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Abstract

Many tetraplegics must wear wrist braces 
to support paralyzed wrists and hands. 
However, current wrist orthoses have limited 
functionality to assist a person’s ability to 
perform typical activities of daily living 
other than a small pocket to hold utensils. 
To enhance the functionality of wrist 
orthoses, gesture recognition technology 
can be applied to control mechatronic tools 
attached to a novel fabricated wrist brace. 
Gesture recognition is a growing technology 
for providing touchless human-computer 
interaction that can be particularly useful 
for tetraplegics with limited upper-extremity 
mobility. In this study, three gesture 
recognition models were compared—two 
dynamic time-warping models and a 
hidden Markov model—in terms of their 
classifi cation accuracy of gestures from a 
gesture lexicon known to be accessible to 
tetraplegics. Gesture data from participants 
with and without spinal cord injuries was 
collected using a prototype wrist orthosis. 
Leave-one-subject-out cross-validation was 
used to develop a user-independent gesture 
recognition library. The trained models 
were then tested using a combination of data 
from both populations and data separated 
by population. The classifi cation accuracy 
and classifi cation time were computed and 
compared to determine the optimal gesture 
recognition model.
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INTRODUCTION
In the United States alone, there are an estimated 
280,000 people aff ected by spinal cord injuries 
(SCIs), with approximately 17,700 new cases 
appearing each year (National Spinal Cord Injury 
Statistical Center, 2019). Out of this population, 
approximately 59.9% (167,720 people) have 
complete or incomplete tetraplegia, more 
colloquially known as quadriplegia (National Spinal 
Cord Injury Statistical Center, 2019). Tetraplegia 
is characterized by severe loss of muscular 
function or paralysis in all four limbs. This causes 
major diffi  culties in a person’s ability to perform 
fundamental activities of daily living such as 
washing, eating, and engaging in leisure activities.

A side eff ect of tetraplegia is muscle atrophy, which 
along with nerve damage greatly reduces a person’s 
ability to properly stabilize the wrist; wrist braces, 
also called wrist orthotics, are commonly used to 
provide external stabilization to the wrist (Suresh, 
Manda, Marrero, Jacob, & Duerstock, 2017; Suresh, 
Madrinan Chiquito, Manda, Jacob, & Duerstock, 
2016). Current wrist orthoses are primarily designed 
for support and have few assistive abilities to help 
users perform activities of daily living. The few 
abilities these braces provide are mostly limited 
to palm cuff  pockets into which eating utensils, 
pens, or toothbrushes can be slotted. The addition 
of gesture-controlled modules onto a wrist orthosis 
would greatly increase a person’s ability to perform 
activities of daily living, such as using a fl ashlight or 
laser pointer, remotely operating a computer program 
using Bluetooth, swiping a key card, and signaling 
for help.

Prior work was conducted to develop a 3D printed 
wrist brace (Figure 1) equipped with a laser pointer 
that could be operated using a trained gesture 
recognition system (Suresh et al., 2017; Suresh et al., 
2016). An initial gesture recognition system was 
tested and was able to detect gestures performed by 
an individual. The system performed this detection 
by comparing gathered gesture data with presaved 
user-specifi c gesture data sets and was designed for 
use by a single user.

While this setup provided users with the fl exibility to 
choose their own gesture patterns, an individualized 
wrist brace training regimen is time-consuming 
for the end user. By removing the user-dependent 
training step and replacing it with a user-independent 
gesture recognition system consisting of predefi ned 
gestures, no training by the end user would be 
required before use of the brace. Multiple machine 



37

Com
parison of M

achine Learning M
odels

learning algorithms can perform user-independent 
gesture recognition; however, a high-recognition 
accuracy is necessary to ensure no inadvertent 
activation of the wrist brace. The objective of this 
study is to determine which machine learning model 
has the highest recognition accuracy while also 
considering the low computational power of the 
wrist orthotic systems.

RELATED WORK
The gesture recognition system implemented in 
the wrist brace incorporates data gathered from a 9 
degree of freedom inertial measurement unit (IMU) 
(Suresh et al., 2017; Suresh et al., 2016). An IMU 
was selected as the data collection method to allow 
for long-term daily use in multiple environments 
(i.e., inside and outside) and to ensure portability 
and comfort by the user. Other notable methods of 
gesture recognition, such as computer vision and 
electromyography, currently fail to best fulfill these 
requirements (Gupta, Chudgar, Mukherjee, Dutta, 
& Sharma, 2016; Hussain & Harun-Ur Rashid, 
2012; Liu, Zhong, Wickramasuriya, & Vasudevan, 

2009; Zhang et al., 2011). Computer vision–based 
systems are unwieldy and require nontrivial amounts 
of computational power to return accurate results 
(Hussain & Harun-Ur Rashid, 2012; Liu et al., 
2009). These systems are also highly sensitive 
to environmental conditions such as inconsistent 
lighting and variable background colors, which 
inhibits outdoor use (Chakraborty, Sarma, Bhuyan, 
& MacDorman, 2017; Zhang et al., 2011). Both 
wet and dry electrodes used for electromyography 
recordings have issues with skin irritation after 
long-term use (Laferriere, Lemaire, & Chan, 2011; 
Searle & Kirkup, 2000; Yamagami et al., 2018). Wet 
electrodes have a period of a few hours before skin 
irritation and signal issues occur due to the drying of 
the electrode gel, and dry electrodes can have large 
artifacts in the recorded data due to large movements 
(Laferriere et al., 2011; Searle & Kirkup, 2000; 
Yamagami et al., 2018).

Gesture Recognition Algorithm
This research compared three different machine 
learning models: two dynamic time warping (DTW) 
models and a hidden Markov model (HMM). 
DTW models have been used previously in gesture 
recognition systems with accurate results (Cheng 
& Zhou, 2019; Hussain & Harun-Ur Rashid, 
2012; Liu, Wang, & Ma, 2017; Liu et al., 2009). 
DTW recognizes gestures by computing the total 
minimum difference between the two time series 
data samples, even when the samples are not 
aligned or of the same length (Gillian, Knapp, & 
O ‘modhrain, 2011). When the minimum distances 
between the recorded gesture are calculated against 
a large data set of prerecorded gestures, the lowest 
minimum difference can be used to determine 
the gesture performed. This method of gesture 
recognition, referred to here as Original DTW, was 
used in prior versions of the wrist brace and is being 
used in this study as a baseline for comparison 
(Suresh et al., 2017; Suresh et al., 2016).

Another approach for utilizing DTW for gesture 
recognition is to compute a template for each gesture 
that is then used for comparison purposes instead 
of comparing the test sample with every sample 
in the data set (Gillian et al., 2011). A template for 
each gesture is produced by comparing the sample 
data among itself until the piece of sample data with 
the smallest total difference is found and identified 
as the gesture template. The creation of a template 
drastically reduces the amount of comparisons 
required to make a gesture determination, as it only 
requires a single comparison for each gesture that in 
time will detect a gesture match.

Figure 1. Wrist brace data collection device.
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HMM, another widespread algorithm used for 
gesture recognition, calculates the probability that 
a future state or event will occur based on a prior 
state or event (Sutton & McCallum, 2010). For time 
series data, such as data from an IMU, this ability 
to determine the probability of a state occurring 
can be used to determine the overall probability 
of a time series data sample matching the trained 
model. This ability has led to HMMs being used 
in gesture recognition, as they can quantify the 
probability that a recording from the IMU matches 
a specific gesture pattern (Liu et al., 2009; Zhang et 
al., 2011).

METHODS

Gesture Specifications

A predefined set of six gestures is used in this study 
(shown in Figure 2). The development of this gesture 
lexicon is based on the lexicon presented by Jiang, 
Duerstock, and Wachs (2014), which is designed 
specifically for tetraplegics and considers their 
physical constraints, including motion fluidity and 
user fatigue. Specifically, the gesture lexicon was 
modified by combining the two gestures “upward” 
and “downward” into a single “up-down” gesture, 
as shown in Figure 2 (Jiang et al., 2014). The 
“leftward” and “rightward” gestures were combined 
into an “in-out” gesture, as shown in Figure 2. 
These two modified gestures, up-down and in-out, 
allow orthosis users to start and return their arms 
to a position of rest before and after the gesture 
was performed, which alleviates strain and fatigue 
(Palaniappan & Duerstock, 2019). The gestures 
also provide for a more fluid arm motion away and 
toward a person’s body.

Figure 2. Revised gesture lexicon (Jiang et al., 2014).

Data Collection and Analysis

Raw IMU recordings for each of the six gestures 
were gathered from 14 participants, of whom 11 
were able-bodied and 3 had cervical level SCIs. 
Participant consent was obtained before commencing 
data collection using consent forms approved 
by the Purdue Institutional Review Board (IRB 
#1802020274). Due to technical issues during data 
collection, the majority of data from 7 participants 
was corrupted and unable to be analyzed. Therefore, 
for this study, only data from the uncorrupted 5 able-
bodied and 2 SCI participants was analyzed.

Setup

Participants were asked to wear a 3D printed 
wrist brace for data collection (see Figure 1). 
An LSM303DLHC IMU (“LSM303DLHC: 
e-Compass; 3D accelerometer, 3D digital magnetic 
sensor, ultra compact, high performance, I2C, SPI 
interfaces; STMicroelectronics,” n.d.) was mounted 
on the brace to gather acceleration data from the 
participant’s motions. The data was stored on a 
Raspberry Pi Zero W (“Buy a Raspberry Pi Zero 
W—Raspberry Pi,” n.d.) which was also mounted on 
the wrist brace. All collected data was transferred to 
a desktop computer for analysis and training of the 
machine learning models.

Procedure

Participants were provided with a wrist brace 
and were instructed to perform 15 iterations of 
the 6 gestures described above for a total of 90 
gestures. These gestures were described, shown 
through a graphic, and demonstrated before the 
user commenced testing. The participants were 
then instructed to perform 15 iterations of the 6 
gestures described above for a total of 90 gestures. 
As performing multiple gestures in a row was known 
to be fatiguing, the participants were allowed to 
set their own pace and rest as long as they wished 
between gestures. To allow for this and to test a real-
use activation scenario, an accessible button was 
used by the participants to initiate the data collection 
time period for each gesture. Each participant 
required between 30 and 90 minutes to perform all 
90 gestures.

Data Analysis

The data was analyzed in a leave-one-out cross-
validation method to determine the overall 
accuracy of each algorithm. The leave-one-out 
cross-validation methodology determines overall 
accuracy by compiling a complete set of data, 
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taking out a single gesture recording, training the 
machine learning models with the rest of the data, 
and then testing the accuracy of the machine learning 
model against the single removed set of data. This 
process is then repeated until all gesture recordings 
in the data set have been removed and compared. 
Confusion matrices, such as the one shown in 
Figure 3, are common modalities to show the overall 
accuracy of a machine learning model. The model 
with the most matches along the central diagonal 
(indicating correct matches) is the most accurate. 
Accuracy can also be calculated from these results 
on a scale of 0 to 1 using the formula

where ACC is the accuracy, TP is the number of true 
positive values, TN is the number of true negative 
values, and Total Sample Size is the total number of 
samples classifi ed (Saito & Rehmsmeier, 2015).

RESULTS
As can be seen in Figure 3, Original DTW has 
the highest overall accuracy, with a score of 0.9, 
compared to HMM (Figure 4), with an overall 
accuracy of 0.63, and the Template DTW model 
in Figure 3, with an overall accuracy of 0.26. It is 
important to note that the overall accuracy of the 
model does not necessarily correlate to the accuracy 
for each gesture and instead provides an approximate 
accuracy for the model as a whole. For example, in 
the Original DTW confusion matrix (see Figure 3), 
there is a bias to incorrectly labeling motions as 
the up-down motion. This bias can also be seen 
in the HMM, although there is a bit less of a bias. 
The Template DTW model does not show a trend 
favoring mislabeling a single motion.

As the motion sensor for the wrist brace is being 
developed specifi cally for people with tetraplegia, an 
analysis was run to diff erentiate the accuracy between 
the able-bodied and SCI populations. As with the 

(TP + TN)

Total Sample Size
ACC = 

Figure 3. Original DTW and Template DTW confusion matrices.

Figure 4. HMM confusion matrix.
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general analysis, the models ranked the same for 
accuracy, with Original DTW achieving the highest, 
HMM landing in the middle, and Template DTW 
having the lowest accuracy. For Original DTW, the 
able-bodied population had an accuracy of 0.84, and 
the SCI population had an accuracy of 0.62. Figure 5 
demonstrates the confusion matrix results for both 
populations. HMM, which ranked in the middle, 
had an able-bodied accuracy of 0.64 and an SCI 
accuracy of 0.52. For Template DTW, the able-bodied 
accuracy was 0.26, and the SCI accuracy was 0.21. 
For all of these models, the accuracy of the able-
bodied population most represented by the overall 
accuracy of the model was higher than that of the SCI 
population. These results are summarized in Table 1.

The time that the gesture recognition system used 
to distinguish a gesture was calculated. To evaluate 
a use case for the gesture system, the time from 
gesture performance to classification was measured, 
assuming the system had already been pretrained. 
Table 2 shows the average time in seconds required 
to classify a gesture of any type: Original DTW 
performed poorly compared to both Template 

DTW and HMM. Template DTW and HMM 
were, however, on par with the amount of time to 
recognize a gesture.

DISCUSSION
In this study, Original DTW had the highest accuracy, 
HMM had middling accuracy, and Template DTW 
had the lowest accuracy. Template DTW possibly 
had the lowest accuracy due to the variance among 
gestures performed by different participants. If there 
is a large amount of variance, this variance would 
lead to inaccurate templates being created for each 
gesture. Additionally, during the template creation 
process, templates could have been created that were 
matched to multiple gestures instead of a single 
gesture due to similarities between the templates. 
This template creation process would throw off the 
gesture determination by having the templates not be 
well differentiated between gestures.

For Original DTW and HMM, there is a clear bias 
toward identifying certain gestures above others. 
This indicates that there may be many similarities 

Figure 5. Split population original DTW confusion matrices.

Model Able-Bodied Accuracy SCI Accuracy

Original DTW 0.84 0.62

HMM 0.64 0.52

DTW Template 0.26 0.21

Table 1. Accuracy of split population models.

Model Average Time (sec) Standard 
Deviation 
(sec)

Original DTW 2.25 1.71

Template DTW 0.016 0.00068

HMM 0.040 0.0048

Table 2. Computational time for gesture recognition.
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between the gestures performed by the participants 
that cannot be easily differentiated with these 
models. For example, in Original DTW (see 
Figure 3) and HMM (see Figure 4), there is a clear 
trend of incorrectly identifying gestures as up-down. 
As many of the motions have vertical components to 
them, this could indicate that the vertical motion of 
multiple gestures is detected as being similar, which 
skews the model toward predicting the motion as up-
down.

When comparing the accuracy between the 
population split models, there is a stark contrast 
between the able-bodied population and the SCI 
population. The SCI population sees a lower overall 
accuracy compared to the able-bodied population. 
The main reason for this lower accuracy is due to 
the smaller sample size of the SCI population. There 
were only two data sets used in analysis for the SCI 
population compared to the five used in analysis 
for the able-bodied population. A larger sample size 
would increase this accuracy by allowing for better 
training of the model.

CONCLUSION
Three machine learning models for gesture 
recognition were evaluated for effectiveness in the 
creation of a user-independent gesture recognition 
library for tetraplegics. These three models—
two DTWs and one HMM—were evaluated for 
accuracy of gesture recognition and time required to 
recognize a gesture. While Original DTW and HMM 
performed well in both a split population and a 
combined SCI and able-bodied population, Template 
DTW did not perform well in either scenario. This 
indicates that Original DTW or HMM would be best 
used for the creation of a user-independent gesture 
recognition library. Original DTW, while having 
the highest computational time by a wide margin, 
had the greatest accuracy. Therefore, Original DTW 
is currently suggested as the best model for use in 
the creation of a user-independent gesture library. 
All of the models could be improved by gathering 
a larger data set of gesture data from the SCI 
population, thereby removing the nuances inherent 
in each gesture and producing a more robust gesture 
library. Through the development of a more robust 
model, incorrect classification of gestures should 
decrease, which will increase the accuracy of the 
models explored here. Future work should focus on 
decreasing the computational load while maintaining 
accuracy for the Original DTW algorithm. This 
should be done either by improving the template 
version of the algorithm or by optimizing the 
Original DTW algorithm. Focusing on reduction 

of computational load will decrease the gesture 
recognition time and increase the usability of the 
wrist brace by providing a more enjoyable user 
experience.
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