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RESEARCH ARTICLE
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Abstract

Common walnut (Juglans regia L) is an economically important species cultivated worldwide

for its high-quality wood and nuts. It is generally accepted that after the last glaciation J.

regia survived and grew in almost completely isolated stands in Asia, and that ancient

humans dispersed walnuts across Asia and into new habitats via trade and cultural expan-

sion. The history of walnut in Europe is a matter of debate, however. In this study, we esti-

mated the genetic diversity and structure of 91 Eurasian walnut populations using 14 neutral

microsatellites. By integrating fossil pollen, cultural, and historical data with population

genetics, and approximate Bayesian analysis, we reconstructed the demographic history of

walnut and its routes of dispersal across Europe. The genetic data confirmed the presence

of walnut in glacial refugia in the Balkans and western Europe. We conclude that human-

mediated admixture between Anatolian and Balkan walnut germplasm started in the Early

Bronze Age, and between western Europe and the Balkans in eastern Europe during the

Roman Empire. A population size expansion and subsequent decline in northeastern and

western Europe was detected in the last five centuries. The actual distribution of walnut in

Europe resulted from the combined effects of expansion/contraction from multiple refugia

after the Last Glacial Maximum and its human exploitation over the last 5,000 years.

Introduction

Common walnut (Juglans regia L.) is an economically important tree species, highly valued for

its timber and edible nuts. This species grows well in virtually all parts of the world with a tem-

perate climate [1]. Its ancient history of cultivation and widespread use throughout much of
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Eurasia, from China to western Europe, and the relative scarcity of wide-scale molecular phy-

logeographic studies, made accurate determination of its native geographic range difficult.

New data and resources, however, including the development of highly informative molecular

markers in Juglans spp. such as SSR markers [2], the recent advent of landscape genetics [3],

the persistence of centuries-old walnut trees in natural reserves isolated from plantations,

access to remote uncultivated Asian walnut populations [4] and a rich fossil pollen record in

Europe [5], provide the opportunity to resolve the complex human and natural interactions

that shaped the evolutionary history of walnut since the Holocene in Eurasia.

The history of walnut in Asia has emerged as a complex interaction of biogeographic and

human forces. After the Last Glacial Maximum (LGM), J. regia survived and grew spontane-

ously in almost completely isolated stands in Asia, from Xinjiang province of western China

through central Asia to the Caucasus. Barriers to gene flow, such as the Tien Shan and Hima-

laya mountains, and the progressive desertification of central Asia during the Holocene pro-

moted the fragmentation and isolation of natural J. regia populations in these regions [4].

Genetic analysis combined with ethno-linguistic and historical data revealed that what

appeared to be native walnut stands were actually the result, at least in part, of ancient human

efforts to modify the Asian landscape [6]. Humans, trading walnut along "green corridors”

such as the Silk Roads and the Persian Royal Road, overcame geographic barriers and facili-

tated walnut exchanges across Asia [6–7]. The origin and human-mediated expansion of wal-

nut across Europe, however, is a matter of long-standing debate.

Fossil pollen deposits clearly indicate that J. regia was growing in southern Spain, Italy, France,

Switzerland (Alps), Bulgaria (Rhodopes Mountains), Greece (Epirus), southwestern Turkey and

Albania during the Upper Pleistocene (126,000–12,000 BP) (S1 Table and S1 Video). Considering

the scarce remains of walnut pollen in the European post-Eemian sequences, several authors pro-

posed that J. regia essentially disappeared in Europe at the onset of the Holocene (~�11,700 BP),

after the Last Glacial Maximum [8] and its human-mediated reintroduction into Europe from

western Asia (e.g. eastern Turkey and Trans Caucasus) to the Aegean basin occurred not before

the middle of the fourth millennium BP [9]. A second wave of migration into southwestern

Europe followed the Greek colonization around the 8th to 5th centuries BCE (2800–2500 BP)

[10–11]. This view is being challenged now. Subsequent palynological finds demonstrated that J.
regia may have survived the cold, dry glacial intervals in refugia located in southern Europe [12–

14] and the Balkans [15–18] (S1 Video). Carpological fossils of walnut have been found in north-

eastern Italy (Sammardenchia, 7,550 BP) [19], Switzerland (near Lake Constance, ~ 6,000–4,350

BP) [20] and Slovenia (Hocevarica, 5,600–5,500 BP) [21]. Assuming walnut was harvested/culti-

vated from the early Neolithic to Bronze Age in Europe [13], we can’t rule out the use of local

stands, formerly protected for their fuel and food during times of dramatic land transformations

due to global climate oscillations and growing economic pressures [22–23]. Despite information

from the fossil record, there is no molecular evidence that J. regia survived the LGM in Europe as

no polymorphism was detected in 29 demes of walnut in Eurasia using chloroplast PCR-RFLP

markers [24].

Irrespective of the resolution of the conflict between fossil and molecular evidence, the dis-

tribution of J. regia in Europe was surely modified by human management over the last 2,500

years. Sudden increases in J. regia fossil pollen curves were recorded in the time window

between 2500 and 1000 years BP, presumably reflecting the widespread increase of walnut cul-

tivation from Greek and Roman times onwards [11] (S1 Video). As detected in Italy, the selec-

tion and frequent inter-regional transfer of walnut seeds along ancient routes probably

affected the spatial genetic structure of J. regia, decreasing its diversity by selection and increas-

ing its genetic homogeneity by dispersal [25–26]. Nevertheless, despite long-term scientific

interest, a comparative and full-scale overview of the genetic resources of walnut in Europe has
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never been undertaken, and neither the putative dispersal routes of walnut across Europe nor

the time-scales over which such processes occurred since the Late Holocene have been studied

using molecular phylogeny.

Here, we report on a large-scale study of the spatial genetic structure of walnut populations

in Europe using microsatellite markers, and its comparison with autochthonous walnut popu-

lations sampled in Asia. Our objective was the integration of fossil pollen, cultural and histori-

cal data with population genetics (the landscape genetic overlay approach) [27], and the

inference of demographic history using approximate Bayesian computation (ABC) [28] to

evaluate if (1) ancient reservoirs of walnut diversity still exist in Europe, (2) clines of genetic

diversity are present between Europe and Asian regions where walnut still grows naturally, (3)

genetic clines in J. regia can be explained by the recolonization of western Europe from refugia

of western Asia through the Balkans, or (4) whether western Asia and the southern European/

Balkans peninsulas represent two separate regions of walnut evolution. In addition, we evalu-

ated the hypothesis that cultural/historical factors played a key role in shaping the genetic

resources of walnut in Europe since the Late Holocene.

Materials and methods

Common walnut collection

Over the last two decades, the CNR-Institute of Agro-environmental and Forest Biology

(IBAF, Porano, Italy), CNR-Institute of Agricultural Biology and Biotechnology (Milan, Italy)

and the Earth Trust (Oxfordshire, UK) have monitored and sampled common walnut trees in

Europe and across the species’ range in Asia. Although we were unable to obtain samples from

all areas, we assembled a large and unique collection of J. regia, including 40 Asian autochtho-

nous walnut populations sampled from China (6 populations), Kyrgyzstan (9), Uzbekistan

(17), Tajikistan (1), Pakistan (2), Iran (1), Turkey (2) and Georgia (2) which have already been

genotyped [4, 6] and 51 European walnut populations sampled from Greece (4), Romania (1),

Moldova (1), Hungary (10), Slovakia (1), Spain (1), France (4) and Italy (29), for a total of 91

populations and 2,008 genotypes (S2 Table, S1 Fig). These walnut populations span thirteen

mountain systems in Eurasia (Tien Shan, Gissar, Zaamin, Nurata, Pamir, Himalayas, Alborz,

Trans-Caucasus, Balkans, Carpathians, Alps, Pyrenees, and Apennines) (S1 Fig). Only centu-

ries-old trees in ancient forests or nature reserves were sampled in Asia. In Europe, we care-

fully avoided collecting walnut samples from plantations or non-protected areas (S2 Table).

Sampled trees in each population were separated by> 100 metres. Mature leaves were sampled

from each walnut tree, dehydrated, and then stored at −80˚C at CNR-IBAF (Porano, Italy).

Microsatellite analysis

Dehydrated leaf tissue (60 mg) from each European walnut sample was homogenized in a 2ml

micro-centrifuge tube containing a 5 -mm steel bead cooled with liquid nitrogen using a

Mixer Mill 300 (Qiagen, Hilden, Germany). Genomic DNA was extracted and purified using a

DNeasy96 Plant Kit (Qiagen), and stored at -20˚C.

In this study, all European samples were genotyped using 14 unlinked nuclear, neutral

microsatellite (SSR) markers (WGA1, WGA4, WGA9, WGA27, WGA32, WGA69, WGA72,

WGA79, WGA89, WGA118, WGA202, WGA276, WGA321, WGA331) already selected and

used for genetic characterization of walnut in its Asian range [4, 6]. PCR amplification and the

visualization of amplified SSR alleles for each sample were carried out as described by Polle-

gioni et al [26]. The allele size scoring was performed using GeneMapper version 4 (Applied

Biosystems, Foster City, CA, USA).

Rethinking the history of walnut in Europe
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Data analysis

Genetic diversity of walnut populations. Standard measures of genetic diversity, total

number of observed alleles (A), effective number of alleles (Ae), observed (HO) and expected

(HE) heterozygosity and polymorphic information content (PIC), the three unbiased estima-

tors of Wright’s F-statistics, within-population inbreeding coefficient f (FIS), total-population

inbreeding coefficient F (FIT) and among-population genetic differentiation coefficient θ(FST)

and the unbiased estimator of Jost’s (Dest) [29] were computed for each locus and over all loci

as described by Pollegioni et al [4]. Similarly, allele dropout and null alleles were tested for

each locus using FreeNa software [30].

Levels of genetic diversity were estimated for each walnut population across all loci in terms of

the mean number of alleles per locus (A), observed (Ho) expected (HE) and unbiased expected

heterozygosity (UHE) using the GenAlEx software 6.3 [31]. To account for difference in sample

size, allelic richness (Rs) and private allele richness (PAR) were computed by the rarefaction

method with HP-Rare software [32]. The estimates of Rs and PAR were standardized on a mini-

mum sample size of eight individuals. Following the procedure of Pollegioni et al [4], the Inverse

Distance Weighted (IDW) interpolation function implemented in the Geographic Information

System (GIS) software ArcGIS 9.3 (ESRI, Redlands, Calif. USA) was used to display the geo-

graphic patterns of allelic richness (Rs) and unbiased expected heterozygosity (UHE) computed

for all 91 walnut populations. The within-population inbreeding coefficient FIS [33] was estimated

for each population using hierarchical locus-by-locus AMOVA as implemented in Arlequin 3.11

software [34]. The statistical significance of FIS was tested using a non-parametric approach with

1,000 permutations. To determine whether within-population genetic variation was correlated

with geographic gradients, we performed a simple linear regression analysis followed by the

sequential Bonferroni correction of allelic richness (Rs) and unbiased expected heterozygosity

(UHE) against three geographic variables, latitude, longitude and elevation of sampled sites.

Evidence of recent population size decrease was investigated using the program BOTTLE-

NECK 1.2.02 [35]. As described by Pollegioni et al [4], significance was assessed using the ‘Wil-

coxon’s signed-rank’ test, which provides relatively high power and can be used with as few as

four polymorphic loci and any number of individuals. Bottleneck tests were conducted under

Two-Phase Model (TPM) of evolution which most accurately reflected the mutational mecha-

nism of the microsatellite loci used in this study [26]. As recommended by Piry et al [35], we

used the TPM with 70% Stepwise Mutations Model (SMM) and 30% multistep mutations. For

each mutational model, 10,000 replicates were performed. Nevertheless, as reported by Henry

et al [36], the heterozygosity excess test is sensitive to very recent disturbances. Two additional

tests were used to identify bottleneck signatures from larger time scales: shifted allele distribu-

tion analysis [37] and the M-ratio test [38] implemented in BOTTLENECK and Arlequin soft-

ware, respectively [4].

Genetic structure analysis of common walnut populations. Two complementary statis-

tical approaches were used to detect the genetic structure of walnut populations in Eurasia.

First, a Bayesian clustering approach implemented in STRUCTURE software 2.3.3 [39] was

applied as described by Pollegioni et al [6]. We reconstructed the underlying genetic structure

of walnut populations and computed the proportion of membership (Q-value) for each prede-

fined population and each individual multilocus genotype in each of the inferred clusters

using Markov Chain Monte Carlo (MCMC) simulations. STRUCTURE was run assuming a

pre-assigned number of clusters (K) ranging from 1 to 90, the admixture model on the whole

dataset without a priori population information and with the correlated allele frequencies

between populations option. Based on initial results, a series of six independent runs was per-

formed for K between 1 and 12 with a burn-in period of 100,000 steps followed by 106 MCMC

Rethinking the history of walnut in Europe
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replicates. The final posterior probability of K, Ln P(K), and ΔK, the rate of change of Ln P(K)
between successive K values [40], was calculated to detect the most likely number of popula-

tions. Therefore, the groups inferred by the first STRUCTURE analysis were subsequently

reprocessed separately in order to identify possible sub-structure (sub-clusters). The six runs

from the most probable number of clusters were averaged applying the FullSearch algorithm

provided by CLUMPP software 1.1.2. [41]. The corresponding Q-matrices were graphically

displayed by DISTRUCT software [42]. After determining the most probable number of clus-

ters, an arbitrary threshold of Q� 0.75 was used to assign populations and/or genotypes to

one group. Populations with 0.25 < Q< 0.75 were classified as admixed. Following the proce-

dure of Pollegioni et al [6], we derived K continuous clustering surfaces by interpolation of the

population membership Q-values for the K clusters estimated from STRUCTURE using the

IDW function implemented in ArcGIS 9.3. A synthetic map representing the genetic structure

of walnut in Eurasia was obtained by overlaying the computed K clustering surface maps. We

combined multiple K interpolated raster bands in a single multiband raster dataset by the

Composite Bands function implemented in ArcGIS 9.3. The integrated use of the Composite

Bands-tool and RGB color code allowed us to display the inferred genetic clusters of J. regia
populations.

Finally, to confirm the genetic repartition of walnut populations inferred by STRUCTURE,

a Neighbor-Joining phylogenetic tree was constructed based on [43] genetic distance using

POPTREE2 software [44] and drawn using FigTree software (http://tree.bio.ed.ac.uk/software/

figtree/).

Reconstruction of postglacial dispersal routes of walnut in Europe. The demographic

history of walnut and its human-mediated postglacial dispersal routes in Europe were further

explored using the approximate Bayesian computation (ABC) procedure originally introduced

by Beaumont et al [28] and recently implemented in DIYABC v. 2.0.4 software [45].

Due to computational limitations and the complexity of possible scenarios, we split

DIYABC analysis into two stages and we pooled a subset of Eurasian walnut samples into four

groups as inferred by STRUCTURE and Neighbor-Joining tree analysis (S3 Table). Gene pool

1 consisted of 41 individuals from Anatolia (Turkey, Sub-cluster 1–1); gene pool 2 comprised

131 individuals from the Balkans (admixed genotypes between Cluster 1 and Cluster 4); gene

pool 3 comprised 279 individuals from northeastern Europe (Sub-cluster 4–2); and gene pool

4 included 650 individuals from western Europe (Sub-cluster 4–1).

In the first stage of the DIYABC analysis, we tested five competing broad-scale scenarios

(Scenarios 1a-5a) based on historical and fossil pollen data (S4 Table). Scenarios 1a and 2a

assumed a first introduction of walnut from Anatolia to the Balkans followed by a expansion

from the Balkans through northeastern Europe to western Europe (Scenario 1a, Land Route)

or from the Balkans through western Europe to northeastern Europe (Scenario 2a, Maritime

Route). Then, we tested the presence of two refugia (Anatolia and the Balkans) with subse-

quent expansion of walnut from the Balkans through northeastern Europe to western Europe

(Scenario 3a) or from the Balkans through western Europe to northeastern Europe (Scenario

4a). The final model of stage 1 (Scenario 5a) tested a complex scenario of independent human-

induced dispersal of walnut from Anatolia and western Europe to the Balkans where admix-

ture occurred, a subsequent expansion from western to northeastern Europe and a final popu-

lation decline of western Europe. Alternative scenarios (e.g. western Europe as a unique centre

of walnut origin) were considered unrealistic and therefore were excluded (S4 Table).

The second stage of the DIYABC analysis was at a finer scale, assuming two refugia (Anatolia

and western Europe; Scenarios 1b-3b) or three refugia (Anatolia, the Balkans and western Europe;

Scenarios 4b-6b), with admixture in the Balkans, a population size expansion in northeastern

Europe, and decline in western Europe. We also evaluated the dispersal of walnut into northern

Rethinking the history of walnut in Europe
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Europe from western Europe (Scenario 1b, 4b), from the Balkans (Scenario 2b, 5b) or as a result

of admixture between western Europe and the Balkan germplasm (Scenario 3b, 6b) (S4 Table).

The prior values used for all the demographic parameters selected for ten scenarios are

listed in S3 Table. Following the procedure of Bai et al [46] for shorter-lived Asian butternuts,

we assumed 80–110 years as a reasonable generation time for walnut (production of nuts 10–

20 years after germination; mean life span of ~ 100–200 years; [47]). Based on these assump-

tions, we chose prior distributions for the timing of events (in generations) of stage 2 including

Last Glacial Period (100–10,000), post LGM period (10–200), Bronze and Iron Age (20–60),

Hellenistic-Roman period (10–25) and Middle Ages (1–15 or 1–10). We assumed a generalized

stepwise mutation model for SSR loci, with a uniform mutation rate prior (μ) between 10−4 and

10−3. The observed and simulated genetic datasets were summarized using the mean number of

alleles, mean genetic diversity, mean allele size variance for each population, Wright’s FST, mean

individual assignment likelihoods and mean index of classification (DAS) among populations.

We generated a reference table containing 105 simulated datasets for each scenario, and subse-

quently 1% of the simulated datasets closest to the observed genetic dataset were used to estimate

posterior probabilities (with 95% confidence intervals) for each scenario using direct and logistic

regression approaches [45]. The posterior distribution of historical demographic parameters was

estimated using a logistic regression of 1% of the closest datasets simulated according to the most

likely scenario. To validate the confidence in a scenario choice, we calculated (1) Type I Error

(False negative rate) as the proportion of times that the selected scenario did not exhibit the high-

est posterior probability compared with the competing scenarios for 500 pseudo-observed data-

sets generated under the best-supported model, and (2) Type II Error (False positive rate) as the

proportion of times that the selected scenario was incorrectly selected as the most likely scenario

for 500 pseudo-observed datasets generated under each of the competing scenarios. Finally, we

performed a model checking analysis to evaluate if a model-posterior combination fitted the

observed data correctly. The observed summary statistics were compared with those computed

for 1,000 datasets simulated from the posterior distribution of parameters obtained under the

selected scenario [45].

Results

Genetic diversity of Eurasian walnut populations

All 14 SSR loci used in the present study were highly polymorphic in the sampled walnut popu-

lations. A total of 199 alleles were detected in the 2,008 walnut trees genotyped, with an average

of 14.21 alleles per locus. None of the SSR loci showed evidence of null alleles (for a complete

description of the SSR loci, see S5 Table). Genetic diversity parameters varied greatly among

Eurasian walnut populations (S6 Table). Three geographic areas showed high values of allelic

richness (Rs) and unbiased expected heterozygosity (UHE): 1) south–central Asia including sites

in Tibet (32-DASH), Kashmir–western Himalaya (34-HUNZA and 33-GILGIT, Pakistan),

northern Pamir ridges (35-SHOULI, Tajikistan), Gissar Mountain (18-BAKHMAL, Uzbeki-

stan), western Tien Shan (19-KARANKUL and 17-BONSTANLYK, Uzbekistan); 2) four Trans-

Caucasus sites (37-LAGO and 38-SKRA, Georgia; 39-ANATOLIA and 40-TRABZON Turkey)

and 3) four Balkan populations (41-PAIKO_A, 42_PAIKO_B, Greece; 45-BRASOV, Romania;

and 46-CHISINAU, Moldova) (Fig 1).

A significant decline in allelic richness was found with decreasing longitude (r = 0.522,

P = 0.00015) and increasing latitude (r = 0.425, P = 0.00135). Of 199 alleles detected, 33 were

unique to a single geographic site, with 23 unique to Asian and ten to European walnut popu-

lations (S6 Table). Overall, FIS ranged from -0.066 (74-SANNIO) to 0.280 (28-GUILI-2), and

was significantly greater than zero in 31 of 91 sampled sites, indicating a surplus of

Rethinking the history of walnut in Europe
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homozygotes in 18 (45%) and 13 (26%) of Asian and European walnut populations, respectively

(S6 Table). Based on the TMP model, significant (P< 0.05) signals of recent reduction in effec-

tive population size were detected in a large proportion of European sites (73%), but only in

four (10%) Asian populations (4-SHAIDAN, 5-KYZYL, 17-BOSTANLYK and 36-KARAJ). By

contrast, using the M ratio test, we observed a genetic signature consistent with a bottleneck in

all populations. The G–W values ranged from 0.28117 (36-KARAJ) to 0.37939 (72-VALCO),

which is substantially lower than the critical threshold of 0.68 (S7 Table).

Spatial genetic structure of walnut populations in Eurasia

The genetic structure of the 91 sampled walnut populations was evaluated using STRUCTURE

and Neighbor-Joining tree clustering analysis. STRUCTURE indicated four as the most appro-

priate number of population groups. The ad-hoc statistic ΔK of Evanno et al [40] combined

with the analysis of Log-likelihood distribution of data L(K) as a function of K, recognized

K = 4 as the best representation of the underlying hierarchical structure of the 91 walnut popula-

tions in Eurasia (S2 Fig). Cluster 1, centered in western and south-central Asia, included all wal-

nuts sampled from four Trans-Caucasus sites (37-LAGO and 38-SKRA, Georgia; 39-ANATOLIA

and 40-TRABZON Turkey), Alborz ridges, Iran (36-KARAJ), Kashmir-western Himalayas, Paki-

stan (33-GILGIT and 34-HUNZA) and Tibetan-eastern Himalaya, China (32-DASH) (Q1�

0.8227) (S8 Table). In addition, 21 walnut trees (58.3%) collected in 19-KARANKUL (eastern

Uzbekistan) and ten of 67 walnut trees (14.9%) from 28-GONGLIU-2 (Xinjiang province, China)

were unambiguously assigned to cluster 1 (Q1� 0.800) (Fig 2).

Cluster 2 assembled seven populations from the Nurata ridge located in east-central Uzbek-

istan and five populations of northern and eastern China, i.e., four sites in the eastern Tien

Shan mountains, Xinjiang province, and one site from Shandong province (Q2� 0.7639).

Cluster 3 comprised all nine Kyrgyz and four Uzbek populations (10-Kamchik, 11-Yakkatut,

12-Sidjak and 13-Charvak) sampled in the walnut forests of the western Tien Shan mountains

(Q3� 0.7856). The remaining three walnut populations in the western Tien Shan mountains

(14-Nanai, 16-Bogustan, 17-Bostanlyk) and two populations from the Gissar mountains

(15-Djarkurgan) and the Zaamin mountains (18-Bakhmal) in eastern Uzbekistan were mainly

admixtures between cluster 2 (0.2013� Q2� 0.3740) and cluster 3 (0.4987� Q3� 0.7118).

Cluster 4 included all European walnut populations sampled in Spain, Italy, France, Slovakia,

Crete (Greece) and Hungary (Q4� 0.7648), except for five easternmost Balkan populations

located in Greece (Macedonia, 41-PAIKO_A, 42_PAIKO_B; Peloponnese, 43-ARCADIA),

Romania (45-BRASOV), and Moldova (46-CHISINAU) and the remaining population from

Tajikistan (35-SHOULI), which showed admixed profiles between cluster 1 (0.3101�Q1�

0.7420) and cluster 4 (0.2230� Q4� 0.6663) (Fig 2, S8 Table).

Subsequent STRUCTURE analysis within each of the previously inferred clusters revealed

genetic substructure, except for cluster 3 (S2 Fig and S8 Table). The inferred cluster 1 was com-

posed of four sub-clusters (K’ = 4). These four sub-clusters split walnut trees of 39-ANATOLIA,

40-TRABZON (Turkey), 36-KARAJ (Iran) and 19-KARANKUL (21 samples, eastern Uzbeki-

stan) (sub-cluster 1–1), from 38-LAGO, 39-SKRA (Georgia) (sub-cluster 1–2), 28-GONGLIU-2

(ten samples, Xinjiang province, China), 32-DASH (Tibet, China) (sub-cluster 1–3) and 33-GIL-

GIT, 34-HUNZA (Kashmir, Pakistan) (sub-cluster 1–4) (Fig 3A).

Fig 1. Genetic diversity of 91 walnut populations in Eurasia. Inverse Distance Weighted (IDW) interpolation of the allelic richness values (Rs) (a)

and unbiased heterozygosity UHE (b) calculated for 91 walnut populations (black dots) in Eurasia using 14 SSR markers (abbreviations CN = China,

UZ = Uzbekistan, KG = Kyrgyzstan, TJ = Tajikistan, PK = Pakistan, IR = Iran, GE = Georgia, TR = Turkey, MD = Moldova, RO = Romania,

HU = Hungary, SK = Slovakia, GR = Greece, IT = Italy, FR = France, ES = Spain).

doi:10.1371/journal.pone.0172541.g001
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Two sub-clusters of the inferred cluster 2 (K” = 2) corresponded to two distinct groups of

walnut populations sampled in east-central Uzbekistan (sub-cluster 2–1) and China (sub-clus-

ter 2–2, Fig 3B). Finally, two sub-clusters of the inferred cluster 4 (K”‘ = 2) extended from

Spain to northwestern Hungary (Györ-Moson-Sopron Province, 55-BONY, 56-MOSONM)

(sub-cluster 4–1) and from eastern Hungary and Slovakia (Carpathians Mountains) to western

Crete (44-CHANIA) (sub-cluster 4–2) (Fig 3C). A Neighbor-Joining tree based on Nei’s [39]

genetic distance confirmed the previous results and showed that five easternmost Balkan sites

in Greece (Macedonia and Peloponnese), Romania and Moldova might represent the contact

zones between European (Cluster 4) and south west Asian (Cluster 1) germplasm passing

through the Anatolian plateau (sub-cluster 1–1) (Fig 4).

Inferring demographic history of walnut in Europe using ABC analysis

The ABC method enabled us to test ten demographic scenarios (S4 Table) and to delineate

postglacial dispersal routes of walnut across Europe. In the first stage of the DIYABC analysis,

both direct (P1) and logistic regression (P2) approaches identified scenario 5a as the most likely

model (Table 1, S3 Fig, P1 = 0.3620, 95% CIs: 0.0000–0.7832, P2 = 0.9474, 95% CIs: 0.8396–

1.0000).

Four excluded scenarios assumed that populations from Anatolia (Scenario 1a-2a) or the

Balkans (Scenario 3a-4a) served as a unique source for the human-mediated walnut coloniza-

tion of the rest of Europe. Scenario 5a proposed two independent dispersal events of walnut

from Anatolia (Pool 1) and western Europe (Pool 4) to the Balkans with subsequent genetic

admixture (Pool 2). In the second stage of the DIYABC analysis, we tested six fine-scale

Fig 2. Spatial genetic structure of 91 walnut populations in Eurasia. Population structure inference for 91 walnut populations by Bayesian assignment

using STRUCTURE for K = 4. Synthetic map of Inverse Distance Weighted (IDW) interpolations of the estimated mean population membership values (Qi)

(a) and bar plot showing assignment probabilities of individuals to K clusters (b). Abbreviations: CN = China, UZ = Uzbekistan, KG = Kyrgyzstan,

TJ = Tajikistan, PK = Pakistan, IR = Iran, GE = Georgia, TR = Turkey, MD = Moldova, RO = Romania, HU = Hungary, SK = Slovakia, GR = Greece, IT = Italy,

FR = France, ES = Spain.

doi:10.1371/journal.pone.0172541.g002
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scenarios always including two (Anatolia and western Europe, scenario 1b-3b) or three glacial

refugia (Anatolia, the Balkans and western Europe, scenario 4b-6b) with admixture events in

the Balkans (S4 Table). A comparison of posterior probabilities of the six scenarios unambigu-

ously indicated that scenario 6b was the most likely model (Table 1, S3 Fig, P1 = 0.3840, 95%

Fig 3. Spatial genetic sub-structure of the inferred clusters 1, 2 and 4 of walnut populations. Synthetic maps of Inverse Distance Weighted (IDW)

interpolations of the estimated mean population membership values (Qi) and bar plot for (a) K’, the most probable number of sub-clusters, based on

microsatellite analysis of 217 walnut samples of cluster 1, (b) for K”, the most probable number of sub-clusters, based on microsatellite analysis of 280

walnut samples of cluster 2 and (c) for K”‘ the most probable number of sub-clusters, based on microsatellite analysis of 929 walnut samples of cluster

4.

doi:10.1371/journal.pone.0172541.g003
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CIs: 0.0000–0.8103, P2 = 0.7838, 95% CIs: 0.558–1.0000). The model checking procedure showed

that the observed summary statistics for our data were not significantly different (P< 0.01) from

the simulated ones calculated from the posterior predictive distribution of parameters for sce-

nario 6b. These findings provided further support for a high-goodness-of-fit observed dataset to

selected scenario 6b (S9 Table). The computation of marked low false negative (Type I Error =

16%) and false positive (Type II Error = 0–3%) rates clearly indicated that our method selected

the true scenario with high confidence, showing high power to distinguish among alternative

demographic scenarios (Table 1).

Scenario 6b inferred an initial split between an Anatolian (Pool 1) and a hypothetical ances-

tral European pool (NG1) at 579 generations (t4 median value, 95% CIs: 217–2,010), and

Fig 4. Neighbor Joining cluster analysis of 91 walnut populations based on unbiased Nei’s genetic distance. Neighbor Joining-based circular

tree for 91 walnut populations from the species’ Eurasian range based on unbiased Nei’s genetic distance [43]. The assignment of walnut populations to

four clusters and eight sub-clusters inferred by STRUCTURE is shown.

doi:10.1371/journal.pone.0172541.g004
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between western Europe (Pool 4) and pool NG1 at 118 generations (t3 median value, 95% CIs:

42.3–192) (Table 2).

A secondary contact between NG1 and Anatolian groups occurred at 51.3 generations (t2
median value, 95% CIs: 28.6–59.7) resulting in the walnut populations currently present in the

Balkans (Pool 2). Walnut dispersal from the Balkans and western Europe at 19.7 generations

(t1 median value, 95% CIs: 11.9–25.9) promoted a second admixture across northeastern

Europe (Pool 3) (Table 2). Assuming c. 80–110 years per generation for J. regia, divergence

and admixture times scaled to 46,320 to 63,690 BP (t4), 9,440 to 12,980 BP (t3), 4,140 to 5,630

BP (t2) and 1,576 to 2,167 BP (t1) (S3 Fig, Fig 5).

The inferred median effective population sizes for scenario 6b were 5,460 (N1), 2,550 (N2),

6,460 (N3), 6,320 (N4), 1,620 (NG1) and 6,210 (NA) (Table 2). In addition, the DIYABC model

supported a subsequent expansion of northeastern European admixed pool 3 (from Nd = 972 to

N3 = 6,460, 7-fold increase) at 5.23 generations (td median value, 95% CIs: 1–13.8), corresponding

to ~418–575 BP, and a recent population decline of western European pool 4 (from Nm = 8,040

to N4 = 6,320) at 1.96 generations (tm median value, 95% CIs: 1–10). During the last two centuries

(~ 157–216 BP), western European germplasm was reduced to 21.4% of its former size (Fig 5).

Discussion

Genetic diversity and postglacial recolonization of walnut in Europe: A

single refugium vs multiple glacial refugia

Our analyses detected a high degree of walnut genetic diversity in the Balkans (Greece, Romania

and Moldova), similar to that recorded in other native regions such as the Caucasus (Georgia,

Turkey), and the mountainous regions of central Asia including the Himalayas (Tibet and

Kashmir, Pakistan), northern Pamir (Tajikistan), the Zaamin ridges, the northern Gissar ridges,

and part of the Tien Shan mountains (eastern Uzbekistan and Xinjiang Province, China). In

addition, we demonstrated a clear longitudinal trend of walnut genetic diversity in Eurasia with

a marked loss of allelic richness and heterozygosity running from eastern to western Europe, as

well as molecular signals of recent reduction in effective population size.

Table 1. Most likely demographic scenario for European walnut by the DIYABC approach. Posterior probability (P) and 95% confidence interval of P

(in brackets) computed using a direct (P1) and logistic regression (P2) approach are provided for each scenario tested by the DIYABC approach. The most

likely scenario for each stage is reported in grey. Confidence in scenarios was evaluated using type I error (False negative) and type II error (False positive)

rates for logistic regression.

Stage 1–2 P1 P2 Type I Error Type II Error a

Scenario 1a 0.3120 [0.0000–0.7181] 0.0002 [0.0000–0.0049] 0.2360 0.0000

Scenario 2a 0.1320 [0.0000–0.4287] 0.0002 [0.0000–0.0049] 0.3200 0.0000

Scenario 3a 0.1300 [0.0000–0.4248] 0.0449 [0.0000–0.1460] 0.3880 0.0002

Scenario 4a 0.0640 [0.0000–0.2787] 0.0072 [0.0000–0.0250] 0.4040 0.0080

Scenario 5a 0.3620 [0.0000–0.7832] 0.9474 [0.8396–1.0000] 0.0400 -

Scenario 1b 0.1120 [0.0000–0.3884] 0.1638 [0.0000–0.3696] 0.1560 0.0000

Scenario 2b 0.0200 [0.0000–0.1427] 0.0000 [0.0000–0.0426] 0.1580 0.0000

Scenario 3b 0.0520 [0.0000–0.2466] 0.0519 [0.0000–0.1156] 0.4140 0.0140

Scenario 4b 0.2600 [0.0000–0.6445] 0.0005 [0.0000–0.0428] 0.0640 0.0260

Scenario 5b 0.1720 [0.0000–0.5028] 0.0000 [0.0000–0.0426] 0.0720 0.0300

Scenario 6b 0.3840 [0.0000–0.8103] 0.7838 [0.5558–1.0000] 0.1600 -

a Type II Error is the proportion of pseudo-observed datasets simulated using each competing scenario (1a-4a, 1b-5b) that support focal scenario (scenario

5a for stage 1and scenario 6b for stage 2).

doi:10.1371/journal.pone.0172541.t001
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Based on fossil pollen evidence (S1 Video), peaks of genetic diversity occurred in some

macro-regions of the eastern Mediterranean basin where J. regia might have survived after the

LGM. Walnut was detected during the Early Holocene in Turkey (Yeniçaga Gölü, 11,485 BP

[9]), F.Y.R. of Macedonia (Lake Prespa, ~9,000 BP [17], Greece (Lake Kastoria, 8,203 BP [48]),

and in Bulgaria near the Macedonian border (western Rhodopes Mountains, Beliya Kanton,

11,708 BP [49]) and the Black Sea (Varna, 11,332 BP [50]). As reported for many plant species

of the Northern Hemisphere, glacial refugia are considered reservoirs of high levels of genetic

diversity [51]. The traditionally recognized paradigm for temperate tree species in Europe

included post-glacial recolonizations of de-glaciated areas from main refugia in the southern

Mediterranean (Iberia, Italy, the Balkans and Turkey) [51–53]. Therefore, assuming this basic

expansion/contraction model, and the spatial concordance between regional hotspots of wal-

nut genetic diversity and two phylogeographically well-defined plant refugia (the Balkans and

Turkey), we consider the extinction of J. regia in Europe to be unlikely [9–10], and postulate

its persistence at least in the eastern Mediterranean during the cold and dry periods of the

Table 2. Parameters estimates of the most likely scenarios of walnut expansion. Parameters estimates of the most likely scenarios (scenarios 6b)

inferred by the Approximate Bayesian DIYABC Computation [45] in the stage 2. Estimation of parameters is based on 1% of the closest data sets and subse-

quent logit transformation.

Parameter Description Mean Median Q 0.05 Q 0.95

N1 a Effective population size of Pool 1 (Anatolia, Asia) 5.62E

+003

5.46E

+003

2.09E

+003

9.38E

+003

N2 Effective population size of Pool 2 (The Balkans, Europe) 3.22E

+003

2.55E

+003

7.00E

+002

8.27E

+003

N3 Effective population size of Pool 3 (north-eastern Europe) 6.30E

+003

6.46E

+003

2.17E

+003

9.69E

+003

N4 Effective population size of Pool 4 (western Europe) 6.14E

+003

6.32E

+003

2.55E

+003

9.12E

+003

Nm Effective population size of Pool 4 (western Europe) before human-induced population decline

at tm

7.73E

+003

8.04E

+003

4.61E

+003

9.86E

+003

Nd Effective population size of Pool 3 (north-eastern Europe) before human-induced population

expansion at td

1.44E

+003

9.72E

+002

2.14E

+002

4.32E

+003

NG1 Effective population size of an ancestral population NG1 in the Balkans (Europe) 2.14E

+003

1.62E

+003

4.40E

+002

6.26E

+003

NA Effective population size before divergence between Pool 1 (Anatolia, Asia) and ancestral

population NG1.

5.94E

+003

6.21E

+003

1.61E

+003

9.44E

+003

tm Time of human-mediated decline of Pool 4 (western Europe). 2.86E

+000

1.96E

+000

1.00E

+000

1.00E

+001

td Time of human-mediated expansion of Pool 3 (north-eastern Europe) 6.03E

+000

5.23E

+000

1.00E

+000

1.38E

+001

t1 Time of admixture between Pool 4 (western Europe) and Pool 2 (The Balkans) giving rise to

Pool 3 (north-eastern Europe)

1.92E

+001

1.97E

+001

1.19E

+001

2.50E

+001

t2 Time of admixture between Pool 1 (Anatolia, Asia) and NG1 (ancestral population in the

Balkans) giving rise to Pool 2 (The Balkans)

4.85E

+001

5.13E

+001

2.86E

+001

5.97E

+001

t3 Divergence time between Pool 4 (western Europe) and ancestral population NG1 in the

Balkans.

1.18E

+002

1.18E

+002

4.23E

+001

1.92E

+002

t4 Divergence time between Pool 1 (Anatolia, Asia) and ancestral population NG1 in the Balkans. 8.00E

+002

5.79E

+002

2.17E

+002

2.01E

+003

ra Admixture rate between Pool 1 (Anatolia) and ancestral population NG1 in the Balkans. 2.62E-

001

2.58E-

001

1.40E-

001

3.90E-

001

rb Admixture rate between Pool 4 (western Europe) and ancestral population NG1 in the Balkans. 3.95E-

001

3.81E-

001

1.53E-

001

6.81E-

001

a N# refers to effective population size of each corresponding gene pool, and t# to time-scale in terms of the number of generations.

doi:10.1371/journal.pone.0172541.t002
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Pleistocene. As already suggested for Pinus halepensis Mill. [54], Quercus suber L. [55–56] and

Quercus cerris [57], the inferred longitudinal imprint of walnut genetic diversity could be the

result of genetic drift due to long distance dispersal and founder effects that occurred prior to

or during the Holocene recolonization of western Europe from eastern Mediterranean refugia.

Our data, however, imply a more complex explanation for the observed longitudinal cline

in European walnut genetic diversity. In the last decade, meta-analysis of tree and animal spe-

cies in the Mediterranean highlighted the importance of two, non-mutually exclusive major

processes [58]: the contraction of formerly continuous ranges in relation to Quaternary cli-

mate oscillations, and the subsequent westward and eastward waves of colonization during the

Holocene fostered by an east (warm/wet) to west (cold/dry) climatic cline at the Last Glacial

Maximum. We argue that these events can explain the longitudinal gradient of walnut genetic

diversity across Europe [59–61]. We agree with Feliner [58] that spatial phylogenetic coinci-

dences among populations in different plant/animal groups does not always imply common

evolutionary processes (pseudo-congruence phenomenon). In particular, the distribution of

Mediterranean tree species, economically important for their nut and/or wood production, is

known to have been substantially altered by humans over several thousand years [13], [62].

For instance, a severe and prolonged demographic decline of Pinus pinea L. across the Medi-

terranean, followed by human-mediated dispersal starting around 3000 BP, resulted in a nearly

complete loss of genetic diversity in the species [63]. Perhaps, as attested by different human

density/forest clearance/land use rates computed after 1,650 BP [64], the relatively low genetic

diversity of walnut populations in western Europe might reflect a stronger impact of human

activities on population size in that region compared to the Balkans. In both cases, as indicated

by the earliest traces of Juglans-type fossil pollen (S1 Video), and by the recent computation of

fossil pollen density of Juglans from the Late Glacial across Europe based on an extended EPD

Fig 5. Human-mediated dispersal routes of walnut during the Late Holocene as inferred by DIYABC analysis. Human-mediated dispersal routes of

walnut during the Late Holocene as inferred by approximate Bayesian computation [45]. Arrows represent the relationships between population pools used in

DIYABC analysis (Pool 1, Pool 2, Pool 3, Pool 4) as inferred from stage 2, scenario 6b. Hypothetical glacial refugia located in the Balkans (ancestral pool

NG1) are reported in dark grey. Abbreviations: TR = Turkey, MO = Moldova, RO = Romania, HU = Hungary, SK = Slovakia, GR = Greece, IT = Italy,

FR = France, ES = Spain.

doi:10.1371/journal.pone.0172541.g005
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data [65], shelter zones for walnut in western Europe such as the Italian peninsula (e.g. Tour-

bière de Pilaz, North-Western Alps, 9,756 BP [66]), Spain (e.g. Sanabria Marsh, Northwestern

Iberia, 8,721 BP [67–69]) or France (e.g. Lignin Lake, Southern Alps, 7,545 BP [70]; Armorican

massif, Western Atlantic region, ~8000 BP [71]) seem plausible. They might have contributed

to the bidirectional colonization of Europe by walnut from western and eastern Mediterranean

reservoirs with natural- or human-mediated bottlenecks.

Our genetic structure analysis of Eurasian populations corroborated the theory of separate

regions of walnut evolution in Eurasia, dividing the walnut samples into four main clusters:

clusters 1–3 centred in Asia with cluster 4 located in Europe (see Fig 2). Our genetic data indi-

cated a subsequent bidirectional spread of walnut across Europe from western and eastern

Mediterranean refugia. Walnut trees from the Balkans were in fact genetically distinct from

the other European lineages. They exhibited admixture between clusters 1 and 4 and repre-

sented a putative contact zone between European and Asian continents. In addition, cluster

analyses showed a subtle genetic subdivision of cluster 4 into two sub-clusters, separating all

western European and north-western Hungarian walnut trees (sub-cluster 4–1) from eastern

Hungary, Slovakia and western Crete (sub-cluster 4–2).

The approximate Bayesian analysis of ten alternative hypotheses confirmed the existence of

three glacial refugia for walnut in the Mediterranean. It also revealed complex population

dynamics during the late Holocene, presumably the consequence of anthropogenic transloca-

tion and use of walnut germplasm. Although time estimates should be taken with caution, the

inferred demographic scenario indicated that a continuous ancestral European pool (NG1)

diverged from the Anatolian-Turkish pool during the last Early-Middle Pleniglacial Period,

from 63,690 BP (with a generation time of 110 years) to 46,320 BP (generation time of 80

years), predating the LGM. Our data confirmed the splitting of NG1 into western European

and Balkan germplasm from the Younger Dryas (12,900 BP) to the Early Holocene (9,440 BP)

(Fig 5).

Last Glacial reconstructions have revealed a long-term contraction of temperate tree species

in southern Europe, superimposed on millennia-scale climatic fluctuations [72–74]. This

period has been classified as one of the most severe of the whole Pleistocene, in terms of ice

volume, and extent, and in the reduction of tree populations. The Last Glacial and the Early

Holocene coincided with an abrupt decrease in fossil pollen deposits of walnut in Turkey

(20,000–17,000 BP and 15,000–10,000 BP, Lake Van [75]), Bulgaria (11,103–10,498 BP, Beliya

Kanton [49]), Greece (11,500–8,300 BP, Myrtoon basin [18]) and Italy (11,498–9,445 BP, Lago

di Martignago [76]). Congruent with the evolution of vegetated landscapes, our most-likely

scenario indicated that the cold steppe-type environment of the Early-Middle Pleniglacial

(63,000–29,000 BP) and Younger Dryas period (12,900–11,700 BP) [77–78] may have been the

deciding factor for the progressive fragmentation of walnut populations in the Mediterranean.

Based on the results of this study, despite an increasing amount of evidence for the survival of

tree taxa in central and even northern Europe over the Quaternary [52, 74], we conclude that

walnut persisted in environmentally favourable pockets in the Anatolian plateau, the Balkans

and southern-western Europe over the LGM. However, the detection of few pollen grains of

walnut after the LGM in Northern Czech Republic (10,546 BP, Dolskym), Western Austria

(11,645 BP, Seefelder See; 11,267 BP, Fuchsschwanzmoos), Southern Germany (10,005 BP,

Feuenried), Southern Switzerland (10,399 BP, Lac du Mont d’Orge Sion) and Central France

(10,581 BP, Tourbières des Granges des Chavants; 9097 BP, Marais du Grang Chaumet; 9466

BP Tourbière de Roussy; 9334 BP, Tourbière de Parcay-sur-Vienne) (S1 Table and S1 Video)

might indicate an early spread of walnut at relatively high latitudes (>46˚ N) at the onset of

the Holocene in Europe. Although the presence of re-deposited pollen of Juglandaceae from

the Tertiary deposits can’t be ruled out (for more details see S1 Table), the pollen abundance of
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Juglans starting from 15,000 BP [65] suggested that the putative presence of cryptic refugia of

walnut in the Alps and Central Europe is worth exploring. In addition, the absence of a sharp

genetic differentiation between western and eastern Mediterranean populations, means that

we can’t rule out long-distance gene flow among walnut lineages from different refugia. The

DIYABC analysis confirmed that, in all probability, two subsequent human-mediated events

occurred: admixture between the Anatolian-Turkish pool and natural stands in the Balkans

(4,140–5,643 BP) and between western Europe and Balkan germplasm in eastern Europe

(1,576–2,167 BP). A final population size expansion in northeastern Europe and population

size decline in western Europe were detected in the last five centuries. As proposed for other

cultivated tree species in the Mediterranean, such as Castanea sativa Mill. [79–80] and Olea
europaea [81–82], these findings strongly imply that the modern genetic structure of J. regia in

Europe resulted from the combined effects of expansion from multiple European refugia after

the LGM and human dispersal of walnut germplasm.

Late Holocene human dispersal pathways of walnut in Europe

Our data clearly indicate a contact zone in southeastern Europe where walnut populations

accumulated high genetic diversity as a result of admixture of genetic lineages from the Bal-

kans and western Asia. Although DIYABC analysis only tests instantaneous admixture events

or population size changes [83], we can realistically assume a model of gradual admixture for

these populations. Walnut germplasm might have been imported from Anatolia to southeast-

ern Europe, and then hybridized with autochthonous Balkan trees over several generations

starting from the Early Bronze Age (EBA) (6,000–3,950 BP). Consequently, the general view

that common walnut was introduced into the Balkans from Iran and eastern Turkey by Greek

commerce during the Achaemenid phase (2,500–2,330 BP) must be partially revised [1].

Although the establishment of the Persian Empire corresponded with the maximum expansion

of walnut cultivation across the Irano-Turanian regions [84], fossil pollen evidence (S1 Video)

and our DIYABC inference indicated that Turkey might have acted as a bridge for inter-

regional exchange of walnut germplasm between the Near East and the Aegean region from

the 6th millennium BP onward. The occurrence of non-native oilseed species, such as Lalle-
mantia [85] and Carthamus spp [86], and fruit species such as Punica granatum L. [87] and

Cucumis melo L. [88], in northern Greece and the eastern part of the Thracian plain as early as

5,000–4,600 BP, reflected strong, far-reaching cultural and economic contacts during the EBA

I and II between the eastern Mediterranean and adjacent regions (Anatolian cultures, phases

of Troia I and IIa). The sea- and inland-based trading networks associated with bronze tech-

nology of the Aegean-Anatolian circuit prospered and promoted the exchanges of prestige

goods, ideas and new technologies (e.g. wheel-made pottery, metallurgy and agriculture) [89].

However, although barter was the usual form of trade, and crops were often documented as a

means of payment [90], the motivation of human-mediated long distance dispersal of walnut

across its native region of southeastern Europe needs further investigation.

As outlined for the distinct Beysehir Occupation Phase (~ 3,200–1,350 BP) [9], the massive

climatic fluctuations that occurred from ~ 5,300 to 2,800 BP led many Bronze Age populations

to adopt new agricultural strategies in southeastern Europe [23]. Repeated agro-arboricultural

reorientations may have been required within the Aegean basin, and thus active transport and

plantation of walnuts from the humid highland regions of eastern Anatolian and Iran where

cultivation was less affected by climatic changes [23]. Walnut trees we sampled in the Balkans

were nearly indistinguishable morphologically from remaining European trees, with the

exception that some Balkan trees only bore fruit terminally (European type), while others had

intermediate and lateral (Asian type) bearing habits (M.E Malvolti, S. Mapelli pers. obs.). We
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postulate that high-yielding lateral bearing forms of walnut were repeatedly introduced from

western Asia to Greece and the Thracian plain during the Bronze Age, and later during the

Hellenistic period (Alexander the Great ~2,273BP), promoting gene flow between lateral and

terminal bearing tree types.

Another important feature that may have contributed to dispersal, planting and mainte-

nance of walnut across Eurasia is the high quality of its wood. Unfortunately, the history of

tree plantation and forest management in Asia and the eastern Mediterranean is poorly docu-

mented [6]. Conversely, it is very well known that walnut plantations for fruit [13] and timber

production [91] were integral parts of Roman agro-forest management across Europe. Our

genetic analysis, together with the time sequence of pollen presence (S1 Video), confirmed

that the main expansion of J. regia throughout Europe occurred after 2,500 BP, and was likely

the result of walnut’s widespread use during Greek and Roman periods [11, 13, 92–93]. After

the consolidation of the Roman Empire between the 1st and 2nd centuries CE (1,850–1,750

BP), the cultivation of walnut was incorporated into the local agricultural tradition of north-

central Europe, losing its character of exclusivity as an imported luxury food [94]. In particu-

lar, with military campaigns (e.g. the conquests of Emperor Augustus (2,030–1,986 BP)), and

the subsequent reorganization in Roman provinces of north-central European regions, the

western (Italy, Spain and France) and eastern (Macedonia and the Balkans) halves of Europe

were united by overland routes [95]. Therefore, as our genetic model indicates, the Pannonian

basin (modern Hungary and Slovakia) became a crossroads of European cultures, promoting

contacts and hybridization between walnut genetic lineages from western Europe and the Bal-

kans. Subsequently, after the decline of the western Roman Empire (1,600 BP) and tumultuous

Migration Period (1,700–1,100 BP), and as a consequence of urban development and increas-

ing human population density, the Late Middle Ages (900–500 BP) marked a favorable period

for fruit cultivation and agriculture in Hungary and its adjacent regions, leading to a local wal-

nut population expansion [96]. Conversely, from ~ 200 BP, we detected signs of decline in the

effective population size of walnuts collected in Italy, Spain and France. During the early 19th

century, forests of many western European countries were substantially cleared, followed by

the introduction of intensive agriculture based on new crops such as the potato and other

changes precipitated by the Industrial Revolution [64]. This strong human pressure resulted in

a progressive depletion of walnut genetic resources in western Europe [47].

In conclusion, our results demonstrate that the present spatial genetic structure of walnut

in Europe resulted from the combined effects of expansion and contraction from multiple

refugia after the LGM and the human dispersal and management of walnut over the last 5,000

yr. The evolutionary history of walnut is tightly linked with human history during the Late

Holocene, making it a permanent feature of the economic, cultural and rural heritage of

Europe.

Supporting information

S1 Fig. Geographic location of 91 common walnut populations collected across Eurasia.

Kyrgyzstan (1–9), Uzbekistan (10–26), China (27–32), Pakistan (33–34), Tajikistan (35), Iran

(36), Georgia (37–38), Turkey (39–40), Greece (41–44), Romania (45), Moldova (46), Hungary

(47–56), Slovakia (57),France (58–61), Spain (62) and Italy (63–91).

(TIF)

S2 Fig. Bayesian inference of the most probable number of clusters and sub-clusters for 91

walnut populations. Bayesian Inference of (a) K, the most probable number of clusters, based

on microsatellite analysis of all 2,008 common walnut samples, (b) K’, the most probable num-

ber of sub-clusters, based on microsatellite analysis of 217 common walnut samples of cluster
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1, (c) K”, the most probable number of sub-clusters, based on microsatellite analysis of 280

common walnut samples of cluster 2, and (d) K”‘ the most probable number of sub-clusters,

based on microsatellite analysis of 929 common walnut samples of cluster 4 using STRUC-

TURE software [39]. Log-likelihood value of data L(K) as a function of K averaged over six

replicates and second order of change of the log-likelihood of the data (ΔK) as a function of K,

calculated over six replicates [40] was reported for each analysis.

(TIF)

S3 Fig. All scenarios tested in stages 1–2 of DIYABC analysis. All scenarios tested in stage 1

(a) and stage 2 (b) of DIYABC analysis. In these scenarios, N# refers to effective population

size of each corresponding gene pool, and t# refers to time-scale in terms of the number of

generations (more details for population parameters and models in S3 and S4 Tables). Poste-

rior probability (P) of each scenario and its 95% confidence interval of P (in brackets) com-

puted using a direct (P1) and logistic regression (P2) approach are provided under each

scenario. The most likelihood scenario for each stage is marked with a red rectangle.

(TIF)

S1 Table. List of 450 fossil pollen sites from Eurasia considered in this study. The geo-

graphic coordinates in decimal degrees (Latitude, Longitude), early presence (1700–11.923 Ka

BP), first detection of discontinuous and continuous occurrence of Juglans-type fossil pollen

(radiocarbon-dating) during the Holocene and the related citation (a) and the presence/

absence of Juglans-type fossil pollen and its classification (discontinuous, continuous, in

expansion, in contraction and not recorded) in each selected time interval (b) were recorded

for each site.

(PDF)

S2 Table. Description of 91 common walnut populations sampled in Eurasia. Number of

samples (N), geographic coordinates (Lat, Long) and elevation above sea level (Elev) for 91

common walnut populations collected in Eurasia.

(DOCX)

S3 Table. Parameters used for DIYABC analysis. Population pools and the prior distribu-

tions of the parameters used for the two stages of DIYABC analysis.

(DOCX)

S4 Table. Scenarios considered in the two stages of DIYABC analysis. Description of the

scenarios of common walnut expansion across Europe considered in the two stages of

DIYABC analysis.

(DOCX)

S5 Table. Genetic characterization of 14 microsatellite loci for 91 common walnut popula-

tions. Total number of alleles (A), the effective number of alleles (Ae), observed (Ho) and

expected heterozygosity (HE), polymorphic information content (PIC), and the unbiased esti-

mate of Wright’s fixation indices, within-population inbreeding coefficient f (FIS), total-popu-

lation inbreeding coefficient F (FIT) and among-population genetic differentiation coefficient

θ (FST), among-population genetic differentiation coefficient calculated on allele frequencies

adjusted for null allele estimates FST (null) and the estimator of actual differentiation Dest, [29]

are shown are for each locus.

(DOCX)

S6 Table. Genetic diversity of 91 common walnut populations. Mean number of alleles per

locus (A), effective number of alleles (Ne), allelic richness (Rs) and private allelic richness
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(PAR) standardized to eight individuals from the original number of trees per population,

observed (HO), expected (HE), and unbiased expected heterozygosity (UHE) and inbreeding

coefficient (FIS) are shown.

(DOCX)

S7 Table. Bottleneck analysis of 91 common walnut populations sampled across Eurasia

using 14 SSR markers. Wilcoxon’s signed-rank’ test [35], shifted allele distribution analysis

[37] and the M-ratio test [38] for each walnut population are reported.

(DOCX)

S8 Table. Mean percentage of membership (Qi) of each common walnut population

inferred by STRUCTURE. Percentage of membership (admixture proportion-Q) of each pre-

defined common walnut population in each of the four (K = 4) clusters, two (K’ = 4) sub-clus-

ters for cluster 1, two (K” = 2) sub-clusters for cluster 2 and two (K”‘ = 2) sub-clusters for

cluster 4 inferred by Bayesian approach using STRUCTURE software (Pritchard et al., 2000).

Q-values greater than 0.75 are reported in bold.

(DOCX)

S9 Table. Model checking of the most likely scenario inferred in the first and second stage.

Model checking of the most likely scenario inferred in the first stage (scenario 5a) and in the

second stage (scenario 6b) of DIYABC analysis. Deviation of summary statistics computed for

the observed dataset from the posterior predictive distribution of the most likely scenario is

given as a proportion of data sets simulated from the posterior having a value lower than the

observed dataset (Ssimul. < Sobs.).

(DOCX)

S1 Video. Distribution of Juglans-types fossil pollen in Europe before the LGM and during

the Holocene. Distribution of the radio-carbon dated Juglans-types fossil pollen in Europe

and western Asia before the LGM and during the Holocene.

(MOV)
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