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Unifying Aol Minimization and Remote Estimation 
Optimal Sensor/Controller Coordination with 

Random Two-way Delay 
Cho-Hsin Tsai and Chih-Chun Wang, Senior Member, IEEE 

Abstract-The ubiquitous usage of communication networks in 
modern sensing and control applications has kindled new inter­
ests on the timing coordination between sensors and controllers, 
i.e., how to use the "waiting time" judicially to improve the system 
performance. Contrary to the common belief that a zero-wait 
policy is optimal, Sun et al. showed that a controller can strictly 
improve the data freshness, the so-called Age-of-Information 
(AoI), by postponing transmission in order to lengthen the 
duration of staying in a good state. The optimal waiting policy 
for the sensor side was later characterized in the context 
of remote estimation. Instead of focusing on the sensor and 
controller sides separately, this work develops the jointly optimal 
sensor/controller waiting policy in a Wiener-process system. This 
work generalizes the above two important results in the sense 
that not only do we consider joint sensor/controller designs 
(as opposed to sensor-only or controller-only schemes), but we 
also assume random delay in both the forward and feedback 
directions (as opposed to random delay in only one direction). 
In addition to provable optimality, extensive simulation is used 
to verify the performance of the proposed scheme. 

Index Terms-Age-of-information, remote estimation, optimal 
sampling, stochastic control, data freshness, information update 
system, infinite-horizon Markov decision process. 

I. INTRODUCTION 

The omnipresence of portable devices has led to increasing 
focus on systems with multiple sensors and controllers inter­
connected by wireless communication networks. Many new 
research directions have been initiated, including healthcare, 
energy management systems, cloud data infrastructure (see 
[1]-[3]). In this work, we study the question: How to optimally 
coordinate the sensor and the controller when there is random 
delay in both the forward and backward directions? We begin 
the analysis by observing there are two distinct ways oftiming­
based system optimization: data-freshness control and state­
based sampling. 

Data-freshness control: In this approach, the controller is 
the one who actively maintains the data-freshness of the 
system. For example, say the goal is to lower the risk of 
heart attacks of the patients. One way is for the hospital 
(controller) to make sure that the blood pressure (BP) or the 
heart rate (HR) records of the patients are as fresh as possible. 
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To this end, the hospital should intermittently request the 
patients (sensors) to measure their latest BP or HR and send in 
the reports. In practice, any sensor-to-controller measurement 
packet inevitably experiences some delay and is thus always 
"stale" to some degree. The controller (hospital) must decide 
how to optimize its request schedule in order to optimize the 
data-freshness of its records. 

One breakthrough of the data-freshness control is the in­
troduction of a new metric, Age-of-Information (Aol) [4], the 
corresponding minimization algorithms [5], and its numerous 
follow-up results [6]-[8]. For instance, a "generate-at-will" 
model was studied in [9], [10], which has the potential of 
considerable energy savings. 

In general, Aol minimization behaves differently from 
throughput maximization. For example, the zero-wait policy 
[11] was provably throughput optimal but can be strictly 
suboptimal in terms of the average Aol [12]. In [12] Sun et 
al. also characterized the optimal "waiting time" policy at the 
controller side that can provably minimize the average Aol, 
i.e., the optimal policy when a hospital (controller) should 
request its patient (sensor) to submit his/her BP/HR report. 

State-based sampling: Unlike the data-freshness control, in 
this line of research, it is the sensor that actively optimizes the 
overall system.1 Continue from the aforementioned hospital­
patient example. The state-based sampling approach is for the 
patient (sensor) to measure his/her own BP or HR continuously 
and report it when and only when the BP/HR shows elevated 
risk. Once the hospital (controller) receives the report, some 
treatment (action) is prescribed to bring the BP/HR back to 
normal. The patient will stay inactive afterwards and only 
send in new reports if his/her BP or HR starts to exhibit new 
concerns. 

1The best way to determine whether a scheme is controller-based or sensor­
based is to examine in which physical location the decision is made, since 
their distinct locations naturally lead to asymmetric access to the underlying 
random states and timing information. Also see our discussion in Sec. II. 
However, such a definition does not apply to many existing results. The reason 
is that with the assumption of instantaneous ACK feedback, one node has 
complete and instantaneous access to the information available at the other 
node, which breaks the information asymmetry and thus blends the roles 
of sensors and controllers. The second way of classification is thus to see 
whether the algorithm has instantaneous access to the (random) value of the 
measurement and whether it explicitly uses the measurement to decide when to 
transmit. If so, it is a senor-side algorithm, e.g., the remote estimation scheme 
in [13]. Otherwise, it is a controller-side algorithm. Under this methodology, 
the AoI minimization scheme in [12] is classified as controller-based even 
though it is actually executed by the sensor. That is, one can envision "the 
controller" being a separate computer program within the physical sensor that 
tells the sensor when to transmit without using the actual measurement data. 
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The focus of this direction is thus to design schemes 
that detect the changes in signal/measurement values and 
opportunistically send the updates when the need arises. This 
direction is often termed the (state-based) sampling schemes 
for remote estimation. An early work [14] showed that a 
threshold policy can lower the estimation error. Later it was 
shown that the threshold policy is optimal for a variety of 
settings, including cellular networks [15], noisy channels [16] 
and multi-dimensional Wiener processes in [17]. In [13], Sun 
et al. generalized the setting of [17] by adding a queue with 
random service time between the sampler and estimator, and 
showed that the optimal waiting time at the sensor side again 
takes the form of a threshold policy. Further discussion of the 
threshold policy will be provided in Sec. IV. 

The main motivation of this work is two-fold. Firstly, 
as shown in two important studies [12], [13], since either 
controller (hospital) or sensor (patient) alone can significantly 
improve the system performance, one cannot help but wonder 
how much improvement one may experience with a globally 
jointly optimal sensor/controller policy. Secondly, since we 
are interested in remote systems with non-collocated sensors 
and controllers, there is likely to be random delay for both 
the sensor-to-controller and the controller-to-sensor directions 
[18]. Nonetheless, existing results [12] and [13] and all the 
aforementioned works assume random delay in one direction, 
plus idealized zero-delay acknowledgement (ACK) for the 
other direction. It is thus of paramount interest to study new 
optimal schemes under a more realistic 2-way delay model. 
Our key contributions are summarized as follows. 

(i) We propose a new framework that unifies the controller­
side AoI minimization problem [12] and the sensor-side re­
mote estimation problem [13]. 

(ii) Our framework allows for arbitrary random 2-way delay 
distributions, does not rely on idealized instantaneous ACK, 
and thus would be more suitable for practical applications 
where random delay is present in both directions. 

(iii) We derive the jointly optimal sensor/controller policy 
under the proposed new setting. For comparison, existing 
works focus either on the sensor [13] or on the controller [12] 
and take into account random delay in only one direction. The 
double relaxation from a single-node policy to a joint policy 
and from 1-way delay to 2-way delay represents a significant 
advancement over the state of the art. 

(iv) When evaluated numerically, our findings show that 
blindly applying the existing instant-ACK schemes [12], [13] 
to practical systems with random 2-way delay could lead to 
significant performance loss and the results can sometimes be 
worse than a naive zero-wait policy. 

(v) The new unified framework includes many existing 
results as special cases, and we have used it to derive a 
new, optimal remote estimation scheme with 2-way delay, a 
strict generalization of [13]. (The optimal 2-way-delay AoI 
minimization results can be found in [19] .) 

The remainder of the paper is organized as follows. In 
Sec. II, our detailed system model and problem formulation 
are presented. Our main results are outlined in Secs. III and IV. 
Sec. V uses the proposed framework to solve the remote 
estimation problem with random two-way delay. Numerical 

results are reported in Sec. VI. We conclude our work in 
Sec. VII. Most of the proofs will be provided in the appen­
dices. 

II. MODEL AND FORMULATION 

A. System Model 

Backward Channel 
with Delay V 

Forward Channel 
with Delay Y 

Fig. 1: A sensor/controller system with 2-way delay. 

Our system model is best depicted in Fig. 1, which consists 
of a sensor, a controller, a forward sensor-to-controller channel 
and a backward controller-to-sensor channel. It is worth noting 
that we use the terms of sensor and controller in their broadest 
sense. The sensor node is not limited to a physical sensor 
that measures the location/temperature of the environment. 
Instead, it can be any data-generating node, e.g., a database 
server, a video-streaming source, etc. Also, the controller is not 
restricted to a node directly commanding an actuator. Instead, 
it can be any decision making component, e.g., computation 
of the inferred status of the remote database, or the video 
processing applications that render the actual video. 

Each of the two channels incurs random transmission delay. 
With two-way delay in the communication loop, the timing 
information at the sensor and the controller is inherently 
unsynchronized. Specifically, the waiting policy of the sensor 
(resp. controller) does not have instantaneous access to the 
status of the underlying network and has to wait for the 
delayed response from the controller (resp. sensor). This two­
way delay model and the resulting double time asynchrony 
where neither the sensor nor the controller has the perfect 
global timing information is the most distinguishing feature of 
this work. For comparison, most existing works [6]-[8], [12], 
[13], [20] assume one node has perfect network-wide timing 
information, which may not hold in practice where random 
delay is universally present. 

We now explain our system model. We denote the system 
state as S(t), for which we shift/relabel the values so that the 
origin S(t) = 0 is the most desired system state. The value of 
S(t) may drift away from zero as time proceeds. We assume 
the evolution of S(t) is related to a Wiener process W(t) [21], 
a widely used (though idealized) model of the system state. 2 

The detailed system evolution is defined as follows, and the 
corresponding illustration is provided in Fig. 2a. 

Time sequences: The system consists of four discrete-time 
real-valued random processes X i , ~, Ui, and ¼ for all i. X i 
is the i-th waiting time at the sensor; ~ is the random delay 
for the i-th use of the sensor-to-controller channel; Ui is the 
i-th waiting time at the controller; ¼ is the random delay for 
the i-th use of the controller-to-sensor channel. 

2Some applications of the Wiener process model include unmanned aerial 
vehicles (UAVs) [22], biosensing schemes [23] and mobile networks [24]. 
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Fig. 2: Illustration of system evolution for different problem formulations. 

The values of {Xi} to {V;} can be used to derive another 
time sequence {Ti} as follows: T1 .£. 0 and Ti+1 .£. Ti + 
X i + Y; + Ui + V; for all i. We call the interval [Ti , Ti+ 1) 
as the i-th round, which consists of the i-th waiting time of 
the sensor, the delay of the i-th use of the forward channel, 
the i-th waiting time of the controller, and the delay of the 
i-th use of the backward channel. Clearly, the value Ti is the 
beginning of the i-th round. 

We now describe the system behavior in the i-th round. 
Reset-to-Qi at the sensor: At time Ti, the sensor has 

received the message from the controller in the previous 
( i - 1)-th round. It is very convenient to view the message 
as a reset command. We assume that upon receiving the reset 
command, the system state at time Ti will be reset to a random 
value Qi, which is the (random) initial value of the i-th round. 
For example, with thermal noise it may be impossible to set 
the state value to be exactly Owith infinite precision. The value 
Qi thus models the residual randomness after reset, if there is 
any. We assume { Qi} is i.i.d. with lE {Qi} = 0. 

Remark 1: Again the term reset is used in the broadest sense. 
For example, in terms of data freshness control, reset could 
simply mean that the system state is changed from "stale" 
back to "fresh", not necessarily referring to a physical reset 
operation. 

After reset-to-Qi, the system state will evolve according to 
a Wiener process W(t), until it is once again reset to Qi+ 1 at 
time Ti+ l· The state value in the i-th round, denoted by S i (t), 
is thus described by 

S i (t) = W(t) - W(Ti ) + Qi, fort E [Ti , Ti+ 1)- (1) 

We sometimes drop the subscript i and simply use S(t). 
Waiting time at the sensor: The sensor has the ability of 

waiting for an arbitrary amount of time X i 2: 0, also see [9], 
[10], [12]. The random variable X i is a stopping time with 
respect to the filtration generated by {S(T) : T s; t} and the 
past acknowledgement packets. That is, the sensor observes 
the evolution of the system state and causally decides when 
to stop waiting and start transmission. 

Upon transmission, the sensor sends (Ti , X i , M i ) to the 
controller, where (Ti, X i ), defined in the previous paragraphs, 
serves as the time stamp(s) while M i is the additional mes­
sage/payload generated based on the past system states. 

Random delay in the forward direction: The tuple 
(Ti, X i, M i ) sent by the sensor at time Ti + X i will arrive 
at the controller at time Ti+ X i+ Y;. The transmission delay 
Y; is i.i.d. and is independent from the rest of the system. 

Waiting time at the controller: Since the message is time­
stamped (containing (Ti, Xi)), the controller can infer the 
value of the forward transmission delay Y; by subtracting 
Ti+ X i from the actual arrival time Ti+ X i+ Y;. The waiting 
time Ui 2: 0 at the controller is then a function of all the 
previous messages and timing information {(Tj, Xj, ½, Mj) : 
j s; i}. 

Random delay in the backward direction: At time Ti+ X i+ 
Y; + Ui , the controller sends a reset signal, which will reach 
the sensor at time Ti+ 1 .£. Ti+ X i+ Y; +Ui +V;. The (i +1)­
th round then begins, and we go back to reset-to-Qi+ 1 at the 
sensor. Again, we assume the backward delay V; is i.i.d. and 
is independent from the rest of the system. 

Technical assumptions: Similar to [12], [13], we assume 
the statistics of { Qi}, {Y;}, and {V;} are known to both the 
sensor and the controller and O < lE {Y;} + lE{V;} < oo, and 
Var{Qi} + Var{Y;} + Var{V;} < oo. 

Remark 2: The non-negativity X i 2: 0 (resp. Ui 2: 0) pro­
hibits the sensor (resp. controller) to transmit before receiving 
the reset command (resp. message packet) from the controller 
(resp. sensor). This complies with the spirits of most TCP­
based control protocols [25] where the transmitter sends a new 
packet after receiving the ACK. It is possible to design an even 
better scheme that transmits anticipatively before receiving any 
ACK, which, however, is beyond the scope of this work. 

B. The Objective 

For any given scheme {Xi} and {Ui}, we define the cost­
aware L2 norm (CAL2N) in the i-th round as 

(2)lE { l~'+iISi (t) l2 dt} + co 

where Si (t) is defined in (1) and we use its L2 norm to 
characterize how far it has drifted away from 0. The constant 
c0 2: 0 is the cost of reset in the end of the round. The value of 
c0 is chosen by the system designer and can be set to Co = 0 
if desired. 
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Our goal is to nnnnmze the long-term average CAL2N 
defined as follows. 

where the non-negative constant c1 ~ 0 serves as a knob that 
determines whether we are biased towards a duration-based or 
round-based averaging. When c1 = 0, the denominator is the 
total duration and (3) becomes the time-averaged CAL2N. For 
sufficiently large c1, the denominator is approximately c1n and 
(3) is proportional to the CAL2N averaged over n rounds, with 
each round having equal weight regardless how long/short it 
is. The value of c1 is chosen by the system designer and can 
be set to O if desired. 

To simplify (3), we notice that the optimization problem is 
a Markov decision problem with i.i.d.3 Qi, Y; and ¼- As a 
result, it is sufficient to first find the optimal policy for the 
single-round optimization problem, assuming both the sensor 
and controller have access to some common randollllless.4 

We can then apply the optimal single-round solution to every 
round. Following this reasoning, the equivalent single-round 
optimization problem becomes 

• - min lE { iX+Y+u+v IS(t)I' dt} + co (4) 

fJcAL2N - (X,M,U) lE { X + Y + U + V} + c1 

where we drop the subscript i for notational simplicity. 

C. Ao/ Minimization Setting with Random Two-way Delay 

Our setting can be viewed as a strict generalization of 
the Aol minimization problem with random two-way delay 
described as follows. (Also see [12] for more details and 
for illustration.) The source sends packets to the destination 
through a queue that is not collocated with the source. We 
use Ti to denote the time instant at which the queue becomes 
empty for the i-th time. At time Ti, a notification packet will 
be sent from the queue (or equivalently from the destination) 
back to the source, which takes Y; time to arrive. After 
receiving the notification, the source imposes a waiting time 
Ui ~ 0 and after that injects a new packet to the queue, 
which takes ¼ time to be serviced. Once it is serviced, the 
queue becomes empty again (the (i + 1)-th time). We thus 
have Ti+ 1 = Ti + Y; + Ui + ½ and the process starts over. If 

3More precise requirements are: (i) {Y;} and {V;} are i.i.d. and indepen­
dent from the rest of the system; (ii) For any i, Qi is independent of the 
waiting times {Xj, Uj : j < i} in the previous rounds. 

4The common randomness enables us to convert the temporal average over 
many rounds to the probabilistic average over a single round. In this work we 
implicitly assume the availability of common randomness when discussing 
any single-round optimization problem. 

we assume instantaneous feedback (Y; = 0 with probability 
1), the above problem formulation is identical5 to that of [12]. 

Suppose each packet is time-stamped and the Aol is defined 
as the current time minus the time stamp of the latest received 
packet [4]. Then the Aol grows linearly over time and is 
intermittently reset to ¼ at time Ti+l = Ti+ Y; + Ui + ¼ 
since the time stamp of the latest arrival packet is Ti+ Y; +Ui. 
See [12] for more details and see Fig. 2b for illustration. The 
goal is to minimize the long-term average Aol: 

(5) 

i=l 

lE {1Vi-1+Y,+U,+Vi tdt} 
. Vi-1= m1n -~-------~ (6) 

u, lE {Y; + Ui + Yi} 

where (6) is based on the equivalent single-round optimization. 
We now show that (6) is a special case of our setting defined 

in Secs. II-A and II-B by (i) assuming c0 = c1 = 0, (ii) 
hardwiring Xi = Mi = 0, i.e., forgoing the possibility of 
designing better Xi and Mi, and (iii) choosing Qi = W(Ti)­
W(Ti-1 +1"i-1 +Ui-1). As will be seen later, it is as if we let 
the controller (resp. the sensor) assume the role of the source 
(resp. the destination) and the L2 norm of the system state 
lE{S(t)2 } captures the linearly growing Aol metric. 

Define the filtration until time Ti + Y; as Fi frc {(Tj, Yj), : 
j :::; i}. We then have for any t E [Ti, TH1), 

lE {1Si(t)l 2 1Fi} 

= JE {IW(t) - W(Ti-1 + 1"i-1 + ui-1)l 2 IFi} (7) 

= t - (Ti-1 + Ii-1 + Ui-1) = ¼-1 + (t - Ti) (8) 

where (7) follows from (1) and our choice of Qi in (iii); and 
(8) follows from the strong Markov property of the Wiener 
process. We can then rewrite the numerator of (4) as 

lE { h~;+Y;+U,+Vi lE {1Si(t)l 2 1Fi} dt} (9) 

= JE { h~;+Y;+U,+Vi (¼-1 + t - Ti)dt} 

rVi-1+Y;+U;+V; }
{= lE J1, tdt (11) 

Vi-1 

where (9) follows from Wald's lemma [26] and the facts (i) Y; 
is deterministic once conditioning on Fi; (ii) In Sec. II-A, the 
waiting time Ui at the controller is defined as a function of 
{(Tj, Xj, Yj, Mj) : j :::; i}. Since we set Xi= Mi= 0, it is 
clear that Ui is also deterministic once conditioning on Fi; and 
(iii)¼ is independent of Fi and ISi(t) 12 . Eq. (10) follows from 

5 [12] contained the results of more advanced settings, e.g., arbitrary Aol 
penalty functions, non-i.i.d. noises, etc. In this work, we focus on their simpler 
i.i.d. setting with linear Aol penalty function and without the maximum update 
frequency constraint, which captures the simplest and most fundamental 
findings of the results in [12]. 
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(8); and (11) follows from the change of variables. This proves 
that our objective function ( 4) collapses to the one for Aol 
minimization with random two-way delay (6) once we set c0 , 

c1, Y;, Xi, Mi, and Qi properly. The high-level intuition is that 
the controller cannot directly observe the system state and has 
to make its decisions based on the expected cost IE{IS(t)l 2 }, 

which has a linear growth rate with respect to the elapsed time 
(Aol) after the last reset. The CAL2N minimization problem 
thus includes the Aol minimization [12] as a special case. 

D. Remote Estimation Setting with Random Two-way Delay 

Next, we show that our setting is also a strict generalization 
of the remote estimation problem with random two-way delay. 
Also see [13] for details and for illustration. Consider a system 
in which a sampler sends packets to an estimator through a 
queue that is not collocated with the sampler. Whenever the 
queue becomes empty, the queue sends a notification packet 
back to the sampler. We use Ti to denote the time instant at 
which the i-th notification packet has arrived at the sampler. 
After time Ti, the sampler continuously monitors an external 
random process W(Ti + t), which is assumed to be a Wiener 
process. After some waiting time Xi ?: 0, which is a stopping 
time of W(Ti + t), the sampler injects the latest observed 
value W(Ti + Xi) to the queue, which takes Y; time to 
be serviced. Once it is serviced, the queue becomes empty 
and the estimator has received the latest observation. Then 
a new notification packet is sent back to the sampler, which 
experiences some random delay V;. Once the sampler receives 
the new ( i + 1)-th notification after delay ½, the process starts 
over. It is clear that we have Ti+1 =Ti+ Xi+ Y; + V; in this 
system model. 

We now describe the estimation error of this remote estima­
tion system. Specifically, at time t = Ti+ Xi+ Y; the estimator 
receives the latest observed value W(Ti+Xi) and uses it as an 
estimate of the external process W(t) = W (Ti +Xi) until the 
arrival of the next update packet at time Ti+l + Xi+1 + Y;+1-
As a result, the estimation error W(t) - W(t) jumps to a 
new (smaller) initial value W(Ti +Xi+ Y;)- W(Ti +Xi) at 
time t = Ti+ Xi + Y;. See Fig. 2c for illustration. Otherwise 
it evolves as a Wiener process until the arrival of the next 
observation W(Ti+l +xi+l) at time t = Ti+l +xi+l + Y;+l• 

If we again use the single-round problem formulation, the 
optimization problem becomes: 

2 
t> • IE { h~;+X;+Y;+¼ ( W(t) - W(t)) dt} 

= m1n --'----~----~----'- (12) 
IE { Xi + Y; + V;} 

The numerator of (12) can be rewritten as 

IE { h~;+X;+Y; ( W(t) - W(t)) 2 dt} 

+ IE { {T;+X;+Y;+V; (W(t) - W(Ti + Xi)) 2 dt} 
lr;+X;+Y; 

= IE { h~;+X;+Y; ( W(t) - W(t)) 2 dt} 

+ IE { 1v; (W(Y; + t) - W(0)) 2dt} (13) 

where (13) uses the strong Markov property of the Wiener 
process and the assumption that (Y;, ½) is independent from 
the Wiener process. 

We notice that the latter half of (13) can be further simplified 
as follows. Given½= v and Y; = y, we have 

IE { 1V; (W(Y; + t) - W(0)) 2dtl½ = v, Y; = y} 
= 1v IE { (W(y + t) - W(0))2} dt (14) 

= f\y + t)dt = yv + v 2 (15)lo 2 

where (14) follows from the fact that½ and Y; are independent 
from the rest of the system; and (15) follows from the strong 
Markov property of the Wiener process. 

By further taking the expectation of (15) over the i.i.d. ½ 
and Y;, the numerator of (12) can be rewritten as 

IE { h~;+X;+Y; ( W(t) - W(t)) 2 dt} 

+ IE{Y;}IE{½} + IE{ (~) 2
} (16) 

We now show that the above remote estimation problem 
is a special case of our setting in Secs. II-A and 11-B by 
(i) hardwiring Mi = Ui = ¼ = 0, i.e., short-circuiting the 
controller and the backward delay and using a dummy message 
Mi = 0, and (ii) choosing c0 = IE{Y;}IE{½} + E{(~;) 2 

}, 

c1 = IE{½}, Qi = W(Ti) - W(Ti-1 + Xi-1). As will be 
seen later, it is as if we let the sensor (resp. the controller) 
assume the role of the sampler (resp. the estimator) and the 
L2 norm of the system state IE{ S(t)2 } captures the estimation 
error of the remote estimation system. 

Note that by (1) and the choices of Ui = ¼ = 0, we can 
rewrite the numerator of ( 4) as 

rT+X+Y }
IE { Jr;' ' ' (W(t) - W(Ti) + Qi)2 dt + co (17) 

Then by the special choices of c0 and Qi in (ii) and because 
W(t) = W(Ti-1 + Xi-1) during the time interval [Ti, Ti + 
Xi+ Y;], it is straightforward to verify that the numerator of (4) 
(i.e., (17)) is identical to the numerator of (12) (i.e., (13)). It 
is also straightforward to verify that the denominators of (12) 
and ( 4) are identical. Our objective function ( 4) thus collapses 
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to the one for remote estimation with two-way delay (12) once 
we set co, c1, 17;, ½, Ui, Qi, and Mi properly. The high-level 
intuition is that having direct observation of the system state 
S(t), the sensor naturally has the same role as the sampler in 
the context of remote estimation of a Wiener process [13]. 

Remark 3: [13] considered remote estimation with one-way 
delay, which is a special case of the one in this subsection by 
further setting controller-to-sensor delay ½ = 0 (and hence 
Co= C1 = 0). 

Remark 4: In some sense, the two important papers [12], 
[13] form a perfect pair, where the former AoI minimization 
work focuses on the controller action (assuming Xi = 17; = 0) 
without using the state information while the latter remote­
estimation work studies the sensor action (assuming Ui = 
½ = 0) that directly observes the state S(t). A main con­
tribution of this work is to unify these two results and study 
the optimal sensor/controller scheme that jointly optimizes Xi 
and Ui. 

Ill. MAIN RESULTS - THE OPTIMAL POLICIES 

In this section, we will present three policies: (i) the 
jointly optimal policy (X*, M*, U*), (ii) the optimal No­
Wait-At-Sensor (NWAS) policy which imposes Xi = 0 and 
optimizes the rest of the system, and (iii) the optimal No­
Wait-At-Controller (NWAC) policy which imposes Ui = 0 
and optimizes the rest. Policies (ii) and (iii) are meant for 
scenarios in which either the sensor or the controller is forced 
to adopt a suboptimal zero-wait policy due to other system­
level considerations. 

A. An Auxiliary Minimization Problem 

Given the distributions of the i.i.d. {17;}, {½}, {Qi} and 
any constant values c0 , c1 ~ 0, for any (3 E (-oo, oo) we 
define p(f3) as the optimal value of the following minimization 
problem: 

p((3) £ inf IE { rX+Y+u+v IS(t)l 2 dt} + Co 
(X,M,U) } 0 

-(3 (IE {X + Y + U + V} + c1 ) (18) 

where we drop the subscript i for simplicity. We then have 
Proposition 1: (i) The function p((3) is concave, continuous, 

and strictly decreasing, (ii) there exists a unique (3* E [0, f3max] 
such that p(f3*) = 0, where 

t;. IE {Y} IE {V} + ½IE {Y2 + V2 } + Co 

f3max = IE{Y + V} + c1 

+ IE{ Q2 } · IE{Y + V} (lg) 
IE{Y + V} + c1 

(iii) the unique solution (3* is identical to the f3cAL2N defined 
in (4), and (iv) The (X, M, U) scheme that attains p(f3*) also 
achieves the f3cAL2N in (4). 

Proof- See Appendix A. ■ 

By Proposition 1, the minimization problem (4) can be 
solved in the following steps: For any given (3, we first find the 
optimal (X, M, U) that minimizes (18) and the corresponding 
p(f3) value. We then find the optimal (3* = f3cAL2N by a 

bisection search over [0, f3max]. In the sequel, we discuss how 
to find the optimal (X, M, U) solution of p((3) in (18) for any 
given (3. 

B. Optimal Waiting Time at the Controller 

Define Mi = (Ti, Xi, Mi)- The following proposition holds 
for any arbitrary message scheme {Mi}. 

Proposition 2: Given any arbitrary payload { Mi} and any 
(3 > 0, the optimal waiting time UilM at the controller that 
minimizes (18) is as follows. 

UijM = 

max (f3 - ( 17; + IE { (Si(Ti + Xi)) 2 IM(i)} +IE{½}) ,0) 
(20) 

-(i) t;. -
where M = {Mj: j::; i}. 

Proof· See Appendix B. ■ 

That is, the optimal controller is a water-filling 
policy that calculates the difference between (3 and 

(Ii+ IE{(Si(Ti + Xi))2 IM(i)} +IE{½}). 

C. Optimal Message Sent by the Sensor 

Proposition 3: The optimal message that minimizes (18) 
is Mt = Si(Ti + Xi), the latest state value at the time of 
transmission Ti+ Xi. 

This result follows directly from the fact that the system 
state is a strong Markov process and thus the latest system 
state consists of all the information the controller can possibly 
need. We omit the proof due to the space limit. Combining 
Propositions 2 and 3, we immediately have 

Corollary 1: With the optimal message Mt in Proposition 3, 
the optimal waiting time at the controller becomes 

U* t> U*
i = ilM* 

= max (f3 - ( 17; + (Si(Ti + Xi)) 2 +IE{½}) ,0). (21) 

D. Optimal Waiting Time at the Sensor 

The design of the sensor waiting time X has to take 
into account the sent message M and the controller waiting 
time U. In the sequel we exclusively assume Mt is used. 
Two different controller schemes U = Ut and U = 0 are 
considered. When Ut is used, we denote the corresponding 
optimal sensor scheme by Xt, i.e., the tuple (Xt, Mt, Ut) 
represents the jointly optimal sensor/controller policy. When 
U = 0 is used, we denote the corresponding optimal sensor 
scheme by X~zw, which represents the best-possible X if 
the controller employs a zero-wait (ZW) policy. The tuple 
(X~zw, Mt, Ui = 0) is thus what we previously referred to 
as the optimal No-Wait-At-Controller (NWAC) policy. Note 
that the optimal No-Wait-At-Sensor (NWAS) policy is the 
combination of (Xi = 0, Mt, Ut), which was previously 
described in Proposition 3 and Corollary 1 and is thus not 
the focus of this subsection. 
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We first describe how to find jointly optimal x;, and later 
present how the procedure of finding x; can be modified to 

find X ~zw· 
For any s E (- 00,00), define two functions 9(3 (s) and 

hf3 (s) by 

(22) 

(23) 

where 

c, IP' (s2 + Y s; /J - lE {V}) 
as,4 = - (24)2 

as,2 ~lE {Y + V} 

+ lE {]. {s2 + Y :,;(3-IE{V}} · (/J - lE {V} - Y)} (25) 

c, lE { ].{s2+Y :,;(3-IE{V}} · (/J - lE {V} - Y)2} 
as,O= - (26)2 

a0 ~ - /J (lE{Y + V} + ci) + lE {Y} lE{V} 
1

+ 2lE {Y2 + V2 } + Co (27) 

and].{-} is the indicator function. Note that 9(3 (s) and h(3 (s) 
are not fourth-order polynomials since the coefficients a8 ,4 , 

as, 2, and a8 ,o also depend on s. 
Lemma 1: For any /J ?: 0 and any distributions of Y and V, 

which can be discrete, continuous, or hybrid, both functions 
9f3 (s) and h(3 (s) are even and continuous. Furthermore, hf3 (s) 
is lower bounded by a shifted 4-th order polynomial of s, i.e., 
h(3 (s) ?: / 2 s4 + (a0 - 3f 2 ) for alls E (- oo, oo). 

For any two functions Ji and h, we say Ji --< h if Ji (s) s; 
h(s), Vs E (- oo, oo). The convex hull (also called the lower 
convex envelope) of the function h(3 (s) is defined as 

Cnvx(h(3 (s)) ~ sup{!(s) : f is convex, f --< h(3 }. (28) 

Corollary 2: For any /J 2: 0, the lower convex envelope 
Cnvx(hf3 (s)) is finite for alls E (- 00,00). 

Corollary 2 follows directly from Lemma 1. The corre­
sponding proofs are relegated to Appendix D. 

We now describe the optimal sensor waiting time x; . 
Proposition 4: For any given /J, the optimal x; that 

minimizes (18) is the hitting time: 

x; = inf{t 2: 0: Si (Ti + t) E S1x,f3 } (29) 

where the set S1x,(3 , called the transmission set, is the collection 
of all state values s satisfying 

(30) 

i.e., the set of s whose corresponding values of the convex 
hull function are equal to those of the original function h(3 (s). 

Proof See Appendix E. ■ 

Fig. 3a illustrates a (piecewise) even function hf3 (s), which 
contains 5 pieces with the corresponding second-order deriva­
tives being + - + - + if we scan the s values from - oo to oo. 
Fig. 3a also plots the convex hull function Cnvx (h(3 (s)). One 
can see that in this example, Cnvx (h(3 (s)) = h(3 (s) iff Is l ?: 1 
for some threshold ,. As a result, S1x,(3 = {s: Is l?: 1 }. The 
optimal x; is thus the first time when ISi (Ti + t) I hits ,. 

-20 0

- hi s) - hp\s)

-30 - Cvnx(h (s)) - cvnx(h (s))

I I .5 

-40 + I I + 
I 
I -10 

-50 

-60 

·,
-1 5 

-70 
-6 .4 -2 6 .4 -2 

(a) (b) 

Fig. 3: Examples of h(3 (s) and Cnvx(h(3 (s)). 

Another example of h(3 (s) is plotted in Fig. 3b, for which 
Cnvx(h(3 (s)) = hf3 (s) iff s belongs to neither of the two 
(symmetric) intervals (- r, - l) and (l , r) . In this example, the 
sensor transmits if either IS(Ti + t) I 2: r or IS(Ti + t) I s; l. 

Proposition 4 describes the x; in the jointly optimal 
sensor/controller scheme. In the following we elaborate how 
we derive X ~zw for the optimal NWAC policy. 

Define a new 9NWAC ,(3 (s) by 

1 
9NWAc ,(3 (s) ~lE {Y + V} s2 + lE{Y}lE{V} + 2JE {Y2 + V 2 } 

- /J (lE{Y + V} + c1 ) + co. (31) 

Note that the 9NWAC ,(3 (s) is a second-order polynomial of s 
since its coefficients do not depend on s. 

By substituting gf3 (s) = 9NWAC ,(3 (s) in (22) and repeating 
the steps listed (23), (28), and Proposition 4, we can find 
the optimal waiting time X ~zw of the best NWAC policy. 
Specifically, for any given /J E ( - oo, oo), define 

t, 2 1 4
hNwAc ,(3 (s) = 9NWAC ,(3 (s) - (f s - 6s ). (32) 

Since 9NWAC ,(3 (s) has a nice form of being a second-order 
polynomial, by simple calculus one can verify that 

hNWAC (3 (S) if s2 ?: r NWAC 
Cnvx(hNWAc,(3 (s)) = { ' 

hNwAc ,(3 (v r NWAC) if s 2 < r NWAC 
(33) 

where 

r NwAc ~ max(3 · (/J - lE{Y + V}), 0) (34) 

is a constant threshold. 
Proposition 5: Using the definition of r NWAC in (34), the 

optimal waiting time X ~zw is the hitting time: 

X ~zw = inf{t ?: 0: ISi (Ti + t) l2 ?: r NWAc}- (35) 

Proof See Appendix H. ■ 

Intuitively, the difference between x; and X ijzw is due 
to different schemes used at the controller, and the sensor 
thus has to react differently. Propositions 4 and 5 prove that 
the effects of different controller schemes can be summarized 
either as the function 9(3 (s) in (22) or 9NWAC,(3 (s) in (31). The 
actual optimization mechanisms at the sensor remain the same 
and are described by the steps of finding h(3 (s) and the convex 
hull Cnvx(hf3 (s)), and comparing h(3 (s) and Cnvx(hf3 (s)) to 
decide the corresponding transmission set S1x,f3 • 
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E. Finding the Optimal /3* 

All the previous discussions assume an arbitrarily given (3. 
We now describe how to find /3*. We first discuss the case for 
the jointly optimal policy, and then describe the cases for the 
optimal NWAC and NWAS policies. 

Proposition 1 shows that the optimal (3* for the jointly 
optimal scheme (X;*, Mt, Ut) is the unique root of p(/3) = 0 
defined in (18). We now describe how to find p(/3). Recall 
that Qi describes the random state value in the beginning of 
the i-th round (right after reset). We then have 

Proposition 6: For any (3 2: 0, define ¢(/3, s) as 

¢((3, s) ~ Cnvx (h,e(s)) + ((3s2 - is4) (36) 

where h,e (s) was first defined in (22) to (27). The optimal 
p(/3) in (18) can be computed by 

p(/3) = IEQ{¢(/3, Q)} (37) 

i.e., we first assume the s value in ¢(/3, s) is randomly 
distributed with distribution Q and then evaluate p(/3) by 
finding the expectation in (37). See Appendix E for the proof. 

Proposition 7: For any /3 2: 0, define ¢NWAC (/3, s) and 
PNWAc(/3) as 

<PNWAc(/3, s) ~Cnvx(hNWAc,,e(s)) + (/3s2 - is4 ) (38) 

PNWAc(/3) ~IEQ{<PNWAc(/3, Q)} (39) 

where hNWAc,,e(s) was first defined in (31) and (32). The opti­
mal (3* for the optimal NWAC scheme (i.e., (X~zw, Mt, Ui = 
0)) is the unique root of PNWAc(/3) = 0. See Appendix H for 
the proof. 

Proposition 8: For any (3 2: 0, define <PNWAs(/3, s) and 
PNWAs(/3) as 

<PNWAs(/3, s) ~g,e (s) (40) 

PNWAs(/3) ~IEQ{<PNWAs(/3, Q)} (41) 

where g,e was first defined in (22). The optimal (3* for the 
optimal NWAS scheme (i.e., (Xi = 0, Mt, Ut)) is the unique 
root of PNWAs(/3) = 0. See Appendix I for the proof. 

Comparing Propositions 6 and 8, we notice that both 
propositions are very similar in the sense that they first find 
a function ¢(/3, s) and then evaluate the corresponding p(/3) 
by taking the expectation over Q. The differences are that the 
¢(/3, s) in Proposition 6 is obtained by applying a sequence of 
convex-hull-based operations to g,e(s) in (22), (23), (28), and 
(36), whereas Proposition 8 directly sets ¢NWAS (/3, s) = g,e (s). 
The intuition is that since in the NWAS policy, the sensor al­
ways chooses Xi = 0 without any optimization/minimization. 
Therefore the initial function g,e (s), which is the objective 
function based on the optimal controller waiting time Ut, 
will be directly used as the <PNWAS (/3, s). This essentially skips 
the intermediate optimization/minimization steps in (22), (23), 
(28), and (36) that compute ¢(/3, s) in (36) from g,e(s), which 
captures the effects of using optimal X;*. Once we swap (36) 
with (40), the steps of (37) and (41) are identical. 

We also compare Propositions 6 and 7. Since g,e(s) rep­
resents the effect of the optimal controller waiting time U;*, 

when shifting from optimal Ut to zero Ui = 0 in NWAC, the 
only change is to replace g,e(s) in (22) by the 9NWAc,,e(s) in 
(31). The remaining steps, i.e., {(23), (36), (37)} versus {(32), 
(38), (39)}, are identical. 

F. Complexity of Finding the Jointly Optimal Scheme 

We first sullllllarize the detailed steps of finding the jointly 
optimal sensor/controller policy and the corresponding (3*. 

Step 1: For any (3, compute the functions g,e(s), h,e(s), and 
¢((3, s) by (22), (23), and (36), and then compute the value of 
p(/3) by (37). 

Step 2: Repeatedly use Step 1 and the bisection search over 
/3 E [O, f3max] to find the unique (3* satisfying p(/3*) = 0. 

Step 3: Substitute (3 = (3* in Secs. III-B and III-D to derive 
the respective optimal policies for the controller and the sensor. 

We note that the bisection steps, i.e., Steps 2 and 3, 
also appear in [12], [13] and thus do not incur additional 
complexity. For some special delay distributions Y; and ¼ 
and the reset distribution Qi, say, exponential, it is possible 
to derive closed-form expressions of g,e(·), h,e(·), ¢((3, •), and 
p(/3) by calculus. For arbitrary Y;, ¼, and Qi distributions, 
we can compute g,e(·) and h,e(·) by quantizing the continuous 
s values into discrete points. Then we can use existing linear­
time algorithms, e.g., [27], [28], to compute the convex hull 
Cnvx(h,e(s)). The expectation step in (37) can subsequently 
be computed in linear time as well. Overall, the complexity 
of our algorithm is identical to [12], [13]. That is, all being 
linear-time in terms of the number of quantization points. 

IV. FURTHER EXAMINATION OF THE OPTIMAL POLICY 

In this section, we prove some properties of the jointly 
optimal sensor/controller scheme (X;*, Mt, Ut). 

Lemma 2: Stx,,B* is sylllllletric over s = 0, i.e., for any 
s E (-oo, oo), s E Stx,,B* if and only if (-s) E Stx,,B*. 

Proof- This lelllllla follows directly from Lelllllla 1 and 
the definition of Stx,,B in Proposition 4. ■ 

Define si,,e• ~ (-oo, oo) \Stx,,B* as the complement of 
Stx,,B*. We then have the following self-explanatory lelllllla. 

Lemma 3: si,,B* must be a collection of disjoint open 
intervals (Ii, ri), namely, 

µ, 

si,,e• = LJ(li,ri) (42) 
i=l 

where µ is the total number of disjoint open intervals, and 
{ (li, ri) : i} satisfies -oo < li < ri < oo for all i E [1, µ]. 

Lellllllas 2 and 3 imply that if µ = l, then S1x,,B* = { s : 

Isl 2: 'Y} for some 'Y > 0, which is termed the threshold policy 
in [13]. Similarly, ifµ = 0, then Stx,,B* = (-oo, oo) and the 
optimal policy is a zero-wait policy. In the sequel, we examine 
the value ofµ, calculated by (42), for various scenarios. 

A. Deterministic Forward Transmission Delay Y; = y0 

Proposition 9: If there exists a constant y0 such that IP'(Y; = 
y0 ) = 1, then we always have µ :::; 1 and IP'(Ut = 0) = 1. 

Proof· See Appendix J. ■ 
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In other words, with deterministic forward transnnss10n 
delay 17;, the optimal sensor policy is either a zero-wait policy 
(µ = 0) or a threshold policy (µ = 1), and the optimal 
controller strategy is always a zero-wait policy regardless of 
the distribution of backward delay ½-

B. Exponential Forward Transmission Delay Y; 

Proposition JO: If 17; ~ Exp(>.y) is exponentially dis­
tributed with service rate .Ay > 0, then we always haveµ :S 2. 

Proof· See Appendix K. ■ 

If we choose Y ~Exp(.Ay) with .Ay = 0.2, V ~Exp(>.v) 
with >.v = 6, c0 = 20, c1 = 0, and Q ~ N(0, IT2 ) with 
IT = 0.125, then we can numerically compute fJ* = 7.236 
using the 3 steps in Sec. III-E. The resulting Stx,fJ* = {s : 

Isl :S 0.012 or 0.082 :S Isl} indeed has µ = 2. The upper 
bound µ :S 2 in Proposition 10 is thus tight. 

We call the µ = 2 policy an interval policy. The reason is 
that with µ = 2 the transmission set S1x,f3* is of the form 

Stx,fJ* = {s: Isl :S l or r :S Isl} (43) 

for a pair of O < l < r < oo. That is, the optimal sensor 
scheme should transmit when the system state is either too 
large IsI 2: r or too small Is I :S l. At the first glance, this strat­
egy seems counterintuitive due to the following reason: Our 
goal is to minimize the average value of I Si (t) 12 • Therefore, 
large IsI is considered to be "bad" and small IsI is considered 
to be "good". An intuitive strategy inspired by [12] and [13] is 
to hold off transmission (i.e., to wait) when the state is good 
(when Isl is small) in order to prolong the duration of staying 
in a good state. Our results show that under the setting of joint 
sensor/controller coordination, the sensor sometimes should 
transmit when the state becomes too good (when Isl :S l). 

One explanation of this surprising phenomenon is as fol­
lows. The goal of CAL2N minimization in (4) is for the 
sensor and the controller to jointly design their strategies 
and one thus has to decide how to split the waiting time 
between the sensor and the controller. A deeper look shows 
that each of them has its unique advantages and disadvantages. 
In particular, the sensor is able to observe the full system 
state Si(t) continuously and use it to make its decision 
Xi. The controller cannot observe Si(t) directly, but instead 
can directly observe the realization of the random sensor-to­
controller delay 17;, a valuable piece of information known 
exclusively to the controller. Therefore, when the system 
state is very good, IsI being small, there is a bigger chance 
that the controller will see a good expected system state6 

Y;+s2 +lE{½} in (20). As a result, the sensor should transmit 
so that the controller, which has the additional observation of 
17;, can make a better informed decision Ut to further extend 
the duration of staying in a good system state. One of the 
main contributions of this work is to uncover this unexpected 
sensor/controller coordination that is critical to achieving the 
optimal pe,formance. 

6Since the optimal Mt = Si(Ti + Xi) is used, the term lE{(Si(Ti + 
Xi)) 2 1M(i)} = (Si(Ti +Xi)) 2 = s2 is directly related to the value of Isl. 

The above discussion also explains the intuition of Propo­
sition 9. With deterministic 17;, the controller has a strictly 
inferior set of information since the observed 17; is a constant. 
Hence, all the waiting time should be allocated to the sensor, 
i.e., IP'(Ut = 0) = 1, and the sensor transmits if and only if 
the system state is bad (either a zero-wait or a threshold policy 
Isl 2: "(), which corresponds to µ :=:; 1. 

C. A Special Case ofµ = 6 

The coordination between the sensor and the controller can 
sometimes be very subtle and beyond the high-level intuition 
discussed previously. Consider the following example. 

Example 1: Consider the distribution of Y being 

IP'(Y = 6) = 0.35, IP'(Y = 45) = 0.06, 
{ IP'(Y = 51) = 0.08, IP'(Y = 53) = 0.08, (44) 

IP'(Y = 54) = 0.23, IP'(Y = 90) = 0.2, 

IP'(V = 20) = 1, c0 = 45, c1 = 0, and the initial random 
variable Q ~ N(0, 1T2 ) with IT = 6.6. We can numerically 
compute fJ* = 80.049 using the 3 steps in Sec. III-E, and the 
resulting Stx,fJ* is 

Stx,f3* = {s: Isl :S 1.803 or 3.100 :S Isl :S 3.795 

or 3.858 :S Isl :S 6.767 or 7.305 :S Isl} (45) 

which has µ = 6. 
The reason of having a highly fractured transmission set 

Stx,f3* is due to the delicate probabilistic balance between the 
benefits of observing Si(t) at the sensor and observing 17; at 
the controller. 

V. SOLVING TWO-WAY REMOTE ESTIMATION PROBLEM 

In this section, we derive7 the optimal Wiener-process 
remote estimation scheme with random delay 17; and ½ in 
forward and feedback directions, respectively, a generalization 
of the results in [13]. 

In Sec. 11-D, we have shown that the remote estimation 
problem with random two-way delay is a special case of our 
setting with Ui = ½ = 0, Mi= Si(Ti+Xi), and non-negative 

- E{(V )2 } -co= lE{Y;}lE{½} + 2; and c1 = lE{¼}. We now apply 
the best NWAC scheme (Ui = 0) in Propositions 5 and 7 to 
this particular set of parameter values. Specifically, by (31), 
we have 

fJNwAC,(3 ( s) ~]E {Y} s2 + 1]E {Y2 } - fJ ( lE{Y} + lE{V}) 

+ IE{Y}lE{V} + lE{(V)2
}. (46) 

2 

By Proposition 5, the optimal transmission policy X~zw for 

the sensor is to transmit whenever s2 2: 'Y~AC• where 

"f~Ac = max(3 (fJ~Ac - lE{Y}), 0) (47) 

and the fJ~Ac used in (47) can be computed by finding the 
root of the PNWAc(fJ) defined in Proposition 7. 

7One can use similar techniques to solve Aol minimization problem with 
random two-way delay. Due to space limits, we refer the readers to [19] for 
the final results. 
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In the following, we show the above description of how to 
compute the optimal threshold 'Y~Ac can be further simplified 
to the following equivalent form. 

Lemma 4: The 'Y~Ac defined in (47) and Proposition 7 can 
also be computed by finding the root of 

lE { max("/2 , (W(Y))4 )} + 3IE{(V)2 } 

2"( 

= IE { max ('Y, (W(Y))2)} + lE{V}. (48) 

Proof- See Appendix L. ■ 

Corollary 3: If we further limit ourselves to the 1-way delay 
setting, i.e., ¼ = 0, then the optimal Xi policy described 
in (47) and Lemma 4 reproduces the optimal I-way-delay 
remote-estimation scheme in [13, Theorem 1]. 

Proof- By specializing (48) in Lemma 4 with the one-way 
delay setting ¼ = 0, the optimal remote estimation scheme 
in (47) has the corresponding 'Y~Ac value being a root of 

lE{max('Y2 ,(W(Y))4
--'-----------'-)} = IE { max ( 'Y, ( W ( Y )) 2 )} (49)

2"( 

which is identical to the Eq. (15) in [13]. Hence, the optimal 
scheme in (47) and Lemma 4 reproduces [13, Theorem 1]. ■ 

VI. SIMULATION RESULTS 

We compare the performance of our jointly optimal sen­
sor/controller policy and five other important alternatives. 

(i) Zero-wait (ZW) (Xi = 0, Ui = 0) [11]: The zero-wait 
policy is commonly known as the work-conserving policy in 
queueing theory [ 11]. 

(ii) Optimal No-Wait-At-Sensor (NWAS) policy (Xi = 
0, Mt, Ut), see the discussion in Secs. III-B and III-C. 

(iii) Optimal No-Wait-At-Controller (NWAC) policy 
(X~zw, Mt, Ui = 0), see Sec. III-D. 

(iv) AoI-minimization scheme (AoI-min) [12]: It is related 
to the NWAS (Xi = 0) scheme. The differences are (i) It does 
not take into account the reset cost c0 and the per-round cost 
c1 , see (3); (ii) It falsely assumes the forward delay Y; = 0 
even though the actual Y; could be non-zero; (ii) It employs 
the suboptimal message Mi = 0 instead of the optimal Mt = 

Si (Ti+ Xi), and (iv) It hardwires Xi = 0 and optimizes the Ui 
under the suboptimal assumptions (i)-(iii). We are interested 
in measuring the performance loss ( compared to the optimal 
NWAS scheme) due to these suboptimal decisions. 

(v) Remote-estimation scheme (RE) [13]: As discussed in 
Sec. 11-D, it is an instance of NWAC schemes. The differences 
between the RE and the optimal NWAC schemes are (i) RE 
does not take into account the reset cost c0 and the per-round 
cost c1 in (3) and (ii) RE falsely assumes the backward delay 
V; = 0 even though the actual ½ could be non-zero. 

We report the results for exponential forward and backward 
delays, while similar behaviors can be observed for log-normal 
delays as well. The initial value Q is assumed to be Gaussian 
with zero mean and variance 0'2 • The results are presented in 
Fig. 4. 

In Fig. 4a we notice that the larger the O' value, the wider 
the range of the initial value Q, which models the case of less 

accurate reset/control. Hence, the CAL2N of all 5 schemes 
increases as O' goes up. 

A more interesting comparison is to calculate the ratio of 
the CAL2N of any scheme over that of our scheme, i.e., the 
normalized CAL2N plotted in Fig. 4b. Indeed, the normalized 
CAL2N of any scheme is always 2: 100% since our scheme 
is provably optimal. 

In Fig. 4b we also observe that when the reset is accurate 
(small O'), the performance of the optimal NWAS is identical 
to that given by the optimal solution, which implies the 
jointly optimal scheme will allocate all its waiting time to the 
controller and perform zero-wait at the sensor. On the other 
hand, when the reset is loose (large O'), the jointly optimal 
scheme will allocate all its waiting time to the sensor and 
perform zero-wait at the controller, i.e., the optimal NWAC 
becomes globally optimal for large O'. In either case, our 
algorithm optimally splits the waiting time between the sensor 
and the controller and always attains the best performance. 

As shown in Figs. 4c and 4e, we fix O' = 4 and vary 
the delay distribution parameters Ay and >.v, respectively. 
In both figures, similar trends can be observed: When either 
Ay or >.v increases (namely, when the expected delay is 
shorter), the CAL2N of any scheme goes down. Interestingly, 
the performance of the optimal NWAC is as good as the 
jointly optimal solution in both cases. It appears that in these 
scenarios, the reset quality O' value, see Figs. 4a and 4b, has 
stronger impact on whether NWAC is jointly optimal or not 
than the delay distributions of Y and V. 

In Figs. 4g and 4i, we consider different values of c0 and c1 . 

As can be seen, the optimal split of the waiting time between 
the sensor and the controller is heavily dependent on the value 
of reset cost c0 , see Figs. 4g and 4h, but much less on the per­
round cost c1 , see Figs. 4i and 4j. Overall, from Figs. 4a to 4j 
one can see that each of the five alternatives excels in some 
scenarios but performs poorly in the others, while our scheme 
always achieves the optimal performance. 

We are particularly interested in the relative performance 
of the existing I-way-delay-based AoI-min and RE schemes 
when there is 2-way delay in the system. Because existing 
results do not take into account 2-way delay, as expected, 
the AoI-min scheme (resp. RE scheme) is always worse than 
the optimal NWAS scheme (resp. NWAC scheme) and is 
much worse than the jointly optimal solution. Furthermore, 
considering only 1-way delay (i.e., the AoI-min and RE 
schemes) and ignoring the delay in the other direction can 
be quite detrimental. In many cases they perform worse than 
the naive zero-wait solution. See RE vs. ZW in Fig. 4b and 
AoI-min vs. ZW in Fig. 4f. In particular, RE is significantly 
worse the ZW in Fig. 4b, while the difference between AoI­
min and ZW in Fig. 4f is much smaller. 

VII. CONCLUSION 

We have proposed a new Wiener-process-based frame­
work and characterized the corresponding jointly optimal 
sensor/controller policy, which unifies AoI minimization and 
remote estimation, two recent important results that have 
spawned substantial interests in the literature. The considera­
tion of the two-way delay model and joint sensor-&-controller 
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Fig. 4: Long-term average CAL2N for various settings. Those 
on the left are on absolute scale and those on the right are 
normalized with respect to the CAL2N of the optimal policy. 

design have successfully addressed the time asynchrony of 
the practical systems and represents a significant improve­
ment over the existing results based on idealized zero-delay 
acknowledgement feedback. 

APPENDIX A 

PROOF OF PROPOSITION 1 

Since IE{Y + V} > O and IE{Q 2 + Y2 + V2 } < oo, p(/3 ) 
in (18) is the infimum of a set of strictly decreasing affine 
functions of /3. As a result, p( /3 ) is concave, strictly decreasing, 
and continuous over ( - oo, oo). The proof of Statement (i) is 
complete. 

By the non-negativity of IS(t)l2 in (18), we have p(O) 2: 0. 
We now evaluate p( f3max) - By considering the choice of X = 
U = 0 in (18), we have p( f3max) :c; 0. As a result, there exists 
a unique root /3* E [0, f3max] satisfying p( /3* ) = 0. Statement 
(ii) is proven. 

By plugging the scheme that attains f3cAL2N of (4) into (18), 
we immediately have p(f3cAL2N) :c; 0, which in turn implies 
/3* :c; f3cAL2N. On the other hand, plugging the scheme that 
attains /3* of (18) into (4) will lead to /3* 2: /3cAL2N· Jointly, 
we thus have /3* = f3cAL2N and the achievable schemes of /3* 
and f3cAL2N are identical. Statements (iii) and (iv) are proven. 

APPENDIX B 
PROOF OF PROPOSITION 2 

To study the optimal waiting time Uij M at the controller, 
we first place a finite-horizon constraint such that the random 
variable UilM must satisfy Uil M E [0, J] for some finite 
J. Later, we will let J go to infinity to derive the optimal 
waiting time UilM · Since all packets are time stamped, at 
the time instant at which the controller makes the deci­
sion UilM' the controller has complete causal observation of 

M(i) = {T1, X 1, M1 : j :c; i}, which can be used to derive 
{½ : j :c; i} when comparing to its local clock. As a result, 

the value of U in (18) is a function of M(i) and Y;. Further, the 
minimization problem (18) can be rewritten in an equivalent 
form once we remove the terms that do not depend on the 

- (i)
choice of U (e.g., c0 , c1 , and IE{V IM , Y;} are all constants) 
and write the deterministic values in lower case (X --+ x) and 
(Y --+ y), since the optimization problem is now conditioning 

- (i) 
on M and Y; . 

As a result, we can write the equivalent optimization prob­
lem as follows 

I }
= 

x+y+u+ v 
min IE IS(t) l2 dtM = m,Y = y 

U(m ,y) ~ J 
{1

x+y 

- /3 · IE{U}. (50) 

We solve the above minimization problem by the following 
three major steps: joint time-and-space quantization, analyti­
cally solving the resulting quantized dynamic programming 
problem, and converting it back to the original continuous 
version. 
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A. Joint time and space quantization 

Before proceeding, we first simplify (50) as follows. We 
notice that 

IE{IS(x + y)l 2 IM = m, Y = y} = IE{IS(x)l 2 IM = m} + y 
(51) 

since S(t) evolves according to the Wiener process and by the 
strong Markov property S (x + y) - S (x) has zero-mean and 
variance y. The first term of (50) can then be further simplified 
as 

IE{ (U+V)-(IE{IS(x)i21M=m}+y)} 

+IE{l~o+v IE{IS(x+y+t)-S(x+y)l 2 }dt} (52) 

which again uses the strong Markov property and S(x + y + 
t) - S(x + y) having zero mean. 

Our time and space quantization is motivated by the follow­
ing classical result. Let B( i) be a sylllllletric binary random 
walk such that the initial point B(0) E Z can be arbitrarily 
chosen and B(i + 1) = B(i) + (1 - 2b(i)), i 2: 0, where 
{b(i) E {0, 1} : i} are i.i.d. Bernoulli random variables with 
p = 0.5.8 We can use the discrete-time B(i) to construct a 
continuous-time process W" (t): 

(53) 

where l·J is the floor function. It is well known that W"(t) 
converges to a Wiener process8 W(t) in distribution when 
o --+ 0 [29]. In the quantized setting, we thus assume the 
system state S(t) evolves according to W"(t). 

For the time domain quantization, we quantize the time­
domain variables (e.g., x, y, U, V, (3, and J) with quantization 
step o that matches the time-domain quantization in (53). 
Specifically, define x = l;¥ J, y = l!J, U = l¥J, V = lf J, 
7J = I { J, and J = l-'f j as the integer approximations of x, 
y, U, Y, (3, and J. 

For the state-space quantization, we quantize the state­
space values with quantization step size v'o that matches the 
space-domain quantization in (53). Specifically, in the original 
problem, the state, faced by the controller when deciding Ui, 
is IE{S(x)2 IM} in (52). As a result, we define the quantized 
state value i 1 by 

(54) 

If we change the Wiener process model W(t) to the binary 
random walk W" (t) and use the above spatial and temporal 
quantization, we can write down the following integer-based 
optimization problem. 

8In the literature [29], a random walk and a Wiener process typically starts 
with B(O) = 0 and W(O) = 0. Here we relax this constraint to allow B(O) 
and W(O) being of any value, which is notationally convenient since we allow 
for the Wiener process that is periodically "reset" to Qi. 

which is the integer counterpart of the original problem in (50) 
and (52). By (50) to (55) we illllllediately have 

f[ll(m,y,J) = J~J2p[l] (i1,y,J). (56) 

The roadmap of our subsequent derivation is as follows. 
We will first solve the quantized problem p[l] ( i 1 , y, J). Since 
W"(t) is based on the discrete-time B(i), the minimization 
problem in (55) becomes a discrete-time finite-horizon Markov 
decision process (MDP) with an undiscounted objective func­
tion, which can be readily solved by dynamic progralllllling 
(DP). After taking the limit J--+ oo, the optimizer in (55) will 
become the optimal integer-based waiting time u*. Finally, we 
take the limit o --+ 0 to convert the discrete u* back to the 
continuous version U* = limo-+O ou* to obtain the optimal 
waiting time at the controller in Proposition 2, and derive the 
closed-form expression of j[l] (m, y, J) using (56). 

B. Analytically solving quantized problem 

In a dynamic programming solver, the computation is 
performed backward, from (integer) time index J back to 
time index 0. To simplify the notation, we slightly abuse the 
notation and use F[1l(i1,y, J) (resp. F[1l(i1,y, 0)) to represent 
the objective function at time index O (resp. time index ]). 
Namely, we adopt reverse time indexing in a way that we can 
iteratively compute F[1l(i1,y,j + 1) from F[1l(i1,y,j). 

At the beginning of each time slot with reverse time index 
j, if the controller has not sent the reset packet, it can choose 
to "Send" or to "Wait". If the controller chooses to wait, 
then an illllllediate cost is incurred and we shall proceed to 
the reverse time index j - 1. If the controller opts to send, it 
receives some illllllediate cost and goes to the terminal state. 
We now describe the corresponding backward induction. 

Define F[1l(i1 , y,j) as 

p[iJ (i1, y,j) ~ umi~ IE{ ~ ( (i1) 2+ y + (] - j) 
(i1,Y) k=J-J+l 

+ (B(x + y + k) - B (x + y + (] - J))) 2 ) lu 2: (J - j)} 
- /3 · IE { U - (] - j) IU 2'. (J - j)} (57) 

[l] (. - ") 1"f J = 0
{F.Send i1, Y, J 

0 

= . (F.[l] (. - ") F.[l] (. - ")) 1"f 1 < . < -Jmm Send i1, Y,J , Wait i1, Y,J - J -

(58) 

where the definition in (57) implies that when setting j = J, 
the definition is consistent with (55). The case for 1 ::; j ::; J 
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in (58) is the standard Bellman equation of dynamic program­
ming, whereas the case for J = 0 in (58) is the boundary 
condition since we set the horizon to be U ::; J. That is, 
when the reverse index J = 0, one must always send. The 

f . F.[l] (. - ") F.[l] (. - ") d fi dtwo unct10ns Send i1,Y,J an Wait i1,Y,J are e ne as 
below. 

F.[1] (" - ") - p[ll(· - ")ISend i1, Y, J - i1, Y, J U=J-j 

J-J+V 
{

=lE k=E+l ((i1)2+y+(J-J) 

+ (B(x + y + k) - f3 (x + y + (] - J))) 2)} 

= lE{V} · ((i1)2 +y+ ]-J) + ~lE{(V) 2 + V}. (59) 

where (59) is computed by Wald's lemma [26] and con­
ditioning on choosing to send at the reverse time index J 
(U =] -J), and 

F. [1] (. - ") _ ( · )2 - -J · -(3 p[l] ( · - · 1)Wait 21,Y,J-Z1 +y+ -J- + i1,Y,J-
(60) 

where (60) is based on the original definition in (57) but 
replacing all the conditions from U ~ (] - J) to U > (] - J), 
i.e., we condition on choosing to wait at the reverse time index 
J. Eq. (60) then relates Ftlit(i1,Y,J) to the p[1l(i1,Y,J - l) 
value of the previous J - l. 

Eqs. (57)-(60) are the complete description of the DP 
problem. We now analytically characterize some properties of 
this particular DP problem. 

Lemma 5: Given i 1 and y, for any J satisfying 1 ::; J ::; J, if 
F. [1] (. - .) < F.[1] (. - .) . W . . b _,.Wait i1, Y, J _ Seri i1, y, J , 1.e., a1t 1s etter ~or reverse 
time index J, then F0lit(i1, y, t) ::; FJ!~d(i1, y, t), J ::; t::; J, 
i.e., Wait will always be better for subsequent iterations t ~ J. 

Proof" Suppose J = Jo is the smallest J that satisfies 
Ftlit(i1, Y,J) ::; FJ!~d(i1, Y,J). We will first prove that for 
all J ~ Jo, 

(61) 

The equality of (61) can be easily derived by substituting the 
definition of FJ!~d ( i1, y, J) in (59) into (61). Note that since 
we focus on J ~ Jo, if (61) holds, we immediately have 

F. [1] (. - . 1) F.[1] (. - . 1)Send 21,Y,J + - Wait 21,Y,J + 
> F.[1] (. - ") F.[1] (. - ")- Send i1,Y,J - Wait 21,Y,J 
> > F.[1] (. - . ) F.[1] (. - . ) > 0- · · · - Send 21, Y,Jo - Wait 21, Y,Jo - (62) 

which completes the proof of Lemma 5. 

We now prove the inequality of (61) by induction. For J = 
Jo, we have 

F.[1] (. _ . ) F.[1] (. _ . 1)
Wait 21,Y,Jo - Wait 21,Y,Jo + 

= 1 + p[1l(i1, Y,Jo - 1) - p[1l(i1, Y,Jo) (63) 

F. [1] (. _ . 1) F.[1] (. - . )= 1 + Send i1,Y,Jo - - Wait i1,Y,Jo (64) 

> F.[1] (. _ . 1) F.[1] (. - . )- Send 21,Y,Jo - - Send 21,Y,Jo (65) 

= lE{V} (66) 

where (63) follows from (60); (64) follows from (58) and Jo 
being the smallest J satisfying p[l] (i1, y, J) = Ftlit(i1, y, J); 
(65) follows from FJ!~d(i1,Y,Jo) ~ Ftlit(i1,Y,Jo) and re­
moving the positive constant 1; and (66) follows from (59). 

Suppose the inequality of (61) holds for all J E [Jo,J1]. 
Then for J =Ji+ 1, we have 

F. [1] (. - . 1) F.[1] (. - . 2)Wait i1,Y,J1 + - Wait i1,Y,J1 + 

= 1 +F[1l(i1,Y,J1)-F[1l(i1,Y,J1 + 1) (67) 

1 F. [1] (. - . ) F.[1] (. - . 1)= + Wait i1,Y,J1 - Wait i1,Y,J1 + (68) 

~ 1 + lE {V} ~ lE{V} (69) 

where (67) follows from (60); (68) holds since (62) holds for 
J E [Jo, Ji]; and (69) holds since the inequality of (61) holds 
for J E [Jo, Ji]. By induction, the inequality of (61) holds for 
all J ~ Jo- The proof is complete. ■ 

Using Lemma 5, the decision of the optimal (integer-valued) 
waiting time U can be found by finding the smallest J E [1, J] 
satisfying the following inequality (i.e., Wait is better): 

F.[1] (. - ")Wait 21,Y,J 

= (i1)2 + Y+] - J - (3 + p[l] (i1, Y,J - 1) (70) 

( . )2 - -J · -(3 F.[1] ( · - · 1)= 21 +y+ -J- + Send Z1,Y,J- (71) 

= (i1) 2 +Y+] - J - (3 

+lE{V} · ((i1) 2 +y+ ]-J + 1) + ~lE{(V)2 + V} 

(72) 

< F. [1] (. - ")- Send 21, Y, J 

= lE{V} · ((i1)2 +y+] -J) + ~lE{(V) 2 + V} (73) 

where (70) follows from (60); (71) follows from that we are 
searching for the first time F[1l(i1, Y,J) = Ftlit(i1, Y,J); (72) 
and (73) follow from (59). 

We denote the smallest such J E [1, J] by Jo- If no such J 
exists, it means that we should always Send and we can thus 
set the value of Jo = ] + l for notational simplicity. Solving 
(70)-(73), we have 

Jo= min((i1)2 + y +] - /3 + lE{V}, J + 1). (74) 

Here we assume the finite horizon J is sufficiently large 
such that the index Jo computed in (74) is no less than 1, i.e., 
Jo ~ 1. We can then compute the optimal waiting time u* by 

u* = J + 1 - Jo (75) 

= max (1 + 7J - ( ( i1)2 + y + lE{V}) , 0) (76) 

where (75) changes the reverse time index Jo back to the 
normal time index u* and (76) follows from (74). 
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C. Converting back to the continuous time/space problem 

Since U* = limo--+O 5x u*, from (76) and (54) we conclude 
that 

U* = max (/3 - (y + IE{S(x)21M = m} + IE{V}), o) 
(77) 

for which the constant 1 in (76) vanishes after we multiply 5 
and u* and then let 5 --+ 0. The proof of Proposition 2 is thus 
complete. 

We close this section by also evaluating j[l] (m, y, oo) frc 
limJ--+oof[1l(m,y,J) through (56). Firstly we have the fol­
lowing lemma: 

Lemma 6: For sufficiently large J, we have 

Proof· See Appendix C. ■ 
We thus have 

J[1l(m,y,oo) = Jlim J[1l(m,y,J)
--+oo 

= lim lim 52p[l] (i1, 'fl,]) (79) 
8--+0 J --+oo 

(U*)2 1 
= --- + IE{V} · (IE{S(x) 2 IM = m} + y) + 2IE{V2 

2 }

(80) 

where (79) follows from (56), and (80) follows from (78) for 
which the terms 7{*, 1, and 0.5IE{V} grow at the rate of 0( ¼) 
and thus diminish to zero once we multiply 52 and let 5 --+ 0. 

APPENDIX C 
PROOF OF LEMMA 6 

Assume sufficiently large J in the discussion. Define 

Consider two cases: 
Case 1: u::; 0. In this case, we have Jo=]+1 and u* = 0 

from (74) and (76). Hence, 

F [ll(· _-J)-F.[1] (" _-J)21, Y, - Send 21, Y, (82) 

= IE{V} · ((i1) 2 +'fl)+ ~IE { (V) 2 + V} (83) 

where (82) holds since u* = 0 (i.e., choosing Send at the 
reverse time index ]); and (83) follows from (59). Eq. (78) 
holds in this case. 

Case 2: u > 0. In this case, we have Jo = ] + 1 - u and 
u* = u from (74) and (76), respectively. Hence, 

F [l] (,; -y J. 1) - F.[l] (,; •1, , 0 - - Send •1, -y , J. 0 - 1) (84)

= IE{V} · ((i1) 2 + y +] - (Jo -1)) + ~IE { (V) 2 + V} 
(85) 

where (84) holds since Jo is the smallest J satisfying 
F~lit(i1,'fJ,J)::; FJ!~d(i1,'fJ,J); and (85) follows from (59). 

In the sequel, we describe how to use the expression of 
F[1l(i1,y,J0 -1) in (85) to derive the end result F[1l(i1,y, J) 

in (78). From Lemma 5, for Jo ::; t < ], we have 
F~lit(i1,y,t)::; FJ!~d(i1,y,t), and thus 

F [1l(· 2 - t) - F.[l] Wait (" -2 t)1,Y, - 1,Y, 

= (i1)2 +'fl+ j - t - i3 + p[l] (i1, 'fl, t - 1) (86) 

where (86) follows from (60). 
By iteratively using (86) for Jo ::; t ::; ], we have 

J 

p[1l(i1,'fJ,])= L ((i1) 2 +y+J-k-/3) 
k=jo 

+ F. [1] (. - . 1)
Send 21,Y,Jo - (87) 

u-1 

= L ((i1)2 + y + l - iJ) + IE{V} · ((i1)2 + y + u) 
l=O 

+ ~ IE{ (V) 2 + V} (88) 

u2 u - 2 1 - 2 -
= - 2 + 2 + IE{V} · ((i1) + y) + 2IE{(V) + V} (89)

where (87) follows from (85) and (86); and (88) follows from 
(59), the definition of u in (81), and a change of variable; 
and (89) follows from the arithmetic sum formula and the 
definition of u in (81). 

Lemma 6 follows from (83) and (89). 

APPENDIX D 
PROOFS OF LEMMA 1 AND COROLLARY 2 

To prove that g/3 (s) is continuous, we first prove a similar 
statement and later show that this statement is equivalent to 
g/3 (s) being continuous. 

Lemma 7: For any non-negative random variable Y, which 
may be continuous, discrete, or hybrid, the function f (x) = 
IE{].{Y:Sx} · (Y - x)2} is continuous with respect to x. 

Proof- Consider any two values -oo < xz < Xr < oo. 
We have 

lf(xr) - f(xz)I 

= IIE {li{Y:Sxi} · (2(xr - x1)(x1 - Y) + (xr - x1) 2)} 

+ IE {li{YE(xz,xr]} · (Y - 2Xr) } I (90) 

::; 2 · (xr - xz) • lxzl + (xr - x1) 2 (91) 

+ (xr - x1) 2 (92) 

where (90) follows from ].{Y:Sxr} = ].{Y:Sxz} + ].{YE(xz,xr])}; 
and (91) follows from the triangle inequality and Y being 
non-negative; and (92) follows from Y E (xz, Xr] implying 
(Y - Xr) 2 ::; (xr - x1) 2 . Overall (91) and (92) imply that 
f(x) is continuous regardless of the distribution of Y. ■ 

We now prove g13(s) is continuous. To that end, by the 
definition in (22), it suffices to prove 

f(s) = -0.5IE {li{Y:S/3-lE{V}-s2}} s4 

+ IE {].{Y:S/3-lE{V}-s2} · (/3 - IE{V} - Y)} s2 

- 0.5IE{li{Y:S/3-lE{V}-s2} · (/J - IE{V} - Y) 2 } (93) 

= -0.5IE { ].{Y:S/3-lE{V}-s2} · (Y - (/3 - IE{V} - s2))2} 
(94) 
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is continuous with respect to s, where (93) follows from 
removing the coefficients in (22) that do not depend on s, 
which is equivalent to removing the second order polynomial 
lE{Y + V}s2+ao from our consideration and (94) is by simple 
arithmetic rearrangement. 

By applying Lemma 7 to (94), f(s) is continuous with 
respect to s2 and hence with respect to s. As a result, g13(s) 
is continuous with respect to s. 

We now prove h13(s) ~ /2s4 + (ao - 3/32) for all s E 
(-oo, oo). We consider the following two cases. 

Case 1: s2 ~ f3 - lE{V}. In this case, as,4 = 0, as,2 = 

lE{Y + V}, and as,o = 0 by the definitions in (24)-(27). We 
then have 

h13(s) = 6
1 

s4 + (lE{Y + V} - /3)s2 + a0 (95) 

1 4 1 4 2 
~ 12 s + 12 s - /3s + ao (96) 

1 4 2 
~ 12 s - 3/3 + ao (97) 

where (95) follows from the definition of h13 (s) in (23); (96) 
follows from lE{Y + V} > O; (97) follows from the inequality 
/2 s4 - /3s2 + 3132 = /2 (s2 - 6/3)2 ~ 0. 

Case 2: s2 < J3 - lE{V}. We first notice that from the 
definitions in (24), (25) and (26), we have 

las,484 1:::; 1s41:::; /32 (98) 

as,2 ~ 0 (99) 

132 
las,ol:::; 2 . (100) 

where (98) follows from from las,41 :::; 1 and 0 :::; s2 < /3 -
lE{V} :::; /3. ; (99) follows from the non-negativity of Y and 
V, and s2 + Y :::; J3 - lE{V} implying 0 :::; J3 - lE{V} - Y; 
and (100) follows from s2 + Y :::; J3 - lE{V} implying 0 :::; 
(/3 - lE{V} - Y) :::; /3. Then, 

1 4 2
h13(s) = (6 + as,4)s + (as,2 - /3)s + as,O + ao (101) 

1 4 4 2> -s + as 4S + (as 2 - /3)s + as o + ao (102)
- 12 ' ' ' 

1 4 2 /32 
~ - /3 - /3(/3 - lE{V}) - + a0 (103)12 s 2 

1 4 2 
~ 12 s - 3/3 + ao (104) 

where (101) follows from the definition of h13 (s) in (23); (102) 
holds since ¼s4 ~ / 2 s4; (103) follows from (98), (99) and 
(100); (104) follows from lE{V} ~ 0 and /32 ~ 0. Lemma 1 
is proved. 

Corollary 2 directly follows from Lemma 1 since the 
supremum is taken over a non-empty set containing at least 
one convex function /2s4 + (ao - 3/32). 

APPENDIX E 
PROOFS OF PROPOSITIONS 4 AND 6 

The proofs of Propositions 4 and 6 are the most involved 
and consist of the following components: Component 1: 
The joint time and space quantization and the corresponding 
dynamic programming (DP) problem after quantization, also 

see similar discussion in Appendix B; If we call the new DP 
problem as quantized-DP, Component 2 describes how the 
controller-side policy affects the initialization of the sensor­
side quantized-DP solver; Using components 1 and 2, one 
can numerically solve the quantized-DP problem assuming 
a finite-horizon setting. However, the brute-force DP itera­
tions often obscure the physical meaning/interpretation of the 
optimal decision rules and do not provide any closed-form 
solution. To uncover further results, Component 3 focuses on 
solving quantized-DP analytically through careful convergence 
analysis when J -+ oo. Finally, Component 4 discusses 
how (i) the initialization, (ii) the closed-form optimal decision 
rule, and (iii) the closed-form optimal objective values can be 
seamlessly converted back to the corresponding parts in the 
original continuous time/space problem and thus completes 
the proofs of both Propositions 4 and 6. 

A. Component 1: Joint time and space quantization 

Recall that Proposition 4 assumes the optimal message 
M* and waiting time U* in Proposition 3 and Corollary 1, 
respectively. Given S(0) = s and a large (but finite) horizon 
J, we define the optimal continuous-time cost for the sensor 
as 

f[2l(s, J) 

= Q1~1}lE { fox+Y+u·+v IS(t)l 2 dtlS(O) = s} + co 

- f3 ( lE { x + Y + u* + vls(o) = s} +CJ). (105) 

We use the same quantization method as in Appendix B, 
for which the space and time quantization levels are set to vb 
and o, respectively. Specifically we set i = l5Jr j, X = lf J, 
- _ lYJ - - lUJ - - lVJ - - lJJ - - lcoJY- 8 ,U- 8 ,V- 8 ,J- 8 ,co- ,F ,and 
CJ = TJ . Using integer approximations, we then have the 
following sensor-side optimization problem 

(106) 

which satisfies 

(107) 

Similar to Appendix B, we solve p[2l ( i, J) by dynamic 
programming over finite horizon [0, J]. For convenience, we 
again use the reverse time index j during the iterative Bellman 
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equation, where j = 0 (resp. j = ]) represents the last slot 
(resp. the first slot). Specifically, define 

p[2l(i,j) = mj_n 
X 

x+V+u*+V 
{lE ~ (i2 + (B(k) - B(] - j))2 ) 1 B(] - j) = i, 

k=J-j+l 

X 2: (J -j)} 
- 7J (JE {x - (] - j) + u* IB(J - j) = i, x 2: (J - j)}) 

- (3 (lE {Y + V} + c1) + Co (108) 
2] (. ") "f . 0{F.Send[ i, J 1 J = 

= . [2] . . [2] . . . . - (109) 
mm (Fsend(i,J),Fwait(i,J)) 1f 1 :SJ '.SJ. 

It is self-explanatory to verify that the above definition of 
(108) is consistent with (106) once we set j = J. Eq. (109) 
is the boundary condition of the finite-horizon dynamic pro­
gramming. 

B. Component 2: Initialization of the sensor-side quantized­
DP solver 

The objective function of FJ;~d in (109) is 

F. [2] (. ")Send i, J 
(J-j)+V+u*+V 

= lE{ ~ (i2 + (B(k) - B(] - j)) 2 ) 

k=J-j+l 

IB(J - j) = i,X =] - j} 

- 7J(lE{Y + u* + vlB(] - j) = i, x = J - j} + c1) 

+co (110) 

which is obtained from (108) by hardwiring X = J - j. 
Breaking the summation in (110) into pieces and using the 
notation lE(i,j) as shorthand for the conditional expectation, 
we have 

Define 

K(j) = {k:] - j + Y + 1 :S k '.S (] - j) + Y + u* + V}. 
(112) 

Then, the second summation in (111) can be computed as 

lE{lE(i,j){ L (i2 +(B(k)-B(J-j)) 2 )1Y}} (113) 
kE/C(j) 

using the law of total expectation. We proceed to simplify the 
inner conditional expectation in (113). 

(J-j)+iJ+V* +V } 

lE(i,j,y) { _L (i2 + (B(k) - B(] - j)) 2 ) 

k=J-j+y+l 

= lE(i,j,"iJ) { 

UtV (i' + (B(J - j+y+t) - B(J - j))')} (114) 

= 

"tv 
lE(i,j,"iJ) { 

(,' +Y + (B(J - j +Y +t) - B(J - J+ y))')}
(115) 

= p[1l ( i, Tl, J) +7J. lE(i,j,yJ { u* (i, Tl)} (116) 

where lE(i,j,y) is the shorthand for the conditional expectation 
under the event {B(]-j)=i,X=]-j,Y=y}; (114) 
follows from setting t = k - (] - j + y); (115) follows 
from the property of the binary symmetric random walk that 
B(ti + t) - B(ti) has zero mean and variance t. Since the 
optimal message is used, the sensor transmits the latest system 
state B(J - j) = i to the controller. Hence, i 1 defined in (54) 
is equal to B(] - j) = i. Eq. (116) then follows from the 
definition of p[l] ( i1, y, J) in (55). 

The objective function of FJ;~d in (110) can then be 
rewritten as 

F. [2] (. ")Send i, J 
(J-j)+V 

= lE{ ~ (i2 + (B(k) - B(] - j)) 2)} 

k=J-j+l 

(J-j)+V+u*+V 

+ ]E{ _L _ (i2 + (B(k) - B(] - j)) 2 ) 

k=J-j+Yl 

IB(] - j) = i, X = ] - j} 

- 7J ( lE{Y + u* + v IB(] - j) = i, x = J - j} + c1) 

+ co (117) 

(J-j)+V 

= lE{ ~ (i2 + (B(k) - B(] - j)) 2)} 

k=J-j+l 

+ lEv{p[l] (i, Y, J) + 7J. u* (i, Y)} 
- (3 ( lE{Y} + lEy { u* (i, Y)} + lE{V} + C1) + Co 

(118) 

= lE {Y} (i)2 + ~lE { (Y)2} + ~lE{Y} 

+ lEy { p[l](i, Y, J) }- (3 (lE{Y + V} + c1) + Co (119) 
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where (117) follows from (110), (111) and that the conditional 
expectation of the first term of (111) is identical to the 
regular (unconditional) expectation due to the strong Markov 
property of B(k); (118) follows from (116), (117) and that 
the delays Y and V are independent of the conditioning event 
{B(J - j) = i,X =] - J} and only the controller action 
u*(i, Y) depends on the conditional event; (119) uses the 
strong Markov property of the binary random walk. Note that 
the final expression of FJ;~d (i, j) does not depend on j since 
its definition in (110) only counts the "incremental/future" 
utility after the Send decision. Therefore, the expression in 
(119) is both the objective value of the Send action and the 
objective value of the boundary condition in (109). 

F~lit(i,j) can be defined backwardly based on the next 
time slot (i.e., reverse time index j - 1) 

F.[2] (. ")
Wait i,J 

= (i) 2 - 7J + 0.5 (F[2l(i + 1,j -1) + p[2l(i -1,j -1)) 

(120) 

where ( i) 2 -7J is the immediate cost and the rest is the expected 
future cost calculated from the previous iteration. Since we 
consider a symmetric binary random walk, the probability that 
the discrete state i in next time slot increases (or decreases) 
by 1 is 0.5. 

Eqs. (109), (119), and (120) jointly describe the complete 
backward iteration of the dynamic programming solver. In the 
sequel we analyze the properties of the optimal solution. 

C. Component 3: Analytically solving the quantized-DP 

By the boundary condition in (109), we have 

F. [2] (. ") _ p[2] (. 0)
Send i,J - i, · (121) 

By (120) and (109), we thus have the following more compact 
form of iteration: 

p[2l(i,j) = min (F[2l(i,O), 

i 2 - 7J + 0.5(F[2l(i + 1,j -1) + p[2l(i -1,j -1))), Vj 2: 1 
(122) 

To analyze (122), we notice that the polynomial 

.
A(i) 

t, 
= 

i4 - 1 ·2 
- 6 + ((3 + 6)i (123) 

satisfies the difference equation 

A(i) = i2 - 7J + 0.5(A(i + 1) + A(i -1)). (124) 

If we define another function 

H[2l(i,j) ~ p[2l(i,j) -A(i) (125) 

then H[2l ( i, j) must satisfy the following homogeneous9 iter­
ative equation 

H[2l(i,j) = min (H[2l(i,O), 

0.5 ( H[2l(i + 1,j -1) + H[2l(i -1,j -1)) ). (126) 

9That is, an iterative equation that does not involve any external constants. 

due to (122) and (124). Namely, the new function H[2l(i,j) 
absorbs the i2 - 7J term in (122) and thus follows a ho­
mogeneous iterative computation in (126). Our approach is 
to first compute/evaluate H[2l ( i, j) directly using the cleaner 
iteration (126) and then compute retrospectively p[2l ( i, j) = 
H[2l(i,j) + A(i). 

In the following, we analyze limJ➔ oo H[2l ( i, J), i.e., the 
limiting results of the iterative computation in (126). We first 
notice that 

Lemma 8: 

(127) 

for any i and j 2: 0. 
Proof- This is a straightforward result following the 

homogeneous iterative equation in (126). See Appendix F for 
details. ■ 

Before proceeding, we define 
Definition 1: A discrete function f (i) : Z t--+ ~ is said to 

be d.convex if 

J(i)::; 0.5 (J(i + 1) + J(i - 1)), Vi E Z. (128) 

Lemma 9: There exists a d.convex function HLB (i) such 
that 

-oo < HLB(i)::; H[2l(i,j) for all i and j. (129) 

Proof- See Appendix F. ■ 

By Lemmas 8 and 9, and the Monotone Convergence 
Theorem [30], the limit lim"J➔\X' ~ 2] ( i, J) exists. 

We now derive lim"J➔oo H[2J ( i, J). 
We define the discrete convex hull (function) of the function 

H[2l(i,O) as 

D.Cnvx(H[2l ( i, 0)) 

~ sup{J(i) : f--< H[2l (i, 0), f is d.convex}. (130) 

By Lemma 9, D.Cnvx(H[2l (i, 0)), which is a function of 
i, always exists since the supremum is taken over a non­
empty set. Furthermore, D.Cnvx(H[2l (i, 0)) is also d.convex 
due to similar reasons that the (continuous) convex hull is 
itself convex [31]. 

We now have the following lemmas: 
Lemma JO: For any arbitrarily given integer i, we have 

Jim H[2l(i,J)::; D.Cnvx(H[2l(i,O)). (131) 
J➔ oo 

Proof- By Lemmas 8 and 9, and the Monotone Con­
vergence Theorem [30], we know lim"J H[2l ( i, J) ex­
ists and satisfies limJ➔oo H[2l ( i, J) ::; W~(i, 0) for all i. 
Furthermore, by (126), the limit must be d.convex. Since 
D.Cnvx(H[2l ( i, 0)) in (130) takes the supremum of all such 
d.convex functions, we must have (131). ■ 

Lemma 11: D.Cnvx(H[2l(i,O))::; limJ➔ooH[ 2 l(i,J). 
Proof- By the definition (130), D.Cnvx(H[2l ( i, 0)) is 

d.convex and satisfies D.Cnvx(H[2l(i, 0)) ::; H[2l(i, 0). In 
the proof of Lemma 9, we showed that any d.convex func­
tion that lower bounds the initial value H[2l ( i, 0) is also a 
lower bound of H[2l ( i, j) for all j. As a result, we have 
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D.Cnvx(H[2l(i,O)) :S H[2l(i,J) for all J. The proof is thus 
complete. ■ 

Lemmas 10 and 11 jointly imply 

Jim H[2l (i, J) = D.Cnvx(H[2l (i, 0)). (132) 
J---too 

Thus far, we have proven that the dynamic programming 
iterations in (109), (119), and (120) can be solved by (i) 
computing H[2l ( i, 0) £ p[2l ( i, 0) - A(i) in (125), (ii) finding 
the D.Cnvx(H[2l (i, 0)), and (iii) finding limJ---+oo p[2l (i, J) = 
D.Cnvx(H[2l ( i, 0)) + A(i). The final step of the proof is to 
convert the operations/steps of discrete-time, discrete-space 
solutions back to the original continuous-time, continuous­
space solution. 

D. Component 4: Converting back to the continuous 
time/space problem 

Lemma 12: Denote the continuous-time continuous-space 
state value as S(t) = s. We have 

2lim Jim 5 FJ!nd (l~j ,J) = g13(s) (133)
8---tO J---too V 5 

which is defined in (22). 
Proof- See Appendix G ■ 

Lemma 12 shows that g13(s) corresponds to the starting 
point (the last slot) of the dynamic programming solver. 
In the following we will show that in the continuous-time 
continuous-space domain, the iterative computation in (109), 
(119), and (120) corresponds to the computation of h13(s) and 
the convex hull operations defined in Proposition 4. 

By (123), one can easily see that limo-to 52A ( l.ro j) = 
43- 6 + ,8s2. Combining this observation with (133) and (125),

we have 

~~52H[2] (lJJJ ,o) = h13(s) = g13(s) - (,8s2 - is4). 

(134) 

Finally by translating the discrete convex hull relationship 
in (132) to its continuous convex hull counterpart, we have 

Lemma 13: 

lim Jim 52H[2l (i, J) = Cnvx (g13 (s) - (,8s2 - !s4)) 
8---tO J---too 6 

= Cnvx(h13(s)). (135) 

We now describe the optimal sensor policy. Define 
H[2l(i, oo) £ limJ---+oo H[2l(i, J). Note that by (126) and 
comparing it to the original versions (109) and (122), the 
sensor should send if H[2l ( i, oo) = H[2l ( i, 0) and should wait 
if 

H[2l(i, oo) = 0.5 ( H[2l(i + 1, oo) + H[2l(i - 1, oo)) (136) 

By translating the above discrete-time decision back to its 
continuous time domain, the optimal sensor waiting policy is 
to transmit if and only if S(t) = s satisfying Cnvx(h13 (s)) = 

h13(s). 

We close this section by establishing the connection be­
tween objective functions of the continuous and discrete 
domains. 

Lemma 14: 

lim J[2l(s, J) = lim Jim 52p[2l(i, J) 
J---too 8---tO J---too 

= Cnvx(h13(s)) + (,8s2 -is4) (137) 

= ¢(,8,s) (138) 

Proof- The first equality is the standard conversion 
between the continuous domain and the quantized domain. 
The second equality is a straightforward result of (125) and 
Lemma 13. The third equality is from the definition of ¢(,8, s) 
in (36). ■ 

Recall that j[2l ( s, J), defined in (105), is conditioned on 
S(0). As a result, ¢(,8, s) = limJ---+oo j[2l(s, J) in Lemma 14 
is the continuous infinite-horizon objective function of any 
given state S(0) = s. Since the distribution of S(0) ~ Q, by 
the definition of p(,8) in (18), the value of p(,8) can be found 
by taking the expectation of s over distribution Q, i.e., (37). 
We have thus proven Proposition 6. 

APPENDIX F 
PROOFS OF LEMMAS 8 AND 9 

A. Proof of Lemma 8 

When J = 0, (127) holds trivially because of the first half 
of the minimum operation in (126). Suppose (127) holds all 
J '.S Jo. By plugging in J =Jo+ 1 and J = Jo into (126), we 
have 

H[2l(i,Jo + 1) = min ( H[2l(i, 0), 

0.5 ( H[2l(i + 1,Jo) + H[2l(i -1,Jo))) (139) 

and H[2l(i,Jo) = min (H[2l(i,O), 

0.5 ( H[2l (i + 1, Jo - 1) + H[2l ( i - 1, Jo - 1)) ) . 

(140) 

By the induction hypothesis, each of the three terms in the 
right-hand side of (139) is no larger than the corresponding 
term in the right-hand side of (140). We thus have (127) hold 
for J = Jo + l as well. The proof is complete. 

B. Proof of Lemma 9 

First, from (76) and (78), we have 

p[1l(i1,y,J) ~-(8+1)2. (141) 

From (141), 

lEv { p[1l (i, Y, J)} ~ -(/3 + 1)2 . (142) 

From (109), (119) and (142), 

p[2l(i,O) ~ Lo (143) 
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where 

(144) 

is a constant that does not depend on i. 
Recall that H[2l(i,j) £ F[2l(i,j) -A(i). Hence, 

H[2l(i,O) = p[2l(i,O) -A(i) 

i4 - 1 2 
~ 6 -(,B+ 6)i +Lo (145) 

where (145) follows from (143). Since (145) is a 4-th order 
polynomial with the leading coefficient of the i4 term being

.4 

strictly positive, we can always lower bound (145) by ~ 2 + 
£ 1 for a sufficiently small (negative) but finite constant £ 1 

.4 

constant. Since ~ 2 + L1 is ct.convex, the proof of Lemma 9 is 
complete. 

APPENDIX G 
PROOF OF LEMMA 12 

From (119), we obtain 

11m . _ 11m . ,2 [2] ( u Fsend 
8--+0 J--+oo 

l s le J , -)J 
y 0 

1 
= IE{Y}s2 + 2IE{Y2} - ,B (IE{Y + V} + c1) + co 

+limjim o2IEv{F[1l(i,Y,J)}. (146) 
8--+0 J--+oo 

By (56), (80) and recall that the optimal message is used in 
(119), we have 

l~-J~~ o2IEv { p[1l(i, Y, J)} = IEy {t[1l(m*, Y, oo)} 

(147) 

where the term m* represents the optimal message is used. The 
closed-form expression of IEy {f [l] ( m *, Y, oo)} can be derived 
from (80) as follows. Since we use the optimal message Mt = 
Si(Ti +Xi) in (119), the IE{S(x) 2 IM = m*} term in (80) is 
equal to S(x) 2 and we thus have 

(U*) 2 1f[1l(m*,y,oo) = --- +IE{V}S(x) 2 + 2IE{V2
2 }.

(148) 

Note that there is still the U* inside (148). We now plug in 
the closed-form expression of U* in (77) to further simplify 
(148). Lets= S(x). Given Y = y, we consider two cases to 
evaluate (147). 

Case 1: ,B - (y + s2 + IE{V}) :::; 0. From (77), in this case 
we have U* = 0. From (148), we have 

f[l] (m*, y, oo) = IE{V}(s2 + y) + ~IE{V2}. (149) 

Case 2: ,B - (y + s2 + IE{V}) > 0. From (77), in this case 
we have U* > 0. From (148), we have 

(U*) 2 1f[1l(m*,y,oo) = --- +IE{V}(s2 +y) + 2IE{V2
2 }

= -~s4 + (,B - IE{V} - y) s2 - ~ (,B - IE{V} - y)2 

1 
+ IE{V}(s2 + y) + 2IE{V2 } (150) 

where (150) follows from U* = ,B - (y + s2 + IE{V}). 
Finally, assembling Cases 1 and 2, we can derive the right­

hand side of (147), using (147), (149) and (150). We thus 
have 

l~-J~~ o2IEv { p[1l(i, Y, J)} = IEy {t[1l(m*, Y, oo)} 

IP'( s2 + Y :::; ,B - IE{V}) = 4---------s 
2 

+ ( IE {V} + IE { ]_{s2+Y~/3-E{V}} · (,B - IE {V} - Y)}) s2 

IE { ]_{s2+Y~/3-lE{V}} · (,B - IE {V} - Y)2} 

2 

+ IE{V}IE{Y} + ~IE{V2 }. (151) 

Eq. (133) then follows from (146) and (151) immediately. 

APPENDIX H 
PROOFS OF PROPOSITIONS 5 AND 7 

Recall that the optimal NWAC scheme uses 
(X~zw, Mt, Ui = 0). Hence, the proofs of Propositions 5 
and 7 follow the same manner as the four components 
described at the beginning of Appendix E, except U = 0 
instead of U = U*. 

In Appendix E, we have proved that the optimal sensor 
waiting policy is to transmit if and only if S(t) = s satisfying 
Cnvx(h13(s)) = h13(s). The same reasoning applies to the 
optimal NWAC scheme with the only change being that the 
sensor-side dynamic programming problem has a different 
initial/boundary point FJ;~d (i, j) in (109) that needs to take 
into account a different controller policy U = 0. The new 
initial/boundary point can be easily found by combining (146), 
(147), and (148), except that we modify (148) by using 
U = 0 instead of the optimal U = U*. In the end, the new 
initialization point of the NWAC policy becomes 

hm . Jim . O 2 [2] ( Fsend l s le J , -)J 
8--+0 J--+oo y 0 

= IE {Y + V} s 2 + IE{Y}IE{V} + ~IE {Y2 + V2 } 

- ,B (IE{Y + V} + c1) + co (152) 

= 9NWAC,13(s). (153) 

Using this new 9NWAc,13(s), we can derive the optimal NWAC 
policy in the way that is outlined in (31) to (35). 

We conclude this section by proving the closed-form ex­
pression of Cnvx(hNWAc,13(s)) that was first provided in (33) 
and (34). To that end, we first note that hNWAc,13(s) is an even 
function and we thus only need to study the case of s ~ 0. 

We first write down the closed-form expression of the first 
and second derivatives of hNWAC,/3 (s). 

d hNWAC d "(s) =~s3 + 2(IE{Y + V} - ,B)s (154)s ,,, 3 

d2 
ds2 hNWAc,13(s) =2s2 + 2 (IE{Y + V} - ,B) (155) 

We now consider two cases depending on the value of ,B in 
the below. 
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Case 1: If lE{Y + V} - /3 ?: 0, then the second order 
derivative f2 hNWAC,/3 (s) ?: 0 for all s. That is, the hNWAC,/3 (s) 
function itself is convex. Therefore Cnvx(hNWAC,/3 (s)) = 
hNWAC,/3(s), Vs and the sensor should always transmit. 

Case 2: If lE{Y + V} - /3 < 0, we observe that 
in the range of s ?: 0, there are 2 zeros s = 0 
and s = J3((3 - lE{Y + V}) in the first order derivative 
ts hNWAC,/3 (s). Furthermore, ts hNWAC,/3 (s) > 0 if s > 
J3((3 - lE{Y + V}) and tshNWAc,t3(s) < 0 if 0 < s < 
J3((3 - lE{Y + V}). As a result, s = J3((3 - lE{Y + V}) 
and its mirror point s = -J3((3 - lE{Y + V}) are the global 
minimum of hNWAC,/3 (s). This implies that we can lower bound 
hNWAc,t3(s) by hrarget(s), namely, 

hNWAC,/3 (S) ?: hrarget (S) 

t, { hNWAC,/3 (s) if s2 ?: 3(/3 - lE{Y + V}) (l56) 
- hNWAC,/3( ✓"'/NWAC) if s 2 < 3(/3- lE{Y + V}) 

where "'/NWAC ~ max(3 (/3 - lE{Y + V}), 0) was first defined 
in (34). 

Also note that in the range of s ?: J3((3 - lE{Y + V}) 
(also when s < -J3((3 - lE{Y + V})), we have 

:f,2s hNWAC,/3 ?: 0. This implies that the above lower bound 
htarget (s) is convex. It is easy to see that for any other function 
h(s) such that there exists s0 satisfying h(s0 ) > hrarget(so), 
we either have h(s1) > hNWAC,/3(s1) for some s 1 or h(·) is 
not convex. As a result, hrarget(s) is the tightest convex lower 
bound of hNWAC,/3. The expression of Cnvx (hNWAC,/3 (s)) in 
(34) is thus proven. 

APPENDIX I 
PROOF OF PROPOSITION 8 

To prove Proposition 8, we recall that the optimal NWAS 
scheme uses Xi = 0. From the definition of FJ;~d(i,j) in 
(110), the continuous objective function for the NWAS scheme 

for any given state S(0) =sis limo--+O limJ--+oo FJ!nd(i, J), 
which is equal to gt3(s) from Lemma 12. Since the distribution 
of S(0) ~Q and since PNWAs(/3) is defined in (41), by eval­
uating the expectation in (41) we have proven Proposition 8. 

APPENDIX J 
PROOF OF PROPOSITION 9 

For ease of notation, define a constant y1 ~ lE{V} + Yo­
Using the fact that 1'i is deterministic and plugging it into 
(24) to (27) and thus (22), we have 

ht3(s) = 

½s4 - (f3-y1)s2 + ao if s 2 > (3-y1 (157)
{ 

i 4 d h .- 3s + 1 ot erw1se 

where ao (defined in (27)) and d1 ~ ao - 0.5((3 - Y1) 2 are 
constants that do not depend on s. 

Recall that we find /3* by solving p(/3) = 0. We now 
consider two cases depending on the value of (3*. 

Case 1: If /3* - y1 :::; 0, then any s value always falls 
into the first expression of (157) and one can easiliy verify 
that hf3*(s) is convex for s E (-00,00). By Proposition 4, 

Stx,/3* = (-oo, oo) and we thus have µ = 0 in this case. 
Additionally, since (3* - y1 :::; 0, the first half of (20) is non­
positive with probability 1, and we obtain IP'(Ut = 0) = 1. 

Case 2: (3* - y1 > 0. In this case, the curve h~(s) 
is still continuous but contains 3 pieces for the three 
intervals (-oo, -✓/3* - Y1), [-✓/3* - Y1, ✓/3* - Y1], and 
(✓(3* - y1, oo), respectively. Since the leftmost and rightmost 
pieces are convex and the center piece is concave, by the state­
ment in Proposition 4 we must have Stx,/3* = {s : Isl ?: "Y} 
for some "Y > 0 satisfying 1 2 > /3* - Y1. As a result, 
we have µ = 1 in this case. Moreover, since the Wiener 
process is continuous and the transmission time Xi being the 
hitting time (29), when the sender transmits the packet at time 
Ti+ Xi, we either have (S(Ti + Xi)) 2 = 1 2 if Xi > 0 or 
(S(Ti + Xi)) 2 ?: 1 2 if Xi= 0. As a result, 

lE { (Si(Ti + Xi))2 IM(i)} ?: 1 2 (158) 

with probability 1. Therefore, the first half of (20) is non­
positive with probability 1 and IP'(Ut = 0) = 1 in Case 2 as 
well. 

APPENDIX K 
PROOF OF PROPOSITION 10 

When evaluating (22) to (27) using the fact that Y ~ 
Exp(Ay ), we have 

ht3(s) = 
if s 2 ?: (3 - lE {V} 
otherwise 

(159) 

where c3 and c4 are constants that can be evaluated in (22) to 
(27). Since the actual values of c3 and c4 have little impact 
on the proof, we do not expand their expressions. 

Recall that we find /3* by solving p(/3) = 0. We now 
consider two cases depending on the value of (3*. 

Case 1: /3* - lE {V} :::; 0. In this case, only the first 
expression of (159) is active. By simple calculus, ht3• (s) is 
convex, and by Proposition 4, Stx,/3* = (-oo, oo). In sum, 
in this case the optimal sensor policy is to send immediately 
(µ = 0). 

Case 2: (3* - lE {V} > 0. In this case, the second expression 
of (159) is active when Isl is sufficiently small. Note that 
h13,(s) is always continuous due to Lemma 1. Since h/3*(s) 
is an even function, we focus our discussion only on the 
range of s ?: 0. More specifically, in the range s E [0, oo), 
ht3• (s) consists of 2 pieces with the turning point being 
s0 ~ J (3* - lE {V}. We then compute the second-order 
derivative of ht3•(s) for the two pieces [0,s0 ) and (s0 ,oo), 
respectively, and we have 

d2 
ds2hf3•(s) = 

2s2 - 2 (/3* - lE {Y + V}) ifs E (so, oo)
{ 

-4s2 + (>-~ + 4s2) e->-y(f3*-E{V}-s2) ifs E [0, so)­

(160) 
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Note that even though Lemma 1 only guarantees the conti­
nuity of h/3* (s), when the forward delay distribution }'i is 
exponential, from the fact that the two expressions in (160) 
have the same value when setting s = so = J(3* - lE{V}, 
we know h13• (s) is doubly continuously differentiable for all 
s E ( -oo, oo). 

2We now consider the number of positive roots of "if-::'Zd h13• (s). 
By (160), we observe that even though f82 

2 

h13• (s) 
s 

contains 
two pieces, it is strictly positive whenever s 2: s0 . Therefore 
the number of positive roots of J:2 h/3* (s) is the same as the 
number of roots in the range of [0, s0 ). In the sequel, we will 
prove: Claim 1: -Jl,zh13• (s) in the range of [0, s0 ) (the second 
expression in (160)) has at most two strictly positive roots. 

Usin~ Claim 1, h13• (sJ being even, and the fac~ that when 
evaluatmg at s = 0, f82 h(3* (0) = >-~ • e->-v (/3 -JE{V}) > 
0 is strictly positive, if we scan the s value from -oo to 
oo, then the sign of the second order derivative J:2 h(3* (s) 
must be either + - + - + or being always +. The first case 
corresponds to dd 22 h13• (s) having 2 strictly positive roots; the 

s 2 

second case corresponds to fs,zh13,(s) having one double root 
that is strictly positive or zero root. (As shown earlier, if there 
is any positive root, it is always between [0, s0 )). 

Recall the definition of µ in Lemma 3. The above ob­
servation of the signs of the second-order derivative implies 
µ ::; 2 since the value of µ, being the number of intervals 
for which Cnvx(h13• (s)) -I- h(3* (s), is upper bounded by the 
number of disjoint intervals of having negative J:2 h13• (s). For 
illustration, Fig. 3a has 2 intervals of negative second order 
derivative and the corresponding µ = 1. 

The rest of the proof is to prove Claim 1. Suppose that 
2f8 2 h13• (s) has 2: 3 positive roots in the range of [O, s0 ). By 

Rolle's theorem [30], this implies -,;.h/3* (s) have at least two 
roots in (0, s0 ). Some simple calculation shows that 

~ 2
ds3 h13• (s) = -8s + (12s + 8>.ys3)e->-v(f3-JE{V}-s ) . 

(161) 

Therefore, any strictly positive root of J:3 h13• (s) must satisfy 

2 = e->-v(f3-JE{V}-s 2 l(3 + 2>.ys2). (162) 

Since the right-hand side of (162) is strictly increasing with 
respect to s, J:s h13• (s) has at most one positive root. The 
proof is thus complete by contradiction. 

APPENDIX L 
PROOF OF LEMMA 4 

We first prove a lemma. 
Lemma 15: Let f3:.WAc used in (47) be the root of the 

PNwAc(f3) defined in Proposition 7. We must have f3:.WAc > 
lE{Y}. 

t, ~ JE{(V)2}
Proof· Let c = lE{Y}lE{V} + - 2-. Recall that in 

Sec. 11-D, we have shown that by setting Qi = W(Ti) -
W(Ti-l + Xi-l) and c0 = c defined above, our setting 
collapses to the one for remote estimation. By the strong 
Markov property of the Wiener process, the reset random 
variable Qi = W(Ti) - W(Ti-1 + Xi_i) has the same 

distribution as Qi ~ (W(Y) - W(0)) W (Y) if we use 
the traditional definition of W(0) = 0. 

We prove Lemma 15 by contradiction. Suppose that 
f3:.WAc ::; lE{Y}. Since f3:.WAc ::; lE{Y} the convex hull of 
h13(s) is h13(s) itself, see (33) and (34). Therefore, we have 

PNWAc(f3:.WAc) = lEq{<PNWAc(f3:.WAc, Q)} (163) 

lEq { lE{Y}Q2 + ~ lE{Y2 } - fJ:.WAc(lE{Y} + lE{V}) + c} 
(164) 

= lE{Y}lE{Q2 } + ~lE{Y2 } - fJ:.WAc(lE{Y} + lE{V}) + c 

(165) 

1 2 ~ 
= lE{Y}lE{Y} + 2JE{Y } - fJ:.WAc(lE{Y} + lE{V}) + c 

(166) 

where (163) follows from (39); (164) follows from (46), (32), 
and (38); (165) simplifies (164); (166) follows from Wald's 
lemma lE{(W(Y))2 } = lE{Y} [26]. 

Since f3:.WAc is a root of PNwAc(f3), from (166) the f3:.WAc 
must also satisfy 

* (lE{Y})2 + ½lE{Y2 } + c 
(167)(3NWAC = lE{Y} + lE{V} . 

Recall that c frc lE{Y}lE{V} + E{(~l 2 } 2: lE{Y}lE{V}, 
then from (167) we immediately have f3:.WAc > lE{Y} (since 
lE{Y2 } > 0) and hence we arrive at a contradiction. The proof 
is complete. ■ 

With Lemma 15 and (47), we have 

"Y:.WAc = 3((3:.WAc - lE{Y}) > 0. (168) 

Recall that f3:.WAc is a root of lEq{<PNWAc(f3, Q)} and Q ~ 
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W(Y). With (168), 'Y~Ac is then a root of 

lEQ { <PNWAc(i + lE{Y}, Q)} 

= lE { ll{Q2<7} . (-iQ4 + (i + lE{Y}) Q2 - i'Y2)} 

+ 2lE{ ll{Q2;:7} · (lE{Y}Q )} 

+ ~lE{Y2} - (i + lE{Y} )(lE{Y} + lE{V}) + c (169) 

= lE { 1L{Q2 2 2<7}. ((i)Q _ i'Y )} 

+ 4lE { ll{Q2;:7} · (iQ )} 

+ lE{Y}lE{Q2} - ( i + lE{Y}) (lE{Y} + lE{V}) + c 

(170) 

= JE { JL{Q2<7}. ((i)Q2 _ i'Y2)} 

+ 2 4lE { ll{Q ;:7} · (iQ )} 

- ilE{Y} - (i + lE{Y} )(lE{V}) + c (171) 

2= lE { ll{Q2<7} · (-i'Y )} 

+ lE { ll{Q2;:7}. (iQ4 - iQ2)} 

_ ']__lE{V} + 2lE{(V) } = o (172)
3 2 

where (169) follows from (46), (32), (38) and (168) since the 
convex hull of h13:iwAc (s) contains two separate pieces in (32); 
(170) follows from Wald's lemma lE{(W(Y))4} = 3lE{Y2} 
( and thus ½lE{Q4} = ½lE{Y2}) [26] and the fact that the first 
two terms in (169) both have lE{Y}Q2; (171) follows from 
Wald's lemma lE{Q2} = lE{(W(Y))2} = lE{Y} [26]; (172) 
further simplifies ( 171) by regrouping different terms led by 
the indicator functions and using C £_ lE{Y}lE{V} + 2JE{(r) } 
and lE{Q2} = lE{Y}. 

Proceeding from (172), we obtain 

lE {ll{Q2<7} · 1'2} 

=lE{ll{Q2;:7} •Q4}-lE{ll{Q2;:7} ·2'YQ2} 

- 2'YlE{V} + 3lE{(V)2} (173) 

which is a direct result of (172). Note that we also have 

Eqs. (173) and (174) jointly imply 

lE { ll{Q2;:7} . Q4} + lE { ll{Q2<7} . 1'2} 

2,.,, 
= lE {ll{Q2;:7} · Q2} + lE {ll{Q2<7} · 'Y} 

+ lE{V} - 3 2lE{ (V) }. (175)
2,.,, 

Finally we note that since Q = W (Y), we have 

lE { ll{Q2;:7} . Q4} + lE { ll{Q2<7} . 1'2} 

=lE{max('Y2,(W(Y))4)} (176) 

and 

lE { ll{Q2;:7} . Q2} + lE { ll{Q2<7} . 'Y} 

= lE { max('Y, (W(Y))2)}. (177) 

Eq. (175) is thus equivalent to (48) in Lemma 4. The proof is 
complete. 
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