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OPEN Asymmetrical response 
of  California electricity demand 
to summer -time temperature 
variation 
Rohini Kumar   E) 1,4•, Benjamin  Rachunok  E) 2,4, Debora  Maia‑Silva  3  & 
Roshanak  Nateghi  E) 2,3,4•

Current projections of the climate‑sensitive portion of residential electricity demand are based on 
estimating the temperature response of the mean of the demand distribution. In this work, we show 
that there is significant asymmetry in the summer‑time temperature response of electricity demand in 
the state of California, with high‑intensity demand demonstrating a greater sensitivity to temperature 
increases. The greater climate sensitivity of high‑intensity demand is found not only in the observed 
data, but also in the projections in the near future (2021–2040) and far future periods (2081–2099), and 
across all (three) utility service regions in California. We illustrate that disregarding the asymmetrical 
climate sensitivity of demand can lead to underestimating high‑intensity demand in a given period 
by 37–43%. Moreover, the discrepancy in the projected increase in the climate‑sensitive portion of 
demand based on the 50th versus 90th quantile estimates could range from 18 to 40% over the next 20 
years. 

Electricity demand is infuenced by many factors, including socio-demographic characteristics4, technology5, 
markets6, and climate7–9. Here, we focus on understanding the climate sensitivity of residential electricity demand, 
which is a critical factor in ensuring the resilient operation of the grid under climate change1–3. Recent work has 
isolated the efect of climate variability and change on both peak load (i.e., the highest load in a given time period)
and total electricity consumption, indicating climate change will lead to greater electricity use, particularly in 
the residential sector2,10–16. Tis has signifcant implications as unanticipated increases in cooling demand in
the residential sector during heat waves (i.e., periods with sustained positive temperature anomalies) can lead 
to unexpected supply shortages17, distorted electricity market prices18,19, as well as increased morbidity and 
mortality20, particularly in vulnerable populations and disadvantaged communities21 . 

To minimize the economic and social costs of interrupted electricity service, researchers forecast the climate-
sensitive portion of residential electricity demand during extreme temperatures by harnessing methodologies 
from various felds, including econometrics4,22,23, engineering23,24, statistics and machine learning13,15. However, 
the existing body of literature has primarily focused on modeling the temperature response of the central ten-
dency (i.e., mean/median) of the demand distribution, as opposed to considering its entire distribution2,25–27. 
We hypothesize that projections solely based on the mean/median values of the load distribution underesti-
mate the climate sensitivity of high-intensity demand. Our central hypothesis is that while projections of the
climate—demand nexus based on the mean/median values of demand distributions help to characterize the 
general trends in electricity use over time, they are likely inadequate in characterizing the climate sensitivity of
the upper extremes of demand which are critical for ensuring adequate generation capacity, particularly during
unusually high temperatures. 

In this paper, we leverage observational data-sets to investigate the possible asymmetries in the response
of electricity load to temperature anomalies. We test our hypothesis by assessing the changes in the entire 
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Figure 1. Spatial distribution of summer-time mean dry-bulb (T) temperature (a), and wet-bulb (W)
temperature (b) over the study area as well as the response of peak load (c–h) to dry-bulb (T) anomaly (c–e) and 
wet-bulb (W) temperature anomaly (f-h), with quantiles ranging from 0.1 to 0.9 in increments of 0.2—the mean 
response is colored red. Te probability density functions of temperatures for cold-anomalous (shaded blue) and
warm-anomalous (shaded orange) days are shown on the right side of the graphs in c–h. Te maps (a, b) were 
created in ArcGIS (v.10.4; https://www.esri.com/) and the line plots (c–h) were created in R (v.3.2.1; https:// 
www.r-project.org/). 

distribution of daily peak electricity demand as a function of summer-time daily temperature anomalies, as
observed in the three main electric utilities in California (“Methods”). 

We select the state of California as a case study, as it has the largest population and economy, and ranks only
second in-terms of its energy consumption in the US; rendering it a unique study region for understanding the
diversity of electricity demand use patterns28 . It is important to note that our objective here is not to develop a 
predictive model of electricity demand, but to investigate the potential asymmetries in the temperature response
of demand and their role in future projections under climate change (“Methods”). 

Observational analysis: temperature response of electricity demand. To capture how tempera-
ture anomalies infuence the climate sensitive portion of electricity demand, we use daily peak load and daily 
average electricity consumption during the months June, July, and August (JJA) in the years 2006–2016 from 
the three main Californian utilities: Los Angeles Department of Water and Power (LADWP) , Pacifc Gas and 

https://www.esri.com/
https://www.r-project.org/
https://www.r-project.org/
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Electric Company (PGE), and San Diego Gas and Electric Company (SDGE) (Fig. 1a,b). Tese three utilities 
combine to provide electricity to over 95% of Californians30. We consider the daily variation of both dry-bulb 
(T) and wet-bulb (W) temperatures in our analysis, following previous studies showing the importance of T 
and humidity (embedded in W), afecting electricity consumption patterns across US3. Both climatic variables 
are aggregated to an equivalent geographic scale of the electricity data using population as a spatial weighting 
factor (“Methods”). Daily temperature anomalies are calculated as the diference between a daily temperature 
value and the respective long-term mean over the same time period (see “Methods” for more details). For exam-
ple, a temperature anomaly of 1 ◦C over a utility region for a given day indicates a deviation of 1 ◦C above the 
respective daily long-term mean, estimated for that specifc region. Figure 1a,b depicts the spatial distribution 
of population (2010), the mean JJA daily dry-bulb (T) and wet-bulb (W) temperatures (◦C), and the distribu-
tion of the daily peak load (MW) and daily average consumption (MWh) over the three utility regions for the 
observational period 2006–2016.

To analyze the varying response of the daily peak load and daily average electricity consumption as a function 
of temperature anomaly, we leverage quantile regression (“Methods”). Quantile regression relates the conditional
percentiles of the load to the temperature anomalies, allowing for the comparison of, for example, the 90th per-
centile versus the 50th percentile of load as a function of varying temperature anomalies31 . Figure 1c–h shows 
the trends—as ftted regression lines—for various percentiles (i.e., 0.1–0.9) of the daily peak load as a function
of dry-bulb (T; c–e) and wet-bulb (W; f–h) temperature anomalies for all three utilities analyzed in this study,
representing the temperature response of residential electricity demand. In line with previous fndings2, there is 
a positive correlation between temperature and summer electricity demand as well as signifcant variability in
the residential electricity demand associated with warm-anomalous days. A similar trend of energy consump-
tion to varying temperature anomaly is also observed for the daily average electricity consumption, consistently 
across all three utility regions (see Supplementary Figure S1)—indicative of a rather general response behavior
of increasing electricity demand in warm-anomalous days and higher climate sensitivity of upper extremes.

Te response of both average daily consumption (Fig. 2a,c,e) and daily peak load (Fig. 2b,d,f) to dry-bulb 
temperature anomaly (T; red lines) and wet-bulb temperature anomaly (W; blue lines) are shown in Fig. 2. Spe-
cifcally, the temperature responses are measured as the slopes of the regression lines depicted in Fig. 1c–h. In 
the case of peak daily load response to dry-bulb temperature (T) anomaly, the slopes increase from 0.14, 0.39, 
0.06 (103MW/◦C), to 0.29, 0.64, 0.23 (103MW/◦C) from the 10th to the 90th percentiles for LADWP, PGE, and 
SDGE respectively (Fig. 2b,d,f); representing a 103%, 65.1%, and 288% increase. Tese results illustrate the dif-
ference in the climate-sensitivity of daily peak load to temperature anomalies at the upper and lower extremes. 
Importantly, the upper extremes of peak load are substantially more sensitive to temperature anomalies, as
evidenced from steeper slopes present at higher quantiles, indicating warm-anomalous temperatures will have
a disproportionate impact on higher-intensity electricity consumption. Moreover, the asymmetrical response of 
load to anomalies is much more pronounced when considering daily anomalies of wet-bulb (W) temperature (a 
combined measurement of heat and humidity) than that of dry-bulb (T) temperature, as observed by the steeper 
slopes of the blue lines in Fig. 2. Analogous to the daily peak load behavior, the response (slope) of average daily
load to temperature anomalies increases with higher quantiles (Fig. 1a,c,e). 

As power reserve margins (i.e., the bufer capacity to supply summer-time peak load) are designed by con-
sidering the upper limits of electricity use, it is critical to note the diference between the climate sensitivity of
the 90th percentile versus the mean/median values of peak load (which are commonly used for capacity margin 
calculations). Te median peak daily load responses to temperature anomaly—as indicated by the slopes of the
quantile regression at the 50th percentile (Fig. 2)—are 0.23, 0.52, 0.16 × 103MW/◦ C as compared to 0.29, 0.64, 
0.23 × 103MW/◦C at the 90th percentile for LADWP, PGE, and SDGE respectively, representing a 28.4%, 21.9%, 
39.5% increase. Tese substantial diferences in the climate-sensitivity of the 90th percentile versus median load
to temperature anomalies imply that the current practice does not adequately capture the higher temperature 
sensitivity of the upper tails of load corresponding to high intensity users. Terefore, planning reserve margins
based on existing approaches will likely underestimate requisite levels of excess capacity to minimize the risk of
rolling outages during temperature extremes32 . 

Future temperature response of electricity demand. To understand the implications of the asym-
metrical temperature response of energy demand under future climate conditions, we use climate projection 
data extracted from fve Global Circulation Models over a base (or reference) period (2001–2020), near future 
period (2021–2040), and far future period (2081–2099) (“Methods”). Specifcally, we leverage the daily June, 
July, August temperatures over the two time periods, using the RCP8.5 (Representative Concentration Pathway) 
climate scenario33, representing global temperature changes corresponding with high future greenhouse gas 
emissions. Similar to the observational analysis, we calculate the daily temperature anomalies in each climate 
model space separately that represent the daily deviation of (dry and wet-bulb) temperature in future periods 
with respect to corresponding daily mean values estimated over the reference period (see “Methods” for more 
details). For this illustration propose, we then formulate three models of future electricity use for each utility 
based on the corresponding quantile regression results of the observed temperature response of daily peak load 
at the 10th , 50th, and 90th percentiles. We refer to these as the 10th , 50th, and 90th percentile models, used to 
project the respective peak daily electricity load in response to future temperature anomaly. Te corresponding 
distributions of the daily peak loads along with the temperature anomalies for the considered two future periods 
are shown in Fig. 3. We reiterate that our aim here is to demonstrate the implications of the asymmetrical tem-
perature response of the climate sensitive portion of demand and not to build a high-fdelity demand prediction 
model which would require information about technological and demographic changes. Our analysis results 
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Figure 2. Quantile regression model outputs indicating asymmetry in temperature response of average daily
load (a, c, d) and daily peak load (b, d, f) to dry-bulb temperature anomaly (T; red) and wet-bulb temperature 
anomaly (W; blue) by quantile (ranging from 0.1 to 0.9 in increments of 0.1). Values on the Y-axes represent 
the slope estimates of the quantile regression models in units of 103 Mega-Watts (MW) or Mega-Watts hours 
(MWh) per degrees Celsius (◦C). Te shaded area represents 95% confdence interval. Figure was created in R 
(v.3.2.1; https://www.r-project.org/). 

underscores the importance of considering this asymmetrical response behavior that will likely improve the 
accuracy of electricity demand forecasts. 

Comparing the distributions of the daily peak loads for the 50th and 90th percentile models in each period 
helps determine how frequently the 50th percentile model will underestimate the 90th percentile of the climate-
sensitive portion of the load. Results indicate a signifcant gap between the 50th and 90th percentile daily peak
load in all periods under study. Specifcally, high-intensity daily peak load is underestimated across all periods 
(i.e., baseline, near future and far future) by 37–38%, 37–39%, and 43–44% in the respective utilities when
using a median-based rather than 90th percentile model (Fig. 3). Te summary statistics of the daily peak load 
(in MW)—corresponding to the 0.1, 0.5, and 0.9 quantile models—in response to wet-bulb temperature (W) 
anomalies for each time period and in each utility region are shown in Table 1. 

Te diference between the estimated daily peak load during present and near future periods, as well as the
diference between present and far future periods increases as higher quantilies are considered (see Table 1). For 
example, in the LADWP region, the diference between the present and near future daily peak loads increases
from 201 MW in the 0.5 quantile to 238 MW in the 0.9 quantile, an increase of 18%. In other words, the dis-
crepancy in projected increase between the 0.5 and 0.9 quantile model could range from 18% (LADWP) to 40% 
(SDGE). Tis pattern appears across both (near- and far-future) time periods, demonstrating that disregarding
the asymmetry in temperature response of demand will lead to underestimating the climate-sensitive portion of
the upper extremes of demand, regardless of the future planning horizon. Tis also holds for the results associ-
ated with dry-bulb (T) temperature anomalies as shown in Supplementary Table 1. 

Figure 3d also indicates that approximately 88% (87%) of daily peak load values projected by the 90th per-
centile model in LADWP are greater than the median of the 50th percentile model over the base (near future) 
periods. Tese underestimation values for the PGE and SDGE are in the order of 87% (88%) and 93% (93%) 

https://www.r-project.org/
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Figure 3. Illustrating the asymmetrical temperature response of electricity demand under future climate change
scenarios. Te distributions of wet-bulb (W) temperature anomalies are shown for the three utility service areas 
in a–c. Te distribution of base period (2001–2020) peak loads (shaded yellow) and projections of near future 
period (2021–2040) (a–f) and far future period (2081–2099) (g–l) peak loads (shaded red) under RCP8.5 for
the three utilities of LADWP, PGE, and SDGE are shown. Vertical dotted lines in d–f, j–l show how the median 
value of the 50th percentile model would fall relative to the median values of the 10th percentile and 90th 
percentile models. For example, in d, 88% of the daily peak load predicted by the 90th percentile model exceeds
the median value predicted by the 50th percentile model during the base period, representing a 35% increase.
Figure was created in in R (v.3.2.1; https://www.r-project.org/). 
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Quantile level Period 

Region-wise Peak load [MW] 

LADWP PGE SDGE 

0.1 

Present 2001–2020 3623.84 (305.32) 13026.81 (878.63) 2710.98 (111.64) 

Near future 2021–2040 3745.03 (322.01) 13436.25 (896.53) 2761.72 (119.17) 

Far future 2081–2099 4246.66 (372.04) 15137.31 (1125.64) 2961.67 (142.73) 

0.5 

Present 2001–2020 4366.52 (506.39) 14846.20 (1212.47) 3134.37 (277.50) 

Near future 2021–2040 4567.52 (534.07) 15411.21 (1237.17) 3260.50 (296.23) 

Far future 2081–2099 5399.48 (617.04) 17758.59 (1553.32) 3757.50 (354.78) 

0.9 

Present 2001–2020 5010.62 (598.47) 16419.02 (1517.96) 3649.74 (390.21) 

Near future 2021–2040 5248.16 (631.18) 17126.40 (1548.88) 3827.09 (416.56) 

Far future 2081–2099 6231.38 (729.23) 20065.21 (1944.69) 4525.96 (498.88) 

Table 1. Mean and standard deviation of projected daily peak load values (MW) estimated for near and far 
futures for each region of study and at 0.1, 0.5, and 0.9 quantiles. Values are calculated using simplifed wet 
bulb temperatures, means are listed with standard deviations in parentheses. Note, these values correspond to 
daily estimates of the distributions shown in Fig. 3. 

respectively (Fig. 3e, f). Tese results remain remarkably consistent if evaluating temperature anomalies using 
alternative formulations i.e., based on the dry-bulb (T) temperature anomalies (see Supplementary Figure S4). 

Discussion and concluding remarks 
In this exploratory work, we provide observational evidence of an asymmetric (summer-time) temperature 
response of electricity demand and consumption. By isolating the impact of climate variability and change on
both daily peak load and average daily consumption, we quantify the temperature responses of electricity demand
across three utilities in the state of California. We fnd signifcantly higher levels of climate sensitivity in high 
intensity demand (both daily peak load and average daily consumption) under both current and future climate
scenarios when evaluating both wet-bulb and dry-bulb temperatures despite California’s unique load structure
known colloquially as the duck curve. We emphasize that this asymmetry is present empirically in the demand 
profle of California, but further studies are needed to investigate this trend in other regions of the US or the 
world. Furthermore, this asymmetry has signifcant implications for designing adequate power reserve margins
to ensure the resilient operation of the grid during extreme temperatures. 

We emphasis that the projections provided for the period 2081–2099 should not be considered a climate 
change impact assessment as conducted in prior studies14,34. Instead, the projections are provided to demon-
strate how the observational evidence of this asymmetry may bear out under future climate conditions. We 
therefore propose accounting for the asymmetrical temperature response of demand in addition to other key 
factors such as technology trends, as well as shifs in economic and demographic characteristics which afect 
projected electricity use. 

Record summer temperatures regularly lead to unanticipated electricity demand across many parts of the
country, distorting electricity market prices and inducing rolling outages. Lack of consideration of the non-
symmetric temperature response of peak and average electricity load underestimates the climate sensitivity 
of high intensity demand and severely threaten the resilience of the grid. Te impacts of service disruptions
ofen disproportionately afect the disadvantaged communities. Tis is because high-intensity energy users do 
not necessarily belong to afuent communities for various reasons such (a) higher occupancy rates to save 
rental expenses35, (b) residence in crime-areas (inability to open windows for ventilation), and (c) residence in
neighborhoods with higher heat-island efects36–39. Terefore, the fallacy of symmetric temperature response of
electricity demand has signifcant environmental justice implications. A failure to consider the increased tem-
perature response of high-demand users will drive future inequity in access to the reliable provision of electricity. 

Methods 
Peak and average electricity demand. To characterize the non-symmetric response of both daily peak 
and daily average electricity loads to temperature anomalies, we aggregate hourly summer (June, July, August) 
peak load and average electricity consumption for the state of California during 2006–2016. Peak and average 
electricity loads are taken from three California Utilities: Los Angeles department of Water and Power (LADWP), 
Pacifc Gas and Electric (PGE), and San Diego Gas and Electric (SDGE); available from the US Energy Informa-
tion Administration (EIA) public reports. In the analysis results presented in the main text (Fig. 1c–h), we focus 
on the observed temperature response of daily peak residential electricity demand. However, a similar trend of 
asymmetric climate sensitivity of load is also observed when analyzing daily average electricity consumption 
(see Supplementary Figure S1). 

Temperature anomalies. Te daily dry-bulb (T) and wet-bulb (W) air temperature anomalies are cal-
culated for the summer months of June, July, and August in the time period corresponding with the electricity 
demand data. Te required climatic variables (i.e., near-surface air temperatures, pressure and humidity felds) 
were obtained from the NCEP North American Regional Reanalysis (NARR)40 which is available at an approxi-
mately 32 km spatial resolution since the beginning of 1979. We aggregate the climate variables to the utility level 



7 

Vol.:(0123456789)

SCIENTIFIC REPORTS |  (2020) 10:10904  | https://doi.org/10.1038/s41598-020-67695-y 

www.nature.com/scientificreports/

 

 
  

 

 
 
 

 
 
 
 
 
 
 

  

 

 

 

 
 
 
 

    
 
 

 

 

 

 
  
         

    
   

taking the population as the spatial weighting factor, which in line with previous studies focusing on residential 
electricity load2, 15. We used the 2010 UN-adjusted Gridded Population of the World dataset (Version 4) for the 
study area that was obtained from Socioeconomic Data and Applications Center (SEDAC; http://sedac.ciesi 
n.columbia.edu). Tis step results in an aggregated estimates of the daily climate variables for the period 2006– 
2016 corresponding with the resolution of our electricity production values. To test the sensitivity of our results 
to underlying climate database, we additionally compared the values using the gridded surface meteorological 
dataset (gridMET)41 and WATCH forcing data methodology applied to ERA-Interim data (WFDEI)42 and found 
similar results (see Supplementary Figures S2 and S3). Results reported here in the main text are based on the 
NARR derived climate datasets. 

We calculate the daily anomalies as the deviation between a daily average temperature value from the cor-
responding long-term mean values estimated over the 30-years time-period (1981–2010). Te long-term mean
for each calender summer day is estimated by averaging all values that fall within a window of ±7 days centered
on that calendar day; thus allowing us to account for temporal variation in climatic variables. We also performed 
additional analysis to check the robustness of our fndings to the chosen (30-years) baseline period for estimat-
ing the daily temperature anomalies. To this end, we calculated the daily anomalies with respect to the 11-years
baseline period (2006–2016), which is consistent with the availability of the electricity demand datasets; and 
found similar results for the asymmetrical response behavior of the daily (peak and average) energy demands to
temperature anomalies across the study regions (see Supplement Figures S5 and S6). In our analysis, we focus on
the sensitivity of electricity demand to both dry-bulb and wet-bulb air temperature anomaly. Here, we consider 
the formulation of the simplifed wet-bulb globe temperature (W) as described in Ref.43. While not included 
in this manuscript, we also tested other formulations of climatic indicators accounting for both dry-bulb air
temperature and relative humidity such as National Weather Service based heat stress or discomfort index43 and 
found similar asymmetric response of the electricity loads. 

Quantile regression. For each utility, we perform quantile regression (QR) between daily temperature 
anomalies and corresponding (peak and average) energy demand/consumption. Quantile regression is a form of 
regression modeling in which conditional quantiles of the response variable are estimated31, allowing for a richer 
characterization of the data by allowing for evaluation of the impact of a covariate across the entire distribution 
of the response variable rather than just its mean44. Te coefcients of each quantile regression model can be 
interpreted similarly to the coefcients of an ordinary least squares regression. Quantile regression has previ-
ously been utilized to address asymmetries and heteroskatasticity in electricity demand data36,45,46. 

In this work, we use quantile regression to generate estimates of the conditional quantiles of the conditional 
quantiles of electricity demand as a function of temperature anomalies. For the demonstration of asymmetrical
behavior, here we use a linear model for the conditional quantiles—as shown in Fig. 1 by the ftted lines. Hot and 
cold anomalies are calculated as values which exceed 0.5 ◦C above or below average respectively. Distributions 
for the hot and cold anomalous regions are also shown in Fig. 1. Slopes of the respective quantile regressions 
(representing the regression coefcients for each percentile) are shown in Fig. 2 along with a 95% confdence 
interval band calculated through bootstrap sampling. 

Climate projections. To investigate the impact of the asymmetric temperature response of demand under 
future climate scenarios, we use the developed quantile regression models to estimate future daily peak and 
daily average electricity values based on climate projections at the 10th , 50th, and 90th percentiles. Climate 
projections are taken from the archive of fve CMIP5 datasets: Geophysical Fluid Dynamics Laboratory Earth 
System Model 2M (GFDL-ESM2M)47, Hadley Global Environment Model 2-Earth System (HadGEM2-ES)48, 
Institut Pierre Simon Laplace Earth System Model for the 5th IPCC report (IPSL-CM5)49, Japan Agency for 
Marine-Earth Science and Technology Earth System Model (MIROC-ESM-CHEM)50, and the Norwegian Earth 
System Model (NorESM1-M)51. Tese global climate datasets are available from the Inter-Sectoral Impact Model 
Intercomparison Project52 at a 0.5 degree spatial resolution. To illustrate the magnitude of future climate impact, 
we use the daily outputs of the climate simulations under the RCP8.5 (Representative Concentration Pathways) 
scenario and contrasted the summer months (JJA) daily peak load/average consumption for two future periods: 
2021–2040 (near-future) and 2081–2099 (far-future)—with respect to a baseline (or reference) period of 2001– 
2020. Similar to observational analysis, we frst estimated the utility-wide values of daily dry-bulb and wet-bulb 
temperature during the summer months (JJA), and then calculated the daily anomalies using the respective daily 
long-term mean calendar day estimates (accounting for the ±7 days window) of the baseline period for each 
climate model and utility region separately. For each utility region (LADWP, PGE, and SDGE), temperature type 
(T and W), and future period (2021–2040 and 2081–2099), we then pool up the daily temperature anomalies 
from all fve GCMs together and apply the corresponding (region and temperature specifc) quantile regression 
(QR) model to obtain the estimates of respective energy load/consumption for diferent quantile levels (e.g., 0.1, 
0.5 and 0.9). 

Data availability 
NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
https://www.esrl.noaa.gov/psd/. California electricity demand data available upon request; and can be accessed 
from https://www.eia.gov/electricity/data/eia861/ and http://www.caiso.com/Pages/default.aspx. Gridded Popu-
lation data can be assessed from SEDAC http://sedac.ciesin.columbia.edu; and the climate model datasets from 
ISI-MIP https://www.isimip.org. 

http://sedac.ciesin.columbia.edu
http://sedac.ciesin.columbia.edu
https://www.esrl.noaa.gov/psd/
https://www.eia.gov/electricity/data/eia861/
http://www.caiso.com/Pages/default.aspx
http://sedac.ciesin.columbia.edu
https://www.isimip.org
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