Purdue University

Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

5-1995

Correlation of Tire Intensity Levels and Passby Sound Pressure Levels

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Henry R. Hall Purdue University

Richard F. Schumacher General Motors

Jeffrey Stott General Motors

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Bolton, J Stuart; Hall, Henry R.; Schumacher, Richard F.; and Stott, Jeffrey, "Correlation of Tire Intensity Levels and Passby Sound Pressure Levels" (1995). *Publications of the Ray W. Herrick Laboratories.* Paper 223.

https://docs.lib.purdue.edu/herrick/223

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

CORRELATION OF TIRE INTENSITY LEVELS AND PASSBY SOUND PRESSURE LEVELS

J. STUART BOLTON AND HENRY R. HALL

RAY W. HERRICK LABORATORIES SCHOOL OF MECHANICAL ENGINEERING PURDUE UNIVERSITY

RICHARD F. SCHUMACHER AND JEFFREY STOTT

GENERAL MOTORS PROVING GROUND

OBJECTIVES

- Relate contact patch acoustic intensity level (*IL*) to passby sound pressure level (*SPL*) during coast and cruise at ISO and SAE sites
- Use that information to estimate tire noise contribution to passby sound pressure levels during acceleration

CONCLUSIONS

- Tire noise contribution to passby SPL lies within 4 dB to 7 dB of overall A-weighted SPL
- Coast and Cruise SPL's 1.4 dB lower at ISO than SAE sites (Acceleration SPL's 0.5 dB lower)

TEST SUMMARY

- Five Vehicles tested at fourteen passby sites
- Coast, cruise and acceleration tests performed
- IL measured near driven wheel contact patch
- SPL measured at 7.5 m sideline
- 800 data sets obtained

Location	Surface Type	Dates (1993)	Number of Tests
Α	SAE sealed	September 30	36 retained 54 total runs
В	SAE unsealed	September 24	56 / 108
С	SAE sealed	September 16 & 17	60 / 102
D	ISO	November 23	48 / 54
E	ISO	September 18	60 / 92
F	SAE	October 18	60 / 74
	unsealed		
G	ISO	October 12 & 13	44 / 58
Н	SAE sealed	October 22	60 / 73
I	SAE unsealed	October 25 & 26	64 / 92
J	SAE sealed	September 19	60 / 84
К	SAE unsealed	October 14 & 15	96 / 109
L	SAE sealed	September 20 & 21	60 / 75
М	SAE sealed	October 19	60 / 71
N	SAE unsealed	October 1	48 / 55
	14 tracks		812 / 1101

Table 1. Test track summary.

VEHICLES TESTED

	Vehicle I	11		IV	V
TYPE	production	production	near	prototype	near
	compact 2	midsize 4	production	small	production
	door	door sedan	midsize 2	passenger	midsize 4
	hatchback		door sedan	van	door sedan
ENGINE	4 cylinder	6	4	4	6
TRANS-	5 speed	4 speed	3 speed	5 speed	3 speed
MISSION	manual	automatic	automatic	manual	automatic
TIRE	production	production	production	production	production
	touring	touring	aggressive	European	touring
		877 Z	sport	tread	
SIZE	P175/70	P205/70	P215/60	P205/65	P195/70
	R13	R14	R14	R15	R14
PRESSURE	32 psi	35	30	35	32

Table 2. Vehicle and associated tire type.

1

TEST TRACK

Figure 1. Test track schematic.

INTENSITY MEASUREMENT

DATA ACQUISITION

DATA RECORDED EVERY 0.25 m ON PC

- VEHICLE SPEED
- 1/3 OCTAVE A-WEIGHTED SPL
- THROTTLE POSITION
- TRANSMISSION GEAR

DATA RECORDED ON DAT RECORDER IN VEHICLE

- RADAR TIME HISTORY
- MICROPHONE OUTPUTS

DATA ANALYSIS

COAST/CRUISE TRANSFER FUNCTIONS

p ²	=	p _F ² + J	o_R^2	
	=	$S_F T_F$	+	$S_R T_R$

ASSUME:

(i)
$$S_F \cong S_R$$

(ii)
$$T_F \cong T_R$$

$$p^2 \cong 2S_FT_F$$

WHERE:

$$S_F = p_0^2 10^{(IL_{10})}$$

COAST/CRUISE TRANSFER FUNCTION

 $H_{COAST/CRUISE} = 10 \log T_F$

COAST/CRUISE TRANSFER FUNCTIONS

 $SPL_{COAST/CRUISE} = IL_{COAST/CRUISE} + H_{COAST/CRUISE} + 3 dB$

H_{COAST/CRUISE} = SPL_{COAST/CRUISE} - IL_{COAST/CRUISE} - 3 dB

SPL_{COAST/CRUISE}

	Vehicle I	11		IV	V
ISO	67.0	66.9	69.8	70.3	66.5
SAE	68.4	68.5	71.0	72.0	68.1

IL_{COAST/CRUISE}

	Vehicle I			IV	V
ISO	93.3	91.0	95.0	96.2	92.6
SAE	94.4	91.6	95.9	97.2	93.6

H_{COAST/CRUISE}

	H _{COAST}		HCRUISE	
	ISO SAE		ISO	SAE
mean	-28.4	-28.3	-28.3	-27.7
standard deviation	0.8	1.4	1.0	1.6

AVERAGE SPLPASSBY

2	Vehicle I	II		IV	V
ISO	75.6	72.8	78.7	78.2	72.3
SAE	76.1	73.4	78.4	79.1	73.0

SPL_{PASSBY}

	Vehicle I			IV	V
Site A	76.6	73.7	81.6	79.1	72.9
В	77.7	75.1	78.5	80.4	74.5
С	77.2	74.2	78.1	79.3	73.1
D	74.7	71.7	76.6	77.8	
E	76.6	73.9	78.0	79.0	72.7
F	74.8	72.0	76.6	78.0	71.5
G	75.4	72.6	81.0	77.7	71.8
Н	76.2	74.2	78.3	79.7	73.3
	75.8	73.7	77.7	79.0	73.4
J	76.2	73.0	77.5	78.5	72.5
К	76.1	72.6	76.4	78.4	72.4
L	77.0	73.7	77.9	78.8	73.0
Μ	75.5	73.6	77.9	79.6	72.7
Ν	72.5	70.7	80.2		

TIRE NOISE CONTRIBUTION TO PASSBY LEVEL

SOUND PRESSURE DUE TO TIRE NOISE:

$$p_t^2 = S_{PASSBY}T_F + S_{COAST/CRUISE}T_R$$

ASSUME: $T_F \cong T_R \cong T_{COAST/CRUISE}$

$$p_{t}^{2} \cong (S_{PASSBY} + S_{COAST/CRUISE})T_{COAST/CRUISE}$$
WHERE:
$$S_{PASSBY} = p_{0}^{2} 10^{\binom{IL_{PASSBY}}{10}}$$

$$S_{COAST/CRUISE} = p_{0}^{2} 10^{\binom{IL_{COAST/CRUISE}}{10}}$$

TIRE NOISE CONTRIBUTION TO PASSBY LEVEL

$$SPL_{PASSBY/TIRE} = \frac{IL_{PASSBY}}{10 \log_{10}} \left(10^{IL_{PASSBY}} + 10^{IL_{COAST/CRUISE}} \right) + \left(H_{COAST/CRUISE} \right)$$

WHERE:

•	IL _{PASSBY}	MEASURED DURING ACCELERATION TEST FOR VEHICLE OF INTEREST
•	<il<sub>COAST/CRUISE></il<sub>	AVERAGE OF MEASURED COAST AND CRUISE <i>IL</i> 's FOR VEHICLE OF INTEREST
•	<h<sub>COAST/CRUISE></h<sub>	VEHICLE'S AVERAGE COAST/CRUISE TRANSFER FUNCTION

TIRE NOISE CONTRIBUTION TO PASSBY LEVEL

	I	II	III	IV	V
Average Passby Level	76.3	73.7	78.1	79.3	73.1
Estimated Tire Noise	72.2	69.4	72.2	72.7	71.4
All Other Sources	74.2	71.7	76.8	78.3	68.1

TIRE NOISE CONTRIBUTION TO PASSBY LEVELS:

≈ 72 dB

CONCLUSIONS

• COAST AND CRUISE LEVELS MEASURED ON ISO SITES APPROXIMATELY 1 - 1.5 dB LESS THAN THOSE MEASURED ON SAE SITES

TIRE NOISE LEVELS MEASURED ON SAE AND ISO SITES MAY DIFFER

- PASSBY LEVELS APPROXIMATELY 0.5 dB LESS ON ISO SITES THAN ON SAE SITES
- FOR 4 OF 5 VEHICLES TESTED, TIRE NOISE CONTRIBUTION TO PASSBY SPL WAS 4 dB TO 7 dB LESS THAN OVERALL A-WEIGHTED SPL

TIRE NOISE PASSBY LEVEL APPROXIMATELY 72 dB