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Abstract

Projecting the long-term trends in energy demand is an increasingly complex endeavor due

to the uncertain emerging changes in factors such as climate and policy. The existing

energy-economy paradigms used to characterize the long-term trends in the energy sector

do not adequately account for climate variability and change. In this paper, we propose a

multi-paradigm framework for estimating the climate sensitivity of end-use energy demand

that can easily be integrated with the existing energy-economy models. To illustrate the

applicability of our proposed framework, we used the energy demand and climate data in

the state of Indiana to train a Bayesian predictive model. We then leveraged the end-use

demand trends as well as downscaled future climate scenarios to generate probabilistic esti-

mates of the future end-use demand for space cooling, space heating and water heating, at

the individual household and building level, in the residential and commercial sectors. Our

results indicated that the residential load is much more sensitive to climate variability and

change than the commercial load. Moreover, since the largest fraction of the residential

energy demand in Indiana is attributed to heating, future warming scenarios could lead to

reduced end-use demand due to lower space heating and water heating needs. In the com-

mercial sector, the overall energy demand is expected to increase under the future warming

scenarios. This is because the increased cooling load during hotter summer months will

likely outpace the reduced heating load during the more temperate winter months.

Introduction

The U.S. energy infrastructure is capital intensive and requires significant investments in the

planning and operation of the systems to ensure supply adequacy under a range of future con-

tingencies. The ability to accurately predict and project future energy demand lies at the heart

of sustainable and resilient planning and operation of the energy sector. This is because

demand predictions drive supply expansion planning. It is to be noted that in this paper, we

use the term ‘prediction’ to refer to short–and medium–term forecasts that rely on historical
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data, and ‘projection’ for longer–term forecasts that are contingent on scenarios used in the

model. Inaccurate estimation of demand renders over- or under-investment in capacity expan-

sion planning, which could lead to either rapid depletion of natural resources or large-scale

supply shortages [1]. Energy demand forecasts are generally classified based on their lead-time

windows of: (i) short-term (hourly, daily, weekly or monthly), (ii) medium-term (monthly to 1

to 5 year(s)), and (iii) long-term (5 to over 30 years of lead time). While short-term forecasts

are key for reliable daily operations and medium-term forecasts are critical for supporting reg-

ulatory decisions related to rate-setting, long-term projections are important for identifying

optimal investment strategies in capacity expansion decisions [2,3]. Each category of short,

medium, and long-term forecast has its own unique challenges in terms of data availability,

methodology, computational resources, types of stakeholders involved, and regulatory require-

ments. However, long-term energy projection is most complex due to the epistemic uncertain-

ties about the future shifts in policy, technology, socio-economic conditions and climatic

change. There exist many sophisticated energy-economy models for projecting medium- and

long-term trends in the energy infrastructure such as MARKAL (MARKet ALlocation) [4],

TIMES (The Integrated MARKAL-EFOM System) [5] and NEMS (National Energy Modeling

System) [6]. While these models can account for factors such as the future changes in technol-

ogy, socio-economic conditions, and policy impacts, they are not able to adequately incorpo-

rate uncertainties associated with shifts in end-use energy demand due to climate variability

and change [3,7].

In this paper, we propose a data-driven, multi-paradigm methodology to characterize the

complex energy demand–climate nexus in the residential and commercial sectors for various

end-uses such as space cooling, space heating and water heating. Our proposed framework can

be easily integrated with the existing energy-economy models (e.g., MARKAL) to account for

climate sensitivity of the long-term end-use demands. While we selected the state of Indiana as

a case study, our proposed approach can be readily extended to any other region in the United

States. We selected Indiana due to a number of reasons detailed below:

1. Indiana is the 9th most energy intensive state (on a per capita basis) in the U.S. [8];

2. Being an importer of electricity from the neighboring states and Canada, Indiana is vulner-

able to supply shortages in cases of shifts in demand due to reasons such as climate variabil-

ity and change [9];

3. The state of Indiana ranks 2nd in terms of coal consumption in the energy sector. Deviated

patterns of energy consumption, therefore, will have significant implications for the

environment;

4. Indiana experiences varied states of climate such as lake-effect snows and winds off the

Lake Michigan and localized weather variations in the hilly regions of the south. In general,

the state experiences the interplay of polar air moving south from Canada and warm, moist

air moving north from the Gulf of Mexico, which cause sudden variations in the climatic

conditions, leading to complex patterns of energy demand for space conditioning [10].

Previous research has shown that unlike the transportation and industrial sectors, the resi-

dential and commercial sectors are most sensitive to climatic variability and change [3,11–14].

We therefore limited the scope of our analyses to the residential and commercial sectors.

Background

Energy consumptions in the residential and commercial sectors are driven by complex in-

teractions between socio-economic conditions, available technologies, land-use patterns,

A multi-paradigm framework to assess the impacts of climate change on end-use energy demand
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characteristics of the built environment, policy landscapes and climatic conditions of a given

region. There exists a large body of literature on modeling energy demand in the residential

and commercial sectors as a function of a wide range of factors such as climate, policy, technol-

ogy, and socio-economic conditions [15–17]. However, since the objective of this paper is

assessing the climate sensitivity of end-use demand, we focused our literature review on the

studies that included climate variability and change as a key parameter in analyzing residential

and commercial demand patterns.

The residential sector

Steemers and Yun [18] developed a Generalized Linear Model (GLM)—using the cross-sec-

tional Residential Energy Consumption Surveys (RECS) data in 2001—to examine the in-

teractions between occupants’ behavior, building systems and climatic characteristics. Their

objective was to examine the roles of occupant behavior (particularly in terms of space condi-

tioning) and socio-economic factors in shaping energy demand curves. They fitted separate

models for space heating and space cooling. Their results suggested that heating-degree-days

(HDD) was the most significant predictor for space heating. In the case of space cooling,

behavioral variables (e.g., extent of air-conditioning) were identified to be important. They

also concluded that physical characteristics of buildings influenced the residents’ heating load

more than their cooling load. Yun and Steemers analyzed the residential cooling load [19].

They assessed the relative significance of behavioral, physical and socio-economic parameters

on cooling demand in order to provide a better understanding of their complex interactions,

and to enable a more informed appraisal of interventions or incentives to improve energy effi-

ciency. A few studies analyzed the role of ownership versus renting in shaping the climate-sen-

sitive end-use demand. For instance, Levinson and Neimann [20] conducted a study to

understand the energy consumption behavior of tenants residing in utility-included apart-

ments by analyzing the EIA RECS data and the American Housing Survey (AHS) data (1985–

1997). They hypothesized that tenants in utility-included apartments were less incentivized to

conserve energy. Indeed, they found that tenants in utility-included apartments were inclined

to set their thermostats 1–3˚F higher during winters when they are away; contributing to

0.75% increase in fuel expenditures. The authors concluded that landlords were inclined to

favor utility-included rent contracts. This is because, the property-owners could invest in

energy efficient appliances (to reduce demand curves) while charging higher rents in exchange

for paying utility bills upfront. Davis [21] leveraged the RECS 2005 dataset in order to investi-

gate if renters were less likely to have energy efficient appliances. The study found significant

variation in household energy use across different population groups, mainly due to economic

factors and household characteristics. Min [22] developed a linear regression model using

RECS 2005 data and U.S. Census Bureau 2000 zip-code-level data to predict energy used for

space heating, water heating, cooling and appliances. Cities and suburban areas were found to

have higher natural gas consumption compared to rural areas. They concluded that the total

energy use was dominated by heating, with California ranking the lowest and some states in

the Midwest and Northeast ranking the highest in heating energy demand. Kaza [23] trained a

quantile regression model to the EIA RECS (2005) data to examine the relationship between

energy consumption and various factors such as, heating and cooling degree days, total heating

and cooling area, household size, price of electricity, housing type and age, neighborhood den-

sity, ownership and income. The study identified the age of the house as a more important

predictor for heating rather than cooling. Total area was found to be positively related to

household energy use, while neighborhood density did not seem to have a significant impact

on energy demand. Moreover, cooling load was found to be inelastic with respect to the price

A multi-paradigm framework to assess the impacts of climate change on end-use energy demand
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of electricity. Howard [24] developed a multiple regression model to estimate demand inten-

sity (Kilowatt-hour per square-meters of floor area, i.e., KWh/m2) in the built environment in

New York City. They developed eight different models for various building types, but did not

provide much information about the predictive performance of their models.

The commercial sector

Yalcintas [25] developed energy benchmarking models—based on the Artificial Neural Net-

works (ANN)—for office buildings in all census regions of the U.S. The ANN models outper-

formed linear regression in terms of both goodness-of-fit and predictive accuracy. Their

analysis focused on model’s predictive performance and no statistical inferences were dis-

cussed in their paper. The Department of Energy also conducted a benchmarking study based

on energy usage intensity (EUI) to make recommendations based on principal building activ-

ity [26]. Similarly, the Pacific Northwest National Laboratories published recommendations

based on (non-statistical) inferences from the Commercial Building Energy Consumption Sur-

veys (CBECS 2003) dataset to suggest HVAC systems for buildings based on their principal

activity [27]. Another study [28] assessed the feasibility of achieving net zero-emissions in

commercial buildings. The authors discussed the concept of Zero Energy Building (ZEB)

potential, using the ‘EnergyPlus’ simulation package. Their results indicated that 22%–64% of

buildings could potentially reach ZEB by 2005–2025.

Derrible and Reeder [29] used the Department of Energy’s eQuest v3.65 package to simu-

late the energy consumption in the U.S. commercial buildings. They concluded that the U.S.

commercial buildings are ’over-cooled’ and quantified the associated economic costs. Blum

and Sathye [30] analyzed the non-governmental, and non-mall commercial buildings in the U.

S. to examine whether a market failure due to principal-agent (PA) problem might have pre-

vented the installation of energy-efficient devices, or efficient operation of space-conditioning

equipment. The study identified PA market failures for smaller buildings (i.e., area less than

50,000 sq. ft.) in the case of space heating and market failures for all building types in the case

of space cooling.

Existing gaps and our contribution

While reviewing the significant developments in the area of energy demand–climate nexus

(outlined above), we have identified a number of knowledge gaps in the field, some of which

are summarized below.

1. Majority of the statistics-based approaches used for modeling the residential sector’s

demand, leverage linear models to characterize the energy demand–climate nexus. How-

ever, recent research findings have shown that linear models are inadequate in capturing

the complex and non-linear relationship between energy demand and climate variability

and change [3,11,16]. On the other hand, the non-linear methods used for modeling an

individual home’s demand trends (e.g., [31]) cannot be easily rolled up to represent the

entire residential energy sector).

2. Most of the existing studies have focused on characterizing the end-use demand sensitivity

to climate variability, using cross-sectional data. While analyses based on cross-sectional

data can help to extract useful information for a given point in time, they are not well-suited

for medium- and long-term projections. This is because, cross-sectional data lack informa-

tion on temporal variability. It should be noted that other studies have leveraged time-series

data to capture medium- and long-term sensitivity of energy demand to climate [3,11–

14,16, 32]. However, such studies used aggregate energy consumption data, with no

A multi-paradigm framework to assess the impacts of climate change on end-use energy demand
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breakdown of the climate sensitive portion of the end-use demand such as space heating,

space cooling and water heating. Therefore, the results of such models (e.g., [3,11–14,16])

cannot be integrated into energy-economy models (e.g., MARKAL and NEMS).

To address these knowledge gaps, we developed a multi-paradigm framework to character-

ize the climate sensitivity of end-use demand. More specifically, we developed a Bayesian,

non-parametric data-miner to characterize the state-level energy demand–climate nexus in

the residential and commercial sectors. The aggregate demand estimates were then mapped

onto statistically representative individual user units (i.e., house-hold level in the residential

sector, and building level in the commercial sector). Downscaled climate change scenarios

were then used to project future end-use demand for space cooling, space heating and water

heating at the individual household and building levels. Our model outputs can easily be inte-

grated into energy-economy models such as MARKAL to enable accounting for climate vari-

ability and change while projecting the medium- and long-term energy demand under various

policy scenarios.

Data collection and visualization

In our analysis, we included four categories of data, viz., (i) state-level, time-series data of

energy demand in the residential and commercial sectors, (ii) fractions of total end-use energy

needed for space cooling, heating and water heating for the residential households and com-

mercial buildings, (iii) historical climate data for the state of Indiana, and (iv) statistically

downscaled projections of future climate data for the state. Below, we will briefly discuss each

of these categories of data.

The state-level annual net end-use energy demand data for the residential and commercial

sectors were obtained from the U.S. EIA State Energy Data System (SEDS) for the period of

1963–2014 [33]. This yearly sectoral energy demand accounts for only the net energy con-

sumption, excluding the electrical system energy losses. More specifically, the net energy

demand represents aggregated consumption of coal, petroleum, natural gas, electricity (includ-

ing energy losses during transmission), biomass, geothermal and solar energy use in a year and

is expressed in trillion Btu (British thermal units) [33]. It is noteworthy that we only included

data post 1980’s to exclude the tipping point effects of the oil and energy crises in the 70’s

[34,35]. The fractions of different categories of end-use energy (i.e., space heating, space-cool-

ing and water heating) were obtained from the EIA Residential Energy Consumption Survey

(RECS)-2009 and Commercial Buildings Energy Consumption Survey (CBECS) datasets-2012

[36,37].

Table 1 provides the residential sector’s descriptive statistics on (i) historical net energy

consumption during 1981–2013 from the SEDS dataset, and (ii) the fractions of climate sensi-

tive end-use energy demands (i.e., space heating and cooling and water heating) extracted

from the most recent version of the EIA RECS (2009) dataset [36]. EIA RECS data contains

granular information on a ‘statistically representative’ sample of households in the states of

Indiana and Ohio. In the RECS dataset, states with lower population levels and similar energy

Table 1. Descriptive statistics of end-use energy consumption (in trillion Btu) in the residential sector.

Variable Min. 1st Q. Median Mean 3rd Q. Max.

Net energy consumption (1981–2013) 256.6 276.1 288.7 286.3 295.6 315.0

Space cooling fraction 0.0 0.003 0.009 0.017 0.017 1.000

Space heating fraction 0.0 0.690 0.745 0.731 0.820 0.970

Water heating fraction 0.0 0.172 0.245 0.252 0.294 0.989

https://doi.org/10.1371/journal.pone.0188033.t001

A multi-paradigm framework to assess the impacts of climate change on end-use energy demand
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consumption profiles are combined and therefore data exclusive to the state of Indiana is not

available. However, since the states of Indiana and Ohio are quite similar in terms of their

demographics and energy profiles, the implications of using such data in our analysis will likely

be minimal.

From the Table 1 above, we can observe that the greatest fraction of the energy demand in

Indiana is attributed to space heating and water heating. Space cooling accounts for a very

small fraction of the total statewide energy consumption. More specifically, on average, 73.1%

of total energy is consumed for space heating, 25.2% is used for water heating and about 1.7%

is needed for space cooling.

Table 2 provides the commercial sector’s descriptive statistics on (i) historical net energy

consumption during 1981–2013 from the SEDS dataset, and (ii) fractions of climate sensitive

end-use energy demand obtained from a statistically representative sample of commercial

buildings in the East North Central region available at EIA CBECS-2012 [37]. Unfortunately,

granular data at individual state-level is not available. The assumption here is that the commer-

cial end-use energy profile for Indiana is similar to that of the entire East North Central region

of the U.S.

Unlike the residential sector, the fraction of total commercial energy demand attributed to

the space cooling is comparatively much higher (Table 2). Space cooling accounts for 15.7%

on average of the total statewide energy consumption while, space heating and water heating

respectively consumes 15.1% and 5.2% of the total energy on average.

Global monthly estimates of the historical climate data for the state of Indiana was collected

from the National Centers for Environmental Information (NCEI) of National Oceanic and

Atmospheric Administration (NOAA) for the period of analysis [38]. Initially, data was col-

lected from all climate stations in Indiana, and then filtered to include only the stations with

complete information [3]. To extract the seasonal signals in climate data, we followed a three-

step procedure: (i) aggregated the station-averaged daily data to monthly-level data using the

monthly medians; (ii) classified the weather variables into three seasonal categories of summer

(June–September), winter (December–March) and intermediate (April, May, October,

November), to be consistent with the seasonal classifications in the commonly used EIA

energy-economy models, such as MARKAL (Fig 1), and (iii) computed the seasonal means

and standard deviations for each of the climate variables.

In our previous research, we identified dew point temperature, average wind speed, and

precipitation levels as the key predictors of the climate sensitive portion of the end-use demand

[11, 16]. However, since projections of downscaled dew-point temperature were unavailable,

we used minimum and maximum temperature as proxies for the dew point temperature. This

is reasonable as minimum temperature (TMIN) represents the lower range of the dew point

temperature, while the maximum temperature (TMAX) captures the higher range of the dew

point temperature [18].

The seasonal distribution of the historical climate data is given in Fig 2. We observe that

precipitation levels tend to be highest during spring, but does not vary significantly seasonally

Table 2. Descriptive statistics of end-use energy consumption (in trillion Btu) in the commercial sector.

Variable Min. 1st Q. Median Mean 3rd Q. Max.

Net energy consumption (1981–2013) 123.7 155.5 171.2 168.1 183.1 198.5

Space cooling fraction 0.0 0.060 0.126 0.157 0.222 0.797

Space heating fraction 0.0 0.007 0.051 0.151 0.234 0.980

Water heating fraction 0.0 0.002 0.007 0.052 0.048 0.844

https://doi.org/10.1371/journal.pone.0188033.t002

A multi-paradigm framework to assess the impacts of climate change on end-use energy demand
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as compared to the temperature and wind speeds. Wind speed is observed to be lowest during

the summer months and reaches peak during the winter months.

Climatic data projections

To assess the long-term climate sensitivity of the residential and commercial end-use demand

in Indiana, we used the Representative Concentration Pathways (RCP), adopted by the IPCC

5th Assessment Report [39,40]. RCPs, represent a large set of scenarios in the literature and

characterize possible development trajectories for the key forcing agents of climate change

[40]. More specifically, we used the two scenarios, namely, RCP 8.5 (characterized by high

greenhouse concentration levels) and RCP 4.5 (representing a more stabilized scenario). Due

to the coarse spatial resolution of the climate scenarios, they were downscaled to the State of

Indiana using the hybrid-delta technique [41]. Figs 3 and 4 show the distribution of historical

and projected input climate variables under the two scenarios. It can be seen from Fig 3A, that

while there seems to be a modest upward trend in the average value of precipitation, the tail of

its probability density function becomes much heavier under RCP 8.5; indicating an increased

likelihood of experiencing extremes under the high emission scenario. Based on Fig 3B, there

is little evidence that the distribution of wind speed will statistically change in the future.

It can be seen from Fig 4A and 4B respectively that both minimum and maximum

temperatures are increasing over time, with larger shifts under RCP 8.5 relative to RCP 4.5.

Fig 1. Classification of input climate variables.

https://doi.org/10.1371/journal.pone.0188033.g001
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Fig 2. Historic patterns of climate predictors, namely (a) total precipitation, (b) minimum temperature, (c)

maximum temperature and (d) wind speed.

https://doi.org/10.1371/journal.pone.0188033.g002

Fig 3. Scenario-based comparisons of (a) precipitation data, and (b) wind speed data.

https://doi.org/10.1371/journal.pone.0188033.g003
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Methodology

Fig 5 below summarizes our multi-paradigm framework for projecting the residential and

commercial end-use energy demands into the future (until 2100) under the various climate

change scenarios. We refer to our approach as a “multi-paradigm” framework because it inte-

grates different types of modeling techniques, such as, simulation, machine learning and

hybrid downscaling on the same platform to obtain our final outcomes.

The final estimates from our proposed framework can then be used as input to the energy-

economy models (e.g., MARKAL) to model the long-term impacts of climate change on the

regional energy demand under various future climate scenarios. The details of each of the

steps in creating our proposed multi-paradigm framework (i.e., steps 1–3 in the red boxes in

Fig 5) are outlined below.

Train, test and validate Bayesian predictive models to characterize

climate sensitivity of demand in the residential and commercial sectors:

Step 1

State-level annual net energy demand in the residential and commercial sectors [33], together

with the historical monthly climate data [38] were used to develop Bayesian predictive models

for each sector. To harmonize the temporal scale of our climate data with the seasonal scale,

typically used in most energy-economy models (such as MARKAL [4] and NEMS [6]), we

aggregated the climate data over the three seasons of summer (June–September), winter

(December–March) and intermediate (April, May, October, November). In training our pre-

dictive models, we included the variable “year” in addition to the (climatic) predictors (dis-

cussed in the data section) to control for the (non-climatic) secular trends.

Based on our previous research results [3, 11], we leveraged the method of Bayesian additive

regression trees (BART) [42] to develop our predictive models. Our prior research found

BART as a particularly powerful algorithm for modeling the energy demand–climate nexus

due to its: 1) superior predictive performance, 2) ability to yield fully probabilistic prediction

Fig 4. Scenario-based comparisons of (a) minimum temperature, and (b) maximum temperature data.

https://doi.org/10.1371/journal.pone.0188033.g004
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and credible interval uncertainty estimation, and 3) ability to incorporate expert knowledge into

the learning procedure [3, 11]. We conducted a thorough cross-validation process in training,

testing and validating our energy forecasting models. More specifically, we used a 20% random-

ized holdout analysis to estimate the predictive accuracy of the models and simulated the process

for 30 times—as a conservative measure to ensure that all data has been used at least once. The

expected values of MSE (Mean Square Error) and MAE (Mean Absolute Error) were used to

estimate the out-of-sample prediction accuracy for the models developed for each sector.

Background theory on the approach used. Bayesian, additive regression-trees (BART)

[42–44] is a sum-of-trees model where the response function is approximated by aggregating

the estimates from m ‘small’ decision trees. Mathematically, BART can be represented as:

Y ¼ ½
Pm

j¼1
gðX; Tj;MjÞ� þ �; where � � Nð0; s2Þ ð1Þ

In the Eq (1) above, the additive stochastic component �–referred to as irreducible error—

reflects the dependence of the response variable on quantities other than the input variables

that are neither observed, nor measured. If a model accurately approximates the response vari-

able, the irreducible error � will be normally distributed with an expected value of zero. This

assumption is usually checked by plotting normal quantile (QQ) plots of the model’s residuals.

The function g(X; Tj, Mj) in the Eq (1) above, assigns the parameters ‘M’ of tree T to the p-

dimensional predictor X across all m trees. Specification of prior probabilities (on both tree

structures and the conditional expectations at each terminal node) are used to (i) control

Fig 5. Schematic of our proposed approach. The gray boxes represent input data sources, and the red boxes represent model developments.

https://doi.org/10.1371/journal.pone.0188033.g005

A multi-paradigm framework to assess the impacts of climate change on end-use energy demand

PLOS ONE | https://doi.org/10.1371/journal.pone.0188033 November 20, 2017 10 / 23

https://doi.org/10.1371/journal.pone.0188033.g005
https://doi.org/10.1371/journal.pone.0188033


model complexity and (ii) incorporate expert knowledge, for instance by expressing a prefer-

ence for a certain attribute in the model. Combining the prior distributions with tree-model

likelihoods yields a posterior distribution on the tree models [42]. Metropolis-Hastings algo-

rithm is typically used to characterize the posterior probability space [42,43].

Since the algorithm used in developing our predictive models is non-parametric, variable

ranking and partial dependence plots (PDP) were generated to facilitate model inference. The

variable importance ranking was computed based on ‘variable inclusion proportion’ that indi-

cates the fraction of times a given predictor was used in constructing a decision-tree. PDPs are

generally used for conducting variable inference for non-parametric statistical models. They

help establish the individual effects of the predictor variables xj in a ceteris paribus condition

(i.e., controlling for all the other predictors). Mathematically, the estimated PDP is given as

shown in Eq (2) below:

f̂ j xj
� �

¼ 1=n
Pn

i¼1
f̂ jðxj; x� j;iÞ ð2Þ

Here, f̂ represents the statistical response surface; n stands for the number of observations

in the training dataset; x−j denotes all other variables (except for xj). The estimated PDP of the

predictor xj indicates the average value of the estimated response function f̂ when xj is fixed

and x−j varies over its marginal distribution.

The generalization performance of any statistical model depends on its ability to produce

accurate predictions on an independent test sample [43, 44]. Bias-variance trade-off is central

for minimizing the generalization error [43]. Cross-validation is one of the most widely used

resampling techniques for balancing bias-variance trade-off in statistical models [11, 43]. More

specifically, k-fold cross-validation is commonly leveraged to assess statistical models’ predictive

accuracy (aka generalization performance). k-fold cross-validation involves randomly subdivid-

ing the dataset into k (equally-sized) subsets. In each iteration, the statistical model is fitted to

the training subset that includes all observations except for the kth held-out sample. The predic-

tive accuracy is then calculated based on the model’s performance on the kth held-out subset.

This process is repeated until all data is used at least once and the average performance across

all iterations is recorded as a measure of the model’s predictive performance.

Generate sampling distributions of end-use demand for the residential

and commercial sectors: Step 2

The fractions of the house-hold-level energy used for space cooling, space heating and water

heating were extracted from the RECS (2009) dataset [36]. Similarly, the fractions of commer-
cial building-level energy used for space cooling, space heating and water heating were

extracted from the CBECS (2012) dataset [37]. Since the empirical distributions of end-use

demand for space heating, space cooling, and water heating were found to be heavy-tailed, we

used the generalization of the central limit theorem [45, 46] to generate sampling distributions

of the end-use demand proportions in each sector. To map the aggregate estimates of state-

level demand onto the individual household-level/building-level estimates, we multiplied the

aggregate demand by the generated probability density functions of the end-use demand pro-

portions for space heating, space cooling and water heating. The implicit assumption here is

that the distributions of these three types of end-use energy consumption will not significantly

change over time. This assumption may be invalid in the face of major technological or behav-

ioral shifts in the future. In the presence of strong evidence for certain structural shifts in

technology or behavior, the generated sampling distributions of end-use demand can be

updated—based on the empirical data or expert knowledge—to reflect such information.
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Project residential and commercial end-use demand under different

climate scenarios: Step 3

To project the climate sensitive portion of end-use demand under a future climate scenario,

the Bayesian predictive models for the residential and commercial sectors were trained sepa-

rately with the downscaled climate data associated with that scenario. It should be noted that

our Bayesian predictive models estimated the median values of end-use demand together with

uncertainty intervals i.e., Bayesian credible intervals and prediction intervals. Bayesian credible

interval characterizes the uncertainty, given the posterior distribution of the response variable

[44] and the prediction interval characterizes uncertainties associated with future variables

that are yet not observed. The annual projections for each sector were then multiplied by the

generated empirical distributions of the end-use demand for space heating, space cooling and

water heating (outlined in step 2 above). The probabilistic estimates of the end-use demand

for space heating, space cooling and water heating for the residential and commercial sectors

can be used as inputs in the most commonly used energy-economy models, to allow for

accounting the impacts of climate variability and change under different scenarios.

Results

The performance of our predictive models developed to characterize the energy demand–cli-

mate nexus for the residential and commercial sectors in Indiana are summarized in Tables 3

and 4. To benchmark the performance of our predictive models, we also provided information

about the ‘null’ or ‘mean-only’ models. Comparison with the ‘null model’ reveals the extent of

the predictive model’s contribution to explaining the variance of the response, beyond its his-

torical mean [11]. It can be seen from Table 3 that the predictive model—based on the BART

algorithm—for the residential sector offers a 26% improvement in out-of-sample RMSE, and

32% in terms of out-of-sample MAE compared to the “mean-only” alternative. Moreover, the

in-sample improvements (in terms of RMSE and MAE) associated with the BART-model over

the null-model are much more significant (Table 3).

Similarly, it can be seen from Table 4, that the BART-predictive model for the commercial

sector offers a significant improvement over the ‘mean-only’ model. More specifically, the

BART model’s out-of-sample accuracy is 23% higher in terms of RMSE, and 17% in terms of

MAE. Similar to the results for the residential sector, our predictive model for the commercial

sector outperforms the null-model in terms of in-sample errors even by a greater margin.

It can be also seen from Tables 3 and 4 that the predictive models for both the sectors fit the

data remarkably well, as evidenced by the substantially high R2 values of 96% for the residential

sector and 99% for the commercial sector. The models’ goodness-of-fit, together with their

uncertainty bounds are visualized for the residential and commercial sectors in Figs 6 and 7.

The plots of the estimated values versus observed values for both sectors include informa-

tion about both the credible intervals, and prediction intervals. It can be observed from Figs 6

and 7, that the uncertainty bounds are wider in the residential sector, compared to the com-

mercial sector.

Table 3. Predictive performance: The residential sector.

# Model R2 In-sample Out-of-sample

RMSE MAE RMSE MAE

1 Null Model (i.e., Mean-only model) -NA- 14.45 12.10 15.19 12.99

2 BART Predictive Model 0.96 2.72 2.04 11.25 8.87

https://doi.org/10.1371/journal.pone.0188033.t003
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Fig 8 depicts the normal quantile-quantile (Q-Q) plots of the residuals for (a) the residen-

tial, and (b) the commercial sectors. Since all the points lie along the 45˚ line of the normal

quantile plots—and within the 95% confidence intervals (red dotted lines)—it can be con-

cluded that the residuals are normally distributed. This indicates that the developed models for

both sectors have adequately characterized the variability in the response variable. The nor-

mally distributed residuals, with an expected value of zero, represent the inherent stochasticity

associated with the response variable that is independent of the input variables (refer to Eq (1)

in the methodology section).

Model inference

Since our predictive model is non-parametric, we leveraged variable importance bar-charts as

well as partial dependence plots to make statistical inferences. Fig 9 shows the bar-chart of var-

iable importance rankings for the residential sector. The variable ranking is based on ‘variable

inclusion proportion’ which indicates the fraction of times a given predictor was used in con-

structing a decision-tree in the ensemble model. The bar-chart also includes uncertainty

bounds, showing the variation in inclusion proportion across all decision trees used in the

BART ensemble model. It can be observed that the temperature-related variables during the

winter months (i.e., TMIN.W and TMAX.W) are ranked highest in terms of importance. This

is expected, since the largest fraction of the energy consumption in the residential sector in

Indiana is attributed to space heating (Table 1). The variable ‘year’ shows up as a key predictor

Table 4. Predictive performance: The commercial sector.

# Model R2 In-sample Out-of-sample

RMSE MAE RMSE MAE

1 Null Model (i.e., Mean-only model) -NA- 19.14 15.72 9.15 18.60

2 BART Predictive Model 0.99 1.22 0.94 7.06 15.42

https://doi.org/10.1371/journal.pone.0188033.t004

Fig 6. Plot of fitted versus observed values of total end-use consumption (trillion Btu) in the residential sector.

https://doi.org/10.1371/journal.pone.0188033.g006
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which is expected because it captures the secular trends in energy consumption data. Maxi-

mum temperature during warmer months (summer and intermediate seasons), and wind

speeds during the intermediate months (April-May and October-November) are also identi-

fied as important predictors. Precipitation patterns appear to rank lower than temperature and

wind-related variables in the residential sector. To understand the relationship between each

of these key climatic variables and energy demand, partial dependencies were plotted (Fig 10).

It can be seen from Fig 10A, 10C and 10E that the minimum and maximum temperatures

during the winter (i.e., during December-March), and maximum temperature in intermediate

months (i.e., April-May, and October-November) are negatively associated with energy de-

mand. This is expected because higher temperatures during the colder months result in re-

duced demand for space heating. Fig 10B shows that the energy consumption in the residential

sector in the state of Indiana increased steadily during 1980–2000. The consumption levels pla-

teaued during the years 2000–2005, and then started to follow a downward trend after mid-

Fig 7. Plot of observed versus fitted values of total end-use consumption (trillion Btu) in the

commercial sector.

https://doi.org/10.1371/journal.pone.0188033.g007

Fig 8. Residual plots for (a) the residential sector and (b) commercial sector. The red dashed lines represent the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0188033.g008
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2000’s. The downward trend since mid-2000’s can be attributed to several energy efficiency

initiatives. such as, the ‘Energizing Indiana’ program that contained comprehensive energy-

efficiency programs for Indiana home-owners.

Wind-speed during the intermediate season is positively associated with residential end-use

demand. Referring to Fig 2, it shows that wind speeds during the fall (i.e., months of October

and November) are comparatively stronger than the other seasons in the state of Indiana,

which can cause cooling effects, thereby increasing demand for space heating and water heat-

ing. While maximum temperature during the summer is also an important predictor, its

impact on the residential energy demand is comparatively attenuated. The attenuated effect is

largely attributable to the fact that only a small fraction of energy is used for space cooling in

the state of Indiana.

The variable rankings in the commercial sector is different from that of the residential sector

(Fig 11). For instance, unlike the residential sector, variable ‘year’ is identified as a considerably

more important predictor of energy demand compared to all other climatic variables. This is as

expected since a healthy and growing economy will boost commercial activities, thereby, increas-

ing the demand. Moreover, in contrary to the residential sector, commercial buildings are often

centrally owned and managed. Therefore, the climate sensitive portion of the commercial demand

patterns is expected to be different from the residential sector’s, where the behavior is much more

sensitive to the environmental conditions [11]. Out of the climate variables, it can be noticed that

wind speed, precipitation levels and minimum temperatures during the winter months, together

with temperatures during the summer and intermediate seasons rank as the most important pre-

dictors of the climate sensitive portion of the commercial energy demand.

The partial dependency plots of the top six predictors in the commercial sector is given in

Fig 12. Like the residential sector, the variable ‘year’ is positively associated with energy

demand until early 2000’s, after which the energy demand plateaus, largely due to the energy

conservation and efficiency initiatives such as ‘Energizing Indiana’ that contained comprehen-

sive energy-saving programs for offices and businesses in IN. Higher winter precipitations (Fig

Fig 9. Ranking of variable importance in predicting end-use residential energy consumption.

https://doi.org/10.1371/journal.pone.0188033.g009
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12B) are associated with higher energy demand, since more energy is needed for space heating

and water heating due to the precipitation-induced colder environments. Demand (for heat-

ing) will be higher when the wind speeds are higher than 3.7 meters per second (Fig 12C);

accounting largely for the wind-chill effects during the months of December and January.

Temperatures above 16˚C (Fig 12D) during the intermediate seasons are associated with lower

energy demand, as this indicates a comfortable temperature requiring lower levels of space

heating or space cooling. Energy demand (for heating) is reduced as the minimum (negative)

temperatures rise in the winter (Fig 12E). The minimum temperatures in the summer in the

state of IN can still be quite low (in the range of 14–16˚C) and higher (minimum) tempera-

tures are also associated with reduced demand.

Fig 10. Partial dependencies of the top six key predictors of (a) minimum temperature (in ˚C) during the

winter, (b) year, (c) maximum temperature the during winter (in ˚C), (d) wind speeds during the intermediate

season (in m/s), (e) maximum temperature during the intermediate season (in ˚C) and (f) maximum

temperature (in ˚C) during the summer, in the residential sector.

https://doi.org/10.1371/journal.pone.0188033.g010
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RCP 4.5 and RCP 8.6 scenario-based projections

Aggregated energy projection. The median values as well as upper and lower confidence

bounds associated with the aggregated state-level energy demand in the residential and com-

mercial sectors under the two scenarios of RCP 4.5 and RCP 8.5 are presented in Fig 13A and

13B. The first columns in the figures are associated with historical demand (1980–2013) and

the second and third columns show the projections all the way to 2100 under RCP 4.5 and

RCP 8.5 respectively. Under RCP 4.5, the median residential demand is projected to be 278.5

trillion Btu—a 3.5% decrease from the historical median (Table 1)—and can vary in the range

of 243.7–323.2 trillion Btu. Under RCP 8.5 the median residential demand is projected to be

278.7 trillion Btu—a 3.5% decrease from the historical median—and could range between

243.0–276.9 trillion Btu. Fig 13A reveals that the future energy demand will be lower under the

high emissions scenario (RCP 8.5) for the residential sector. This is not surprising since, in the

residential sector in IN, the highest fraction of energy is used for space heating (historical

demands ranging from 187.6–230.3 trillion Btu), followed by water heating (in the range of

64.7–79.4 trillion Btu). Least amount of energy is used for space cooling (historical demand

ranging between 4.4–5.4 trillion Btu). Higher temperatures will, therefore, lead to reduced

demand in the residential sector.

Unlike the residential sector, in the commercial sector, space cooling and space heating

account for similar fractions of end-use energy demand; with the historical amounts ranging

in 19.4–31.1 trillion Btu and 18.7–30.0 trillion Btu, respectively. The least amount of energy is

consumed for water heating—historical demand ranging between 6.4–10.3 trillion Btu. It can

be seen from Fig 13B that the demand in the commercial sector will be on-average substan-

tially higher than the historical average values under both emission scenarios. More specifi-

cally, under the RCP 4.5 scenario, the average demand will be around 179.9 trillion Btu—a

5.1% increase than the historical median and it could range between 147.8–214.1 trillion Btu.

Similarly, under the RCP 8.5 scenario, the projected median commercial demand will be 180.5

Fig 11. Ranking of variable importance in predicting end-use residential energy consumption.

https://doi.org/10.1371/journal.pone.0188033.g011
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Fig 12. Partial dependencies of the top six key predictors: (a) year (b) precipitation during winter (in inches), (c) wind speeds during the

winter season (in m/s), (d) maximum temperature (in ˚C) during the intermediate season, (e) minimum temperature the during winter (in ˚C),

and (f) minimum temperature (in ˚C) during the summer, in the commercial sector.

https://doi.org/10.1371/journal.pone.0188033.g012
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trillion Btu—a 5.4% increase from the historical median (Table 2) and could range between

146.4–211.4 trillion Btu under the uncertain future scenario.

End-use energy projections. As discussed in the Methodology section, we obtained the

projections for the end-use energy demand by multiplying the projected aggregate sectoral

energy demand by the generated probability distributions of space heating, space cooling and

water heating fractions of the respective sectors. The estimated changes in these categories of

end-use energy demands under different scenarios are shown in Tables 5 and 6. These final

estimates can then be easily integrated in the existing energy-economy models as discussed

before.

It should be noted that the results summarized in Tables 5 and 6 are contingent on the

assumption that the future distributions of end-use energy demand will resemble that of the

past. However, in the presence of disruptive technologies that could shift the consumption pat-

terns, our proposed framework is still applicable; in that case, the generated empirical distribu-

tions of the fractions of end-use consumptions will have to be updated. Moreover, we would

like to highlight that in this paper, we projected the average end-use demand for a ‘statistically

representative’ user (i.e., an individual household or an individual commercial building). The

implication here is that our results characterize the climate sensitivity of end-use energy

demands for an average ‘representative’ household in the state, which does not imply that all

Fig 13. Dot-plot showing the scenario-based comparison of the total energy consumption for (a) the residential sector, and (b) the commercial sector.

https://doi.org/10.1371/journal.pone.0188033.g013

Table 5. Projected end-use demand (in Btu) for scape heating, space cooling and water heating under RCP 4.5 and RCP 8.5 in the residential sec-

tor (arranged in descending order of demands).

Scenario/Variable Median Minimum Maximum % change from historical median

RCP 4.5/ Space Heating 203.6 191.1 221.9 -3.5%

RCP 4.5/ Water Heating 70.19 65.86 76.49 -3.5%

RCP 4.5/ Space Cooling 4.74 4.44 5.16 -3.4%

RCP 8.5/ Space Heating 203.7 191.2 217.0 -3.5%

RCP 8.5/ Water Heating 70.23 65.90 74.79 -3.5%

RCP 8.5/ Space Cooling 4.74 4.45 5.04 -3.4%

https://doi.org/10.1371/journal.pone.0188033.t005
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households will have similar energy demand curves. For instance, while based on our projected

estimates, the average household heating energy in the year of 2050 will be around 200±15 Btu,

the distribution of household heating energy load in Indiana could be as low as 20 Btu in a

mobile home in rural Indiana to possibly up to 500 Btu in a mansion located in the wealthy

Hamilton County. Moreover, it should also be stressed that since our estimates are reported

on a per-household/building basis, our results are not sensitive to future population variations

in the state. It is noteworthy that projected energy demand in the residential sector does not

vary much under the two climate change scenarios. We hypothesize two major reasons for this

outcome. First, due to the lack of availability of the statistically downscaled projection of the

state-level mean dew point temperature, our model considered only the minimum and maxi-

mum temperatures which are inadequate indicators of the heat stress [11]. Moreover, our pre-

vious research showed that mean dew point temperature is a better predictor of the climate

sensitive end-use demand as compared to the other climate variables [3,11]. Thus, with the

inclusion of the mean dew point temperature in the model, we might be able to notice signifi-

cant differences in the residential energy demand under the two climate change scenarios. Sec-

ond, the projected wind speed data was not statistically downscaled as it showed statistically

insignificant differences from the historical distributions. However, since wind speed was

found to be an important predictor for the residential energy demand, availability of accurate

wind speed projections might have an influence on the residential demand projections under

the two scenarios.

Conclusions

Reliable access to energy is critical for proper functioning of the modern society. Integrated

resource adequacy planning in the energy sector hinges on the capability to accurately project

the future trends in energy demand. However, projecting long-term trends in energy demand

is an increasingly complex endeavor due to the uncertain emerging changes in climate, policy,

regulatory environment, economy and technology among other factors. There exist many

powerful energy-economy models that can be leveraged to project the long-term demand

trends in the energy sector under various future scenarios related to technology and policy

trends. However, majority of the existing energy-economy tools (e.g., MARKAL) are not able

to exogenously account for climate variability and change. In this paper, we proposed a multi-

paradigm framework to help extend the energy-economy models to be able to account for cli-

mate change. To illustrate the applicability of our proposed framework, we used the state of

Indiana as a case study. We trained and rigorously validated a Bayesian, non-parametric pre-

dictive model with historical data on end-use energy demand and climatic conditions in Indi-

ana to characterize the energy demand-climate nexus. We then used downscaled climate

scenarios to project future demands under the two climate scenarios of RCP 4.5 and RCP 8.5.

Finally, we harnessed detailed information on the energy used for space cooling, space heating

Table 6. Projected end-use demand under RCP 4.5 and RCP 8.5 in the commercial sector (arranged in descending order of demands).

Scenario/Variable Median Minimum Maximum % change from historical median

RCP 4.5/ Space Cooling 28.24 26.66 30.04 5.1%

RCP 4.5/ Space Heating 27.16 25.64 28.89 5.1%

RCP 4.5/ Water Heating 9.35 8.82 9.95 5.0%

RCP 8.5/ Space Cooling 28.34 26.29 29.79 5.4%

RCP 8.5/ Space Heating 27.26 25.28 28.65 5.4%

RCP 8.5/ Water Heating 9.38 8.71 9.86 5.4%

https://doi.org/10.1371/journal.pone.0188033.t006
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and water heating in the residential and commercial sectors, to generate sampling distribu-

tions for these categories of end-use demand to transform the aggregate state-level estimates

into individual household- and building-levels. The probabilistic estimates of end-use demand

(with associated credible and prediction intervals) under each scenario could then be fed into

MARKAL or other similar energy planning tools to facilitate accounting for climate variability

and change.

Our analysis concluded that under both climate change scenarios of RCP 4.5 and RCP 8.5,

the energy consumption for an ‘average’ household in IN is projected to decrease by 3.5% by

2100 due to less heating requirement during warmer winters. Moreover, by 2100, the energy

demand for an ‘average’ commercial building is projected to increase by 5.1% and 5.4% under

RCP 4.5 and 8.5, respectively (compared to the historical consumption over 1981–2013). The

projected increase is due to the commercial sector’s greater use of cooling energy, relative to

the residential sector, and higher projected daytime temperatures.

It should be noted that while our proposed framework accounts for demand variation due

to climate change, it does not account for potentially higher intensity and frequency of climatic

extremes (such as ice-storms and tornados) under climate change. Future work is needed to

extend our paradigm to also account for such weather and climate extremes that could become

much more intense and frequent under climate change, and have significant impacts on our

energy sector in the future.
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