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Chapter 9 

Soil Moisture and Permittivity Estimation 

Abstract The soil moisture and permittivity estimation is vital for the success of the 
variable rate approaches in the field of the decision agriculture. In this chapter, the 
development of a novel permittivity estimation and soil moisture sensing approach is 
presented. The empirical setup and experimental methodology for the power delay 
measurements used in model are introduced. Moreover, the performance analysis is 
explained that includes the model validation, and error analysis. The transfer functions 
are reported as well for soil moisture and permittivity estimation. Furthermore, the 
potential applications of the developed approach in di erent disciplines are also 
examined. 

9.1 Introduction 

IOUT can be applied to many fields of precision agriculture [1], [52], [24], [58], 
[9], [75], [100], [104] [50] . It is being used to provide important information to the 
farmers. IOUT has an ability to estimate soil properties and monitor soil moisture. 
An important component of precision agriculture applications (e.g., making real-time 
agricultural decision, smart agriculture variable rate irrigation (VRI), and water 
conservation) is continuous soil moisture sensing [14, 55]. Permittivity plays an 
important role in propagation analysis of electromagnetic (EM) waves on the basis of 
soil medium, depth, UG localization and subsurface imaging. Therefore, e"cient 
measurement techniques for soil in-situ properties is very important. Method to 
determine soil permittivity includes: ground-penetrating radar (GPR) measurements 
[5], [13], [28], time-domain reflectometry (TDR) [25], [29, 58], [67], and remote 
sensing [18], [59], [68], [69]. Furthermore, disadvantage of laboratory method os 
estimating permittivity is o -line measuring the soil sample, and that of remote 
sensing is limitations of depth up to 20cm. In-situ methodologies can be used to 
measure soil properties for higher depths and that too with accuracy. 

This chapter focus on developing an in-situ technique, Di-Sense, for measuring soil 
moisture and permittivity based on wireless underground communications (WUC) in 
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Fig. 9.1: Organization of the Chapter 

IOUT. When EM waves propagates through the soil they are e ected by the distance, 
depth, frequency, soil moisture [46, 145] and soil properties [6]. Path loss at receiver 
can be used to determine the properties change of propagating signal. The approach 
in this chapter uses path for measuring permittivity and moisture of the soil. Path loss 
is highly dependent upon depth, distance and soil moisture. Di-Sense uses a buried 
transmitter antenna (fixed depth) for transmitting wideband signal using the frequency 
range of 100 MHz to 500 MHz and received signal is analyzed for measuring path 
loss. Di-Sense allows IOUT system to communicate and estimate permittivity and 
soil moisture sensing simultaneously. A model is developed to measure soil moisture 
and permittivity using path loss and is validated in an indoor testbed and a software 
defined radio (SDR) testbed. For validation, various soil parameters (depth, type and 
moisture level) are changed to study the impact of those parameters. 

There has been lot of work done previously for determining soil permittivity and 
moisture. The literature review in this chapter is will try to cover only the most 
recent work and try to identify the similarities and di erences between the work. 
The process of estimating permitivity and soil water can be classified into two main 
approaches. For soil water estimation, TDR, gravimetric method, capacitance probes, 
GPR, hygrometric techniques, remote sensing, electromagnetic induction, neutron 
thermalization, tensionmetry, nuclear magnetic resonance, gamma ray attenuation, 
optical methods and resistive sensors can be used. Some of these approaches are 
discussed below. First estimation technique is soil properties based. Authors in 
[12] derives EM parameters of soil on the basis of soil moisture, frequency and 
soil density, however, the model has limitation of working with 20% soil moisture 
weight and also needs rigorous sample preparation. In [6, 37, 39], a probe-based 
equipment is developed for the laboratory use. The probe works with vector network 
analyzer (VNA) in frequency range of 45 MHz to 26.5 MHz. In [74], author propose 
a model to calculate the dielectric soil permittivity o the basis of empirical evaluations. 
Similarly, a dielectric model for soil properties is developed by [7]. This model works 
for frequencies > 1.44 Mhz. Peplinski extended the model for characterization of 
dielectric behavior of soil under frequency range of 300 MHz to 1.3 GHz [26, 38, 42]. 
[6] extensively reviews the techniques for estimating soil permittivity. These method 
involves taking sample for laboratory measurements and are labor extensive. The 
laboratory sample technique does not depict the in-situ soil conditions. Hence, there 
is a need of automated approaches for monitoring soil moisture. 

Another approach is given by [25] which uses TDR for measuring soil properties. 
It needs to measure refractive index and impedance of the soil. Authors in [67] uses 
Cross-Well Radar (CWR) to determine EM properties of soil. The purpose of the 



�

�

�

327 9.1 Introduction 

methodology is to detect Dense Non-Aqueous Phase Liquids (DNAPLs) hazardous 
materials. A wideband wave is transmitted under the frequency range of 0.5 GHz to 
1.5 GHz. Transmission simulations and reflection is used to measure soil permittivity 
in dry sand. [27, 30, 70] extensively reviews such time domain-based techniques 
for estimating soil permittivity. In TDR-based approaches, sensors are place at each 
location where measurements are needed. However, it is important to obtain real-time 
soil moisture sensing data so that e ective decision making can be achieved in 
agricultural applications. 

Third category of estimating soil properties falls under the antenna based 
approaches. [60] and [61] propose a method of measuring electrical properties 
of the earth using buried antennas. However, length of antenna is adjusted so that 
the input reactance remains zero. [62] uses Fresnel reflection coe"cient to measure 
the soil permittivity on the basis of GPR measurements. However, the result in 
this study are without any empirical validation and also needs to be analyzed in 
time-domain. Authors in [3] measures soil dielectric properties for frequency range 
of 0.1-1 GHz. They use wideband frequency domain method and needs LCR meter 
for measuring impedance and VNA. Complex dielectric properties are measured in 
frequency domain by using probes [24], [36, 75]. 

In [13], GPR based technique is utilized for permittivity estimation by correlating 
cross-talk of GPR signal and dielectric properties of soil. However, GPR methods are 
only applied for the implementations which requires calibration and low depths (0-20 
cm). 

Measurements from remotes sensing methods has wider range [69], but are more 
susceptible soil water content [18]. Remote sensing methods are classified into active 
and passive remote sensing [20]. Passive techniques have low spatial resolution (in 
the order of kilometers) and active has high spatial resolution (in the order of meters). 
However, with active methods measurements values are limited to few centimeters of 
topsoil layer and its accuracy is also e ected by vegetation cover [59]. 

This review of measurement methods identify the gap between large scale and 
point-based measurements which can be covered by WUC. The chapter focus on using 
WUC for permittivity and soil moisture estimation. It is known that soil properties 
and soil moisture impacts the EM waves propagating through soil [139], [145], hence, 
even a small amount of water can highly e ect the IOUT wireless channel between 
transmitter and receiver. Analysis of path loss at receiver give a more detailed idea 
about these changes. This method can use the field IOUT infrastructure without 
using soil moisture sensors. Therefore, WUC are successfully being used for soil 
sensing. Last decade has seen significant improvement in various aspect of IOUT 
communication such as UG communications, characterization of impact of soil type 
and moisture, and UG channel modeling [1], [58], [9], [75], [100], [50], [145], [170], 
[104], [31, 45, 71]. Authors in [26, 145] characterize the wireless UG channel in a 
very detailed manner. Similarly, [139] studies the impact of soil moisture and soil type 
on the capacity of multi-carrier modulations and also validate the results empirically. 
To the best of our knowledge, no study provide WUC-based in-situ estimation of 
these properties in real-time. Therefore, this will be the first work to estimate soil 
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Fig. 9.2: WUC implementation for determining soil properties [55] 

permittivity and soil moisture in response to channel path loss and velocity of Em 
wave in UG channel. 

�Table 9.1: Antenna depths, VWC percentage, and particle distribution for di erent 
types of soil used in a testbed 

Textural Class Sand (%) Silt (%) Clay (%) VWC Range (%) Depth 
Silty Clay Loam - Greenhouse (SCL-G) 13 55 32 32 - 38 20 cm 

Silt Loam - Field (SL-F) 17 55 28 22 - 38 10, 20, 30, and 40 cm 
Sandy Soil - Indoor Testbed (S-I) 86 11 3 15 - 38 10, 20, 30, and 40 cm 
Silt Loam - Indoor Testbed (SL-I) 33 51 16 30 - 37 10, 20, 30, and 40 cm II I I I I I II 

9.2 System Models 

Expression are derived for calculating soil permittivity and soil moisture at the 
distance of 1m - 15m. These expressions connects both of the soil parameters to WUC. 
It is connected to propagation path loss and wave velocity for calculating permittivity. 
TO that end, problem is formulated as follow: Derive a function for calculating soil 
permittivity and soil moisture as an output for an input of path loss of the link to the 
system. Fig. 9.2 shows the schema of WUC along with the sensing UG nodes. For 
a low electrical loss, there is no di erence between the e ective permittivity and 
complex permittivity. This chapter refer the the permittivity as a relative permittivity. 
Section 9.2.1 discuss the Di-Sense permittivity estimation and Section 9.2.2 discuss 
the soil moisture model. 
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9.2.1 Di-Sense Permittivity Estimation 

Propagation Path Loss Approach: IOUT communication is mainly carried out 
through EM waves propagation in the soil. The propagation loss of the EM waves 
due to water in the soil is highly dependent upon the real e ective permittivity, i.e., 
dielectric constant of the soil. Therefore, it is possible to use the propagation loss 
for calculating soil moisture (within the range of 100MHz - 500MHz) and relative 
permittivity. For modeling the permittivity of the soil, a known signal is transmitted 
using narrow bandwidth. A lowest path loss (LPL) is calculated for the signal among 
all frequency ranges and frequency is increased sequentially in predefined intervals, 
Df . The propagation loss of the received signal is measured at the receiver end. Path 
loss can be defined as the ratio of transmit signal power at sender Ptto the received 
signal at the receiver Pr. It is given as as follow: 

PL  = Pt ≠ Pr = 10. log 10(Pt/Pr) , (9.1) 

where denotes system path loss, along with the e ects of both antenna gains, i.e., 
transmitting Gt and receiving Gr. After measuring the path loss, the frequency of 
the lowest path loss is calculated as follow: 

fmin = F (min(PL(f))) , (9.2) 

where fmin represents the frequency of the minimum path loss. The distance between 
the transmitting and receiving antenna has no e ect on fmin due to antennas gains. 
Therefore, PL  already contains the antenna gains. Since narrowband is used for 
calculating PL measurements, noise e ects in the signal are minimal. Next the soil 
factor, „, is given as follow: 

„s = fmin/f0 , (9.3) 

where f0 denotes the resonant frequency of the antenna in the free space. After 
calculating the soil factor „s, the wavelength at frequency f0 is calculated as follow: 

⁄0 = c/f0 , (9.4) 

where c is the speed of light. Relative permittivity of the soil is calculated as: 

1 
‘ r = . (9.5)

(„s ◊ ⁄0)2 

Permittivity Estimation through Velocity of Wave Propagation in Soil: Soil 
permittivity varies greatly because of it being non-homogeneous characteristics which 
results in variation in phase velocity and wavelength of the signal as it propagates 
through the soil[53]. Therefore, the velocity of the signal can also be used to calculate 
the permittivity of the soil. Power delay profile (PDP) is known by the geometry 
layout of the testbed which in turn is used to measure the velocity of the signal. Direct 
wave component travels completely through the soil. Hence, After calculating the 
signal velocity, Cs, di erence between the arrival and transmission time of direct 
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Fig. 9.3: (a) Power delay profile (PDP) (Silt Loam Soil and Indoor Testbed), (b) 
Signal attenuation in soil with changing operational frequency, (c) Conversion of soil 
matric potential to VWC [15, 16], (d) Relation between VWC and soil permittivity 
as per Topp and Peplinski model [27, 55] 

wave component is used to measure the relative permittivity. Consequently, ‘ r is 
calculated as follow: 

5 6 
(·dr ≠ ·dt)‘ r = Cs ◊ ) , (9.6)

l 

where the distance between receiver and transmitter antennas is given as l, travel time 
of the direct component in the soil is given as ·dr ≠ ·dt, and the wave propagation 
velocity in soil is denoted by Cs. Propagation velocity of wave id di erent in soil 
and air. Due to this di erence the direct wave has lower attenuation as compared to 
lateral wave and travels along the soil-air interface through air. 

Figs. 9.3, as an example, gives PDP in silt loam soil. It plots the soil attenuation 
with operational frequency. 
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9.2.2 Di-Sense Soil Moisture Sensing 

Soil moisture-permittivity relation is no dependent upon bulk density, soil texture, and 
frequency[66]. It is possible to determine the soil water content from soil permittivity 
as soil moisture is only dependent upon the soil permittivity [19], [66] 1 

Relative permittivity of the dry soil is 3 and that of water is 80, therefore, it is 
calculating by equation (9.5) and (9.6) and soil moisture is calculated as given in 
[19], [66]: 

‘ r ≠ 3 
V WC(%) =  + 14.97 . (9.7)

.77 

9.3 Model Validation Techniques 

Soil moisture sensors are used to measure the soil water content and validate the 
model. Two main methods used to represent the soil water content are: volumetric 
water content (VWC) and soil matric potential (SMP). Watermark sensors are used 
for measurement of SMP in centibars (CB)/kilopascals (kPa)2. Soil-water retention 
curve in [15, 28] is used to convert soil matric potential to soil volumetric water 
content (VWC). Fig. 9.3(c) shows the water retention curves for silt loam soil and 
sandy soil. For sandy soil, SMP is inversely proportional to VWC and a small increase 
in SMP causes the VWC to drop significantly because of large pore size[17, 43]. 
Therefore, developing soil texture-based water-retention curves for di erent soil types 
with varying soil moisture levels is very important [16, 34]. 

In addition to these sensor measurements, Peplinski’s dielectric and Topp’s model 
is also used to validate the Di-Sense model. This validation is performed with di erent 
soil types and soil water content. Soil type has no e ect on Topp model [34, 66], and 
it related soil water content to soil permittivity. Topp model is given as follow: 

6 2 = 4.3 ◊ 10
≠ 3 ◊ ‘ ≠ 5.5

4 2 2 ◊ 10
≠  ‘ + 2.92 ◊ 10

≠  ‘ ≠ 5.3 ◊ 10
≠ (9.8) 

where ◊ represents the soil water content, and ‘ represents the dielectric constant of 
the soil. 

Soil dielectric constant is measured by the Peplinski model [26]. Soil dielectric 
constant is given as “ = – + j— where, 

1 Soil moisture-permittivity relation is proved to work in coarse textured soils and fine textured soil, 
however, some error were found in the relationship and this relation is weak in mineral soils [21, 55]. 
2 Higher matric potential values equals low soil moisture and, similarly, near saturation point is 
denoted by zero matric potential 1 CB = 1 kPa. 
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Fig. 9.4: Power spectral density [55]: (a) Transmitted signal, (b) Received signal; and 
(c) E �ect of frequency on Path loss [55] 

ı̂ CÚ D 
ıÙµ‘Õ   1

‘
 + (  

ÕÕ 2– = Ê )  ≠ 1 , (9.9)
2 ‘Õ 

ı̂ CÚ D 
ıÙ µ‘Õ 

1
‘

 + (  
ÕÕ 2— = Ê )  + 1 , (9.10)

2 ‘Õ 

where µ is the magnetic permeability, Ê = 2fif is the angular frequency, and ‘  
and ‘ÕÕ denotes the real  

Õ
and imaginary parts of the dielectric constant. Fig. 9.3(d) 

plots the relation between VWC and permittivity given by Topp and Peplanski 
model. Peplanski model is used for three di� erent soil types whereas Topp model is 
independent of soil type. 
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9.4 Experiment Setup 

This section discuss the experiment setup and methodology used for the validation 
of the model. Table 9.1 lists the values for burial depths, empirical VWC range, 
testbed classification and particle size distribution. For rest of the chapter, soil’s name 
abbreviation are also used as given in Table 9.1. 

9.4.1 Experiment Methodology 

SDR testbed uses USRPs [9] and GNU Radio [10] for experiments. A UG dipole 
antenna buried at 40 cm are used to transmit Gaussian signal of 2 MHz bandwidth via 
transmitter USRP. Receiver USRPs receives the signal which is connected to dipole 
antennas buried at di erent depths of 10 cm, 20 cm, 30 cm, and 40 cm whereas the 
distance between the transmitter and receiver is fixed at 50 cm. Several experiments 
are performed for all depths and distances of 2 & 4 meters [44, 65]. For a given 
frequency, signal is transmitted by the transmitter for just one second and receivers 
receive IQ data of 4 mega samples. Transmitter transmit for the next frequency only 
after receiving the acknowledgment form the receiver. This done for all the frequency 
in the range of 100 MHz to 500 MHz at each depth and distances. Finally, three 
measurements are taken and Matlab[23] is used for the post-processing. 

Welch’s method [47, 76], an advanced form of periodogram analysis, is used for 
path loss analysis and spectral estimation. It uses Discretye Fourier Transform to divide 
the data into fixed blocks for calculation and modification of periodogram which are 
averaged out for estimating power spectrum. Fig. 9.4(a) shows the periodogram of 
the transmitted signal. 

Fig. 9.4(b) shows the PSD for all depths at a distance of 50cm and the burial 
depth of the transmitter is 40cm, hence, shows that PSD is inversely proportional to 
the burial depths. 

Fig. 9.4(b) shows the path loss for all depths. It can be observed that path loss is 
directly proportional to the burial depths, i.e., increase with the increase in frequency. 
Therefore, lower frequency, normally < 500 MHz, works better in WUC channel. 

9.4.2 Power Delay Profile Measurements 

The purpose of measuring PDP is to estimate the velocity of propagating wave. To 
that end, Keysight Technologies N9923A FieldFox VNA is used for measuring PDP. 
Experimental setup of indoor testbed is used for the purpose with sandy and siltloam 
soils, varying burial depths (10 cm, 20 cm, 30 cm, and 40 cm). For greenhouse testbed, 
silty clay loam soil and depth of 20cm is used with OTA resonant frequency of 
433MHz for all types of soil. Finally, PDP and channel transfer function is measured 
for changing soil moisture levels [27, 55]. 
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Fig. 9.5: VWC e ect, in di erent soil types, on [55]: (a) Lowest path loss frequency, 
(b) Depth, and (c) Wave velocity 

For PDP measurement, VNA transmits a sinusoidal signal with frequency 
increasing in incremental increment. This frequency domain data is used to obtain the 
time-domain equivalent impulse response, h(t), through inverse Fourier transform 
(IFFT). To that end, 401 complex tones are stored in range of 10 MHz - 4 GHz, and 
sidelobes are suppressed by windowing the impulse response of the channel. The 
velocity is then calculated by the process in Section 9.2. 

9.5 Model Analysis: Performance, Validation and Error 

This section analyze the performance of the model and validate it. Section 9.5.1 
discuss the impact of soil moisture, burial depth and soil moisture on path loss 
calculated by using the methodology described in Section 9.2. Section 9.5.2 provides 
the model validation and Section 9.5.3 perform the error analysis for the model. 
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9.5.1 WUC Path Loss 

Figs. 9.5 shows the change in lowest path loss frequency of UG channel. The results 
are shown for three soil types: silt loam, silty clay loam, and sandy soil (Fig. 9.5(a)), 
varying soil moisture (Fig. 9.5(b)) and burial depth (Fig. 9.5(c)). It can be seen in 
Fig. 9.5(a) that for sandy soil, increase in soil moisture (15% to 36%) causes 56% 
decrease in lowest path loss frequency. For silt loam soil, increase in soil moisture 
(38% to 22%) causes 60% decrease in lowest path loss frequency and for silty clay 
loam soil this decrease is 15.62% for 32% to 38% increase in soil moisture. Generally, 
it can be concluded that lowest path loss is inversely proportional to soil moisture for 
these soil types. This is because of the fact that soil permittivity is greater than that 
of air causing it to increase with increasing soil moisture, hence, decreasing lowest 
path loss [49, 50, 52]. 

In Fig. 9.5(b) change in frequency loss is plotted for all three soil type under di erent 
burial depths. For silt loam soil, the lowest path frequency is decreased 12.32% as 
depth increases from 10cm to 40cm. For silt loam soil, the lowest path frequency is 
decreased by 12.32% (from 211 MHz to 185 MHz) as depth increases from 10cm 
to 40cm, and that for silt loam soil (field) it decreases by 38% (from 197 MHz to 
121 MHz). Similarly, for sandy soil, the lowest path frequency is decreased by 28.24% 
(from 308 MHz to 221 MHz) as depth increases from 10cm to 40cm. The reason for 
this behavior of lowest frequency is that wave reflected form the soil-air interface 
produces a current at antenna causing impedance to change, hence, resulting in lowest 
path loss frequency to change. The distance between soil-air interface increases 
with the increase in depth, therefore, the reflected waves attenuates because of high 
absorption rate of the soil. As the relative permittivity is directly proportional to the 
water content [7, 45], therefore, the change in lowest path loss frequency is greater in 
sandy soil than silt loam soil because silt loam soil high capacity of holding water. 
Sandy soil has lower permittivity causing the lowest path frequency shift to higher 
spectrum. 

Fig. 9.5(c) plots the arrival time of direct wave component along with the changing 
soil moisture. It can be seen that velocity of the wave is inversely proportional to the 
soil moisture. The velocity decreases with the increasing soil moisture for all type of 
soil. Wave velocity decreases by five times for soil moisture increase of 15% to 36%, 
and for sil loam soil, it decreases three times for soil moisture increase of 22% to 
38% [71, 72]. 

9.5.2 Validation 

This section discuss the results for model validation. Equations (9.5), (9.6) and 
(9.7) are used to calculate the values for soil permittivity and soil moisture and are 
shown in Figs. 9.6. Figs. 9.6(a)-9.6(b) compares the VWC calculated from Topp 
model and ground truth measurements with Di-Sense VWC. Similarly, Fig. 9.6(c) 
compares Di-Sense permittivity with Peplinski model, and Fig. 9.6(d) compares the 
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Fig. 9.6: Comparison of VWC of Di-Sense Model with [55]: (a) VWC measure 
from experiments, (b) VWC from Topp model; (c) Comparison of permittivity of 
Di-Sense Model with permittivity from Peplinski model [55], (d) Comparison of 
permittivity from Di-Sense Model from time-domain velocity of propagation method 
with Di-Sense permittivity from path loss propagation method [55] 

the Di-Sense permittivity estimated by time-domain velocity of propagation method 
with Di-Sense path loss propagation permittivity method. The graphs confirms 
the result from Di-Sense model with ground truth measurements. There are some 
interesting point to consider from Fig. 9.6, e.g., decrease in lowest path loss frequency 
causes increase in soil permittivity leading to increase in soil moisture. 

9.5.3 Model Error Analysis 

Figs. 9.7 shows the result from the model error analysis. Di-Sense VWC estimation 
error is compared with ground truth soil moisture sensing in Fig. 9.7(a). It can be 
observed that the error varies more in silt loam soil (1% - 8%) as compared to the 
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Fig. 9.7: Error Analysis of Di-Sense Model [55]: (a) comparison of VWC from 
Di-Sense Model with VWC measured from experiments, (b) comparison of VWC 
from Di-Sense Model with VWC from Topp model, (c) Comparison of permittivity 
of Di-Sense Model with permittivity from Peplinski model, and (d) Comparison of 
permittivity from Di-Sense Model from time-domain velocity of propagation method 
with Di-Sense permittivity from path loss propagation method 

sandy soil underscoring the importance of clay contents in soil. Overall estimation 
error remains less than 8%. 

Fig. 9.7(b) compares the Di-Sense soil moisture estimation error with that of 
from Topp model. As in the case of Di-Sense VWC estimation error, Di-Sense soil 
moisture estimation error also varies more in silt loam soil. Moreover, Di-Sense soil 
moisture estimation error is 7% less than the one measured from Topp model. 

Fig. 9.7(c) shows the permittivity estimation error from Di-Sense and Peplinski 
model. It can be seen that, in comparison with Peplinski model, Di-Sense estimation 
error is high (21%) for silt loam (field) than silt loam (error < 15%) and silty clay 
loam. It can be observed that error is inversely proportional to the soil moisture levels, 
i.e., low error is observed for the high soil moisture. Water permittivity depends upon 
numerous factors, therefore, soil dielectric constant becomes complicated under high 



\ 
\ 

\ •, 
'lk ,..,_ 

·-... ·-----•-•-•-· 
0 10 20 30 

0 

10 

20 

30 

40 

50 

V
W

C
 (

%
) 

120 170 220 270 320 370 
0 

10 

20 

30 

ϵ
 r 

ϵ Frequency (MHz)r 

(a) (b) 

25 

D
i-

S
en

se
 ϵ

 -
 T

D
r 

20 

15 

10 

5 

0 

50 cm 
1 m 

0 10 20 30 40 

τ  - τ  (ns)
dr dt 

(c) 

�

�

�

338 9 Soil Moisture and Permittivity Estimation 

Fig. 9.8: Transfer function of Di-Sense model for [55]: (a) soil moisture, (b) soil 
permittivity (time-domain) (c) soil permittivity 

soil moisture level. Moreover, soil permittivity also rely on many other factors such 
as soil temperature, soil type/texture, percentage of clay particles, bulk density, soil 
bulk density, porosity, and salinity. For Di-Sense soil moisture estimation model, the 
e ect of these factor is very low. To summarize, modeled and measured values are 
confirmation with each other and Di-Sense method can be considered as a feasible 
method for measuring soil permittivity and soil water content [26, 35]. 

An important thing to note is that Fig. 9.6(c) does not compare permittivity for 
sandy soil using Peplinski model. The reason is that Peplinski model does not work 
well with the sandy soil having sand content of 86% [26]. Fig. 9.7(d) shows the 
di erence between Di-Sense path loss propagation permittivity method and Di-Sense 
permittivity by time-domain velocity of propagation method and both methods are 
in confirmation with testbed soil with estimation di erence of less than 8%. Hence, 
Di-Sense model for estimating soil permittivity and soil moisture are suitable for 
the soils having same particle size classification and distribution as of used in these 
experiments [48, 55]. 
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9.5.4 Transfer Functions of Di-Sense 

Although result are most relevant for determining soil permittivity and soil moisture, 
however, it is also suitable for designing IOUT communication system. Moreover, 
soil permittivity is less e ected at higher depths because the intensity of reflected 
wave from soil-air interface is reduced at higher depths. Following procedure is used 
for estimation: 

• First, lowest path loss frequency is measured. 
• Soil permittivity is determined by using equations (9.5) and (9.6). 
• Soil moisture is estimated by using equation (9.7). 

Fig. 9.8 shows the Di-Sense transfer functions for soil moisture and soil permittivity. 
These graphs can be used for measuring the permittivity and soil moisture for a 
given IOUT propagation path loss. Di-Sense measurement method is very simple 
which requires no knowledge of IOUT deployment parameters, i.e., type of radios, 
antenna knowledge, and communication parameters. Only requirement is to accurately 
measure the propagation path loss. It can be used with di erent operation frequencies 
f0 as equations (9.3) and (9.4)scales with the f0. Di-Sense have some limitations 
as well: it requires accurate measurement of propagation path loss of soil under 
observation. For applications requiring higher accuracy, soil-water retention capability 
and specific soil properties can be represented by an empirical factor [51]. 

9.6 Di-Sense Applications 

Di-Sense can be used for irrigation scheduling in IOUT-based agricultural systems 
[9]. In construction-based IOUT systems (building and bridges), Di-Sense can be 
used to examine the health of the building structure. In geophysical applications, 
Di-Sense can be used for estimating permittivity of ice and rocks. It can also be used 
in detection soil contamination, and in the domains of meteorology, geophysics and 
civil engineering. 
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