

100 0.265 0.591 0.313 0.579
150 0.269 0.586 0.384 0.584
200 0.279 0.591 0.407 0.599
250 0.273 0.591 0.416 0.604
All 0.088 0.513 0.344 0.521

MLP hidden=a 10 0.285 0.599 0.354 0.607
50 0.275 0.592 0.347 0.585

100 0.276 0.590 0.345 0.583
150 0.272 0.585 0.389 0.584
200 0.268 0.587 0.390 0.592
250 0.273 0.590 0.413 0.601
All NA NA NA NA

PART 10 0.309 0.602 0.487 0.648
50 0.332 0.619 0.507 0.650

100 0.336 0.621 0.511 0.653
150 0.345 0.625 0.542 0.657
200 0.336 0.615 0.531 0.639
250 0.341 0.621 0.513 0.651
All 0.330 0.617 0.508 0.645

Rocchio 10 0.391 0.664 0.457 0.672
Continued on next page
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Table 6.11 – continued from previous page

Model #Term
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

50 0.341 0.610 0.393 0.598
100 0.337 0.604 0.383 0.590
150 0.341 0.603 0.387 0.597
200 0.346 0.622 0.391 0.620
250 0.354 0.634 0.400 0.635
All 0.373 0.570 0.420 0.584

Test of Statistical Significance The t-test p values in Table 6.15, indicate that

the results for the proposed RFDτ model was statistically significant, except in six

measurements for four models (indicated by underlining). It should be noted that

although some models had measurements that outperformed the proposed model

in the micro-average values (see underlined results in Table 6.12 and Table 6.13),

the performances was still significantly lower than the proposed models. This is

because the significance of the t-test p values measurements was affected more by

the macro-average values.

Comparison with Proportional Decision Boundary Setting In the propor-

tional decision boundary setting [175], it is assumed that |D+| : |D−| ≈ |U+| :

|U−|. Compared to proportional decision boundary setting, which is a popular de-

cision boundary setting model, the proposed decision boundary setting model was

equivalent (see Table 6.16). However in proportional decision boundary setting

the number of testing dataset has to be known in advance, so it is not suitable for

online testing.

Comparison with Tuned Decision Boundary Setting In tuned decision bound-

ary setting [54], the decision boundary is set for each category in order to obtain
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Table 6.12: Experiment results with TF×IDF term weight for baseline models
(best performance).

Model
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDτ 0.428 0.688 0.537 0.711
SVM linear 0.337 0.611 0.549 0.656
SVM poly 0.049 0.500 0.218 0.500
SVM radial 0.095 0.517 0.332 0.528
SVM sigmoid 0.069 0.509 0.320 0.515
SMO norm-poly 0.199 0.570 0.500 0.623
SMO poly 0.345 0.616 0.557 0.661
SMO Puk 0.139 0.544 0.368 0.574
ABM1 base d. stump 0.350 0.623 0.568 0.658
ABM1 base J48 0.377 0.628 0.536 0.656
J48 pruned 0.354 0.626 0.502 0.645
J48 unpruned 0.379 0.631 0.516 0.648
BayesNet 0.285 0.605 0.495 0.627
NB normal distr 0.303 0.590 0.418 0.607
NB kernel density 0.203 0.564 0.462 0.593
Random Forest 0.280 0.588 0.457 0.615
IBk k=1 0.326 0.600 0.512 0.647
IBk k=2 0.363 0.619 0.513 0.647
MLP hidden=1 0.359 0.627 0.541 0.664
MLP hidden=a 0.365 0.628 0.549 0.669
PART 0.376 0.635 0.518 0.655
Rocchio 0.362 0.654 0.403 0.675

103



Table 6.13: Experiment results with TF×RF term weight for baseline models (best
performance).

Model
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDτ 0.428 0.688 0.537 0.711
SVM linear 0.417 0.621 0.473 0.637
SVM poly 0.039 0.500 0.196 0.500
SVM radial 0.170 0.557 0.302 0.580
SVM sigmoid 0.120 0.537 0.240 0.561
SMO norm-poly 0.272 0.588 0.492 0.635
SMO poly 0.334 0.617 0.461 0.633
SMO Puk 0.204 0.573 0.402 0.614
ABM1 base d. stump 0.279 0.598 0.443 0.604
ABM1 base J48 0.359 0.631 0.532 0.657
J48 pruned 0.344 0.618 0.545 0.654
J48 unpruned 0.338 0.617 0.515 0.653
BayesNet 0.242 0.569 0.376 0.562
NB normal distr 0.322 0.612 0.381 0.618
NB kernel density 0.277 0.588 0.374 0.605
Random Forest 0.282 0.592 0.428 0.614
IBk k=1 0.260 0.583 0.334 0.591
IBk k=2 0.272 0.593 0.364 0.601
MLP hidden=1 0.299 0.615 0.372 0.622
MLP hidden=a 0.285 0.599 0.354 0.607
PART 0.345 0.625 0.542 0.657
Rocchio 0.391 0.664 0.457 0.672

Table 6.14: Experiment results for Rough Set.

Model
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDτ 0.428 0.688 0.537 0.711
RS min(minP , maxN ) 0.335 0.608 0.397 0.643
RS ave 0.176 0.546 0.305 0.576
RS minP 0.335 0.608 0.397 0.643
RS maxN 0.083 0.527 0.203 0.548
RS proportional 0.291 0.589 0.419 0.616
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Table 6.15: p-values for all models with TF×IDF and TF×RF term weighting
(best performance)comparing with RFDτ model in all accessing topics.

Model
TF×IDF TF×RF

F1 Acc F1 Acc

SVM linear 6.7E-05 9.5E-07 7.7E-01 1.5E-04
SVM poly 4.7E-16 1.5E-15 4.7E-16 1.5E-15
SVM radial 2.5E-14 2.1E-13 9.8E-11 5.6E-10
SVM sigmoid 1.7E-15 6.4E-15 2.2E-15 5.7E-13
SMO norm-poly 2.4E-11 8.7E-09 3.6E-06 3.3E-06
SMO poly 2.7E-04 1.9E-05 2.7E-03 6.2E-05
SMO Puk 1.2E-11 1.9E-09 2.1E-09 2.8E-07
ABM1 base d. stump 6.1E-03 9.5E-04 4.4E-04 1.2E-04
ABM1 base J48 8.2E-02 2.6E-03 4.0E-02 1.8E-02
J48 pruned 9.0E-03 2.7E-03 9.6E-03 1.5E-03
J48 unpruned 7.4E-02 6.9E-03 5.7E-03 1.1E-03
BayesNet 3.3E-05 8.0E-06 1.7E-05 3.7E-07
NB normal distr 2.3E-05 3.9E-06 5.3E-05 1.7E-05
NB kernel density 1.1E-08 8.5E-08 1.4E-06 2.7E-07
Random Forest 4.3E-06 1.8E-06 3.7E-05 1.6E-06
IBk k=1 2.4E-05 4.8E-07 2.0E-05 6.4E-07
IBk k=2 3.8E-03 3.7E-05 1.9E-04 1.3E-05
MLP hidden=1 4.6E-03 3.6E-04 6.0E-04 5.7E-04
MLP hidden=a 9.9E-03 4.9E-04 2.1E-04 6.1E-05
PART 4.8E-02 9.4E-03 1.3E-02 4.5E-03
Rocchio 9.4E-03 5.8E-02 1.8E-01 2.4E-01

Table 6.16: Experiment result for Propotional Decision Boundary Setting.

Model
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDτ 0.428 0.688 0.537 0.711
RFDprop 0.427 0.676 0.527 0.688
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Table 6.17: Experiment result for Tuned Decision Boundary Setting.

Model
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDτ 0.428 0.688 0.537 0.711
RFDtuned 0.339 0.630 0.501 0.650

Table 6.18: Improving performance using positive, negative, and general vectors
in uncertain boundary.

Model
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDτ (using 3 vectors) 0.436 0.692 0.538 0.790
RFDτ ′ 0.427 0.676 0.527 0.688

the highest training performance. In this decision boundary setting, the highest

performance for training is look for exhaustively from the lowest to the highest

training document’s weight. The results presented in Table 6.17 indicate that the

proposed decision boundary setting was more effective. Furthermore, the pro-

posed decision boundary setting was more efficient compared to the tuned deci-

sion boundary setting that had to be set for every category.

Improving Performance Using Positive, Negative, and General Vectors in Un-

certain Boundary As shown in Table 6.18, the use of specific and generic vec-

tors improved the initial decision boundary RFDτ ′ performance. The explanation

of RFDτ ′ in Section 4.3.1.

6.5.3 Discussion

Updating Initial Decision Boundary After the boundary region, and the ini-

tial decision boundary were set, the decision boundary was adjusted. Table 6.19

shows the alternative versions of decision boundary update, where τ ′ is the ini-
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Table 6.19: Update initial decision boundary.

Variant Description

RFDτ ′ τ ′ = min(τN , τP )
RFDτv1 if τN < τP then τ = τ ′ − 0.1(|τP − τN |)

if τN > τP then τ = τ ′ + 0.1(|τP − τN |)
RFDτv2 τ = τ ′ + 0.1(|τP − τN |)
RFDτv3 τ = τ ′ − 0.1(|τP − τN |)
RFDτv4 if τN < τP then τ = τ ′ − 0.1(|τP − τN |)

if τN > minP then τ = τ ′ + 0.2(|τP − τN |)
RFDτv5 if τN < τP then τ = τ ′

if τN > τP then τ = τ ′ + 0.1(|τP − τN |)

Table 6.20: RFDτ update initial decision boundary.

Variant
Macroaverage Microaverage
FM1 AccM Fµ1 Accµ

RFDτ ′ 0.426 0.682 0.527 0.701
RFDτv1 0.428 0.688 0.537 0.711
RFDτv2 0.427 0.680 0.532 0.702
RFDτv3 0.429 0.686 0.521 0.701
RFDτv4 0.425 0.683 0.538 0.707
RFDτv5 0.428 0. 683 0.535 0.707

tial decision boundary. The best performance was reached by RFDτv1 (see Table

6.20).

Decision Boundary for Optimal Classification Performance In section 4.2, it

is stated that classification effectiveness will be better around the middle of the

document weight distribution where the boundary region most probably located.

This paragraph shows an analysis of that statement.

Let τmin < τlow′ < τhigh′ < τmax, where τmin = mind∈U {score(d)} τmax =

maxd∈U {score(d)}. Then high performance (in term of F1 and Accuracy) of

classification models have maximum performance with decision boundary τlow′ <

τ < τhigh′ . Where τlow′ > mind∈D {score(d)}, and τhigh′ < maxd∈D {score(d)}
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Assume

Let di ∈ {d|U+}, and dj ∈ {d|U−}, then:

• modelp is a perfect scoring model ⇐⇒ prob(score(di) ≥ score(dj)) = 1.

This model represents ideal performance (in term of F1 and Accuracy) of

classification model.

• modelr is a random scoring model ⇐⇒ prob(score(di) ≥ score(dj)) ≈
0.5.

• modelg is a good scoring model ⇐⇒ prob(score(di) ≥ score(dj)) �
0.5. This model represents high performance (in term of F1 and Accuracy)

of classification model.

Let τ is decision boundary for classification. Let τideal is a decision boundary

for a perfect model where all document are correctly predicted; so performance

will maximum at τideal.

Let TPτ , FPτ , TNτ , FNτ , Rτ = TP/|U+|, Pτ = TP/(TP + FP ), F1τ =

2×(R×P )
R+P

, Accτ = TP+TN
U

be true positive, false positive, true negative, false neg-

ative, recall, recall, precision, F1, and accuracy with decision boundary τ 8.

Let |U+| ≈ |U−|9. With τ = τmin we found TPτmin = |U+|, FPτmin = |U−|,
TNτmin = 0, FNτmin = 0. Rτmin = 1, Pτmin = U+/(U+ + U−) ≈ 0.5, F1τmin

≈
0.67, Accτmin ≈ 0.5.

With τ = τmax we found TPτmax = 0, FPτmax = 0, TNτmax = |U−|, FNτmax =

|U+|. Rτmax = 0, Pτmax = 0) ≈ 0.5, F1τmin
= 0, Accτmax ≈ 0.5.

If we move τ from τmin to τmax, we can find that,

• For modelp:

8These values are described in more detail in Chapter 6
9To ensure the accuracy measurement does not mislead, a more detailed explanation is pro-

vided in Chapter 6
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– TP steady at |U+| from τmin until at around τideal and then decrease

sharply to 0 at τmax.

– FP decrease sharply from |U−| at τmin to 0 at around τideal and then

steady until τmax.

– TN increase sharply from 0 at τmin to |U−| at around τideal and then

steady until at τmax.

– FN steady 0 from τmin until at around τideal and then increase sharply

to U+ at τmax.

– R steady 1 from τmin until at around τideal and then decrease sharply

to 0 at τmax.

– P increase from ~0.5 at τmin to 1 at around τideal and then decrease

smoothly except near the end to 0 at τmax.

– F1 increase from 0.67 at τmin to 1 at around τideal and decrease to 0 at

τmax.

– Acc increase from ~0.5 at τmin to 1 at around τideal and then decrease

to 0.5 at τmax.

• For modelr:

– TP decrease from |U+| at τmin to ~ |U
+|
2

at around τideal and then con-

tinue decrease to 0 at τmax.

– FP decrease from |U−| at τmin to ~ |U
−|
2

at around τideal and then con-

tinue decrease to 0 at τmax.

– TN increase from 0 at τmin to ~ |U
−|
2

at around τideal and then continue

increase to U− at τmax.

– FN increase from 0 at τmin to ~ |U
+|
2

at around τideal and then continue

increase to U+ at τmax.
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– R decrease from 1 at τmin to ~0.5 at around τideal and then continue

decrease to 0 at τmax.

– P steady ~0.5 from τmin until at around τideal and then continue steady

at ~0.5 until τmax.

– F1 decrease from 0.67 at τmin to ~0.5 at around τideal and then continue

decrease to 0 at τmax.

– Acc steady ~0.5 from τmin until at around τideal and then continue

steady at ~0.5 until τmax.

• For modelg:

– TP decrease from |U+| at τmin to |U+| ≥ TPτideal ≥ ~ |U
+|
2

at around

τideal and then continue decrease to 0 at τmax.

– FP decrease from |U−| at τmin to 0 ≤ FPτideal ≤ ~ |U
−|
2

at around

τideal and then continue decrease to 0 at τmax.

– TN increase from 0 at τmin to ~ |U
−|
2
≤ TNτideal ≤ |U−| at around

τideal and then continue increase to U− at τmax.

– FN increase from 0 at τmin to 0 ≤ FNτideal ≤ ~ |U
+|
2

at around τideal

and then continue increase to U+ at τmax.

– R decrease from 1 at τmin to ~0.5 ≤ Rτideal ≤ 1 at around τideal and

then continue decrease to 0 at τmax.

– P increase from ~0.5 at τmin to ~0.5 ≤ Pτideal ≤ 1 at around τideal and

then decrease to 0 at τmax.

– F1 increase from 0.67 at τmin to ~0.5 ≤ F1τideal
≤ 1 at around τideal

and then continue decrease to 0 at τmax.

– Acc increase from ~0.5 at τmin to ~0.5 ≤ Accτideal ≤ 1 at around τideal

and then decrease to ~0.5 at τmax.
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Figure 6.12: Macro average of RFDτ and Rocchio performance at different deci-
sion boundaries.

F1 and Acc trends for modelgshows that high performance (in term of F1

and Accuracy) of classification models have maximum performance with deci-

sion boundary τlow′ < τ < τhigh′ .

Figure 6.12 shows the experimentally global optimum for macro-average RFD

and Rocchio model.

Table 6.21 shows the location of the maximum F1 with TF×IDF term weight-

ing for all topics. It can be seen that the maximum F1 was inside the decision

boundary region in 25 topics, while the maximum F1 was near the decision bound-

ary region in 9 topics.

Figure 6.13 shows the results topic 1 and topic 15 using the RFDτ . In topic

1, the maximum performance was outside the decision boundary region; while in

topic 15 the maximum performance was inside the decision boundary region. The

figures for all the topics using the RFD model are presented in Appendix C.

In the Rocchio model, the decision boundary is zero value, which is repre-

sented with the diamond symbol; for example, see Figure 6.14. In this figure, it

can seen that F1 in topic 1 did not reach maximum, while in topic 40 F1 was the

maximum for that topic. The figures for all the topics using the Rocchio model

are presented in Appendix D.
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Table 6.21: Maximum of F1 RFDτ and Region Boundary Region.

Topic min max max F1 point of min point of max point of max F1 maximum F1

1 1.044 1.741 0.834 27 37 22
2 0.859 5.578 0.820 5 44 11 Inside
3 1.080 1.140 0.737 22 23 21 Near
4 2.510 5.568 0.697 16 42 33 Inside
5 1.702 4.013 0.656 21 36 22 Inside
6 3.600 5.912 0.252 21 36 17
7 1.214 2.368 0.400 28 34 33 Inside
8 4.806 7.600 0.533 28 44 25 Near
9 1.017 5.972 0.526 4 44 7 Inside

10 2.601 2.859 0.508 25 27 29 Near
11 3.011 11.414 0.357 20 50 18 Near
12 2.926 3.461 0.513 30 35 32 Inside
13 3.008 3.510 0.444 23 28 29 Near
14 1.053 1.942 0.437 16 30 31 Near
15 1.084 1.535 0.416 16 21 19 Inside
16 1.283 1.730 0.740 28 35 21
17 2.472 3.669 0.667 14 28 18 Inside
18 2.611 4.087 0.208 30 47 20
19 6.227 6.734 0.557 44 50 36
20 1.233 1.541 0.701 31 40 32 Inside
21 3.884 4.305 0.698 24 28 26 Inside
22 1.928 2.052 0.780 22 23 25 Near
23 4.196 4.286 0.480 38 38 39
24 2.466 2.918 0.259 30 36 22
25 3.256 5.320 0.540 23 41 22 Near
26 3.081 3.823 0.912 29 41 22
27 1.670 2.385 0.481 31 39 31 Inside
28 2.473 3.442 0.404 21 29 27 Inside
29 3.500 5.862 0.448 25 42 28 Inside
30 4.249 8.563 0.429 18 43 24 Inside
31 1.955 4.912 0.727 13 35 20 Inside
32 1.881 3.577 0.171 21 43 34 Inside
33 2.505 3.348 0.538 29 40 30 Inside
34 0.418 0.998 0.321 21 31 6
35 3.075 3.765 0.890 16 28 17 Inside
36 3.646 4.248 0.367 32 38 26
37 2.142 4.308 0.560 16 32 28 Inside
38 4.161 4.534 0.364 27 32 21
39 4.599 7.369 0.647 29 47 37 Inside
40 0.331 0.652 0.487 33 39 34 Inside
41 2.020 3.742 0.598 21 39 22 Inside
42 0.651 1.459 0.368 12 33 19 Inside
43 5.628 5.633 0.184 33 33 21
44 2.384 2.477 0.512 30 31 18
45 1.168 2.525 0.157 19 39 28 Inside
46 2.558 8.320 0.633 14 47 3
47 1.503 2.004 0.460 30 37 34 Inside
48 1.348 1.620 0.896 26 29 23 Near
49 0.884 1.079 0.247 15 17 9
50 1.372 1.752 0.377 41 46 30
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Figure 6.13: RFDτ Performance at different Decision Boundaries.
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Figure 6.14: Rocchio Performance at Different Decision Boundaries.
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Table 6.22: Maximal performance of RFDτ and Rocchio models.

Model FM1 AccM

RFDτ (max performance) 0.519 0.758
RFDτ 0.428 0.688
Rocchio (max performance) 0.463 0.722
Rocchio 0.362 0.654

Table 6.23: The best baseline models.

No Model No of term

1 SVM linear 100 term
2 SMO poly 100 terms
3 ABM1 base J48 100 terms
4 J48 unprunned 50 terms
5 NB normal distr 10 terms
6 Random Forest 10 terms
7 IBk k=2 50 terms
8 MLP hidden = a 50 terms
9 PART 100 terms

10 Rocchio all terms

The results in Table 6.22 shows that the maximum performance for the RFDτ

and Rocchio models was much higher than the current setting of the RFDτ and

Rocchio. The maximum performance was macro-average of the best perfor-

mances in all topics. The results in Table 6.22 indicates that the performance

can still be increased.

In summary, it shows the potential of the proposed decision boundary setting

model in choosing the optimal performance.

RFDτ Performance in Classification Difficulty The classification difficulty of

a topic can be estimated from the performance of comprehensive types of clas-

sifiers. From the baseline models (see Table 6.4) models with the best macro-

average performance for each type were selected (see Table 6.23).
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Figure 6.15: RFDτ performance over topic difficulty.

The average and quartile three (Q3) performance for the models in Table 6.23

was selected to indicate relative difficulty of the topics. The TF×IDF term weight-

ing scheme was used. The result, as illustrated in Figure 6.15 shows that the RFDτ

model had better performance than the baseline models especially in relation to

the classification of difficult topics. The trendlines in this figure and the following

figures were generated by the polynomial order two of the trend/regression type.

Figure 6.16 shows the results in more detail for F1. In 28 topics, RFDτ had better

F1 performance than the Q3 of baseline models.

RFDτ vs. Baseline Models Performance in Training Set Imbalance Rate

Figure 6.17 presents the results of the comparison of the performance of the RFDτ

and baseline models in training dataset imbalance rate. Figure 6.18 shows more

detail for Q3. As the figures show, the RFDτ outperforms baseline models espe-

cially on a highly imbalanced of training dataset.
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Topic RFDτ SVM SMO ABM1 J48 NB RForest IBk MLP PART Rocchio Q3
43 0.056 0.000 0.000 0.064 0.070 0.151 0.071 0.000 0.000 0.083 0.077 0.075
11 0.357 0.000 0.000 0.095 0.095 0.000 0.000 0.000 0.000 0.095 0.130 0.095
7 0.188 0.133 0.093 0.000 0.000 0.043 0.000 0.212 0.077 0.045 0.137 0.123

30 0.333 0.100 0.261 0.080 0.044 0.143 0.104 0.093 0.162 0.044 0.139 0.142
10 0.339 0.000 0.000 0.205 0.115 0.054 0.000 0.165 0.042 0.043 0.366 0.153
6 0.214 0.108 0.056 0.053 0.162 0.243 0.150 0.161 0.133 0.093 0.260 0.162

32 0.119 0.067 0.118 0.000 0.138 0.168 0.074 0.190 0.113 0.262 0.167 0.168
18 0.000 0.000 0.000 0.727 0.476 0.000 0.063 0.062 0.190 0.100 0.115 0.172
23 0.529 0.167 0.286 0.205 0.100 0.111 0.095 0.178 0.160 0.195 0.153 0.191
49 0.065 0.000 0.028 0.133 0.070 0.198 0.176 0.180 0.048 0.203 0.210 0.193
45 0.135 0.000 0.061 0.140 0.316 0.050 0.108 0.168 0.215 0.150 0.348 0.204
50 0.063 0.174 0.194 0.212 0.086 0.222 0.116 0.333 0.135 0.145 0.375 0.220
15 0.368 0.030 0.067 0.000 0.225 0.210 0.031 0.202 0.135 0.225 0.324 0.221
17 0.609 0.211 0.244 0.042 0.226 0.301 0.098 0.294 0.197 0.226 0.195 0.240
24 0.164 0.197 0.222 0.222 0.253 0.214 0.289 0.231 0.192 0.308 0.142 0.248
42 0.253 0.000 0.077 0.000 0.514 0.067 0.167 0.290 0.258 0.000 0.226 0.250
36 0.268 0.141 0.101 0.184 0.397 0.325 0.269 0.183 0.212 0.274 0.276 0.276
8 0.571 0.000 0.000 0.303 0.303 0.200 0.000 0.186 0.069 0.303 0.116 0.277

34 0.300 0.311 0.193 0.322 0.224 0.303 0.159 0.223 0.370 0.256 0.364 0.319
29 0.426 0.304 0.385 0.288 0.224 0.330 0.214 0.328 0.310 0.258 0.290 0.324
13 0.373 0.325 0.286 0.252 0.341 0.226 0.135 0.309 0.256 0.327 0.357 0.326
40 0.497 0.262 0.315 0.136 0.344 0.216 0.105 0.294 0.335 0.219 0.402 0.330
19 0.000 0.113 0.300 0.169 0.098 0.214 0.316 0.352 0.338 0.098 0.386 0.333
38 0.290 0.319 0.369 0.250 0.214 0.062 0.077 0.324 0.368 0.329 0.335 0.333
28 0.397 0.204 0.204 0.341 0.308 0.313 0.172 0.364 0.289 0.405 0.262 0.334
39 0.350 0.435 0.286 0.296 0.176 0.519 0.452 0.333 0.105 0.253 0.129 0.409
14 0.364 0.380 0.427 0.258 0.194 0.376 0.237 0.444 0.485 0.208 0.359 0.415
27 0.495 0.354 0.384 0.465 0.281 0.286 0.148 0.229 0.341 0.465 0.437 0.424
25 0.527 0.416 0.354 0.347 0.470 0.422 0.440 0.375 0.296 0.419 0.454 0.436
47 0.452 0.526 0.515 0.393 0.250 0.154 0.042 0.418 0.257 0.444 0.287 0.438
37 0.247 0.333 0.000 0.462 0.462 0.000 0.125 0.182 0.400 0.462 0.105 0.446
12 0.379 0.333 0.462 0.606 0.483 0.179 0.189 0.242 0.364 0.596 0.100 0.477
44 0.395 0.359 0.385 0.500 0.694 0.212 0.239 0.447 0.425 0.671 0.454 0.488
5 0.661 0.416 0.352 0.479 0.500 0.578 0.516 0.257 0.336 0.600 0.469 0.512

33 0.500 0.558 0.488 0.513 0.513 0.383 0.408 0.358 0.583 0.513 0.256 0.513
41 0.595 0.545 0.638 0.457 0.436 0.456 0.512 0.546 0.624 0.384 0.441 0.546
21 0.685 0.535 0.497 0.738 0.546 0.262 0.183 0.446 0.585 0.550 0.333 0.549
31 0.674 0.550 0.528 0.500 0.581 0.123 0.051 0.464 0.618 0.071 0.602 0.574
3 0.600 0.333 0.346 0.577 0.707 0.250 0.583 0.519 0.521 0.719 0.312 0.582
9 0.523 0.576 0.545 0.583 0.416 0.639 0.696 0.494 0.581 0.508 0.530 0.583

22 0.774 0.635 0.608 0.693 0.306 0.168 0.318 0.418 0.441 0.694 0.286 0.628
20 0.685 0.683 0.659 0.519 0.635 0.412 0.302 0.542 0.478 0.505 0.785 0.653
4 0.587 0.667 0.691 0.728 0.704 0.627 0.598 0.604 0.685 0.751 0.573 0.701

16 0.628 0.615 0.642 0.715 0.709 0.760 0.682 0.745 0.702 0.709 0.675 0.713
1 0.683 0.740 0.686 0.436 0.426 0.354 0.482 0.742 0.738 0.411 0.754 0.739
2 0.814 0.814 0.799 0.821 0.804 0.730 0.788 0.812 0.787 0.844 0.753 0.813

26 0.885 0.799 0.805 0.713 0.745 0.799 0.866 0.821 0.799 0.730 0.828 0.817
35 0.893 0.832 0.817 0.790 0.787 0.563 0.573 0.864 0.819 0.790 0.864 0.828
48 0.892 0.615 0.821 0.892 0.830 0.867 0.826 0.859 0.918 0.830 0.865 0.867
46 0.594 0.651 0.682 0.967 0.967 0.664 0.742 0.646 0.783 0.967 0.563 0.921

No of topic 
with F1 >= Q3

28 9 9 19 19 14 7 15 14 22 22

Figure 6.16: Visualisation of comparison of F1 RFDτ vs. baseline models sorted
by Q3. Shaded numbers means higher than Q3.

116



0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

5%
 

6%
 

6%
 

7%
 

8%
 

10
%

 

12
%

 

14
%

 

16
%

 

17
%

 

18
%

 

20
%

 

23
%

 

33
%

 

41
%

 

48
%

 

66
%

 
|D+|/|D| of topics 

F1 ave 

F1 RFDτ 

ave (trend) 

RFDτ (trend) 

(a) Compare to average F1.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

5%
 

6%
 

6%
 

7%
 

8%
 

10
%

 

12
%

 

14
%

 

16
%

 

17
%

 

18
%

 

20
%

 

23
%

 

33
%

 

41
%

 

48
%

 

66
%

 

|D+|/|D| of topics. 

F1 Q3 

F1 RFDτ 

Q3 (trend) 

RFDτ (trend) 

(b) Compare to Q3 F1.

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

5%
 

6%
 

6%
 

7%
 

8%
 

10
%

 

12
%

 

14
%

 

16
%

 

17
%

 

18
%

 

20
%

 

23
%

 

33
%

 

41
%

 

48
%

 

66
%

 

|D+|/|D| of topic. 

Acc RFDτ 

ave 

RFDτ (trend) 

ave (trend) 

(c) Compare to average accuracy.

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

5%
 

6%
 

6%
 

7%
 

8%
 

10
%

 

12
%

 

14
%

 

16
%

 

17
%

 

18
%

 

20
%

 

23
%

 

33
%

 

41
%

 

48
%

 

66
%

 

|D+|/|D| of topics. 

Acc RFDτ 

Acc Q3 

RFDτ (trend) 

Q3 (trend) 

(d) Compare to Q3 accuracy.

Figure 6.17: RFDτ v.s. baseline models performance over training set imbalance
rate.

Similar Trends in Training and Testing Document Weight The proposed

model used a training dataset, especially minimum weight of positive document

and maximum weight of negative documents. Figure 6.19 shows that the trends

in the minimum value for the positive training and testing document were similar.

Decision Boundary Setting The results showed that the performance of the ini-

tial decision boundary setting (τlow), which is used for basic calculation was better

than the other alternatives (Table 6.24 and Table 6.25).

Influence of Outlier Removal The results showed that the removal of the out-

lier in the training dataset (for a large set) for large |D+| and |D−| increased the

classification performance ( Table 6.26 and Table 6.27). On the contrary, if |D+|
and |D−| were small, outlier removal hurt the performance.
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|D+|/|D| Topic RFDτ SVM SMO ABM1 J48 NB RForest IBk MLP PART Rocchio Q3
5% 7 0.211 0.133 0.093 0.000 0.000 0.043 0.000 0.212 0.077 0.045 0.137 0.123
5% 45 0.139 0.000 0.061 0.140 0.316 0.050 0.108 0.168 0.215 0.150 0.348 0.204
5% 10 0.408 0.000 0.000 0.205 0.115 0.054 0.000 0.165 0.042 0.043 0.366 0.153
6% 8 0.417 0.000 0.000 0.303 0.303 0.200 0.000 0.186 0.069 0.303 0.116 0.277
6% 11 0.389 0.000 0.000 0.095 0.095 0.000 0.000 0.000 0.000 0.095 0.130 0.095
6% 23 0.375 0.167 0.286 0.205 0.100 0.111 0.095 0.178 0.160 0.195 0.153 0.191
6% 37 0.234 0.333 0.000 0.462 0.462 0.000 0.125 0.182 0.400 0.462 0.105 0.446
7% 15 0.409 0.030 0.067 0.000 0.225 0.210 0.031 0.202 0.135 0.225 0.324 0.221
7% 32 0.082 0.067 0.118 0.000 0.138 0.168 0.074 0.190 0.113 0.262 0.167 0.168
7% 38 0.340 0.319 0.369 0.250 0.214 0.062 0.077 0.324 0.368 0.329 0.335 0.333
8% 43 0.067 0.000 0.000 0.064 0.070 0.151 0.071 0.000 0.000 0.083 0.077 0.075
8% 28 0.388 0.204 0.204 0.341 0.308 0.313 0.172 0.364 0.289 0.405 0.262 0.334
8% 50 0.060 0.174 0.194 0.212 0.086 0.222 0.116 0.333 0.135 0.145 0.375 0.220
9% 6 0.224 0.108 0.056 0.053 0.162 0.243 0.150 0.161 0.133 0.093 0.260 0.162
9% 18 0.000 0.000 0.000 0.727 0.476 0.000 0.063 0.062 0.190 0.100 0.115 0.172

10% 47 0.448 0.526 0.515 0.393 0.250 0.154 0.042 0.418 0.257 0.444 0.287 0.438
11% 12 0.468 0.333 0.462 0.606 0.483 0.179 0.189 0.242 0.364 0.596 0.100 0.477
11% 33 0.484 0.558 0.488 0.513 0.513 0.383 0.408 0.358 0.583 0.513 0.256 0.513
12% 44 0.312 0.359 0.385 0.500 0.694 0.212 0.239 0.447 0.425 0.671 0.454 0.488
13% 30 0.319 0.100 0.261 0.080 0.044 0.143 0.104 0.093 0.162 0.044 0.139 0.142
13% 31 0.670 0.550 0.528 0.500 0.581 0.123 0.051 0.464 0.618 0.071 0.602 0.574
14% 39 0.364 0.435 0.286 0.296 0.176 0.519 0.452 0.333 0.105 0.253 0.129 0.409
14% 42 0.238 0.000 0.077 0.000 0.514 0.067 0.167 0.290 0.258 0.000 0.226 0.250
15% 19 0.000 0.113 0.300 0.169 0.098 0.214 0.316 0.352 0.338 0.098 0.386 0.333
16% 27 0.486 0.354 0.384 0.465 0.281 0.286 0.148 0.229 0.341 0.465 0.437 0.424
16% 34 0.284 0.311 0.193 0.322 0.224 0.303 0.159 0.223 0.370 0.256 0.364 0.319
17% 20 0.697 0.683 0.659 0.519 0.635 0.412 0.302 0.542 0.478 0.505 0.785 0.653
17% 21 0.650 0.535 0.497 0.738 0.546 0.262 0.183 0.446 0.585 0.550 0.333 0.549
17% 36 0.227 0.141 0.101 0.184 0.397 0.325 0.269 0.183 0.212 0.274 0.276 0.276
18% 13 0.371 0.325 0.286 0.252 0.341 0.226 0.135 0.309 0.256 0.327 0.357 0.326
18% 24 0.156 0.197 0.222 0.222 0.253 0.214 0.289 0.231 0.192 0.308 0.142 0.248
19% 40 0.433 0.262 0.315 0.136 0.344 0.216 0.105 0.294 0.335 0.219 0.402 0.330
19% 49 0.045 0.000 0.028 0.133 0.070 0.198 0.176 0.180 0.048 0.203 0.210 0.193
20% 14 0.364 0.380 0.427 0.258 0.194 0.376 0.237 0.444 0.485 0.208 0.359 0.415
21% 22 0.701 0.635 0.608 0.693 0.306 0.168 0.318 0.418 0.441 0.694 0.286 0.628
22% 3 0.686 0.333 0.346 0.577 0.707 0.250 0.583 0.519 0.521 0.719 0.312 0.582
23% 17 0.609 0.211 0.244 0.042 0.226 0.301 0.098 0.294 0.197 0.226 0.195 0.240
24% 29 0.428 0.304 0.385 0.288 0.224 0.330 0.214 0.328 0.310 0.258 0.290 0.324
30% 1 0.724 0.740 0.686 0.436 0.426 0.354 0.482 0.742 0.738 0.411 0.754 0.739
33% 25 0.525 0.416 0.354 0.347 0.470 0.422 0.440 0.375 0.296 0.419 0.454 0.436
35% 16 0.617 0.615 0.642 0.715 0.709 0.760 0.682 0.745 0.702 0.709 0.675 0.713
36% 48 0.883 0.615 0.821 0.892 0.830 0.867 0.826 0.859 0.918 0.830 0.865 0.867
41% 46 0.594 0.651 0.682 0.967 0.967 0.664 0.742 0.646 0.783 0.967 0.563 0.921
43% 41 0.580 0.545 0.638 0.457 0.436 0.456 0.512 0.546 0.624 0.384 0.441 0.546
43% 5 0.655 0.416 0.352 0.479 0.500 0.578 0.516 0.257 0.336 0.600 0.469 0.512
48% 35 0.890 0.832 0.817 0.790 0.787 0.563 0.573 0.864 0.819 0.790 0.864 0.828
50% 9 0.527 0.576 0.545 0.583 0.416 0.639 0.696 0.494 0.581 0.508 0.530 0.583
62% 4 0.585 0.667 0.691 0.728 0.704 0.627 0.598 0.604 0.685 0.751 0.573 0.701
66% 26 0.844 0.799 0.805 0.713 0.745 0.799 0.866 0.821 0.799 0.730 0.828 0.817
68% 2 0.813 0.814 0.799 0.821 0.804 0.730 0.788 0.812 0.787 0.844 0.753 0.813

 F1  ≥ Q3

Figure 6.18: Visualisation of comparison of F1 RFDτ vs. baseline models sorted
by training set imbalance rate. Shaded numbers means the same or higher than
Q3.
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(b) Min weight of pos documents.

Figure 6.19: Similar trend of training and testing document weight.

Table 6.24: Decision boundary setting.

Variant Description

τlow τ = τlow
τα if τP > τN then τ = τN

else τ = τP − α
where α is average boundary distances.

τβ use harmonic mean of document’s score from positive training
and negative training set
τ = (1 + β2) τN×τP

β2τN+τP

τPave τ =
∑
d∈D+score(d)

|D+|

Table 6.25: RFDτ with different threshold settings.

Variant
Macroaverage Microaverage
F1 Acc F1 Acc

τlow 0.426 0.682 0.527 0.701
τα 0.385 0.623 0.410 0.620
τβ=2 0.292 0.602 0.435 0.632
τβ=3 0.362 0.641 0.504 0.677
τβ=5 0.420 0.672 0.522 0.692
τP 0.362 0.636 0.490 0.634
τN 0.306 0.633 0.435 0.634
τPave 0.121 0.533 0.209 0.542
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Table 6.26: Performance of topics with outliers and suspected outliers inD+, after
the outliers have been removed.

Difference from RFDτ ′

Topic F1 Acc |D+|
102 0.025 0.047 135
104 0.041 0.080 120

106 -0.138 -0.129 4
114 0.054 -0.008 5
119 0.000 0.000 4
128 -0.001 -0.091 4
134 -0.236 -0.067 5
135 -0.067 0.006 14
146 -0.104 0.023 13

Table 6.27: Performance of topics with outliers or suspected outliers in D−, after
the outliers have been removed.

Difference from RFDτ ′

Topic F1 Acc |D−|
101 0.091 -0.093 16

103 0.039 0.074 50
108 0.266 0.167 50
111 0.051 0.033 49
148 0.002 0.003 21
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6.6 Evaluation of Classifier Combination

In this study, the classifier combination approach was used to improve the perfor-

mance of the RFDτ classifier. This section presents the evaluation of the proposed

classifier combination approach for RFDτ . The proposed classifier combination

is called RFDCC .

6.6.1 Evaluation Procedures

Figure 5.4 shows the classifier combination process. Each process of classification

was conducted as in Figure 6.3. As shown in Figure 5.4, a testing document will

be predicted as positive if it is predicted as positive in both classifiers; otherwise,

it will be predicted as negative.

6.6.2 Results

The results, as summarised in Table 6.28, showed that RFDτ -Rocchio had the

best performance among combination approaches for RFDτ . This RFDτ -Rocchio

combination increased the performance of the RFDτ (see Table 6.29). Table 6.30

presents a comparison of the RFDτ -Rocchio with the other classifier combination

models. As shown in the table, shows the RFDτ -Rocchio combination had the

best performance.
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Table 6.28: Classifier combination models of RFDτ .

Model
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDτ -Rocchio 0.441 0.697 0.569 0.717
RFDτ -SVM 0.192 0.567 0.462 0.616
RFDτ -SMO 0.325 0.616 0.542 0.668
RFDτ -ABM1 0.329 0.617 0.550 0.668
RFDτ -J48 0.317 0.628 0.516 0.613
RFDτ -NB 0.256 0.585 0.469 0.627
RFDτ -RForest 0.264 0.589 0.500 0.638
RFDτ -IBk 0.276 0.610 0.508 0.660
RFDτ -MLP 0.339 0.630 0.550 0.679
RFDτ -PART 0.342 0.620 0.527 0.662

Table 6.29: Comparison of RFDτ -Rocchio and RFDτ .

Model
Macro-average Micro-average

FM1 AccM Fµ1 Accµ

RFDCC 0.441 0.697 0.569 0.717
RFDτ 0.428 0.688 0.537 0.711
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Table 6.30: Comparison of RFDτ -Rocchio and other classifier combination mod-
els with TF×IDF term weight (best performance).

Model
Macro-average Micro-average

F1 Acc F1 Acc

RFDCC 0.441 0.697 0.569 0.717
SVM-SMO 0.189 0.563 0.458 0.607
SVM-ABoost 0.186 0.561 0.458 0.605
SVM-J48 0.174 0.555 0.423 0.596
SVM-NB 0.168 0.556 0.425 0.598
SVM-RForest 0.171 0.556 0.432 0.597
SVM-Ibk 0.157 0.564 0.433 0.612
SVM-MLP 0.190 0.564 0.461 0.608
SVM-PART 0.176 0.556 0.428 0.597
SVM-Rocchio 0.192 0.564 0.462 0.609
SMO-ABoost 0.283 0.589 0.531 0.640
SMO-J48 0.267 0.586 0.493 0.630
SMO-NB 0.238 0.577 0.453 0.615
SMO-RForest 0.234 0.572 0.484 0.618
SMO-Ibk 0.259 0.596 0.505 0.649
SMO-MLP 0.329 0.614 0.544 0.660
SMO-PART 0.275 0.587 0.492 0.630
SMO-Rocchio 0.350 0.623 0.549 0.672
ABoost-J48 0.298 0.595 0.504 0.629
ABoost-NB 0.223 0.571 0.450 0.609
ABoost-RForest 0.237 0.572 0.489 0.613
ABoost-Ibk 0.235 0.589 0.507 0.646
ABoost-MLP 0.288 0.598 0.538 0.648
ABoost-PART 0.301 0.594 0.501 0.627
ABoost-Rocchio 0.354 0.620 0.566 0.666
J48-NB 0.215 0.568 0.435 0.606
J48-RForest 0.230 0.570 0.455 0.606
J48-Ibk 0.218 0.581 0.454 0.624
J48-MLP 0.275 0.593 0.497 0.634
J48-PART 0.331 0.614 0.509 0.636
J48-Rocchio 0.342 0.623 0.519 0.654
NB-RForest 0.208 0.566 0.432 0.601
NB-Ibk 0.188 0.569 0.406 0.606
NB-MLP 0.238 0.578 0.452 0.616

Continued on next page
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Table 6.31: Recall-oriented Rocchio.

Model
Macro-average Micro-average

Rec Prec Rec Prec

Classifier 1: Rocchio 0.825 0.268 0.850 0.281
Classifier 2: RFDτ 0.589 0.385 0.686 0.441

Table 6.30 – continued from previous page

Model
Macro-average Micro-average

F1 Acc F1 Acc

NB-PART 0.231 0.573 0.450 0.613
NB-Rocchio 0.269 0.588 0.460 0.625
RForest-Ibk 0.205 0.577 0.464 0.625
RForest-MLP 0.244 0.580 0.493 0.624
RForest-PART 0.233 0.569 0.458 0.606
RForest-Rocchio 0.272 0.588 0.513 0.634
Ibk-MLP 0.263 0.610 0.516 0.664
Ibk-PART 0.236 0.595 0.467 0.639
Ibk-Rocchio 0.311 0.625 0.518 0.674
MLP-PART 0.286 0.603 0.505 0.644
MLP-Rocchio 0.362 0.641 0.559 0.689
PART-Rocchio 0.378 0.636 0.537 0.668

6.6.3 Discussion

The results of the evaluation (Figure 6.20, Table 6.31, and Table 6.32) indicated

that the Rocchio classifier is a recall-oriented.

The results in Table 6.33 (presented in more detail in Table 6.34) showed that

the strong recall oriented Rocchio classifier changed positive predictions (TP and

FP) into negative prediction (TN and FN). With a greater increase in TN than FN,

makes the final performance of the RFDτ -Rocchio increased.
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Table 6.32: Experiment results (including their recall and precision) with TF×IDF
term weight for baseline models (best performance).

Model
Macro-average Micro-average

RM PM FM1 AccM Rµ Pµ Fµ1 Accµ

SVM linear 0.301 0.440 0.337 0.611 0.478 0.643 0.549 0.656
SVM poly 0.080 0.036 0.049 0.500 0.143 0.455 0.218 0.500
SVM radial 0.099 0.112 0.095 0.517 0.226 0.630 0.332 0.528
SVM sigmoid 0.099 0.058 0.069 0.509 0.225 0.555 0.320 0.515
SMO norm-poly 0.186 0.359 0.199 0.570 0.373 0.760 0.500 0.623
SMO poly 0.309 0.456 0.345 0.616 0.488 0.650 0.557 0.661
SMO Puk 0.123 0.268 0.139 0.544 0.244 0.751 0.368 0.574
ABM1 base d. stump 0.320 0.461 0.350 0.623 0.499 0.658 0.568 0.658
ABM1 base J48 0.356 0.446 0.377 0.628 0.480 0.607 0.536 0.656
J48 pruned 0.374 0.382 0.354 0.626 0.478 0.528 0.502 0.645
J48 unpruned 0.395 0.402 0.379 0.631 0.526 0.506 0.516 0.648
BayesNet 0.269 0.378 0.285 0.605 0.392 0.673 0.495 0.627
NB normal distr 0.321 0.369 0.303 0.590 0.430 0.406 0.418 0.607
NB kernel density 0.190 0.333 0.203 0.564 0.366 0.626 0.462 0.593
Random Forest 0.255 0.373 0.280 0.588 0.389 0.554 0.457 0.615
IBk k=1 0.322 0.363 0.326 0.600 0.494 0.532 0.512 0.647
IBk k=2 0.446 0.331 0.363 0.619 0.621 0.437 0.513 0.647
MLP hidden=1 0.359 0.410 0.359 0.627 0.517 0.568 0.541 0.664
MLP hidden=a 0.368 0.397 0.365 0.628 0.540 0.557 0.549 0.669
PART 0.401 0.401 0.376 0.635 0.505 0.532 0.518 0.655
Rocchio 0.840 0.267 0.362 0.654 0.845 0.265 0.403 0.675

Table 6.33: More negative prediction in RFDτ -Rocchio than in RFDτ

Model TP FP TN FN R P F1

RFDτ -Rocchio 2169 1968 13449 1315 0.623 0.524 0.569
RFDτ 2389 3026 12391 1095 0.686 0.441 0.537

-220 -1058 1058 220
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Figure 6.20: Experiment results (including their recall and precision) in macro-
average with TF×IDF term weight for baseline models (best performance), sorted
by F1.

Table 6.34: RFDτ -Rocchio in combination of Rocchio and RFDτ .

Classifier 1: Rocchio
TP FP TN FN

TP 2169 (TP) 220 (FN)
Classifier 2: RFDτ FP 1968 (FP) 1058 (TN)

TN 5624 (TN) 6767 (TN)

FN 791 (FN) 304 (FN)
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Chapter 7

Conclusion

An important issue in text classification is the optimal identification of the bound-

ary between classes. In a classifier, after features are selected, the boundary is still

unclear with mixed positive and negative documents.

The main contribution of this research is an effective decision boundary set-

ting approach. In this thesis, an effective training-based boundary decision setting

method has been proposed in order to address that challenging issue to produce

an effective text classifier, called RFDτ . To set the decision boundary, the initially

boundary region is identified. Then, an initial decision boundary is set based on

this region. After that, the initial boundary is adjusted or tuned. Classifier ef-

fectiveness can also be increased by decision swapping on topics with uncertain

boundary based on specific terms. The present research included an intensive eval-

uation using comprehensive baseline models, several number of selected features

set, two term weighting schemes, and macro & micro average evaluation metrics

of F1 and accuracy. The experiments demonstrated that the proposed decision

boundary setting can produce a classifier that significantly outperforms existing

classifiers, including state of the art classifiers.

Another contribution of this thesis is a classifier combination to boost classifier
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effectiveness. In this thesis, Rocchio which has a very high recall and precision

weaker than RFDτ but still moderate is used to combine with RFDτ to boost clas-

sifier effectiveness.

This thesis used a binary dataset for the evaluation. As described in Chapter

1, multi-class and multi-label classifiers can be built based on binary classifiers.

A potential work for future research is how to extend the proposed classifiers for

multi-class and multi-label data, including for a big data. The proposed classi-

fiers are evaluated using Reuters collections, evaluating them on different types

of corpora is important in the future. In this thesis the proposed decision bound-

ary setting method was applied to a pattern-based feature selection scheme. It

would be important to investigate the use of other types of effective feature se-

lection schemes in future work. In this thesis, the classifier combination boosted

the performance of the proposed classifier. How to increase existing classifiers

with recall oriented or precision oriented classifier is an interesting challenge to

be pursued in the future.
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Appendix A

Performance Difference: RFDτ vs.

Baseline Models in All Topics

Figure A.1 shows the F1 difference of the baseline models from RFDτ sorted by

F1 of RFDτ . The baseline models are chosen from the best in each classification

type. This figure shows that the better F1 of RFDτ , the wider the gap.

Figure A.2 is similar to Figure A.1 for RFDτ max or ideal. This figure in-

dicates that an ideal version of RFDτ outperforms almost all baseline models in

almost all topics.

All models use the TFxIDF term weighting scheme.
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Topic
F1 

RFDτ 
|D+|/|D| SVM SMO ABM1 J48 NB

Random 
Forest

IBk MLP PART Rocchio Ave

18 0 9% 0 0 -1.455 -0.952 0 -0.125 -0.123 -0.381 -0.200 -0.229 -0.35
19 0 15% -0.226 -0.600 -0.339 -0.197 -0.429 -0.632 -0.704 -0.677 -0.197 -0.773 -0.48
43 0.056 8% 0.100 0.100 -0.015 -0.026 -0.172 -0.029 0.100 0.100 -0.050 -0.038 0.007
50 0.063 8% -0.198 -0.234 -0.265 -0.041 -0.284 -0.095 -0.481 -0.129 -0.146 -0.556 -0.24
49 0.065 19% 0.114 0.065 -0.122 -0.010 -0.236 -0.197 -0.205 0.030 -0.245 -0.257 -0.11
32 0.119 7% 0.085 0.003 0.193 -0.030 -0.078 0.073 -0.115 0.011 -0.231 -0.078 -0.02
45 0.135 5% 0.212 0.116 -0.008 -0.286 0.133 0.042 -0.053 -0.127 -0.024 -0.336 -0.03
24 0.164 18% -0.049 -0.087 -0.087 -0.134 -0.075 -0.188 -0.100 -0.042 -0.216 0.034 -0.09
7 0.188 5% 0.079 0.137 0.273 0.273 0.211 0.273 -0.036 0.161 0.207 0.073 0.165
6 0.214 9% 0.148 0.221 0.226 0.072 -0.042 0.089 0.073 0.112 0.169 -0.064 0.1

37 0.247 6% -0.116 0.330 -0.288 -0.288 0.330 0.163 0.087 -0.206 -0.288 0.189 -0.01
42 0.253 14% 0.336 0.234 0.336 -0.347 0.248 0.115 -0.049 -0.007 0.336 0.037 0.124
36 0.268 17% 0.165 0.217 0.109 -0.168 -0.074 -0.002 0.110 0.072 -0.008 -0.012 0.041
38 0.29 7% -0.036 -0.100 0.051 0.096 0.289 0.270 -0.042 -0.098 -0.048 -0.056 0.033
34 0.3 16% -0.015 0.134 -0.028 0.094 -0.004 0.176 0.096 -0.088 0.055 -0.081 0.034
30 0.333 13% 0.280 0.087 0.304 0.347 0.229 0.275 0.288 0.205 0.347 0.234 0.26
10 0.339 5% 0.404 0.404 0.160 0.267 0.340 0.404 0.208 0.355 0.352 -0.032 0.286
39 0.35 14% -0.100 0.076 0.063 0.204 -0.198 -0.120 0.020 0.288 0.114 0.261 0.061
11 0.357 6% 0.417 0.417 0.306 0.306 0.417 0.417 0.417 0.417 0.306 0.265 0.368
14 0.364 20% -0.019 -0.074 0.122 0.196 -0.014 0.147 -0.094 -0.140 0.180 0.006 0.031
15 0.368 7% 0.390 0.347 0.424 0.165 0.182 0.389 0.191 0.269 0.165 0.051 0.257
13 0.373 18% 0.054 0.100 0.138 0.036 0.168 0.273 0.072 0.134 0.053 0.017 0.104
12 0.379 11% 0.052 -0.094 -0.258 -0.118 0.227 0.217 0.156 0.018 -0.246 0.318 0.027
44 0.395 12% 0.041 0.012 -0.117 -0.334 0.205 0.175 -0.058 -0.033 -0.308 -0.065 -0.05
28 0.397 8% 0.215 0.215 0.062 0.100 0.094 0.250 0.037 0.120 -0.009 0.151 0.124
29 0.426 24% 0.131 0.044 0.148 0.217 0.103 0.228 0.105 0.125 0.181 0.147 0.143
47 0.452 10% -0.078 -0.066 0.062 0.212 0.313 0.431 0.036 0.205 0.008 0.174 0.13
27 0.495 16% 0.141 0.112 0.030 0.216 0.211 0.349 0.268 0.155 0.030 0.058 0.157
40 0.497 19% 0.236 0.183 0.362 0.153 0.282 0.393 0.203 0.162 0.279 0.095 0.235
33 0.5 11% -0.058 0.012 -0.013 -0.013 0.117 0.092 0.142 -0.083 -0.013 0.244 0.043
9 0.523 50% -0.051 -0.022 -0.059 0.105 -0.113 -0.169 0.029 -0.057 0.015 -0.007 -0.03

25 0.527 33% 0.108 0.169 0.175 0.056 0.102 0.085 0.149 0.225 0.106 0.072 0.125
23 0.529 6% 0.352 0.237 0.315 0.417 0.406 0.422 0.342 0.359 0.325 0.366 0.354
8 0.571 6% 0.533 0.533 0.251 0.251 0.347 0.533 0.360 0.469 0.251 0.425 0.395
4 0.587 62% -0.073 -0.096 -0.130 -0.107 -0.037 -0.010 -0.015 -0.090 -0.151 0.013 -0.07

46 0.594 41% -0.052 -0.080 -0.341 -0.341 -0.063 -0.135 -0.047 -0.172 -0.341 0.029 -0.15
41 0.595 43% 0.045 -0.039 0.126 0.145 0.127 0.076 0.045 -0.026 0.193 0.141 0.083
3 0.6 22% 0.242 0.231 0.021 -0.097 0.318 0.015 0.074 0.072 -0.108 0.262 0.103

17 0.609 23% 0.359 0.329 0.511 0.345 0.277 0.461 0.284 0.371 0.345 0.373 0.366
16 0.628 35% 0.011 -0.012 -0.077 -0.071 -0.117 -0.048 -0.103 -0.065 -0.071 -0.041 -0.06
5 0.661 43% 0.211 0.267 0.157 0.139 0.072 0.125 0.348 0.280 0.053 0.166 0.182

31 0.674 13% 0.106 0.124 0.149 0.079 0.469 0.531 0.179 0.048 0.513 0.062 0.226
1 0.683 30% -0.048 -0.002 0.209 0.218 0.278 0.170 -0.049 -0.047 0.230 -0.060 0.09

20 0.685 17% 0.002 0.021 0.140 0.042 0.230 0.323 0.121 0.175 0.152 -0.084 0.112
21 0.685 17% 0.127 0.159 -0.045 0.117 0.357 0.424 0.202 0.084 0.114 0.297 0.184
22 0.774 21% 0.109 0.130 0.063 0.367 0.475 0.358 0.279 0.261 0.063 0.383 0.249
2 0.814 68% 0.000 0.012 -0.005 0.007 0.064 0.020 0.002 0.020 -0.023 0.046 0.014

26 0.885 66% 0.062 0.058 0.124 0.101 0.062 0.013 0.047 0.062 0.112 0.041 0.068
48 0.892 36% 0.199 0.051 0.000 0.045 0.018 0.047 0.024 -0.018 0.045 0.019 0.043
35 0.893 48% 0.044 0.054 0.074 0.076 0.237 0.229 0.021 0.053 0.074 0.020 0.088

Low High

Figure A.1: Performance difference RFDτ vs baseline models.
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Topic
F1 

RFDτ  
Ideal

|D+|/|D| SVM SMO ABM1 J48 NB
Random 
Forest

IBk MLP PART Rocchio Ave

18 0.208 9% 0.293 0.293 -0.735 -0.380 0.293 0.205 0.206 0.024 0.152 0.131 0.048
19 0.557 15% 0.420 0.243 0.366 0.434 0.324 0.228 0.194 0.207 0.434 0.161 0.301
43 0.184 8% 0.269 0.269 0.175 0.167 0.048 0.164 0.269 0.269 0.147 0.157 0.193
50 0.377 8% 0.232 0.209 0.189 0.332 0.177 0.298 0.050 0.276 0.265 0.002 0.203
49 0.247 19% 0.330 0.293 0.152 0.236 0.065 0.095 0.089 0.266 0.059 0.049 0.163
32 0.171 7% 0.156 0.080 0.255 0.050 0.005 0.145 -0.028 0.088 -0.135 0.006 0.062
45 0.157 5% 0.239 0.146 0.026 -0.242 0.162 0.074 -0.018 -0.089 0.010 -0.291 0.002
24 0.259 18% 0.082 0.048 0.048 0.008 0.059 -0.040 0.037 0.088 -0.064 0.154 0.042
7 0.4 5% 0.296 0.341 0.444 0.444 0.397 0.444 0.209 0.359 0.394 0.292 0.362
6 0.252 9% 0.192 0.261 0.265 0.120 0.012 0.136 0.121 0.158 0.212 -0.010 0.147

37 0.56 6% 0.214 0.528 0.093 0.093 0.528 0.410 0.357 0.151 0.093 0.429 0.29
42 0.368 14% 0.424 0.336 0.424 -0.168 0.347 0.232 0.090 0.127 0.424 0.165 0.24
36 0.367 17% 0.260 0.306 0.211 -0.035 0.048 0.112 0.211 0.178 0.107 0.104 0.15
38 0.364 7% 0.052 -0.006 0.132 0.173 0.349 0.332 0.046 -0.005 0.041 0.033 0.115
34 0.321 16% 0.012 0.157 -0.001 0.119 0.023 0.198 0.120 -0.059 0.080 -0.052 0.06
30 0.429 13% 0.354 0.181 0.375 0.414 0.308 0.350 0.361 0.287 0.414 0.312 0.336
10 0.508 5% 0.504 0.504 0.301 0.390 0.451 0.504 0.341 0.463 0.461 0.141 0.406
39 0.647 14% 0.185 0.315 0.306 0.410 0.112 0.170 0.274 0.472 0.344 0.452 0.304
11 0.357 6% 0.417 0.417 0.306 0.306 0.417 0.417 0.417 0.417 0.306 0.265 0.368
14 0.437 20% 0.061 0.011 0.191 0.259 0.065 0.214 -0.008 -0.051 0.245 0.084 0.107
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26 0.912 66% 0.080 0.076 0.141 0.119 0.080 0.032 0.065 0.080 0.129 0.059 0.086
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35 0.89 48% 0.042 0.052 0.072 0.074 0.235 0.228 0.019 0.051 0.072 0.018 0.086
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Figure A.2: Performance difference ideal RFD+τ vs baseline models.
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Appendix B

Performance Trend in Balance Rate

of the Training Set

Figure B.1 and Figure B.2 show the performance trend of RFDτ and baseline

models, respectively, over the imbalance rate of the training set. All models use

the TFxIDF term weighting scheme. The trendlines in this and other figures are

generated by polynomial order two of the trend/regression type.

In the figures, the topics (horizontal axis) are sorted the by balance rate. The

topic on the left side is the most imbalanced and the topic on the right side the

most balanced.

The figures show shows the same trend; that is, almost all the models perform

better for lower the lower imbalance rate. However, we can see from the figures,

as stated in Chapter 6 that the RFDτ has better performance than the baseline

models especially in regard to the high imbalance rate of the training set.
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Figure B.1: Performance trend of RFDτ over imbalance rate of training set.
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Figure B.2: Performance trend of baseline models over imbalance rate of training
set.
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Appendix C

RFDτ Performance in Training

Weight Distribution

The figures in this appendix show the performance of RFDτ at different points,

from the minimal score to the maximum score of training documents (frommin(score(d ∈
D) tomax(score(d ∈ D)). The left side of the horizontal axis statesmin(score(d ∈
D) and the right side of the horizontal axis statesmax(score(d ∈ D)) of the topic.

In Figure C.2 to Figure C.6, the symbols under the horizontal axis denote the

document positions based on their score. The top row is for training set D, and

the bottom row is for testing set U . The symbol ’+’ on the right side indicates a

positive document, and the symbol ’x’ on the left side indicates a negative docu-

ment.
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Figure C.2: RFD: performance over training set weights distribution topic 1-10.
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Figure C.3: RFD: performance in training set weights distribution topic 11-20.
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Figure C.4: RFD: performance in training set weights distribution topic 21-30.
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Figure C.5: RFD: performance in training set weights distribution topic 31-40.
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Figure C.6: RFDτ : performance in training set weights distribution topic 41-50.
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Appendix D

Rocchio Performance in Training

Weight Distribution

The figures in this appendix show the performance of Rocchio at different points,

from the minimal (min(score(d ∈ D)) score to the maximum (max(score(d ∈
D)) score of training documents. The left side of the horizontal axis states the

min(score(d ∈ D) and the right side of the horizontal axis states themax(score(d ∈
D) of the topic.

We chose Rocchio because its classification uses the decision boundary (de-

fault value is zero) and a strong text classifier.

From Figure D.1 to Figure D.5, the symbols under the horizontal axis denote

the training document positions based on their score. On the right side, ’+’ indi-

cates a positive document, and the left side ’-’ indicates a negative document. The

diamond-shaped symbol represents the decision boundary (i.e. the score is zero).
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Figure D.1: Rocchio: performance in training set weights distribution topic 1-10.
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Figure D.2: Rocchio: performance in training set weights distribution topic 11-20.
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Figure D.3: Rocchio: performance in training set weights distribution topic 21-30.
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Figure D.4: Rocchio: performance in training set weights distribution topic 31-40.149
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Figure D.5: Rocchio: performance in training set weights distribution topic 41-50.150



Appendix E

TP, FN, TN and FN in Classifier

Combination Rocchio-RFDτ

Table E.1 shows the number of true positive (TP), false pasitive (FP), true negative

(TN) and false negative (FN) results for the classifier combination Rocchio-RFDτ .

The first one is for Rocchio, the second one is for RFDτ , and the figures in the

brackets show the results for classifier combination, Rocchio-RFDτ . For exam-

ple, a value in column FN-TP(FN) means the number of documents with FN for

Rocchio, TP for RFDτ and FN (in brackets) for the final result.
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Table E.1: TP, FN, TN and FN in classifier combination Rocchio-RFDτ .

Topic TP-TP(TP) FN-TP(FN) FP-FP(FP) TN-FP(TN) FP-TN(TN) TN-TN(TN) TP-FN(FN) FN-FN(FN)

1 188 0 22 2 165 81 111 8
2 143 9 50 13 31 55 2 5
3 34 1 5 1 210 251 17 9
4 77 4 81 21 49 34 13 0
5 38 0 15 13 95 85 11 1
6 16 3 77 43 73 97 11 1
7 20 0 100 33 284 117 11 6
8 5 0 4 0 224 143 10 0
9 60 3 86 16 23 41 6 5
10 20 0 30 17 55 358 6 5
11 7 0 9 5 163 259 6 2
12 11 0 16 0 326 119 8 1
13 42 7 68 77 124 213 15 6
14 37 17 71 110 73 45 8 0
15 30 14 89 19 81 105 15 4
16 46 0 16 0 66 129 40 1
17 20 1 14 2 213 36 8 3
18 0 0 16 0 151 112 11 3
19 0 0 0 0 127 104 40 0
20 115 9 37 37 28 155 29 5
21 66 10 72 2 209 230 7 1
22 33 8 22 3 179 138 9 1
23 6 0 9 0 143 173 8 3
24 3 2 18 8 80 111 7 21
25 82 17 98 48 145 121 28 5
26 133 2 12 1 41 44 26 11
27 26 0 37 2 64 93 14 2
28 27 0 77 2 96 68 4 2
29 33 1 60 8 190 192 19 4
30 10 1 36 6 136 113 4 1
31 68 0 50 11 41 76 3 3
32 5 3 71 93 104 156 13 1
33 15 0 16 3 133 200 11 2
34 18 9 25 71 128 60 31 9
35 245 58 6 35 0 123 16 18
36 14 1 48 2 178 157 33 19
37 9 0 48 11 105 152 0 0
38 15 1 17 17 138 112 25 3
39 13 1 45 1 171 19 3 0
40 24 15 31 43 45 246 12 16
41 54 6 56 9 131 101 22 0
42 9 1 33 17 61 63 6 8
43 1 0 4 2 149 239 6 16
44 12 0 4 6 125 190 42 1
45 12 10 36 232 13 180 4 1
46 93 0 109 0 38 22 8 10
47 27 1 62 1 101 182 6 0
48 204 4 33 2 21 96 11 9
49 1 1 23 6 65 298 16 39
50 2 0 4 7 33 273 19 33

Total 2169 220 1968 1058 5624 6767 791 304
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