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EXECUTIVE SUMMARY

Introduction

INDOT implements several hundred highway projects

annually. One of the unintended (and adverse) consequences of

road work is the establishment of work zones, or full or partial

closure of certain road links, and the subsequent impairment

of network connectivity during the construction season. The

temporary reduction in network connectivity can lead to reduced

mobility (resulting in higher road user costs in the form of delay,

safety, and inconvenience) and decreased accessibility to busi-

nesses (resulting in driver frustration, business disruption, and

reduced economic production and productivity). The user costs

incurred during highway construction can be significant, particu-

larly where the affected links have very high traffic volumes or

offer few opportunities to detour. Delay also inflicts costs on the

non-traveling public, such as when it is necessary to reroute school

buses in communities. Delay-related costs also impact the traveling

public and shippers of raw materials and finished products. In

some cases, construction-related disruptions adversely impact

adjacent businesses. In Lafayette, Indiana, for example, the local

Journal and Courier newspaper (J&C, 2016) reported that the

city’s road projects not only increased worker commute times but

also impaired access so severely that some companies were being

put out of business. The Rohrman Group, a prominent local car

dealer, threatened to sue INDOT, and Wabash National, a key

manufacturing employer in the state, expressed serious concerns

about the traffic situation (Bloyd, 2016). If this trend continues,

such incidents can result in adverse public relations for INDOT.

The Indianapolis Business Journal (IBJ, 2019) reported that a

$15,000,000 road-widening project in Westfield, Indiana, would

disrupt downtown businesses when the construction project

commences in 2022. Addressing this problem must be preceded

by the recognition that a given set of projects need to be imple-

mented in a given construction season, and multiple combinations

of projects must be scheduled for implementation at specific time

slots. The challenge is to select the optimal combination of projects

(start and end dates) within a specified construction season and to

establish the criteria upon which INDOT can establish the most

appropriate project schedules. Assuming that there is no difference

in agency cost across the different candidate sets of project

schedules, the user cost associated with each schedule can be used

as a basis to identify the best set of schedules. User cost, in turn, is

strongly associated with the network connectivity (or impairment

thereof) associated with each schedule.

The main objective of this study was to develop a methodology

that INDOT’s Construction and Contracts Division can use to

evaluate the systemic impact of work zones on a network. For this

purpose, a software tool was developed that can (1) assess the user

and community consequences of any given construction schedule

in an area or region of interest and (2) optimally schedule a given

number of projects within a specific construction season. This

tool is expected to help INDOT quickly evaluate the network

connectivity (and hence the user delay consequences) of alter-

native sets of project schedules.

Findings

Case studies were used in this project to illustrate the developed

methodology. The optimal schedules developed using the meth-

odology were checked using data from past projects and were

validated by comparing the reduction in user costs to actual past

construction schedules. The case study results showed that,

compared with INDOT’s current plan, the developed framework

would greatly reduce the user and business disruption costs

associated with network-wide road construction plans by provid-

ing optimal construction schedules.

Implementation

INDOT will be able to use the developed network-level project

scheduling methodology and software tool to plan various road

construction projects in a given district while considering user and

business disruption costs. The developed tool has the potential to

help INDOT avoid or minimize project implementation problems

associated with users and businesses, such as user complaints

associated with increased travel time and business complaints

about the impact of road construction projects with work zones in

the network.
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1. INTRODUCTION

Highway infrastructure is generally intended to
enhance mobility and accessibility, and the numerous
road projects carried out at various years and at various
locations in the state, help the highway agency pursue
this goal incrementally and successfully. However,
implementation of infrastructure projects can increase
road user and community costs if they are not planned
and implemented in a systematic manner. This chapter
presents the background information, motivation, objec-
tives, and scope of the study.

1.1 Background Information

One of the unintended (and adverse) consequences
of roadwork is the establishment of work zones or full
or partial closure of certain road links and subsequent
temporary impairment of the network connectivity
during the road construction season. The temporary
impairment of network connectivity can in turn lead to
reduced mobility (resulting in higher user costs of delay,
safety, and inconvenience) and decreased accessibility
to business locations (resulting in driver frustration,
business disruption, and reduced economic production
and productivity).

The costs incurred by road users during highway
construction and other projects can be very significant,
particularly where the affected links have very high
traffic volumes or little opportunity to detour. User-
delay unit costs can range from $5.08/hr to $17.34/hr
(2004 dollars) for passenger cars, and $10.16/hr to
$66.86/hr (2004 dollars) for trucks (Sadavisan &
Mallella, 2015). For example, if 20,000 drivers suffer
30 minutes of delay daily over a 90-day work zone
duration, considering $40/hr as the travel time cost, the
overall user delay cost could be as high as $36 million
for that link alone. This estimate, however, does not
include the costs of reduced safety, discomfort, and user
inconvenience or lost business sales. The user cost is not
only a metric for measuring the impacts on the roadway
users but also serves as a surrogate for assessing the
community costs (i.e., the impact of roadway construc-
tion/disruptions on the affected communities). Com-
munity costs could be expanded to go beyond the
business costs to include noise costs, and how noise is
generated by the traffic to mitigate the social and health
problems associated with the traffic noise (Dare et al.,
2012; Woldemariam et al., 2012a,b).

It is important to point out the difference between
ex ante and ex poste studies that investigate the impact
of highway project work zones. Ex ante studies are
conducted before the project is implemented and often
use network simulation or other modeling tools to pre-
dict the user delay. On the other hand, ex poste studies
are performed when the road construction is taking
place and the analyst measures, in real time, the delays
encountered by the road users. The present study is
intended to be an ex ante study. The scope is expected
to cover city, county, region, or state levels.

1.2 Motivation for the Present Study

Delay-related costs impact the traveling public and
shippers of raw materials and finished products. In the
City of Lafayette, for example, the Journal and Courier
(J&C, 2016) reported that the city’s road projects not
only increased worker commute times but also impaired
access so severely that some companies were being
put out of business. The Rohrman Group, a prominent
local auto dealer threatened to sue INDOT, and
Wabash National, a key manufacturing employer in
the state, expressed serious concerns about the situation
(Bloyd, 2016). If this ominous trend continues, it could
cause adverse public relations for INDOT.

To confirm these assertions, the research team
conducted pilot study interviews in West Lafayette,
Indiana to collect feedback from businesses that were
being affected by the State Street Redevelopment Pro-
ject (Plenary Group, n.d.). Seventy-five percent (75%)
of the businesses indicated that they received useful
information and assistance from local authorities and
contractors regarding the project before it began,
during the road construction phase, and after the
project was completed; while 25% of all the respond-
ing businesses indicated that they were somewhat
informed, suggesting that they were not well aware of
the impact of the project on their businesses. Further-
more, 75% of the surveyed businesses responded that
they lost a significant portion of their customer base
(15%–40%) due to the project. Only 25% of the sur-
veyed businesses experienced an increase in customers
due to the project.

These survey results confirmed one of the challenges
to communities that INDOT faces when selecting the
optimal combination of projects based solely on their
start and end dates within a specified road construc-
tion season. Assuming that there is no difference in the
agency cost across the different candidate sets of project
schedules, the user cost associated with each schedule
also needs to be part of the process of identifying the
best set of schedules because the user cost is strongly
associated with the associated network connectivity (or
impairment thereof).

1.3 Study Objectives and Scope

The objective of this study was to develop a metho-
dology that INDOT’s Construction and Contracts Divi-
sion can use to evaluate the systemic impacts of work
zones on a network. Using the developed methodology,
a spreadsheet and visualization tool was developed that
INDOT can use to (1) assess the user and community
consequences of any given road construction schedule in
an area or region of interest and (2) optimally schedule a
given number of projects within a specific road construc-
tion season.

Thus, the deliverables of this study will assist INDOT
in quickly evaluating the network connectivity (and
hence, the user delay consequences) of alternative sets
of project schedules. Numerical and survey-based case
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studies were utilized to illustrate the developed metho-
dology. The methodology was validated in terms of the
reduction of user costs compared to actual past road
construction schedules.

1.4 Report Organization

This report presents the framework for evaluating
the impact of road projects on user cost and community
cost at the network-level. The developed framework
was demonstrated using a case study and the results of
the case study were analyzed to show the importance of
the developed framework.

Chapter 1 presents background information on
INDOT infrastructure projects and associated user
cost, the motivation, the objectives, and the scope
of this study. Chapter 2 provides a literature review
relevant to the research, such as the importance of
network connectivity and accessibility, the economics
of the disruption costs associated with road main-
tenance work zones, and how to manage the work
zone, including project scheduling methods, in order
to minimize such disruption costs. Chapter 3 provides
a detailed description of the research methodology
and discusses each component of the study frame-
work as well as well as the methodology to quantify
the impacts of road construction projects on busi-
nesses and road users. Chapter 4 presents a case study
that was conducted to demonstrate the developed
methodology and an optimal project scheduling
plan using the developed framework and compares
it with INDOT’s current plan. Chapter 5 provides
details on the development of spreadsheet and optimi-
zation tool, explains the user interface components, and
provides guidance on preparing input data and inter-
preting outputs.

2. LITERATURE REVIEW

Maximizing the mobility of system users should be a
high priority in any infrastructure and transportation
project, and the selection of projects should take place
with regard to their impacts on local areas (Sinha &
Labi, 2011). The impacts of network-level scheduling of
road maintenance and rehabilitation projects on user
and business costs should be considered to optimally
plan network-wide construction projects (Miralinaghi
et al., 2019a; Miralinaghi et al., 2020b). This chapter
presents a literature review on road maintenance and
rehabilitation projects and associated concepts such
as road disruption costs, work zone management, and
road construction scheduling methods.

2.1 Road Disruption Costs

The economics of districts and regions and, from
a broader perspective, the economics of a country, is
associated with the efficiency of their transportation
systems. Any disconnection in the network can cause
millions of dollars in revenue losses; and road closures

can cause serious conflicts of interest between the
citizens and their governing agencies.

Salem et al. (2013) performed a comprehensive
evaluation of user costs in pavement construction and
rehabilitation using the initial pavement construction
and maintenance cost as the baseline for finding the
most economically efficient pavement rehabilitation.
However, their approach is unable to provide the most
cost-efficient list of projects since the user costs were
not considered in the analysis.

User costs can be very significant in a pavement’s life
cycle, and hence should be considered in the decision-
making process to ensure the selection of economically
efficient projects.

Roadway maintenance, rehabilitation, and recon-
struction activities impose a significant user cost to the
administration, municipality, society, etc., especially in
view of the increasingly congested roadways world-
wide. Any changes in a road’s pavement condition and
consequently its capacity can cause changes in the road
user costs. The cost of additional travel time or delay,
crashes, operating vehicles in normal situations and
in work zone conditions, and environmental costs, are
among the most important user costs (Lewis, 1999;
Reigle & Zaniewski, 2002). User costs are generally
considered an aggregation of user delay costs, crash
costs, and operating costs (Walls & Smith, 1998).
Disruption to the normal flow of traffic is inevitable
when work zones are created for pavement rehabilita-
tion and construction. The necessity of creating a work
zone is the main cause of delays in the traffic flow and
thus is the major contributor to user costs. The reduced
speed of vehicles required while going through or
approaching a work zone and the time and energy
consumption required to ‘‘catch up’’ to regular speed on
the road are among the main causes of increased user
costs (Jiang, 2001).

The traffic demand, frequency, time, and duration of
work zones, the facility capacity, and the excess mileage
driven due to road closures and detours are among
the crucial factors which should be considered in the
calculation of work zone user costs. These factors
should be included in any life-cycle cost analysis
(LCCA), which is the calculation of the initial life-cycle
costs, the rehabilitation costs, and the incurred user
costs. It has been reported that more than 80% of
the projects related to highway infrastructure in the
U.S perform LCCA; however, there is no promising
evidence that user costs are included in the actual
analyses (Chan et al., 2008). The LCCA including
annual maintenance expenditures could be considered
as part of the agency cost criteria in the problem of
construction scheduling (Woldemariam et al., 2016).
While most of the methods that are used to find the
optimum usage of available funds for the repair and
rehabilitation of infrastructure are agency-based life-
cycle costs without consideration of user costs, the user
costs are in fact known to play a significant role in
projects where heavy traffic is involved. Therefore,
instead of using absolute values for user costs, utilizing

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/25



a weight factor is recommended (Hall et al., 2003).
Quantitative analysis of user costs in the evaluation of
pavement rehabilitation strategies was performed by
the Ohio Department of Transportation (ODOT). A
questionnaire survey of DOTs was used, where LCCA
and the role of life-cycle cost in pavement rehabilitation
strategy selection and the type of pavement rehabilita-
tion alternatives was addressed. Among the 22 agencies
that responded to the survey, 14 agencies did not con-
sider user costs in their selection strategies. The ways
that LCCA was considered in pavement selection also
differed from state to state; for instance, in Michigan,
LCC was the only factor which was implemented in the
pavement rehabilitation selection strategy. Whereas, the
following two-step process was employed in other
states. The first step is to calculate the LCC of all
the alternatives within which LCCAs are not inclu-
ded. The winning alternative is the one with the
lowest LCC; however, if the differences are close to
each other (according to the predetermined percentage

TABLE 2.1
Predetermined
Alternatives

Percentage Values for LCCs for Pavement

State Percentage Values

Michigan

Indiana, Ohio, and Colorado

Washington and Maryland

Louisiana

N/A

10

15

20

values in Table 2.1), then the other factors should be
analyzed subjectively, such as type of pavement in the
vicinity of the project, constructability, weather, drai-
nage, sub-grade, traffic, etc.

New Jersey and Indiana consider the weighted user
costs in a separate category than agency costs in order
to ensure that the agency costs are not overwhelmed
by user costs. User costs are kept at 10% of agency
costs (identified in an ‘‘ad hoc’’ manner) in some project
evaluations by INDOT. New Jersey assumes user costs
as 50%–75% of the agency costs in some project
evaluations (Salem et al., 2013).

The user cost components are as follows: delay,
travel time, and vehicle operating costs. Although the
cost of congestion is a crucial element in the decision-
making process, few agencies have monetized the cost
since identifying universally acceptable values is a diffi-
cult task. U.S DOTs have strived to come up with a
solution to consider unit values as shown in Table 2.2.

The discounted life-cycle costs calculations by Salem
et al. (2013) for a specific project in Warren County in
Ohio are presented in Table 2.3. The rubblize and roll
strategy was chosen as the first-choice strategy, which
includes rubblizing and rolling the existing concrete
pavement (with an overlay of 12.50 of asphalt concrete)
followed by removing the existing asphalt. The user
cost was calculated assuming that two out of three lanes
were open to traffic, the closure hours were set for
8 PM to 6 AM, and the work zone capacity was con-
sidered to be 1,390 vehicles per lane per hour.

TABLE 2.2
Value of Travel Time ($/h)1

State Reference Year Personal Passenger Car Travel Business Passenger Car Travel Trucks

Colorado 1999 17 17 35

Indiana 2004 17 17 35

Louisiana 2005 14.83 23.75 28.58

Ohio 2006 17 17 31.50

Maryland 1996 11.50 18.50 22.50

Michigan 1996 14.83 14.83 26.17

New Jersey 2006 15.21 15.21 25.35

Washington 1996 10–13 10–13 17–24

1Adopted from Salem et al., 2013.

TABLE 2.3
Life-Cycle Cost Calculations for a Specific Project in Warren County in Ohio

Activity

Rubblize and

Roll ($)

Unbonded Concrete

Overlay ($)

Flexible

Replacement ($)

Rigid

Replacement ($)

Discounted

User Costs

Initial Construction 7,707,717 4,817,323 10,177,180 8,689,890

12 Years 246,461 — 246,461 —

22 Years 3,829,717 3,101,531 3,829,717 3,101,531

32 Years — 5,904,234 — 5,904,234

34 Years 2,098,638 — 2,098,638 —

Total 13,882,532 13,823,088 16,351,995 17,695,655

LCC Without User Costs 23,115,293 26,014,438 27,543,667 34,823,591

LCC With User Costs 36,997,825 39,837,526 43,895,662 52,519,246
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2.2 Work Zone Management

A work zone is defined in the 2009 Manual on
Uniform Traffic Control Devices (MUTCD) (FHWA,
2009) as an area on a highway with construction,
maintenance, or utility work activities. Depending on
the type of road maintenance or construction, different
work zone management measures are employed. Temp-
orary traffic control measures, such as the use of
flaggers, traffic signals, barricades, temporary lane mak-
ings, temporary constructed lanes, may be used depend-
ing on the type of work.

It is essential to carefully estimate the capacity of a
work zone to enable the proper work zone TTC mea-
sures to be put in place. Several attempts were made in
the past literature to capture capacities using different
methodologies. Krammes and Lopez (1994) proposed a
base capacity value of 1,600 pcphpl for all short-term
freeway lane closure configurations after examining the
capacity counts at 33 different work zones on freeways
in Texas involving five different lane closure config-
urations. Using non-linear speed-density models, Racha
et al. (2008) calculated work zone capacities on two-lane
roads when one of the lanes was closed for short-term
construction work (less than 24 hours).

Edara et al. (2012) conducted a study on four
different I-70 work zones in urban Columbus, Ohio in
an attempt to show the variability of capacity based
on various methodologies, such as the HCM method,
and also conducted a survey of U.S DOTs in order to
compare the values obtained for the research with the
values they used. Capacity values were computed under
15-minute saturated flow, 85th percentile flows, and
cumulative curve flows (pre-queue discharge flow and
queue discharge flow). Since no pre-queue discharge
flows were recorded in their study, they reported
average capacities of 1,149; 1,267; and 1,301 vphpl for
QDF, 85th percentile flow, and 15-minute sustained
flow, respectively. The authors concluded that the capa-
city values used by U.S DOTs were reasonably higher
than they obtained, and the definition of capacity by
a particular DOT played a major role in the capacity
value obtained. Ng (2012) proposed a stochastic mathe-
matical programming work zone model for a two-lane
to one-lane closure in order to simulate vehicles arriving
at the work zone and to determine an efficient way to
reduce work zone delay.

Contractors and agencies need to figure out how to
assign tight construction spaces to the lanes and the
shoulders, and how this road space allocation could
influence (or could be influenced by) construction sche-
duling. For example, a lane and shoulder optimization
framework developed by Labi et al. (2017) could be
used for this purpose.

2.3 Optimization Approach in Road Construction Project
Scheduling

Optimization methods aim to develop a schedule
of road construction projects such that the planner

achieves the predetermined goals of the minimiza-
tion of total road construction and/or user costs. In the
optimization approach, the two important factors are
the horizon duration to complete the projects and the
extent of the road construction zone (a single highway
or network-wide), which usually depends on the type of
road construction and the goal of the planner. Based on
these factors, the literature can be classified in two
contexts: operation and planning.

2.3.1 Operation Context

The associated literature in this context deals with
road construction projects in a single work zone which
must be finished within a short-term planning horizon
(less than four to five hours). Based on each author’s
focus, these studies can be classified into the following
two groups: dealing with work zone length or dealing
with scheduling:

2.3.1.1 Work zone length. This class of studies
investigated the optimal work zone length during a
short-term horizon. McCoy, Pang, and Post (1980)
proposed a framework to optimize the length of a
work zone on a four-lane highway with a crossover to
minimize the total cost, which included travel delay,
safety, and traffic control costs based on 1979 data
in Nebraska. Martinelli and Xu (1996) estimated the
traffic delay due to freeway work zones where traffic
delay included speed reduction and congestion delays
and concluded that the speed reduction delay depended
on the ADT and the percentage of trucks and further
varied with the terrain condition. They demonstrated
that congestion delay depends on the queue upstream
of a work zone, which increased with the hourly volume
and the truck percentage, and the optimal work zone
length increased with an increase in the ADT and the
length of the project.

McCoy and Mennega (1998) derived an optimal
work zone length for a four-lane highway with a single-
lane closure while aiming to minimize the user and
traffic control costs. The traffic control costs included
the maintenance, relocation, and installation and removal
costs of traffic control devices. Schonfeld and Chien
(1999) optimized the work zone length and traffic control
cycles on a two-lane, two-way highway with one closed
lane considering the minimization of both maintenance
and user costs. They demonstrated that reducing the
work zone length increased the discharge rate and
reduced the user cost, however, the maintenance cost
increased as well. They later optimized the work zone
length for four-lane highways by minimizing the costs
of users, accidents, and agency (Chien & Schonfeld,
2001).

2.3.1.2 Work zone scheduling. This class of studies
dealt with scheduling the work zone construction over a
short time horizon. Chien, Tang, and Schonfeld (2002)
optimized the work zone lengths and schedules for a
two-lane highway maintenance project by minimizing
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the agency and user costs, which included the labor and
equipment idling costs, from which they derived the
optimal maintenance duration and work breaks for
controlling traffic passing through work zones. Jiang
and Adeli (2003) optimized the work zone length and
the start time of the work zone using average hourly
traffic data for a multi-lane highway. By factoring the
lane closures, darkness factor (for nighttime work), and
seasonal variation travel demand, the total work zone
cost, which included user delay, accidents, and main-
tenance costs, was minimized. Chen and Schonfeld
(2004) developed an efficient scheduling and traffic
control plan that minimized the total cost subject to
the start time of project. They divided the project into
smaller work zones and then determined the optimal
start time and length for each work zone. Work
pauses between different successive zones also were
determined. Their study demonstrated that the opti-
mal work zone schedule and length depends on the
average work zone setup cost, idling time cost, and
work zone duration.

Meng and Weng (2013) derived an optimal work
zone strategy from the contractor’s perspective with the
goal of minimizing the total work zone maintenance
cost. Their strategy was subject to two sets of con-
straints per predetermined thresholds regulated by the
highway department: (1) the travel time of trips could
not exceed a predetermined threshold, and (2) the
queue lengths could not exceed predetermined thresh-
olds. The authors proposed an efficient enumeration
method to determine the optimal work zone length and
project start time. Qian and Zhang (2013) assessed the
effects of three alternative plans for a highway con-
struction project in the Sacramento, California metro-
politan area: (1) full closure, (2) partial closure with
regular road construction methods, and (3) partial
closure with efficient construction methods which could
lead to less road construction, yet more expensive, than
the second alternative. The durations were two, six, and
four months in the first, second, and third methods,
respectively. Their results indicated that the first alter-
native led to lower total delay in the traffic network
because partial closure can lead to long queues in the
traffic network. However, the second and third alter-
natives led to lower emissions and vehicle miles traveled.

2.3.1.3 Network-wide scheduling. This class of studies
explored the optimal schedule of multiple short-term
road construction projects in a traffic network. Ma
et al. (2004) developed a hybrid genetic algorithm-
traffic assignment-distributed simulation methodology
to select an optimal lane closure schedule with the
objective of reducing the average total delay of road
users by scheduling lane closures for a few hours at
a time on multiple links of the traffic network. Their
numerical experiments illustrated that the planner
needs to avoid lane closures during the evening to
reduce the delay costs of road users. Cheu et al. (2004)
proposed a hybrid genetic algorithm-simulation schedul-
ing method for the planner who aims to schedule

pavement maintenance projects spanning a few hours to
minimize delays in a traffic network. They assumed that
road users were not informed about road construction
projects and hence did not change their routes. The all-
or-nothing assignment was implemented to obtain the
flows in each link. A microscopic simulation method
was implemented to obtain travel times by capturing the
queueing and lane changing behaviors of road users.
Their numerical experiments indicated that the planner
should not close any lanes during the morning and
evening peak periods under the optimal schedule.

2.3.2 Planning Context

This class of studies aimed to develop optimal sche-
duling of projects over a long planning horizon. This
context dates back to Morine and Esogbue (1971) when
they investigated the optimal sequencing of water supply
projects using dynamic programming. They proposed an
efficient algorithm to solve the problem for large-
scale models developed for urban areas. In this stream
of research, Venezia (1977) implemented a dynamic
programming technique to develop the optimal sequence
of highway construction projects under demand uncer-
tainty. The goal was to minimize the construction costs
of projects assuming that the projects were independent.
Further, they ignored congestion delay and obtained
an optimal solution for an uncongested traffic net-
work. To demonstrate the importance of considering
interdependency among projects, Fernandez and Friesz
(1981) used the optimal control theory to demonstrate
that if the interdependency among different projects was
not factored, the optimal sequence of projects would not
be derived.

While early studies in this approach tackled the prob-
lem using either control theory or dynamic program-
ming, Janson et al. (1991) developed a mathematical
program to develop the selection and scheduling of
route improvement strategies for U.S highway net-
works. The improvements were either to (1) make every
link at least four lanes but without median or control
access or (2) make every link at least four lanes with
median and control access. They proposed two appro-
aches with and without consideration of the interde-
pendencies between route-improvement strategies. In
the first approach, they formulated a multi-period
planning problem where it was assumed that the link
improvements were mutually exclusive. By recognizing
the interdependency of different route improvements,
they developed a heuristic method which ordered and
scheduled different alternatives according to their
benefit-cost ratios. They concluded that their heuristic
method obtained a good solution for a simple highway
network while the optimality of the solution could not
be guaranteed in the proposed heuristics method.

Eldessouki et al. (1998) developed a mathemati-
cal program to investigate the optimal scheduling of
improvement projects for highways where each project
involved either increasing capacity or constructing
highways. In this mathematical program, the goal was
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TABLE 2.4
Summary of Literature Review

Context

Single/Multiple (Network-

Wide) Work Zones Author Determination of:

Operation Work zone length

Work zone scheduling

Network-wide scheduling

McCoy, Pang, and Post (1980)

Martinelli and Xu (1996)

McCoy and Mennega (1998)

Schonfeld and Chien (1999)

Chien and Schonfeld (2001)

Chien, Tang, and Schofeld (2002)

Jiang and Adeli (2003)

Chen and Schonfeld (2004)

Meng and Weng (2013)

Qian and Zhang (2013)

Ma et al. (2004)

Cheu et al. (2004)

Travel delay, safety and traffic control costs

Travel delay and traffic control costs

User and traffic control costs

Maintenance and user costs

User, accidents, and agency costs

Agency and user costs

User delay, accident, and maintenance cost

User cost

Total work zone maintenance cost

User delay cost

User delay

User delay

Planning Network-wide scheduling Venezia (1977)

Fernandez and Friesz (1981)

Janson et al. (1991)

Eldessouki et al. (1998)

Hosseininasab and Shetab-Boushehri (2015)

Shayanfar et al. (2016)

Gong and Fan (2016)

Kumar and Mishra (2018)

Total construction cost

Total construction cost

Total user delay

Total travel time

Total travel time

Total travel time

Total travel time

Road users’ increased travel time

6 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/25

to minimize the total travel time over a few years and
entailed the benefit estimation of each combination of
projects in a traffic network in terms of the travel time
savings considering the road construction cost. They
concluded that if the planner scheduled projects given
a priority solely based on the benefit-cost ratio, there
would be higher delay for road users compared to
system optimal road construction scheduling. Their
enumeration technique to estimate the benefits of a
combination of projects made the proposed algorithm
computationally expensive. Jong and Schonfeld (2001)
developed a genetic algorithm to schedule project invest-
ment planning problems for general purposes, such as
highway infrastructure or waterway systems, without
a specific structure for the objective function. They
applied the model to a waterway system with 20 nodes
and estimated the service delays under different com-
binations of projects using simulation. Later, Shayanfar
et al. (2016) reformulated the objective function as the
total system travel time and integrated it with the genetic
algorithm proposed by Jong and Schonfeld (2001). They
also investigated other metaheuristic methods such as
Tabu Search and Simulated Annealing. Further, they
factored the possibility that a candidate project may
become economically unjustifiable after implementation
of other projects in the same area. These metaheuristic
methods were applied to the Sioux Falls, South Dakota
network. While Tabu Search and Simulated Annealing
outperformed the genetic algorithm in the initial itera-
tions, their convergence rate to the optimal solution was
lower compared to the genetic algorithm. Hence, they
concluded that the genetic algorithm was the most
efficient method for converging to the optimal solution
in these types of problems.

Hosseininasab and Shetab-Boushehri (2015) inte-
grated selection and scheduling projects into a single
optimization problem where the objective was to mini-
mize the total system travel cost in the traffic network.
They factored the resources availability, budget, and
technical limitation constraints and used the genetic
algorithm to derive the near optimal solution for sel-
ecting and scheduling projects. Gong and Fan (2016)
developed an optimization model and solved it using
genetic algorithms to minimize the travel time delay in
the system by deriving the optimal starting date of
projects in the traffic network. These projects led to
capacity reduction for different links in the traffic
network. They assumed that all work zone activities
needed to be completed by a predetermined deadline.
Kumar and Mishra (2018) proposed a two-step metho-
dology to optimally determine the sequence of projects.
In the first step, they determined the optimal capacity
improvement for a set of links. In the second step,
the optimal sequence of projects was determined as the
one which maximized the travel time savings of road
users and minimized their increased travel time due to a
road construction zone. They assumed that the road
construction costs were equally distributable across
periods. There are several other studies that also
investigate the network-level impact of construction
scheduling (Miralinaghi et al., 2019a; Miralinaghi &
Peeta, 2020; Miralinaghi et al., 2020a). See Table 2.4
for a summary of the literature review.

2.4 Summary and Conclusions

Road maintenance and rehabilitation projects can
significantly increase road disruption costs as far as



road users and businesses; but as shown in this chapter,
such impacts currently are not often considered at
the project scheduling stage. Chapter 3 presents the
approach developed in this study to attain a much
needed methodology that incorporates user and busi-
ness costs when planning transportation infrastructure
projects at the network-level.

3. RESEARCH METHODOLOGY

The main research question that was considered in
this study is as follows. How can we quantify the
road user and business costs associated with project
work zones at the network level for a given road
construction season scheduling plan? The methodol-
ogy developed in this study incorporates the impacts
of road construction projects on road users and
businesses and attempts to quantify the impacts
considering various factors that affect the degree of
the impact. In this chapter, this new methodology is
discussed.

3.1 Optimization of Construction Scheduling to
Minimize User and Business Impacts

Scheduling of transportation infrastructure projects
has received significant attention in metropolitan areas.
Although these projects are intended to enhance mobi-
lity and accessibility in metropolitan areas, they cannot
be implemented without establishing short-term and/or
long-term construction work zones with full or partial
closure of roads in the network. Work zones have
several negative impacts on users, such as increased
traffic delays, and on the community when the safety of
the traveling public and construction workers may be
reduced. Road users experience significant traffic delays
during their morning and evening peak period commu-
tes. For example, the congestion delay cost rose to
$115 billion in 2011 compared to $24 billion in 1982
(Sadasivan & Mallela, 2015). Based on a Federal High-
way Administration (FHWA) 2004 report, 10% of
traffic delay is due to highway construction work zones.
Furthermore, in 2015, more than 96,000 accidents were
reported to have occurred in the U.S due to construc-
tion work zones, which was a 42% increase since 2013
(National Highway Traffic Safety Administration,
2014). Therefore, to minimize the negative impacts
associated with work zones, it is essential to develop a
framework that helps minimize those impacts through
scheduling construction work zones.

The associated literature in this context can be
classified into two groups based on the duration of
projects. The first group deals with scheduling projects
for a few hours at a time (e.g., two hours) or few days
(e.g., two to three days) (Cheu et al., 2004; Chien et al.,
2002; Daganzo, 1985; Jiang & Adeli, 2003; McCoy
et al., 1980; Meng & Weng, 2013; Schonfeld & Chien,
1999).

The second group deals with projects requiring a few
months (e.g., two months). This group can be further

classified into two subgroups depending on the goal
of the central planner. The first subgroup schedules the
projects to minimize the impact on users. While early
studies in this field tackled the problem using either
control theory or dynamic programming, Janson et al.
(1991) formulated a mathematical program to schedule
network improvement strategies for U.S highway net-
works with the goal of minimizing the total user delay.
The network improvement strategies of this program
are either to (1) make every link at least four lanes but
without median or control access or (2) make every link
at least four lanes with median and control access. The
authors’ heuristic method provides a good solution for
a simple highway network with few highways and
intersections while the optimality of the solution cannot
be guaranteed.

3.1.1 Formulation of Optimal Project Scheduling
Problem

In this study, the optimal project scheduling problem
is formulated as a bi-level model. Several transporta-
tion problems are modeled using the bi-level model
(Miralinaghi & Peeta, 2016; Miralinaghi & Peeta,
2018; Miralinaghi, 2018; Miralinaghi & Peeta, 2019;
Miralinaghi et al., 2019b; Miralinaghi & Peeta, 2020).
In the upper-level, the planner’s goal is to schedule road
construction work zones to minimize the impacts on
both users and community. The goal, which is related
to user impact, is to minimize the total user delays in
the traffic network. When considering the impacts on
the community, the planner must consider how road
construction work zones could decrease the accessibility
of road users to socio-economic locations, and subse-
quently can cause decreases in revenue (referred to
as business disruption) to businesses residing in the
work zone influence area. For example, the Indiana
Department of Transportation (INDOT) implemented
a $22 million project in Lafayette, Indiana that caused
a significant reduction in revenue to some businesses
along the road construction work zones. Consequently,
it received significant opposition from neighborhood
businesses. In the lower level of the formulation, road
users make travel decisions regarding their choice of
routes based on the road construction schedule derived
in the upper level. Hence, this study developed a multi-
objective optimization program for scheduling road
construction work zones to minimize the user delays
and business disruption costs.

In this new methodology, the planner divides the
road construction season into multiple periods where
each period is on the order of a few months. The pro-
jects are scheduled subject to budget constraints during
the road construction season, which is on the order of a
few years. It is assumed that the excess road construc-
tion funds in each period can be carried over to future
periods. The set of projects includes road capacity
expansion and rehabilitation projects where the project
durations are on the order of a few months and must be
completed by the end of the road construction season.
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During the construction of road capacity expansion
projects, the road capacities decrease and after comple-
tion of these projects, the capacities increase. For road
rehabilitation projects, the road capacities decrease dur-
ing road construction and return to normal condition
after road construction. The travel demands and road
capacities are assumed to be constant in each period, but
they can vary across periods. The travel demands are
assumed to be elastic and a decreasing function of travel
delay. The road construction scheduling problem is a
mixed-integer nonlinear program with complementarity
constraints. This type of model is very difficult to solve
because they are classified as NP-hard problems. Hence,
a local decomposition method (Zhang et al., 2009) was
chosen to efficiently solve the problem in finite iterations.

3.1.1.1 Upper-level model. In the upper-level of the bi-
level optimization formulation, the planner decides
about the optimal sequence of the road construction
projects to minimize the weighted sum of the travel
delay and businesses disruptions costs due to construc-
tion work zones during the construction season on
the order of a few years (e.g., three years). To do so,
the construction season is divided into t periods on the
order of a few months (e.g., three months). There are
two sets of projects: (1) road capacity expansion to
increase capacity and (2) road rehabilitation with
identical road capacity after completing a project com-
pared to the capacity before implementing the project.
During these projects, there can be full closure lanes or
partial closures with reduced capacity. The project
durations are expressed in the number of periods. For
example, if each period is one month and four months
are required to complete a project, then the project is
said to have four periods. These projects must be
completed before the end of the road construction
season. The construction budget Bt in each period is
known a priori and can vary across periods. The
leftover funds in each period can carry over to future
periods. Descriptions of the mathematical formulation
of the bi-level model is given in Appendix A.

3.1.1.2 Lower-level model. In the lower-level of the bi-
level optimization formulation, road users make their

travel decisions based on the sequence of projects

scheduled in the upper level. The travel demand of each

origin-destination (O-D) is assumed to be an elastic and

decreasing function of the travel delay. Road users

choose the routes with the minimum travel delays

between each O-D pair. The mathematical formulation

of the bi-level model is given in Appendix A.

3.1.1.3 Bi-level model. This section integrates the
upper-level and lower-level models into the bi-level
model. Figure 3.1 presents the structure of the road
construction scheduling problem as a bi-level model. In
the upper-level, the transportation planner determines
the optimal schedule of the road construction projects
based on the traffic network characteristics (e.g., free
flow travel time and capacity), the construction budget,
the projects’ durations and the road users’ decision-
making behavior. Given the optimal project schedules
in the lower-level model, road users make their travel
decisions (i.e., whether to travel or not and route
choice) based on the travel decisions of other road
users, the network travel times, and the schedule of
road construction projects obtained in the upper-level.
The travel decisions are captured based on the user
equilibrium condition which implies that road users
have perfect information about the travel times on
various routes in the traffic network. The perfect infor-
mation of travel times can be gained by road users
using Global Positioning System (GPS) devices and
previous travel history. The mathematical formulation
of the bi-level model is given in Appendix A.

3.1.1.4 Solution algorithm. This section discusses the
development of the solution algorithm to solve the
road construction scheduling problem. As presented in
Section 3.1.1.3 and Appendix A, the proposed bi-level
model for road construction scheduling contains inte-
ger variables and complementarity constraints. This

Figure 3.1 Structure of bi-level model.
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mathematical program with complementarity con-
straints (MPCC) is very difficult to solve since it is
nonconvex and violates the Mangasarian–Fromovitz
constraint qualification (MFCQ) at every feasible point
(Scholtes & Stöhr, 1999).

Various techniques have been proposed in the lite-
rature to solve MPCC, such as non-smooth penaliza-
tion (Scholtes & Stöhr, 1999), smooth regularization
(Bayındır et al., 2007), directly relaxing complementarity
constraints and solving MPCC as nonlinear programs
(Yin & Lawphongpanich, 2007). These techniques
require approximation or relaxation of the comple-
mentarity constraints. However, the proposed MPCC
((6)-(25), (32)) consists of integer variables. Even with
the use of relaxation methods, the MPCC is still a
mixed-integer nonlinear variable, which is extremely
difficult to solve. The mathematical formulation of
the solution algorithm is given in Appendix A.

3.2 Summary and Conclusions

In this chapter, the research methodology was pre-
sented, and the mathematical formulation of the road
construction project scheduling problem was described
as a bi-level optimization problem. Chapter 4 presents
the case study based on the developed methodology.

4. CASE STUDY

A case study was conducted to demonstrate the
application of the developed methodology presented in
Chapter 3. Three options for road construction plans
were considered in the case study: (1) INDOT’s current

plan, (2) the base condition (no-construction) plan, and
(3) the optimal plan. The optimal plan based on the
developed methodology was compared with INDOT’s
current plan to evaluate its benefits over INDOT’s cur-
rent plan. A random plan also was considered to compare
it with INDOT’s current plan. The following sections
present this case study, including the study area, the case
study road network development, the survey administra-
tion, and the key observations from the case study.

4.1 Case Study

The case study centered on the City of Fort Wayne
was conducted to demonstrate the application of the
developed project scheduling framework. Figure 4.1
shows the current project types in the case study area,
which include bridge projects, safety projects, road
projects, and mobility projects. The Fort Wayne traffic
network during the three-year 2017–2019 road con-
struction seasons was considered. The construction
season was divided into nine periods where the duration
of each period was four months.

4.1.1 Location of Projects

A total of 32 projects were selected for the case study
with 20 capacity expansion projects and 12 rehabilitation
projects. The project types that were considered in the
case study included bridge deck overlay and widening,
bridge repair, bridge replacement, repair of pavement
joints, new bridge construction, bridge painting, pave-
ment preventive maintenance, and intersection improve-
ment with added turn lanes.

Figure 4.1 Current project types in the case study area.
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Figure 4.2 Case study network.

4.1.2 Road Network Development

The case study network is shown in Figure 4.2. The
network contains 956 nodes and 252 links. The dotted
regions show the trip origins that were assumed in the
case study. It was assumed that the generated trips
visited businesses located in the case study network.
In practical cases, trips could be generated from each
intersection point (which may represent signalized
intersections, zones or regions). In this study, however,
trips were assumed to be generated only from those
intersection points located inside trip generation regions
represented by the dotted regions in Figure 4.2.

4.1.3 Identification of Businesses

Seven businesses located in the study area were
considered in the study network (Figure 4.3). In order
to consider one of the worst case scenarios, it was
assumed that 50% of the road users would seek to
make a purchase at these businesses. In real situa-
tions, the percentage of business trips that are
destined to a particular business area is determined
at planning stage, i.e., at trip generation stage of the
four-step travel demand modeling (de Dios Ortuzar &
Willumsen, 2011). In the proof-of-concept study, the
average expenditure of each customer was assumed to
be $100 per trip.

4.1.4 Identification of Construction Projects

The road network for the case study was built using
ArcGIS. This road network took into consideration
only major roads; interstates, freeways, multi-lane high-
ways, major collectors, and some local roads. Each link
was given an ID and the characteristics associated with
each link, such as length, number of lanes, capacity,
and speed limit also were identified. The road lengths
were calculated directly from ArcGIS. The capacities
were also estimated from the Highway Capacity

Figure 4.3 Location of businesses used in the case study.

Manual. Finally, the number of lanes and speed limits
were acquired through field inspection. A well-built
map of the city road network provided the basis for all
the necessary analysis to be conducted.

Figure 4.4 shows the locations of road rehabilitation
and capacity expansion projects in the case study,
which were constructed on road links spatially scattered
in the road network.

4.1.5 Questionnaire Survey

Human travel behavior may be influenced by the
existence of a road work zone in a transportation
network. Information on the travel behavior of
road users in a given transportation network is very
useful from a transportation planning perspective
because it helps planners manage work zones con-
sidering how the road users could switch routes in a
road network with work zones and affect link traffic
volume, which may in turn affect revenues in nearby
businesses.

The economic evaluation of highway projects should
not be limited to the post-construction impacts but also
to their during-implementation impacts as demon-
strated by Alqadhi et al. (2018). Therefore, in this
study, two surveys were conducted: a road user survey
and a business survey. The main purpose of the road
user survey was to gather information on how an
individual road user’s travel behavior is impacted by
work zones. The main purpose of the business survey
was to gather information about the impact of
construction projects on various businesses in the study
area. The survey was administered by Qualtrics LLC
Company.

4.1.5.1 Road user survey. A survey was conducted in
the study area to understand how road users respond to
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Figure 4.4 Road links slated for road rehabilitation and capacity expansion.

Figure 4.5 Frequency of visits to businesses in the study area.
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the presence of work zones in their travel direction.
This information was vital to quantifying the road user
costs associated with avoiding work zones to reach
destinations. A total of 400 road users who regularly
traveled the case study network were surveyed.

Figure 4.5 shows the average number of visits per
month by business category. Gas stations were the most
visited business, followed by grocery stores and restau-
rants in the study area, and liquor store had the lowest
average number of visits.



Figure 4.6 Average expenditure per visit to businesses in the study area.

Figure 4.7 Level of concern of businesses on future impacts of construction projects in their business areas.
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Figure 4.6 shows the average expenditure per visit
to various business categories in the study area. Visitors
spent the highest average expenditure per visit in grocery
stores in the study area, followed by gas stations,
restaurants, clothing stores, pharmacies, and liquor
stores. Results such as shown in Figures 4.5 and 4.6
help to understand the degree to which these busines-
ses could be affected if the road links are closed or the
capacity is minimized due to work zones, and, thereby
help in the appropriate scheduling of network-level
construction projects.

4.1.5.2 Business survey. Twenty-five (25) privately-
owned businesses located in the study area were
surveyed to understand how work zones could impact
them with respect to changing the number of custo-
mers, revenue, safety and comfort. A total of 28% of
the businesses responded that they were concerned
about the future impacts of road construction pro-
jects on their businesses. In addition, 31% of these
businesses expressed concern about the impact of future
construction projects on their businesses (Figure 4.7).
These results in general show that the majority of the



businesses (over 59%) felt that network-level projects
should be scheduled and implemented in order to
reduce the negative impacts on their businesses. All the
surveyed businesses responded that they lost an average
of 9% of their customers during the pre-construction
period, 9.6% of their customers during the construction
period, and 5.7% of their customers during the post-
construction period.

The remaining business survey analysis results are
provided in Appendix B. Figure B.1 shows that 16%

of the surveyed businesses agreed that they experienced
a change in revenue due to poor prior information
about future construction activities. A total of 16% of
businesses also agreed that they had to change the
amount of investment to their businesses before the
start of the road construction. Among the same set of
respondents, 16% agreed that they experienced a change
in the number of customers due to prior information
about future construction activity. Even though these
figures are not high, they show that businesses are
concerned about the negative impacts of future con-
struction activities on their businesses. The business
owners were asked about their level of agreement on
how INDOT’s quality of communication regarding con-
struction activities in their business areas affected their
businesses (Figure B.2), and 9% of them responded that
they agree that INDOT clearly communicated about
utilities that would be affected and about the length and
duration of construction projects. They also agreed that
construction agency contact information was provided
and that the contact person was quick to address their
problems. Regarding current road construction projects
that are underway in their business areas, 6% of the
respondents strongly disagreed that the noise levels from
the work zone were bearable and vehicle and pedestrian
accesses were available to their businesses; 9% of them
strongly disagreed that the road construction zones were
safe to pass through; 28% of them experienced a change
in revenue during the road construction period; 31% of
them experienced a change in the number of customers
and had to reduce their amount of investment to their
business during the construction period, showing the
impact of the construction activities on their businesses
(Figure B.3).

The businesses were also asked about the impact of
the road construction after its completion (Figure B.4).
Nineteen percent (19%) of the businesses experienced a
change in the number of customers after the completion
of the road construction; 16% of them experienced a
change in revenue and had to change in amount of
investment to their businesses after the road construc-
tion was completed. As shown in Figure B.5, 83% of the
businesses were concerned about safety when passing
through work zones; 83% had concerns about noise
levels in their business areas; 67% of them were con-
cerned about vehicle parking space and vehicle access to
their businesses; and 50% of them were concerned about
pedestrian access to their businesses. Based on these
survey results, it can be concluded that network-level
road construction projects should be carefully planned

to maximize safety, minimize noise levels, and ensure
vehicle and pedestrian accessibilities to businesses.

4.1.6 Comparison of Project Scheduling Plans

INDOT’s current project scheduling plan was com-
pared to a random scheduling plan in order to evaluate
INDOT’s network-level project scheduling practices.
Also, INDOT’s current plan was compared with the
optimal scheduling plan recommended by the devel-
oped framework. These comparisons were made con-
sidering both the travel cost to road users and the
impacts of scheduling on businesses. INDOT does not
conduct any construction project during the winter
months (January through April). Therefore, for the
case study, winter months (no construction) were
assumed during the January–April time frame. Figure
4.8 shows the road construction projects that were
implemented in the study area, which formed the basis
for INDOT’s current plan. In this project, the value of
time was assumed to be equal to $15 per hour (U.S
Department of Transportation, 2016). To understand
the impact of road construction projects on business
revenues, the traffic volumes in the traffic network in
the base case were derived, assuming that no construc-
tion projects would be implemented over a three-year
period. For the proof-of-concept study, the average
expenditure of each customer at a business was assumed
to be $100 per trip. The total business revenue over a
three-year period without the road construction projects
(the base case) was equal to $82,769,541.

4.1.6.1 INDOT’s current plan. INDOT’s current
construction projects shown in Figure 4.8 were schedu-
led for implementation as shown in Figure 4.9. To
understand the impacts on business revenue, the route
choices of road users given the construction schedule
were investigated using the methodology described in
Appendix A. These road construction projects impac-
ted the road users’ choices and thereby affected the
traffic volumes, travel times, and business revenues. For
the proof-of-concept study, the average expenditure of
each customer at a business was assumed to be $100 per
trip. During the three-year period, the business revenue
under INDOT’s current plan was estimated to be equal
to $80,580,879. The total system travel time was equal
to 929,830 veh.hr during the three-year period; and by
assuming the value of time equal to $15 per hour (U.S
Department of Transportation, 2016), the equivalent
road cost was estimated to be equal to $13,947,450.
The total system road user cost under this plan was
equal to $94,528,329.

4.1.6.2 Random project scheduling. To create a
random plan, the start date of each project follows a
discrete uniform distribution where all projects should
start such that they are completed within the con-
struction horizon. The only constraint on the start dates
of projects was the infeasibility of conducting construc-
tion projects during January through April. For the
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Figure 4.8 Link IDs for INDOT’s current road construction projects in the study area.

Figure 4.9 INDOT’s current project scheduling plan (INDOT, 2019).
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proof-of-concept study, the average expenditure of each
customer at a business was assumed to be $100 per trip.
During the three-year period, the business revenue
under the INDOT plan was estimated to be equal to
$77,235,963; the total system travel time was equal to
893,058 veh.hr; and by assuming the value of time equal
to $15 per hour (U.S Department of Transportation,
2016), the equivalent road user cost was estimated to
be equal to $13,395,870. The total system cost under
this plan was equal to $90,631,833, implying that under
a random construction plan, the business disruption
cost would increase by 252% compared to INDOT’s
current plan. The random project plan is shown in
Figure 4.10.

4.1.6.3 Optimal plan considering travel cost and
impact on businesses. Using the methodology descri-
bed in Appendix A, the optimal road construction
plan was derived where it was assumed that the road
projects were completed within the construction period.
Figure 4.11 shows the optimal road construction plan
based on the developed methodology. For the proof-
of-concept study, the average expenditure of each
customer at a business was assumed to be $100 per
trip. During the three-year period, the business revenue

under the random plan was estimated to be equal to
$81,150,120; the total system travel time was equal to
941,949 veh.hr; and by assuming the value of time equal
to $15 per hour (U.S Department of Transportation,
2016), the equivalent cost was estimated to be equal to
$14,129,235. The total system cost under this plan was
equal to $95,279,355, implying that if the optimal road
construction plan was used, the business disruption
cost would be reduced by 27% compared to INDOT’s
current plan.

Table 4.1 compares the three scheduling plans with
respect to their common characteristics, differences,
and assumptions made in calculating the revenues
associated with each plan. Each plan was evaluated
over a three-year planning period; and a travel time
value of $15/hr was assumed (U.S Department of Trans-
portation, 2016).

Figure 4.12 shows a comparison of the percent
revenue loss for the three plans based on the base con-
dition (no construction) over a three-year (2017–2019)
planning horizon.

4.1.6.4 Short- and long-term impacts of capacity
expansion and preservation projects. The focus of this
study was to understand the impacts of road construction

Figure 4.10 Random project scheduling plan.
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Figure 4.11 Optimal project scheduling plan.

TABLE 4.1
Comparison of Project Scheduling Plans

Plan Name Common Characteristics Differences Revenue ($)

1 Base Condition No construction during 82,769,541

3 years (2017–2019)

2 INDOT’s Current Plan 3-year planning period Based on INDOT’s project 80,580,879

No construction between January scheduling practice

3 Random Plan and April

Average expenditure of each customer

is assumed to be $100 per trip

Developed using discrete

uniform distribution

77,235,963

4 Optimal Plan
$15/hr travel time value (U.S.

Developed using methodology 81,150,120

Department of Transportation, 2016)
described in Appendix A
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projects on business revenues during the construc-
tion season in order to minimize the disruption costs
to businesses. Hence, this project dealt with the
short-term impacts of road construction projects on
businesses. Potential long-term business impacts were
not addressed in this project. After completion of con-
struction projects, the road’s condition or capacity
returns to normal and accessibility to businesses even
may be increased resulting in increased customers and
higher revenues compared to the base condition (no-
construction plan).

4.1.6.5 Impact of project scheduling considering
various lane closure policies. Business disruption costs
are mainly due to road users changing their destination
choice due to the high travel time on their usual routes
to businesses. The capacity of the road plays an impor-
tant role in travel time for road users. Hence, it is
prudent to implement road projects with minimum
reduction of road capacities so that business disruption
costs can be minimized. In the survey conducted of
road users in this study, about 65% of the respondents
felt that the travel time had a significant influence



Figure 4.12 Percent revenue loss by businesses under the random, optimal, and INDOT’s current plans with respect to the base
condition (no-construction) plan.
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on their choice of travel route. About 64% of the
respondents also indicated that the travel time had a
significant influence on their decision to make a trip
from one place to another. About 53% of respon-
dents indicated that the travel time in work zones
significantly influenced their decisions to avoid roads
with work zones. These survey results imply that the
impact of lane closure policies for network-level project
scheduling should be considered because changes in
road capacity may cause increased travel time in work
zones for the same traffic conditions in the area, and
consequently, may increase road user costs. As a result,
the revenues of businesses near work zones may decrease
because customers may choose to go to other businesses
to avoid the work zone.

4.1.7 Limitation and Future Scope of the Framework

The main challenge in this study was collecting data
related to O-D travel demand, the impact of construc-
tion projects on road capacities, and the traffic network
characteristics. The second challenge was that this
study only dealt with business disruption costs due to
construction work zones. Investigating the effect of the
increased capacities of roads in the traffic network on
business revenues in the community once the projects
are completed could be another extension of the current
work. The third challenge was that this study assumed
that travel demands are deterministic throughout the
construction season. However, the forecast of travel
demands is often uncertain during the construction
season, which can span a few years. Hence, it would be
helpful to develop a robust project schedule that can
mitigate the potential increase in total system cost (user
and business disruption costs) due to inaccurate travel
demand forecasts. As construction projects may reduce
network connectivity, the developed framework could

be expanded by considering connectivity as a criterion
in road construction scheduling, particularly in sparely
populated areas where there is no congestion and
therefore traffic assignment is not applicable (Labi
et al., 2019; Woldemariam, 2015; Woldemariam et al.,
2019).

4.2 Summary and Conclusions

In this chapter, a case study was used to demonstrate
the developed methodology. In addition to the base
case (which represents a do-nothing alternative), three
network-level project scheduling scenarios were con-
sidered: (1) INDOT’s current plan, which is based on
INDOT’s project scheduling practices; (2) a random
plan developed considering discrete uniform distribution;
and (3) an optimal plan developed using the methodol-
ogy introduced in this study. Under the optimal project
scheduling plan, the business disruption cost was reduced
by 27% compared to INDOT’s current plan, implying
the benefits of using the developed methodology during
planning network-wide scheduling of road construction
projects in a given region. Chapter 5 will present the fea-
tures of the spreadsheet and visualization tool developed
in this study to assist INDOT in network-level scheduling
of road construction projects.

5. DEVELOPMENT OF SPREADSHEET AND
VISUALIZATION TOOL

Network-level project scheduling requires consi-
deration of factors such as project duration, network
size, construction season, work types, etc. Due to the
presence of many factors, it becomes difficult to eval-
uate each scheduling plan with respect to its costs (such
as road user and business costs) and benefits (such as
travel time and safety savings) because the combined



effects of these factors is very complex and requires a
software tool to manage associated data and visualize
results for better informed decisions. The spreadsheet
and visualization tool developed in this study is presen-
ted in this chapter.

5.1 Introduction

The proposed bi-level model is solved using the
General Algebraic Modeling System (GAMS). GAMS
is a high-level modeling system for mathematical
optimization that is capable of solving linear and
nonlinear optimization problems (Rosenthal, 2015).
The system is designed for large-scale modeling appli-
cations for solving large models with several variables
and equations. The system is available for use on various
computer platforms such as Windows, Mac and Linux.

Figure 5.1 shows the general procedure for comput-
ing the construction scheduling problem. The inputs

used in the structure include the number of O-D pairs

and O-D demands, the road capacities and speed limits,

construction project characteristics road length, and

business characteristics such as the number of custo-

mers and sale per customer. The developed tool pro-

vides outputs that show the optimal project schedule,

that minimize the road user and business costs. The

processor of the developed tool is the GAMS software,

which is used to implement the algorithm developed in

this study. Finally, the processor provides an output

Excel file that visually shows the optimal construction

plans that are recommended to minimize the total road

user and business disruption costs.

5.2 Purpose of the Tool

The main purpose of the tool is to obtain the best
scheduling plan for constructing projects at the network

level to minimize the impact on the surrounding
businesses during construction season. The tool can
be used to schedule future network-wide construction
projects considering both the road user and the business
costs. It also can be used to compare past project
scheduling plans to quantify the change in benefits
compared with optimal plans that could have been
generated using the tool developed in this study.

5.3 User Interface

Figure 5.2 shows the GAMS interface that can
be used to input data and to run the algorithm that
provides optimal construction scheduling plans. The
run button that a user presses to run the developed
algorithm is shown in the circle in Figure 5.2. This is
the simplest way of running the algorithm since the
user does not have to write any code to run the algo-
rithm. Alternatively, the user can run the algorithm
from a command line (also shown in Figure 5.2) if
they wish to run the algorithm by writing an appro-
priate code.

5.4 Input Data Preparation

The model input data included the origin-destination
(O-D) travel demand in vehicles per hour, the travel
time between any O-D pairs, which can be calculated
using the road link length and the speed limit on the
link. The travel time function parameters a and b are
given by

a~
road length

speed limit

b~0:15
road length

speed limit
: 1

road capacityð Þ4

Figure 5.1 Structure of construction project scheduling procedure.
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Figure 5.2 The GAMS user interface.
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Figure 5.3 shows an Excel input file that provides
origin-destination travel demand information for the
software algorithm. The columns of the Excel input
file represent the O-D ID, the origins, the destinations
and the travel demands for each origin-destination.
The circled cell shows the travel demand for origin-
destination.

Figure 5.4 shows an Excel file with the travel time
function parameters between any two origin-destination
pairs in the road network. The columns in this Excel file
represent the adjacent link nodes and the travel time
function parameters. The circled cell shows the travel
time function parameters for link 84-84. The travel time
function was formulated as follows:

st
ij~at

ijzbt
ij
:(nt

ij)
4

Where at
ij and bt

ij are shown in Excel figure.

Figure 5.5 shows a text input file for construction
project duration and its impact on road capacity.
Column 1 represents the link specifications; for example,
the circled cell (83.85) shows link 83–85. Columns 2
through 10 represent the capacity modification factors
for the periods after initiating the construction project
and show that after initiating the construction project,
the capacity dropped by 50% during periods 1 through 3

and increased to normal condition after the completion
of the project.

5.5 Output Visualization

Figure 5.6 depicts an Excel output file that shows an
optimal construction project scheduling plan for all the
projects considered in the analysis. In this Excel output
file, the shaded regions represent the time periods
during which the projects should be implemented for
achieving optimal results with respect to the total cost
of the projects in the network, including the road user
and business disruption costs.

5.6 Summary and Conclusions

This chapter discussed the spreadsheet and visualiza-
tion tool that was developed in this study, and the
procedure for planning network-wide construction
projects was presented. Also, various features of the
tool, such as the user interface, required input data and
associated files types, and output results were described.
The developed tool is expected to help INDOT con-
struction project planners develop optimal construction
plans considering both road user and business disrup-
tion costs in their analyses.



Figure 5.3 Input Excel file for origin-destination travel demand.
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Figure 5.4 Input Excel file for travel time function parameters for each origin-destination pair.



Figure 5.5 Input text file for construction project duration and its impact on road capacity.
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Figure 5.6 Output Excel file showing optimal schedule plan for construction projects.
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APPENDIX     A. MATHEMATICAL FORMULATION OF     PROJECT     
SCHEDULING     PROBLEM     

A.1  Notations    

Notations used in the mathematical formulation of the project scheduling problem are given in     

this section.  

Sets 

𝑁     Set of nodes 

𝐴     Set of links 

𝐴     Set of capacity expansion projects on existing links 

𝐴     Set of road rehabilitation projects on existing links 

Γ     Set of time periods 

Parameters     

𝑇     Number of periods in a construction season     

𝐵௧     Construction budget in period 𝑡     

   𝜅௟
௜௝     Construction cost     of link (𝑖,    𝑗) after 𝑙 periods of initiating a project     

𝑑௜௝     Duration of a project     on link (𝑖,    𝑗)     

௟   𝑐௜௝     Modification factor for capacity of link (𝑖,    𝑗) after 𝑙 periods of initiating the     project     

ଵ,௧    𝑓 Free flow travel time     on link (𝑖,    𝑗) in period t     
௜௝    

ଶ,௧    𝑓 Capacity of link (𝑖,    𝑗) in period t     
௜௝    

௧  𝑏௜௝     Travel time     function parameter     

Percentage     of demand of O-D pair (𝑟,    𝑖) that is customer of business 𝑚 of node     𝑖     
௥,௧    𝛽௜,௠    

in period 𝑡     

𝜚௧
௜,௠     Expenditure     of each     customer in business 𝑚 of node     𝑖 in period 𝑡     

଴,௧   𝜁௜,௠    Revenue     of business 𝑚 of node     𝑖 in period 𝑡 without     any construction project     

𝛼     Value of time     

𝑀     Constant with large value     

̅

̿
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Variables 

𝑍௎ The objective function in the upper-level model 

𝑍௅ The objective function in the lower-level model 

𝜉௧ Excess construction budget in period 𝑡 
௥,௧𝑞௜ Travel demand between O-D pair (𝑟, 𝑖) in period 𝑡 

𝜛௜
௧
,௠ Business disruption cost of business m of node 𝑖 in period 𝑡 

𝜈௜௝ 
௧ Flow of link (𝑖, 𝑗) in period 𝑡 

𝜈௜௝ 
௥,௧ Flow of link (𝑖, 𝑗) with origin 𝑟 in period 𝑡 

𝜎௜௝ 
௧ Travel time of link (𝑖, 𝑗) in period 𝑡 

𝜋௜
௥,௧ Travel time of O-D pair (𝑟, 𝑖) in period 𝑡 

𝑒௜௝ 
௧ =1 if new road construction project for link (𝑖, 𝑗) in period t is implemented; 0 

otherwise 

𝛾௜௝ 
୲ =1 if road rehabilitation project of link (𝑖, 𝑗) in period 𝑡 is implemented; 0 

otherwise 
௧In this study, link travel time 𝜎௜௝ is assumed to follow the Bureau of Public Roads (BPR) 

function as follows: 

𝜎௜௝ 
௧ = 𝑓௜௝ 

ଵ,௧ + 𝑏௜௝ 
௧ ∙ (𝜈௜௝ 

௧ )ସ ∀(𝑖, 𝑗) ∈ 𝐴 (Eq. A.1) 

where 𝑓௜௝ 
ଵ,௧ is the free flow travel time on link (𝑖, 𝑗) in period 𝑡. Travel time function parameter 

𝑏௜௝ 
௧  can be calculated as follows: 

0.15𝑓௜௝ 
ଵ,௧ 

௧ (Eq. A.2) = ∀(𝑖, 𝑗) ∈ 𝐴 𝑏௜௝ ଶ,௧)ସ(𝑓௜௝ 

where 𝑓௜௝ 
ଶ,௧ denote the capacity of link (𝑖, 𝑗) in period 𝑡. In this study, it is assumed that 

construction projects only impact the capacity of links. Then, if the construction project of link 
௦,௧ ௦,௧ (𝑖, 𝑗) starts in period 𝑡, i.e., 𝑒௜௝ = 1 or 𝛾௜௝ = 1, its capacity in period 𝑡ᇱ ≥ 𝑡 is equal to 

௧ᇲି௧ାଵ𝑓௜௝ 
ଶ,௧ᇲ ௧𝑐௜௝  where 𝑐௜௝ 

ᇲି௧ାଵ is referred as the modification factor for capacity of link (𝑖, 𝑗) in 𝑡ᇱ − 

A-2



  

   

   

   

 

  

   

    

   

  

   

    

     

  

   

   

  

  

   

 

 

 

    

    

   

   

   

 

   

    

    

   

   

    

    

       

   

   

   

   
       

 

  

   

  

  
      

 

 

    

    

   

   

   

 

   

    

    

   

   

    

    

       

   

   

   

   
       

 

    

   

  
      

 

 

    

    

   

   

   

 

   

    

    

   

   

    

    

       

   

   

   

   
       

 

    

   

  
      

 

 

௧ᇲି௧ାଵ 𝑡 + 1 periods after initiating the construction project. For example, if 𝑐௜௝ = 0, it means that 

the link (𝑖, 𝑗) will be fully closed in 𝑡ᇱ − 𝑡 + 1 periods after initiating the construction project. 

Section 2.1 presents the upper-level model to determine the optimal schedule of construction 

projects. Section 2.2 formulates the lower-level model as nonlinear program with 

complementarity constraints. Section 2.3 integrates the upper-level and lower-level models.  

A.2  Upper-Level Model    

As stated earlier, in the upper level, the transportation planner aims to minimize the weighted 

summation of travel delay and business disruption costs. The weights of travel delay and 

business disruption costs are denoted by 𝑊ଵ and 𝑊ଶ, respectively. If 𝑊ଵ > 𝑊ଶ, it means that the 

transportation planner weighs travel delay cost higher than business disruption cost. If 𝑊ଶ > 𝑊ଵ, 

transportation planner weighs business disruption cost higher than travel delay. The upper-level 

model is subject to available construction budget 𝐵௧ in each period 𝑡. The excess construction 

budget 𝜉௧ in each period 𝑡 is carried over to the next period 𝑡 + 1. 

To measure the construction impacts on surrounding business, let 𝑞௜
௥,௧ denote the travel demand 

between origin 𝑟 and destination 𝑖 in period 𝑡. It is assumed to be elastic, increasing and convex 

function of travel time between each O-D pair. Further, let 𝛽௜,௠ 
௥,௧  denote the percentage of demand 

of O-D pair (𝑟, 𝑖) that is the customer of business 𝑚 of node 𝑖 in period 𝑡. It is assumed that each 
௧customer spends 𝜚௜,௠ dollars in business 𝑏 of node 𝑖 in period 𝑡. Then, the revenue of business 𝑚 

௧located in node 𝑖, 𝜁௜,௠, in period 𝑡 can be calculated as follows: 

௧ ௧ ௥,௧ ௥,௧𝜁௜,௠ = 𝜚௜,௠ ෍ 𝛽௜,௠𝑞௜ (Eq. A.3) ∀𝑡 
௥ 

଴,௧  be the revenue of business 𝑚 in period 𝑡 without any construction. Using this notion, the Let 𝜁௜,௠ 

business disruption cost of business 𝑚 located in node 𝑖 in period 𝑡 can be measured as follows: 

௧ ௧ ଴,௧𝜛௜,௠ = 𝜁௜,௠ − 𝜁௜,௠ ∀𝑡 

Then, the upper-level model, with objective 𝑍௎, can be formulated as a mixed-integer nonlinear 

model as follows: 
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் ் 

௧ ௧ ௧min 𝑍௎ = 𝑊ଵ ෍ ෍ 𝛼𝜎௜௝ 
௧ ൫𝜈௜௝൯𝜈௜௝ − 𝑊ଶ ෍ ෍ 𝜁௜,௠ 

(Eq. A.4) 
௘, 

௧ୀଵ (௜,௝)∈஺ ௧ୀଵ (௜,௠) 

ଵ ଵ෍ 𝜅௜௝ 
ଵ 𝛾௜௝ + ෍ 𝜅௜௝ 

ଵ 𝑒௜௝ + 𝜉ଵ = 𝐵ଵ (Eq. A.5) 
(௜,௝)∈஺̿ (௜,௝)∈஺̅ 

௟ 

௧ ௧෍( ෍ 𝜅௜௝ 
௟ାଵି௧𝛾௜௝ + ෍ 𝜅௜௝ 

௟ାଵି௧𝑒௜௝) + 𝜉௟ = 𝐵௟ + 𝜉௟ିଵ 𝑙 = 2, … . , 𝜏 (Eq. A.6) 

௧ୀଵ (௜,௝)∈஺̿ (௜,௝)∈஺̅ 

ఛ 

௧ ̅ (Eq. A.7) ෍ 𝑡𝑒௜௝ + 𝑑௜௝ ≤ 𝜏 + 1 ∀(𝑖, 𝑗) ∈ 𝐴 
௧ୀଵ 

ఛ 

୲෍ 𝑡𝛾௜௝ + 𝑑௜௝ ≤ 𝜏 + 1 ∀(𝑖, 𝑗) ∈ 𝐴̿ (Eq. A.8) 

௧ୀଵ 

ఛିௗ೔ೕାଵ 

෍ 𝑒௜௝ 
௧ = 1 ∀(𝑖, 𝑗) ∈ 𝐴̅ (Eq. A.9) 

௧ୀଵ 

ఛିௗ೔ೕାଵ 

௧ (Eq. A.10) ෍ 𝛾௜௝ = 1 ∀(𝑖, 𝑗) ∈ 𝐴̿ 

௧ୀଵ 

ଵ,௧ᇲ ̅ 
ᇲ 

∀(𝑖, 𝑗) ∈ 𝐴, 𝑡ᇱ = 1, … , 𝜏,𝑓௜௝ ௧ ௧ ) (Eq. A.11) 𝑏௜௝ − 0.15 ≤ 𝑀(1 − 𝑒௜௝ ௧ ଶ,௧ᇲ ௧ᇲି௧ାଵ(𝑐௜௝ 
ᇲି௧ାଵ𝑓௜௝ )ସ 𝑡ᇱ ≥ 𝑡, 𝑐௜௝ > 0 

ଵ,௧ᇲ ̅∀(𝑖, 𝑗) ∈ 𝐴, 𝑡ᇱ = 1, … , 𝜏,
ᇲ 𝑓௜௝ ௧ − 0.15 ≥ −𝑀(1 − 𝑒௜௝ 

௧ ) (Eq. A.12) 𝑏௜௝ ௧ ଶ,௧ᇲ ௧ᇲି௧ାଵ(𝑐௜௝ 
ᇲି௧ାଵ𝑓௜௝ )ସ 𝑡ᇱ ≥ 𝑡, 𝑐௜௝ > 0 

ଵ,௧ᇲ ̿∀(𝑖, 𝑗) ∈ 𝐴, 𝑡ᇱ = 1, … , 𝜏,
ᇲ 𝑓௜௝ ௧ − 0.15 ௧ ) (Eq. A.13) 𝑏௜௝ ௧ ଶ,௧ᇲ ≤ 𝑀(1 − 𝛾௜௝ ௧ᇲି௧ାଵ(𝑐௜௝ 

ᇲି௧ାଵ𝑓௜௝ )ସ 𝑡ᇱ ≥ 𝑡, 𝑐௜௝ > 0 

ଵ,௧ᇲ ̿∀(𝑖, 𝑗) ∈ 𝐴, 𝑡ᇱ = 1, … , 𝜏 
ᇲ 𝑓௜௝ ௧ − 0.15 ௧ ) (Eq. A.14) 𝑏௜௝ ௧ ଶ,௧ᇲ ≥ −𝑀(1 − 𝛾௜௝ ௧ᇲି௧ାଵ(𝑐௜௝ 

ᇲି௧ାଵ𝑓௜௝ )ସ 𝑡ᇱ ≥ 𝑡, 𝑐௜௝ > 0 

௧ ̅ (Eq. A.15) 𝑒௜௝ ∈ {0,1} ∀𝑡, ∀(𝑖, 𝑗) ∈ 𝐴 

௧ ̿ (Eq. A.16) 𝛾௜௝ ∈ {0,1} ∀𝑡, ∀(𝑖, 𝑗) ∈ 𝐴 

where 𝛼 denotes the value of the time of road users. Objective function (5) is equal to the 

subtraction of business revenue from total travel delay cost. Constraints (6) and (7) are the 
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budget conservation constraints. Constraint (6) states that in the first period, the budget is equal 

to the construction costs of all the implemented projects and the leftover budget that carried over 
௧into the second period. If the construction project of link (𝑖, 𝑗) starts in period 𝑡, i.e., 𝑒௜௝ = 1 or 

௧ ௧𝛾௜௝ = 1, its construction cost is equal to 𝜅௜௝ 
ᇲି௧ାଵ in period 𝑡ᇱ. Constraint (7) states that the sum of 

the construction budget of period 𝑡 and the leftover budget of period 𝑡 − 1 is equal to the sum of 

construction costs and leftover budget in period 𝑡. Constraints (8) and (9) ensure that the road 

capacity expansion and rehabilitation projects should be completed within the construction 

season. Constraints (10) and (11) state that the road capacity expansion and rehabilitation 

projects can start only once during the construction season. Constraints (12) and (13) update the 

௧travel time function parameter in period 𝑡′, 𝑏௜௝ 
ᇲ 
, if the capacity expansion project of link (𝑖, 𝑗) 

௧ᇲି௧ାଵ ௧starts in period 𝑡 using modification factor 𝑐௜௝ > 0. The 𝑐௜௝ 
ᇲି௧ାଵ is greater than one after 

finishing the construction project. Constraints (14) and (15) state that if the road rehabilitation 

௧project of link (𝑖, 𝑗) starts in period 𝑡, then the travel time function parameter in period 𝑡′, 𝑏௜௝ 
ᇲ 
, 

௧ᇲି௧ାଵ should be updated using modification factor 𝑐௜௝ > 0. Constraints (16) and (17) denote that 

௧ ௧𝑒௜௝ and 𝛾௜௝ are binary decision variables. 

A.3  Lower-Level Model    

The lower-level model aims to capture the decision-making process of road users under the 

sequence of projects decided by the transportation planner in the upper-level. Road users aim to 

minimize their travel delay costs under the optimal sequence. They select the routes with 

minimum travel delay. Under the equilibrium condition, road users cannot further reduce their 

travel times by unilaterally changing the route. The O-D travel demands are also elastic and 

function 𝐷௥,௜ of the minimum travel cost of each O-D. Let 𝜋௜
௥,௧ denote the travel delay from node 

𝑟 to node 𝑖 in period 𝑡. Given the construction schedule parameters (𝑒 and 𝛾) determined in the 

upper-level, the lower-level model can be formulated as the following mathematical program 

with complementarity constraints (MPCC): 

௥,௧ ௧ ௥,௧ ௥,௧ (Eq. A.17) 0 ≤ 𝜈௜௝ ⊥ ൫𝜎௜௝ 
௧ ൫𝜈௜௝൯ + 𝜋௜ − 𝜋௝ ൯ ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑟 ∈ 𝑁, 𝑡 = 1, … , 𝜏 
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௥,௧ ௥,௧ (Eq. A.18) 𝑞௜ = 𝐷௥,௜(𝜋௜ ) ∀𝑟 ∈ 𝑁, ∀𝑖 ∈ 𝑁, 𝑡 = 1, … , 𝜏 

𝜋௥
௥,௧ = 0 ∀𝑟 ∈ 𝑁, 𝑡 = 1, … , 𝜏 (Eq. A.19) 

∀(𝑖, 𝑗) ∈ 𝐴̅, 𝑡ᇱ = 1, … , 𝜏, 
௧ᇲ ௧ ) (Eq. A.20) 𝜈௜௝ ≤ 𝑀 ∙ (1 − 𝑒௜௝ ௧ᇲି௧ାଵ𝑡ᇱ ≥ 𝑡, 𝑐௜௝ = 0 

∀(𝑖, 𝑗) ∈ 𝐴̿, 𝑡ᇱ = 1, … , 𝜏 
௧ᇲ ௧ ) (Eq. A.21) 𝜈௜௝ ≤ 𝑀 ∙ (1 − 𝛾௜௝ ௧ᇲି௧ାଵ𝑡ᇱ ≥ 𝑡, 𝑐௜௝ = 0 

௥,௧ ௥,௧ ௥,௧ (Eq. A.22) ෍ 𝜈௜௝ − ෍ 𝜈௝௜ = 𝑞௜ ∀𝑟 ∈ 𝑁, 𝑡 = 1, … , 𝜏 
௝:(௜,௝)∈஺ ௝:(௝,௜)∈஺ 

௥,௧ ௧ (Eq. A.23) ෍ 𝜈௜௝ = 𝜈௜௝ ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 = 1, … , 𝜏 
௥∈ே 

௥,௧ ௧ (Eq. A.24) 𝜈௜௝ , 𝜈௜௝ ≥ 0 ∀𝑟 ∈ 𝑁, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 = 1, … , 𝜏 

Constraint (18) is the link-based user equilibrium condition. It states that link (𝑖, 𝑗) is utilized in 

period 𝑡 by road users originating from node, i.e., 𝜈௜௝ 
௥,௧, if it is part of the shortest path tree with 

origin 𝑟 to other nodes in the traffic network. Constraint (19) states that travel demand is a 

function of the travel delay from node 𝑟 to node 𝑖 in period 𝑡. Constraint (20) states that travel 

delay from node 𝑟 to node 𝑟 is equal to zero. Constraints (21)–(22) ensure that if the road 

capacity expansion and rehabilitation projects of link (𝑖, 𝑗) are initiated in period 𝑡 and the road 

௦,௧ is closed in period 𝑡′ (i.e., 𝑐௜௝ 

ᇲି௧ାଵ is equal to zero in period 𝑡′), then its flow is equal to zero in 

period 𝑡′. Constraint (23) represents the flow conservation constraint and states that in node 𝑖, the 

inflow is equal to the summation of the outflow and the demand of road users originating from 

node 𝑟. Equation (24) calculates the aggregate link flow. Constraint (25) represents the positive 

decision variables in the lower-level model. MPCC (18)–(25) can be formulated as the following 

optimization program: 
೟ ೝ,೟ఔ೔ೕ ௤೔ 

min 𝑍௅ = ෍ ෍ න 𝜎௜௝ 
௧ (𝑤)𝑑𝑤 − ෍ ෍ ෍ න 𝐷௥,௜ 

ିଵ(𝑤)𝑑𝑤 (Eq. A.25) 
ఔ ଴ ଴ ௧ (௜,௝)∈஺ ௧ ௜ ௥ 
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௥,௧ ௥,௧ ௥,௧ (Eq. A.26) ෍ 𝜈௜௝ − ෍ 𝜈௝௜ = 𝑞௜ ∀𝑟 ∈ 𝑁, 𝑡 = 1, … , 𝑇 
௝:(௜,௝)∈஺ ௝:(௝,௜)∈஺ 

௥,௧෍ 𝜈௜௝ = 𝜈௜௝ 
௧ ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 = 1, … , 𝑇 (Eq. A.27) 

௥∈ே 

∀(𝑖, 𝑗) ∈ 𝐴̅, 𝑡ᇱ = 1, … , 𝜏, 
௧ᇲ ௧ ) (Eq. A.28) 𝜈௜௝ ≤ 𝑀 ∙ (1 − 𝑒௜௝ ௧ᇲି௧ାଵ𝑡ᇱ ≥ 𝑡, 𝑐௜௝ = 0 

∀(𝑖, 𝑗) ∈ 𝐴̿, 𝑡ᇱ = 1, … , 𝜏 
௧ᇲ ௧ ) (Eq. A.29) 𝜈௜௝ ≤ 𝑀 ∙ (1 − 𝛾௜௝ ௧ᇲି௧ାଵ𝑡ᇱ ≥ 𝑡, 𝑐௜௝ = 0 

௥,௧ ௧ (Eq. A.30) 𝜈௜௝ , 𝜈௜௝ ≥ 0 ∀𝑟 ∈ 𝑁, ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 = 1, … , 𝑇 

where 𝑍௅ denotes the objective function in the lower-level model. It can be easily shown that the 

first order condition (Karush-Kuhn-Tucker (KKT) condition) of optimization program (26)–(31) 

is equivalent to MPEQ (18)-(25). 

A.4  Bi-Level Model    

The bi-level model can be formulated as the following mathematical program with 

complementarity constraints (MPCC): 
் ் 

௧ ௧ ௧𝑚𝑖𝑛 𝑍௎ = 𝑊ଵ ෍ ෍ 𝛼𝜎௜௝ 
௧ ൫𝜈௜௝൯𝜈௜௝ − 𝑊ଶ ෍ ෍ 𝜁௜,௠ 

(Eq. A.31) 
௘, ,ఔ 

௧ୀଵ (௜,௝)∈஺ ௧ୀଵ (௜,௠) 

MPCC ((6)-(25), (32)) consists of integer variables and complementarity conditions which make 

the problem NP-hard and very difficult to solve. In contrast to existing studies in literature that 

leverages the heuristic methods, the local decomposition method, which is an exact method, is 

adopted to solve the proposed bi-level model. 
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APPENDIX B. BUSINESS SURVEY     RESULTS     

I experienced a change in revenue due to prior 
information about future construction 

I had to change the amount of investment to my 
business before the start of the road construction 

I experienced a change in the number of 
customers due to prior information about future 

construction activity 

31% 16% 28% 9% 16% 

41% 22% 19% 3% 16% 

22% 9% 47% 6% 16% 

Strongly disagree Somewhat disagree Neutral Somewhat agree Agree 

Figure B.1 Level of agreement of businesses with changes in investment, revenue, and number 
of customers due to future construction activities. 

Clear communication of utilities to be affected 

Clear communication of project length or duration 

The given contact was quick to address problems 
brought forward 

Contact information of the agency was provided 

19% 13% 41% 9% 19% 

19% 9% 38% 16% 19% 

19% 6% 50% 6% 19% 

22% 13% 31% 16% 19% 

Strongly disagree Somewhat disagree Neutral Spmewhat agree Agree 

Figure B.2 Level of agreement of businesses with quality of INDOT’s communication regarding 
impact of future construction activities. 
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Noise levels from the work zone was bearable 

Vehicle access to my business was available 

Pedestrian access to my business was available 

I found construction zones safe to pass through 

I experienced a change in revenue during the 
road construction period 

I had to change the amount of investment to my 
business during the road construction 

I experienced a change in the number of 
customers due to the construction 

6% 6% 50% 13% 25% 

6%3% 38% 28% 25% 

6% 16% 38% 19% 22% 

9% 19% 28% 22% 22% 

28% 16% 28% 9% 19% 

31% 3% 34% 9% 22% 

31% 9% 25% 13% 22% 

Strongly disagree Disagree Neutral Agree Strongly Agree 

Figure B.3 Level of agreement of businesses with impacts of current construction on noise level, 
accessibility, safety, and changes in revenue, investment, and number of customers. 

I experienced a change in revenue after the 
construction 

I had to change the amount of investment to my 
business after the road construction 

I experienced a change in the number of 
customers after the construction activity 

28% 13% 38% 6% 16% 

31% 6% 34% 13% 16% 

25% 9% 34% 13% 19% 

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly Agree 

Figure B.4 Level of agreement of businesses with changes in revenue, investment, and number 
of customers after construction activities. 

B-2



 
  

 

  

  

  

  

  

 

 

 

 

 

   

 
  

  

  

  

  

  

 

 

 

 

 

   

 
  

  

  

  

  

  

 

 

 

 

 

   

 
  

17% 83% 

17% 83% 

33% 67% 

33% 67% 

50% 50% 

Safety when pass through work zones 

Noise levels 

Vehicle parking space 

Vehicle access to business 

Pedestrian access to business 

Not Concerned Concerned 

Figure B.5 Level of concern of businesses for safety, noise levels, vehicle and pedestrian 
accessibility due to presence of work zones. 

B-3



     
   

     
 
 

 
 

 
  

  

 
 

 
 

  

 
 

 
 

     
   

     
 
 

 
 

 
  

 

 

 
 

     
   

     
 
 

 
 

 
  

 

 

 
 

     
   

     
 
 

 
 

 
  

 

 

 

 
 

APPENDIX     C. SURVEY QUESTIONNAIRE     

C1. Road User Survey Questionnaire     

For the businesses given in the table below, please indicate the frequency of your visits per 
month and the amount spent per visit to the businesses under normal conditions (i.e., before there 
is any road construction on the route to or near these businesses). 

Frequency of Visits Per Month Amount Spent Per Visit (U.S. dollars) 
Grocery 
Clothing 
Restaurants 
Pharmacy 
Liquor Stores 
Gas Stations 

C2. Business Survey Questionnaire     

What is your dominant business category?

    General merchandise
    Grocery store
    Automotive
    Clothing
    Restaurant/Fast food
    Pharmacy 
    Liquor store
    Bar/Grill
    Gas station 
    Other 
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Please complete the table below to show your level of agreement with the following pre-
construction impacts of road construction projects on your business over the past five (5) years. 

Strongly Somewhat Neutral Somewhat Strongly 
agree agree disagree disagree 

I experienced a change in the 
number of customers due to prior 
information about future 
construction activity 

I had to change the amount of 
investment to my business before 
the start of the road construction 

I experienced a change in revenue 
due to prior information about 
future construction 

Please complete the table below to show your level of agreement with the following pre-
construction activities of road construction projects on your business over the past five (5) years. 

Strongly Somewhat Neutral Somewhat Strongly 
agree agree disagree disagree 

Contact information of the agency 
was provided 

The given contact was quick to 
address problems brought forward 

Clear communication of project 
length or duration 

Clear communication of utilities 
to be affected 
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Please complete the table below to show your level of agreement with the impacts of road 
construction projects on your business during the construction period over the past five (5) years. 

Strongly Somewhat Neutral Somewhat Strongly 
agree agree disagree disagree 

I experienced a change in the 
number of customers due to the 
construction 

I had to change the amount of 
investment to my business during 
the road construction 

I experienced a change in revenue 
during the road construction 
period 

I found construction zones safe to 
pass through 

Pedestrian access to my business 
was available 

Vehicle access to my business 
was available

 Noise levels from the work zone was
 bearable 
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Please complete the table below to show your level of agreement with the following post-
construction impacts of road construction projects on your business over the past five (5) years. 

Strongly Somewhat Neutral Somewhat Strongly 
agree agree disagree disagree 

I experienced a change in the 
number of customers after the 
construction activity 

I had to change the amount of 
investment to my business after 
the road construction 

I experienced a change in revenue 
after the construction 

Please indicate the percentage change in customers experienced during the preconstruction 
period, if any. 

Percentage 
Gain 
Loss 

Please indicate the percentage change in customers experienced during the construction period, if 
any. 

Percentage 
Gain 
Loss 

Please indicate the percentage change in customers experienced during the post-construction 
period, if any. 

Percentage 
Gain 
Loss 

Are you concerned about future impacts of road construction projects in your business area?
    Yes 
    Maybe

 No 
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Please indicate which factors you are concerned about if there were to be any future construction 
near your business. (Check all that apply.) 

Tick if concerned 

Pedestrian access to business 
Vehicle access to business 
Vehicle parking space 
Noise levels 
Safety when pass through work zones 
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