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Aaditya A. Candadai, Justin A. Weibel, Amy M. Marconnet  

Birck Nanotechnology Center and School of Mechanical Engineering, Purdue University, West 

Lafayette, IN 47907, USA 
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ABSTRACT: Unique combinations of properties such as mechanical compliance and chemical 

stability make polymers attractive for many applications. However, the intrinsic low thermal 

conductivity of bulk polymers has generally limited their potential for heat dissipation 

applications, and in fact they are widely used as thermal insulators. But in recent years, gel-spun, 

ultra-oriented fibers made of ultra-high molecular weight polyethylene (UHMW-PE) have sparked 

interest in the thermal management community due to their exceptionally high thermal 

conductivity. These fibers are typically used in commercially-produced protective gear such as 

motorcycle jackets and ballistic vests due to their high mechanical strength, but they have not been 

widely utilized for heat spreading and thermal management applications. While recent studies have 

characterized individual fibers and ultra-drawn films, the thermal properties of fabrics constructed 

from these materials remain virtually unexplored. Here, we synthesize plain-weave fabrics from 
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yarns of commercially available gel-spun UHMW-PE and measure the thermal properties of the 

individual microfibers, yarns, and woven fabrics using an in-house thermal characterization 

technique based on infrared microscopy. For the woven fabric, we report an effective in-plane 

thermal conductivity of ~10 Wm-1K-1 in the direction aligned with the weft yarns, which is 2-3 

orders of magnitude higher than conventional textile materials. This work reveals the high thermal 

conductivity of UHMW-PE fabrics that can be realized using a scalable textile manufacturing 

platform and lays the foundation for exploiting their unique thermomechanical properties for heat 

spreading functions in flexible/wearable devices. 

1. INTRODUCTION 

Polymers characteristically possess low thermal conductivity (~0.1 Wm-1K-1) and are often used 

for thermal insulation in various applications [1-3]. Their low thermal conductivity primarily arises 

from intrinsic defects and molecular chain entanglements present in their structures [4]. However, 

with the innovation of gel-spinning processes, high-performance polymer fibers are now 

commercially produced in large volume to achieve greatly enhanced mechanical strength and 

modulus as compared to conventional bulk polymers [5,6]. This enhancement is primarily a result 

of increased crystallinity and orientation which also leads to improved thermal properties [7-10]. 

Gel-spun, ultra-high molecular weight polyethylene (UHMW-PE) has two orders of magnitude 

higher thermal conductivity as compared to that of bulk polyethylene (0.2-0.5 Wm-1K-1) [11-13]. 

This approach of enhancing the intrinsic thermal conductivity of polymers is advantageous 

compared to traditional methods of introducing high-conductivity fillers in a polymer matrix, 

where the interfacial thermal resistance between the two components significantly limits 

conductivity enhancement [14]. Even when the interfacial resistances are significantly reduced 
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with proper surface functionalization, it is not clear if a thermal percolation threshold can be 

achieved, and so the effective thermal conductivity of the composite is still limited by the thermal 

transport through the matrix [15-17].   

Many studies in the literature have focused on thermal characterization of UHMW-PE materials 

[18-28], as summarized in Fig. 1, of different forms including fibers, thin film, and yarns. As seen 

from this chart, there is spread in the reported thermal conductivity for a given form, possibly 

depending on the measurement technique employed or variations in the fabrication process.  Choy 

et al. [18] fabricated fiber-reinforced composite sheets having differing fiber volume fractions; 

low-density PE was reinforced with commercial gel-spun polyethylene fibers (Spectra). The 

thermal conductivity of the individual fibers was estimated to be ~38 Wm-1K-1 by extrapolating 

laser-flash measurements of the composite sheets to a volume fraction of 1. Fujishiro et al. [19,20] 

characterized fiber bundles made up of 6000 monofilaments of commercial UHMW-PE fiber 

(Dyneema) (at temperatures below 260 K) using both a direct steady state method to measure 

thermal conductivity and a transient technique to measure thermal diffusivity. Their measurements 

reported thermal conductivities of up to 60 Wm-1K-1 for the bundles. Wang et al. [21] measured a 

thermal conductivity of ~15 Wm-1K-1 for individual commercial microfibers (Dyneema) using 

time-domain thermoreflectance experiments. The thermal conductivity of the same type of 

microfibers was measured to be ~23 Wm-1K-1 using the transient electrothermal technique 

employed by Liu et al. [22]. More recently, Shen et al. [23] performed AFM tip-based thermal 

measurements to demonstrate that a thermal conductivity of up to ~104 Wm-1K-1 can be achieved 

for gel-spun and ultra-drawn PE nanofibers with diameters on the order of ~100 nm. In other 

recently reported studies by Xu et al. [24], Ghasemi et al. [25], and Ronca et al. [26], ultra-oriented, 
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thin PE films (~1-10 µm) have been fabricated using very high draw ratios to achieve thermal 

conductivities of 16-65 Wm-1K-1.  

The potential to leverage advantages such as mechanical compliance and flexibility offered by 

polymers in comparison to metals, with the metal-like thermal conductivity of UHMW-PE, 

combined with its chemical stability, electrically insulating properties, and light weight make it 

very attractive for applications such as a heat spreader in flexible/wearable electronic devices. 

Such potential thermal management applications require a high effective thermal conductance, for 

which both thermal conductivity of the material and the available cross-sectional area for heat flow 

are important. The thermal conductance of thin films, such as those fabricated in recent studies 

[24-26], is limited by the very small final thicknesses intrinsic to the ultra-drawing process required 

to produce a material with high thermal conductivity. There is an evident need to scale up high-

thermal-conductivity PE materials to bulk sizes having large cross sections for heat flow, but while 

maintaining their desirable thermal properties.  

Construction of flexible fabrics from UHMW-PE fibers is very promising for these applications 

as textile manufacturing processes are scalable to large areas and high volumes. But, scaling up of 

the material from individual microfibers to yarns and ultimately to fabrics introduces numerous 

material interfaces, volume-fraction considerations and associated thermal resistances which are 

expected to play a critical role in determining the effective heat transfer behavior. Thus, a 

systematic study of the effective thermal conductivity of UHMW-PE spanning across these 

different forms and length scales is crucial to understanding and assessing the potential of fabrics 

for thermal management applications. To the best of our knowledge, no studies in the literature 

have reported thermal characterization of fabrics constructed from UHMW-PE fibers.  
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In this work, we experimentally characterize the thermal conductivity of UHMW-PE fibers, 

yarns formed from twisting these fibers, and woven fabrics. Plain-weave type fabrics (see Fig. 2) 

are constructed from UHMW-PE yarns with a relatively higher density of yarns along one 

direction of the fabric. In order to enable multi-scale thermal characterization of the different forms 

of UHMW-PE, we develop an in-house steady-state thermal conductivity measurement method 

based on infrared microscopy. Using this simple technique, in which an electrified wire heats up 

an orthogonally oriented contacting specimen via Joule heating, we can extract the thermal 

conductivity of these specimens of drastically different sizes and forms without the need for 

estimating the thermal contact resistance between the heater wire and the sample. This is attributed 

to the simultaneous capture of two-dimensional steady-state temperature maps of the heater wire 

and the sample, as well as tuning of the size of the heater wire to be the same order as thermal 

conductance of the sample being measured. An associated one-dimensional heat transfer model 

that incorporates the effect of radiation losses is used to ultimately quantify the thermal 

conductivity of the sample. We measure the axial thermal conductivity of the fibers and yarns, and 

the in-plane effective thermal conductivity of the fabric in the dominant heat conduction direction. 

Our findings help understand the effective thermal behavior as a function of scaling-up the high 

conductivity fibers, and indicate very promising thermal properties for the woven fabrics for 

applications as a flexible/wearable heat spreader. In addition, we also develop a reduced-order heat 

conduction model to estimate the effective in-plane thermal conductivity of plain-weave fabrics, 

which serves as a simple confirmation of the key conclusions from our experimental data.  

2. EXPERIMENTAL METHODS 

2.1 Material Details and Sample Preparation: The UHMW-PE material used in this study 

was acquired in the form of a flat yarn (DSM Dyneema SK75; Atkins and Pearce Inc.) with a linear 
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density of 0.044 g/m. The fibers in the flat yarn are twisted together using a drop spindle tool 

which produces a well-bound twisted yarn (see Fig. 2) that is suitable for weaving.  

The twisted yarns are used to construct a swatch of woven fabric on a miniature weaving loom 

(Wee Weaver; Purl & Loop) with a gauge specification of 12 grooves per inch. The warp yarn is 

first wound through the grooves on both ends of the loom and held taut. The weft yarn is interlaced 

over and under each successive row (thread) of warp yarn, as illustrated in Fig. 2a, and then is 

similarly interlaced back through the fabric in the opposite direction after it passes through the last 

warp thread. Successive rows of weft threads are compressed together such that the weft number 

density is ~4-5 times that of the warp. Ultimately, a plain-weave fabric pattern with a high density 

of threads in the weft direction (i.e., weft-faced weave) is constructed, as seen in the photographs 

and optical microscope image in Fig. 2c and 2d. 

Thermal measurements are performed for individual fibers pulled out from the flat yarns, twisted 

yarns, and the woven fabric. For the fabric samples, thin strips of material must be cut without 

fraying of the fabric. Fabric strips ~2 cm long (parallel to the weft) and ~2.5 mm wide are cut using 

a CO2 laser (ULS PLS6MW) while the fabric is held under tension in the loom. This fuses the cut 

edges of the strips and prevents unraveling of the yarns. We note that the width of the fused region 

is very small compared to the width of the fabric and does not influence the thermal measurements 

for the fabric strip.  

2.2 Thermal Characterization Metrology: The thermal measurements are performed using an 

infrared (IR) microscope system (Infrascope; Quantum Focus Instruments Corporation) which has 

a pixel resolution of 12.2 µm at 1× magnification and a temperature resolution of ~0.1°C, although 

the absolute accuracy of the temperature measurements depends on emissivity calibration (see 

S1.1 in Supporting Information for details). Schematic drawings of the experimental setup are 
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shown in Fig. 3a. The sample to be characterized is suspended across the middle of an annular-

ring-shaped heat sink (~1 cm inner diameter). A nichrome wire is suspended orthogonally across 

the heat sink and contacts the center of the sample. The wire is heated via Joule heating by 

supplying electric current using a DC source meter (Keithley 2420). Some portion of the heat 

generated in the wire is conducted in the wire both to the sink at either end and to the center, where 

the sample is attached, establishing a non-linear temperature profile in the wire at steady state. In 

the sample, heat is conducted from the central point of contact with the wire to the sink at both 

ends; at steady state, this establishes a linear temperature gradient in both halves of the sample. 

This wire-sample cross-structure assembly is placed inside a vacuum chamber (Linkam Scientific 

Instruments TS1500V) which is connected to a two-stage turbo pump (Varian TPS Bench-

9698215) that maintains a pressure of ~1×10-5 mbar inside the chamber. This minimizes 

convective heat loss from the wire and the sample to the ambient.  

Considering a control volume around the central contact region between the wire and the 

junction, as shown in Fig. 3b, we define 𝑄𝐿 and 𝑄𝑅 as the heat rates entering this control volume 

through the wire, and 𝑄𝑇 and 𝑄𝐵 as the heat rates leaving this control volume through the sample. 

There is also heat generation in the central region of the wire within the control volume,  

𝑄𝑔𝑒𝑛=𝐼2 𝑅𝑙𝑐, where 𝐼 is the current supplied to the wire, 𝑅𝑙 is the measured electrical resistance 

per unit length of the wire, and 𝑐 is the length of the wire within the control volume. From an 

energy balance in this control volume, 

𝑄𝐿 + 𝑄𝑅  + 𝑄𝑔𝑒𝑛  = 𝑄𝑇 + 𝑄𝐵.                                                  (1) 

The heat rates 𝑄𝑇 and 𝑄𝐵 can be related to the temperature gradients in the wire using Fourier’s 

law assuming the heat transfer in the sample is governed by one-dimensional heat conduction. This 

is a good assumption because the experiments are conducted in vacuum and the maximum 
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temperature rise is limited to ~10 K to minimize radiation effects, and this is confirmed by the 

observed linear temperature profile in the sample regions. However, depending on the thermal 

conductivity and dimensions of the sample being measured, in some cases the radiation losses 

from the sample need to be considered to obtain an accurate measurement of sample thermal 

conductivity (see S1.2 in Supporting Information for details). Considering one-dimensional heat 

conduction in the sample to be valid, conduction within each sample region is governed by 

Fourier’s law and calculated as 

𝑄𝑇 + 𝑄𝐵 = 𝑘𝑠𝐴𝑠 |
𝑑𝑇

𝑑𝑦
|

𝑇

+ 𝑘𝑠𝐴𝑠 |
𝑑𝑇

𝑑𝑦
|

𝐵

,                                                (2) 

where 𝑘𝑠 and 𝐴𝑠 are the thermal conductivity and cross-sectional area of the sample, respectively. 

Therefore, the sample thermal conductivity can be determined using the relationship below if the 

associated heat rates and temperature gradients can be measured:  

𝑘𝑠  =
𝑄𝐿 + 𝑄𝑅 + 𝑄𝑔𝑒𝑛

𝐴𝑠 {|
𝑑𝑇
𝑑𝑦

|
𝑇

+ |
𝑑𝑇
𝑑𝑦

|
𝐵

}
 .                                                             (3) 

Note that, in general, radiation losses from the wire region inside the control volume are very small 

compared to the total heat rate, 𝑄𝐿 + 𝑄𝑅 + 𝑄𝑔𝑒𝑛 (see also S1.2 of the Supporting Information for 

more details). However, radiation is important in the section of the heater wire that is not in contact 

with the sample as discussed in the following section.  

A unique feature of this analysis is that the measurement of thermal conductivity is independent 

of the thermal contact resistance between the heater wire and the sample, because the heat flow 

from the wire to the sample is extracted directly, as is the temperature profile in the sample. The 

process of extracting the heat rates and sample temperature gradients from the IR measurements 

is illustrated in Fig. 3c. The temperature profiles of both the wire and the sample are determined 

from the steady state IR temperature map at a given value of input current. Note that extraction of 
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the temperature profiles is performed based on the calibrated emissivity values of the wire and the 

sample, which are performed ex situ prior to the actual experiments (see S1.1 in Supporting 

Information). For all experiments, the nichrome wire is coated black with a colloidal graphite 

solution to reduce its reflectivity. The linear temperature gradients |
𝑑𝑇

𝑑𝑦
|

𝑇
and |

𝑑𝑇

𝑑𝑦
|

𝐵
are calculated 

from the slope of the measured profiles. In the suspended region of the heater wire on each side of 

the sample, the heat transfer is governed by conduction in the wire and radiation to the 

surroundings, which is important due to the relatively high wire temperatures. The following 

energy equation dictates the wire temperature profile (expressed here for the right side only): 

                      
𝜕2𝑇

𝜕𝑥2
−

ℎ𝑟𝑃(𝑇 − 𝑇𝑠𝑢𝑟)

𝑘𝑤𝐴
+

𝑞′′′

𝑘𝑤
= 0                                                 (4) 

    𝑥 = ℓ:  𝑇 =  𝑇0                                                                      (5) 

                                        𝑥 = 0: 𝑘𝐴 |
𝑑𝑇

𝑑𝑥
| = 𝑄𝑅 .                                                            (6) 

Here, 𝑘𝑤 is the wire thermal conductivity, ℎ𝑟  is the linearized radiation heat transfer coefficient, 

𝑇𝑠𝑢𝑟 is the temperature of the surroundings, P is the wire perimeter, A is the wire cross-sectional 

area, 𝑞′′′ is the heat generation rate in the wire (𝑞′′′ = (𝐼2 𝑅𝑙)/𝐴), ℓ is the length of the wire on 

the right side of the sample, and 𝑇0 is the measured temperature boundary condition from the IR 

temperature map. Solving this differential equation, the temperature profile in the right-side of the 

wire is of the form 

𝑇(𝑥) =  
𝑒−𝑚𝑥

𝑚2𝑘𝑤𝐴(𝑒2𝑚ℓ + 1)
(𝐴𝑒𝑚(2𝑥+ℓ){𝑚2𝑘𝑤(𝑇0 − 𝑇𝑠𝑢𝑟𝑟) − 𝑞′′′}

+ 𝐴𝑒𝑚(2ℓ+𝑥){𝑚2𝑘𝑤𝑇𝑠𝑢𝑟 + 𝑞′′′} − 𝑚𝑄𝑅𝑒2𝑚ℓ + 𝑚𝑄𝑅𝑒2𝑚𝑥

+ 𝐴𝑒𝑚ℓ{𝑚2𝑘𝑤(𝑇0 − 𝑇𝑠𝑢𝑟) − 𝑞′′′} + 𝐴𝑒𝑚𝑥{𝑚2𝑘𝑤𝑇𝑠𝑢𝑟 + 𝑞′′′}),                            (7) 



 10 

where 𝑚2 = (ℎ𝑟𝑃) (𝑘𝑤𝐴)⁄ . The thermal conductivity of the wire, 𝑘𝑤 is determined from a 

separate calibration experiment performed by heating the wire in the absence of the sample [29] 

(also see S1.3 in Supporting Information). This leaves the heat flow rate in the right side of the 

wire, 𝑄𝑅 as the only unknown parameter in Eq. 7, which is fit to the measured IR temperature 

profile using a least squares algorithm. Analogous expressions are valid on the left side of the wire 

and 𝑄𝐿 is extracted in the same manner. Finally, with all terms in Eq. 3 known, the thermal 

conductivity of the sample is calculated. Details of the uncertainty/sensitivity of the described 

measurement technique are presented in our recent work [29]. 

To validate the experimental approach, we characterize reference samples having known 

thermal conductivity using the developed metrology technique. Two different materials are chosen 

because they have a similar geometry as the yarn and fabric samples: a nichrome wire (circular 

cross-section similar to the yarn) and a bulk HDPE film (rectangular cross-section) of width 

comparable to the fabric sample. Details of these validation experiments are presented in the 

Supporting Information (see S2). We note that a very good agreement (~10% difference) is 

obtained between the experimentally measured values and the actual thermal properties of the 

reference materials. 

3. RESULTS AND DISCUSSION 

We present the infrared thermal characterization results of the Dyneema yarn followed by the 

woven fabric. Our measurements reveal that an in-plane effective thermal conductivity on the 

order of 10 Wm-1K-1 is achieved for the fabric along the dominant heat conduction direction which 

is along the weft yarns of the fabric. The trends in effective thermal conductivity as the material is 

scaled from fibers to yarns to fabric are explained using reduced-order thermal models. Finally, 

we compare the key findings of this work with related studies on UHMW-PE materials.  
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3.1. Thermal Characterization of Yarns. A yarn sample with an effective diameter of ~370 

µm is mounted on the heat sink inside the vacuum chamber such that the nichrome heating wire is 

threaded through the fibers of the bundle to obtain more uniform heating throughout the yarn cross-

section. Fig. 4a shows an example IR temperature map obtained from the measurements in the 

wire–yarn cross-structure arrangement. Two different temperature maps are obtained at each level 

of supplied current, one based on the calibrated emissivity of the wire (in the wire region), and the 

other based on the calibrated emissivity of the yarn (in the yarn region). These are analyzed to fit 

for the heat rates 𝑄𝐿 , 𝑄𝑅, and the temperature gradients in the yarn as shown in Fig. 4b. The heat 

generation in the junction region of the wire 𝑄𝑔𝑒𝑛 is also calculated to determine the total heat flux 

flowing into the yarn sample. This is repeated at five different levels of supplied current. Because 

the total heat flux ({𝑄𝐿 + 𝑄𝑅 + 𝑄𝑔𝑒𝑛}/𝐴𝑠) at each power level is linearly proportional to the sum 

of the temperature gradients (|𝑑𝑇/𝑑𝑦|𝑇 + |𝑑𝑇/𝑑𝑦|𝐵) on each side (see Eq. 3), a single value of 

thermal conductivity is obtained from the measured slopes by fitting the experimental data to a 

straight line passing through origin, as shown in Fig. 4c. This procedure reduces the measurement 

uncertainty associated with the experiments. Given the nominal values of all input parameters to 

the model (e.g., diameter, emissivity, etc.), the thermal conductivity of the yarn (Dyneema SK75) 

is determined to be 15.8±0.7 Wm-1K-1 for a first sample and 16.3±0.7 and 16.4±0.7 Wm-1K-1 for 

two repeated trials of a second sample. As illustrated in Fig. 4c, the thermal conductivity values 

measured from the two trials using the second yarn sample are in excellent agreement, indicating 

good repeatability.  

Based on previous studies related to yarn structures [30-32], we note that the level of yarn twist 

and orientation of fibers within the yarn are important factors that could influence the effective 

properties of the yarn. With increase in yarn twist, two key mechanisms may affect the heat 
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conduction behavior: (i) increased effective packing of the fibers within the yarn due to 

compaction, which would lead to an increase in the yarn effective thermal conductivity; and (ii) 

an increased length of individual fibers per unit of apparent axial conduction length (i.e., an 

extended path-length for heat conduction following the spiral of the fiber), which leads to a 

decrease in the yarn effective thermal conductivity. A decrease in yarn thermal conductivity with 

increasing twist was predicted in [30] by considering the varying helix angle of fibers from the 

core to the surface of the yarn for an assumed packing arrangement. However, this model only 

accounts for the increased conduction length due to the oblique orientation of the fibers with 

respect to the principal yarn axis, without considering the effect of increased compaction [31, 32]. 

In the present study, we perform thermal measurements with the twisted yarns to explore the effect 

of yarn twist on the effective thermal conductance (per unit length) of the yarn. Note that the yarn 

effective thermal conductance per unit length (with units of WmK-1) is defined as the product of 

the effective thermal conductivity and the yarn cross-sectional area. This parameter is of interest 

for fabric construction because it directly influences the in-plane effective thermal properties of 

fabrics woven from the twisted yarns. The effective thermal conductance can be easily extracted 

from our measurements without having to consider changes in the effective yarn cross-sectional 

area at different twist levels. We investigate the effect of yarn twist by performing the IR 

experiments for four different twist levels characterized by the average surface helix angle of the 

yarn, as illustrated in Fig. 5a. The extracted thermal conductance, increases by only ~6% from the 

lowest to the highest twist level considered here, spanning a surface helix angle change of about 

~20°, as shown in Fig. 5b. We conclude from these experiments that the change in yarn thermal 

conductance is not significant for the range of twist levels characterized here, which is also 

representative of the twist level of the yarns in the constructed woven fabric.  
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3.2. Thermal Characterization of Fabrics. A strip of woven fabric having a width of ~2.1 mm 

and thickness of ~660 µm is characterized. In order to achieve uniform heating across the fabric 

thickness and obtain good thermal contact conductance with the heating wire under vacuum 

conditions, a small piece of copper tape is wound around the fabric in the contact region and a 

thermal gap pad is placed between the wire and the fabric sample. A schematic drawing of this 

experimental configuration for fabric testing has been included in the Supporting Information 

(section S1.4) for clarity. The thermal gap pad helps in conducting a greater amount of heat into 

the sample at a given level of electrical power input, but does not influence the measured sample 

thermal conductivity. A representative IR temperature map for the wire–fabric experiment is 

shown in Fig. 6a and the corresponding temperature profiles of the wire and the fabric in Fig. 6b. 

For the fabric, a sharp dip in the wire temperature profile is observed on either side of the contact 

region, which contrasts the wire temperature profile seen for the yarn test in Fig. 4b. This occurs 

due to the larger amount of heat being removed by the fabric sample due to its higher thermal 

conductance as compared to the yarn sample. Analogous to the analysis for the yarn, the total heat 

flux flowing into the fabric, and the temperature gradients in the fabric region, are obtained for 

each level of input electrical power. The effective thermal conductivity of the fabric is extracted 

from the linear fit shown in Fig. 6c. The radiation losses from the control volume in the central 

region of the wire are verified to be negligible (~1%) compared to the total heat rate, 𝑄𝐿 + 𝑄𝑅 +

𝑄𝑔𝑒𝑛.  

The effective thermal conductivity of the fabric is determined to be 9.5±0.6 Wm-1K-1 based on 

the two experimental trials shown in the Fig. 6c. The first trial (Run 1) is performed with the 

thermal gap pad placed in between the wire and the fabric to enhance thermal conductance at the 

junction, while the second trial (Run 2) is performed without the use of this pad. The results from 
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these two independent runs yield the same value of thermal conductivity to within measurement 

uncertainty, which further demonstrates that the developed characterization technique is 

independent of the junction thermal contact resistance. 

In order to obtain an estimate of effective fabric thermal conductivity to compare with our 

experimental results, and to also understand the effect of yarn density on fabric conductivity, we 

have developed a reduced-order heat conduction model. In this model, a full nodal-network-based 

analysis (see details in S3 of Supporting Information) similar to the approach implemented for 

modeling conduction through foam structures in [33] is performed. Effective fabric thermal 

conductivity along a given direction of interest is calculated by assigning constant temperature 

boundary conditions 𝑇𝐻 and 𝑇𝐶 to the associated opposite fabric ends, while insulating the other 

two sides as shown in Fig. 7a. This modeling analysis demonstrated that for a plain-weave fabric, 

the effective thermal conductivity in the direction under consideration is independent of the inter-

yarn thermal contact resistance at the nodal locations, because the yarns oriented perpendicular to 

the direction of heat flow (along 𝑥 as seen in Fig. 7a) are insulated at their end and therefore non-

participating. As a result, an inter-yarn thermal contact resistance between orthogonal yarns does 

not need to be specified in this case.  

Based on the results from the reduced-order model, the effective fabric thermal conductivity of 

the plain-weave fabric is dependent on three model input parameters: the yarn thermal conductivity 

(𝑘𝑦), the center-to-center spacing between adjacent parallel yarns (𝑙𝑦), and the effective yarn 

diameter (𝑑𝑦). The schematics in Fig. 7b portray the effective cross-sections of a fabric with a 

high packing density (𝑙𝑦/𝑑𝑦 = 0.5) and low packing density (𝑙𝑦/𝑑𝑦 = 1) of yarns parallel to the 

heat flow direction. From this model, the effective thermal conductivity is determined to be 

directly proportional to the cross-sectional area-based packing fraction of the yarns oriented along 
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the direction of heat flow. Specifically, as illustrated in the plot in Fig. 7c, the effective fabric 

thermal conductivity is inversely proportional to 𝑙𝑦/𝑑𝑦 for a given value of 𝑘𝑦, which is taken to 

be 16 Wm-1K-1 based on the results obtained from the yarn characterization experiments. From 

inspection of the images of the woven fabric shown in Fig. 2d, a value of 𝑙𝑦/𝑑𝑦 ~0.5-0.6 is 

representative of the experimentally characterized woven fabric. At this packing density, the 

estimate of effective fabric conductivity from the reduced-order model matches well with the result 

from the thermal characterization experiment, as shown in Fig. 7c. Further, the results obtained 

from the reduced-order model also offer quantitative understanding of the effect of yarn packing 

in the fabric weave on effective fabric thermal conductivity. 

3.3. Discussion. The results from the thermal characterization study presented in the previous 

sections indicate a very high measured thermal conductivity for UHMW-PE yarns and fabrics, 

especially considering that these are constructed out of polymer fibers. To interpret these measured 

thermal conductivities, we have also characterized the individual fibers (monofilaments with 

diameter ~20 µm) that comprise the yarn and fabric. These experiments are performed using a 

higher magnification IR lens in order to achieve the required spatial and temperature resolution 

(fiber measurement details are in S4 of the Supporting Information). The thermal conductivity of 

these fibers is measured to be ~25-30 Wm-1K-1.  

Consider the thermal conductivity of oriented UHMW-PE as the material is scaled from fibers 

to fabrics, as illustrated in Fig. 1a. Our measurements in this work reveal that the effective thermal 

conductivity of UHMW-PE only reduces by a factor of ~3 as microfibers are scaled up to woven 

fabrics. This reduction is attributed mainly to the packing density of individual fibers within a 

yarn, and the packing density of yarns within a fabric. The effective density of yarns, based on 

measuring the yarn linear density and assuming a circular cross-section, is determined to be ~460 
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kg/m3, which is lower than the specified density of an individual fiber by a factor of ~2. This is the 

same factor of reduction in effective thermal conductivity from fibers to yarns as measured. 

Further, the results from the reduced-order fabric thermal conductivity model explain this same 

reduction due to packing density from the yarns to the woven fabric. Nevertheless, given these 

fabrics are a macroscale material, their effective thermal conductivity (~10 Wm-1K-1) is remarkable 

compared to a bulk form of polyethylene (~0.5 Wm-1K-1 for HDPE). 

Comparing to the values in literature, as apparent from Fig. 1, our measured thermal conductivity 

of the individual fibers is generally in good agreement with other studies [21,22]. The thermal 

conductivity of fiber bundles measured in [19] are much higher compared to our measurement for 

the yarns. However, we note that radiation losses and parasitic conduction losses were not 

considered in the conventional steady-state measurement technique used in this previous study 

[19], which would tend to overestimate the thermal conductivity. Further, as pointed out in [21], 

the value of thermal conductivity directly measured for the fiber bundle (~60 Wm-1K-1) in [19] 

does not agree with the thermal conductivity extracted from the thermal diffusivity measurement 

(~36 Wm-1K-1) in the same work [19], as well as with that extrapolated from the measurement of 

the fiber-reinforced plastic (in [19]) comprising of the same fibers (~33 Wm-1K-1). Our 

measurements for yarns also corroborate the measurements of individual microfibers [18,21,22], 

as a reduction in effective conductivity (and not an increase) is expected for yarns when compared 

to individual fibers due to a decrease in effective density.  

Fig.1 also indicates that ultra-drawn oriented thin films [24,25] can have a similar thermal 

conductivity to individual fibers. The recent study by Xu et al. [24] demonstrates great potential 

for scalability of these films along the drawing direction, but the drawing process required to obtain 

such high thermal conductivity also greatly reduces the thickness. Therefore, even though the 
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thermal conductivity of the fabricated films increases from 0.38 Wm-1K-1 to 62 Wm-1K-1 as the 

draw ratio increases to 110, the thermal conductance (per unit length) of these films across all draw 

ratios is limited to relatively low values in the range of 2.9×10-7 WmK-1 to 3.9×10-7 WmK-1. To 

address this scalability limit in the thickness direction, Xu et al. [24] also demonstrated 

construction of a 150 µm-thick laminate by hot-pressing many films produced at a high draw ratio 

of 50, and measured the in-plane thermal conductivity of the laminate to be ~33 Wm-1K-1. The 

thermal conductance of this fabricated 100-layer laminate ([in 24]) is ~5×10-6 WmK-1, while the 

conductance of the single-layer woven fabric test strip (from this work) is 1.3×10-5 WmK-1. The 

woven fabric strip has a thermal conductance 2.6 times greater primarily due to its higher length 

scale compared to the film laminate. We note that while the high thermal conductivity of the 

laminate is very promising for heat spreading applications, effective scaling-up of these structures 

while maintaining these properties is crucial for such applications. The ultra-drawing process 

constrains the cross-sections that can be achieved for the produced films, whereas single-layer 

weaves can easily be scaled along the width and length directions. Also, laminates of larger 

thickness prepared in this manner may be stiffer as compared to woven materials which can 

potentially limit their usage in flexible device applications. 

Based on the results of the current study, woven fabrics show great promise for scalable 

fabrication of a high effective thermal conductivity material because weaves with lengths and 

widths on the order of meters, and thicknesses on the order of ~0.5-1 mm, can easily be produced 

by a large-scale textile manufacturing process. Further, the in-plane thermal conductivity of 

UHMW-PE fabrics is more than two orders of magnitude higher than conventional fabrics such as 

cotton (0.03-0.07 Wm-1K-1), silk (0.09 Wm-1K-1), and wool (0.04 Wm- 1K-1) [34-36]. Therefore, 

UHMW-PE fabrics are ideally suited to wearables and other flexible device applications where 
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good heat spreading functionality is desired. Additionally, complex weaves and multi-layer fabric 

stacks provide an avenue to tailor the high thermal conductivity of these materials to a particular 

application.   

4. CONCLUSIONS 

In this study, we have explored the effective heat conduction properties of UHMW-PE in the 

forms of microfibers, yarns, and woven fabrics. To characterize these materials spanning across 

length scales from a few microns to hundreds of millimeters, we have developed a steady-state 

thermal metrology technique based on simple energy balance principles using IR microscopy. The 

technique has been validated using reference materials, and a reduced-order thermal model has 

also been developed to corroborate our experimental data which shows that macroscale woven 

polymer fabrics made of high conductivity UHMW-PE fibers exhibit an in-plane effective thermal 

conductivity on the order of 10 Wm-1K-1. Through this study, we have demonstrated that textile 

weaving, being a well-established mass-manufacturing process, is a promising method to scale up 

UHMW-PE microfibers into a bulk material having high thermal conductivity. Given the rapid 

advancements being made in the field of wearable device technology, flexible polymer-based high 

thermal conductivity materials can address the growing need for thermal management solutions 

that address ergonomics-driven thermal constraints. Based on the findings of this study, we believe 

that thermally conductive UHMW-PE fabrics offer great potential for such heat spreading 

applications. 

ASSOCIATED CONTENT 

Supporting Information. The Supporting Information is available free of charge on the ACS 

Publications website at DOI: 



 19 

Infrared Thermal Measurement Technique, Thermal Metrology Validation Experiments, 

Reduced-Order Fabric Thermal Model, Ultra High Molecular Weight Polyethylene Fiber 

Thermal Characterization (PDF) 

AUTHOR INFORMATION 

Corresponding Authors 

*Email: marconnet@purdue.edu (A.M.M.), jaweibel@purdue.edu (J.A.W.)  

Notes 

The authors declare no competing financial interest. 

ACKNOWLEDGMENTS 

The authors thank the industry members of the Cooling Technologies Research Center, a 

graduated National Science Foundation Industry/University Cooperative Research Center at 

Purdue University, for providing funding support for this work. The authors appreciate Prof. Ali 

Shakouri (Purdue University) for providing access to the vacuum pump and stage; Prof. Alison 

Stewart-Guinee (Purdue University) for useful conversations and guidance on weaving of fabrics; 

Srivathsan Sudhakar (Purdue University) for help with laser-cutting of the fabrics; and 

Radhakrishan Korlam (IIT Madras; Purdue University) for inputs related to the reduced-order 

packing model.  

REFERENCES 

1. Choy, C. L. Thermal Conductivity of Polymers. Polymer 1977, 18, 984-1004. 

2. Sperling, L. H. Introduction to Physical Polymer Science. New York: Wiley 2006, 78. 

mailto:marconnet@purdue.edu
mailto:jaweibel@purdue.edu


 20 

3. Tant, M. R.; Connell, J. W.; McManus, H. L. High-Temperature Properties and Applications 

of Polymeric Materials. Washington, DC: American Chemical Society 1995. 

4. Chae, H. G.; Kumar, S. Making Strong Fibers. Science 2008, 319, 908-909. 

5. Adams, W. W.; Eby, R. K. High-Performance Polymer Fibers. MRS Bulletin 1987, 12, 22-

26. 

6. Smith, P.; Lemstra, P. J.; Kalb, B.; Pennings, A. J. Ultrahigh-strength Polyethylene Filaments 

by Solution Spinning and Hot Drawing. Polymer Bulletin 1979, 1, 733-736.  

7. Park, J. H.; Rutledge, G. C. Ultrafine High-Performance Polyethylene Fibers. J. Mater. Sci. 

2018, 53, 3049-3063. 

8. Choy, C. L.; Chen, F. C.; Luk, W. H. Thermal Conductivity of Oriented Crystalline 

Polymers. J. Polym. Sci. 1980, 18, 1187–1207. 

9. Choy, C. L.; Young, K. Thermal Conductivity of Semi-Crystalline Polymers—A Model. 

Polymer 1977, 18, 769– 776. 

10. Yamanaka, A.; Takao, T. Thermal Conductivity of High-Strength Polyethylene Fiber and 

Applications for Cryogenic Use. ISRN Mater. Sci. 2011. 

11. Mergenthaler, D. B.; Pietralla, M.; Roy, S.; Kilian, H.G. Thermal Conductivity in 

Ultraoriented Polyethylene. Macromolecules 1992, 25, 3500-3502.  

12. Vasileiou, A. A.; Kontopoulou, M.; Docoslis, A. A. Noncovalent Compatibilization 

Approach to Improve the Filler Dispersion and Properties of Polyethylene/Graphene 

Composites. ACS Appl. Mater. Interfaces 2014, 6, 1916−1925. 



 21 

13. Haggenmueller, R.; Guthy, C.; Lukes, J. R.; Fischer, J. E.; Winey, K. I. Single Wall Carbon 

Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity. 

Macromolecules 2007, 40, 2417− 2421. 

14. Huxtable, S. T.; Cahill, D. G.; Shenogin, S.; Xue, L.; Ozisik, R.; Barone, P.; Usrey, M.; 

Strano, M. S.; Siddons, G.; Shim, M.; Keblinski, P. Interfacial Heat Flow in Carbon 

Nanotube Suspensions. Nat. Mater. 2003, 2, 731. 

15. Kargar, F.; Barani, Z.; Salgado, R.; Debnath, B.; Lewis, J. S.; Aytan, E.; Lake, R. K; 

Balandin, A. A. Thermal Percolation Threshold and Thermal Properties of Composites with 

High Loading of Graphene and Boron Nitride Fillers. ACS Appl. Mater. Interfaces 2018, 10, 

37555-37565. 

16. Shenogina, N.; Shenogin, S.; Xue, L.; Keblinski, P. On the Lack of Thermal Percolation in 

Carbon Nanotube Composites. Appl. Phys. Lett. 2005, 87, 133106. 

17. Li, A.; Zhang, C.; Zhang, Y. F. Thermal Conductivity of Graphene-Polymer Composites: 

Mechanisms, Properties, and Applications. Polymers 2017, 9, 437. 

18. Choy, C. L.; Fei, Y.; Xi, T. G. Thermal conductivity of Gel‐Spun Polyethylene Fibers. J. 

Polym. Sci. Part B: Polym. Phys. 1993, 31, 365-370. 

19. Fujishiro, H.; Ikebe, M.; Kashima, T.; Yamanaka, A. Thermal Conductivity and Diffusivity 

of High-Strength Polymer Fibers. Jap. J. Appl. Phys. 1997, 36, 5633. 

20. Fujishiro, H.; Ikebe, M.; Kashima, T.; Yamanaka, A. Drawing Effect on Thermal Properties 

of High-Strength Polyethylene Fibers. Jap. J. Appl. Phys. 1998, 37, 1994. 



 22 

21. Wang, X.; Ho, V.; Segalman, R. A.; Cahill, D. G.; Thermal Conductivity of High-Modulus 

Polymer Fibers. Macromolecules 2013, 46, 4937-4943. 

22. Liu, J.; Xu, Z.; Cheng, Z.; Xu, S.; Wang, X. Thermal Conductivity of Ultrahigh Molecular 

Weight Polyethylene Crystal: Defect Effect Uncovered by 0 K Limit Phonon Diffusion. ACS 

Appl. Mater. Interfaces 2015, 7, 27279-27288. 

23. Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene Nanofibres with Very High 

Thermal Conductivities. Nat. Nanotechnol. 2010, 5, 251. 

24. Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Wang, J.; Li, M.; Ghasemi, 

H.; Huang, X.; Li, X. 2019. Nanostructured Polymer Films with Metal-Like Thermal 

Conductivity. Nat. Commun. 2019, 10, 1771. 

25. Ghasemi, H.; Thoppey, N.; Huang, X.; Loomis, J.; Li, X.; Tong, J.; Wang, J.; Chen, G. High 

Thermal Conductivity Ultra-High Molecular Weight Polyethylene (UHMWPE) Films. 

Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic 

Systems (IEEE ITherm) 2014, 235-239. 

26. Ronca, S.; Igarashi, T.; Forte, G.; Rastogi, S. Metallic-Like Thermal Conductivity in a 

Lightweight Insulator: Solid-State Processed Ultra High Molecular Weight Polyethylene 

Tapes and Films. Polymer 2017, 123, 203-210. 

27. Zhu, B.; Liu, J.; Wang, T.; Han, M.; Valloppilly, S.; Xu, S.; Wang, X. Novel Polyethylene 

Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring. ACS 

Omega 2017, 2, 3931-3944. 



 23 

28. Poulaert, B.; Legras, R.; Chielens, J. C.; Vandenhende, C.; Issi, J. P. Thermal-Conductivity 

of Highly Oriented Polyethylene Fibers. Polymer Communications 1990, 31, 148. 

29. Candadai, A. A.; Weibel, J. A.; Marconnet A. M. A Measurement Technique for Thermal 

Conductivity Characterization of Ultra-High Molecular Weight Polyethylene Yarns Using 

High-Resolution Infrared Microscopy. Intersociety Conference on Thermal and 

Thermomechanical Phenomena in Electronic Systems (IEEE ITherm) 2019. 

30. Rengasamy, R.S.; Kawabata, S. Computation of Thermal Conductivity of Fibre from 

Thermal Conductivity of Twisted Yarn 2002. 

31. Shah, D. U.; Schubel, P. J.; Licence, P.; Clifford, M. J. Determining the Minimum, Critical 

and Maximum Fibre Content for Twisted Yarn Reinforced Plant Fibre Composites. Comp. 

Sci. Technol. 2012, 72, 1909-1917. 

32. Pan, Ning. Development of a Constitutive Theory for Short Fiber Yarns: Part III: Effects of 

Fiber Orientation and Bending Deformation. Textile Research Journal 1993, 63, 565-572. 

33. Bodla, K. K.; Murthy, J. Y.; Garimella, S. V.  Resistance Network-Based Thermal 

Conductivity Model for Metal Foams. Comp. Mater. Sci. 2010, 50, 622-632. 

34. Abbas, A.; Zhao, Y.; Zhou, J.; Wang, X.; Lin, T. Improving Thermal Conductivity of Cotton 

Fabrics Using Composite Coatings Containing Graphene, Multiwall Carbon Nanotube or 

Boron Nitride Fine Particles. Fibers and Polymers 2013, 14, 1641-1649. 

35. Stanković, S. B.; Popović, D.; Poparić, G. B. Thermal Properties of Textile Fabrics Made of 

Natural and Regenerated Cellulose Fibers. Polymer Testing 2008, 27, 41-48. 



 24 

36. Baxter, S. T. The Thermal Conductivity of Textiles. Proceedings of the Physical 

Society 1946, 58, 105. 

  



 25 

 

 

Figure 1: (a) Thermal conductivity of various forms of UHMW-PE measured in the literature and 

the present study. The thermal conductivity for each material is reported using a bar along the 

horizontal axis scale, with bars organized into groups of similar form and groups shown in order 

of increasing length scale. Details of the materials are listed in (b).  
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Figure 2: (a) Overview of the procedure for construction of plain-weave fabrics from flat yarn 

(Dyneema). Photographs of the (b) flat yarn (as received) with loosely bound individual fibers and 

(c) a woven fabric prototype sample when held in the miniature loom with warp and weft directions 

identified. (d) Top-view photograph of the woven fabric with inset showing optical microscope 

images of portions of the weave at high magnification. The weft yarn number density is 4-5 times 

higher compared to that of the warp yarns resulting in a weft-faced plain-weave pattern in which 

the warp is almost completely covered by the weft. Thermal characterization is conducted along 

the high density weft yarn direction. 
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Figure 3: Schematics of the experimental setup. (a) The assembly consisting of the crossing sample 

and heater wire on a heat sink with a circular opening are placed in a vacuum chamber to minimize 

convection losses (see top-down view in inset). (b) Illustration of the energy balance in the wire–

sample cross-structure arrangement; all of the heat conducted into the junction from the left and 

right sides of the heater wire (𝑄𝐿 and 𝑄𝑅, respectively) and the heat generated in the junction region 

(𝑄𝑔𝑒𝑛) conducts into the sample (𝑄𝑇  and 𝑄𝐵). (c) Expected temperature profiles of the wire and 

the sample which are measured during the IR experiments. The heat rates (𝑄𝐿 and 𝑄𝑅) and 

temperature gradients ((𝑑𝑇 𝑑𝑦⁄ )𝑇 and (𝑑𝑇 𝑑𝑦⁄ )𝐵) are calculated from these profiles. 
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Figure 4: (a) IR temperature map of the wire–yarn experiment at a current input of 220 mA. 

Temperatures shown are based on corresponding emissivity values of the nichrome wire and the 

yarn, within the regions as indicated. (b) The corresponding temperature profiles used to extract 

the heat rates and sample temperature gradients are also shown. Representative error bars in the 

experimental temperature data are shown in cyan near the center of each profile. (c) Heat flux as 

a function of sample temperature gradient at different levels of input current for two different yarn 

samples. The slope of the linear fit across all power levels yields the thermal conductivity of the 

yarn sample. Error bars indicate the calculated uncertainty in heat flux and temperature gradient. 

Note that uncertainty in the sample temperature gradient is smaller than the data point width. 
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Figure 5: (a) Representative in situ IR images of yarns in the experimental setup at two different 

twist levels characterized by a surface helix angle of ~8° (low twist) and ~30° (high twist). (b) 

Thermal conductance (product of yarn thermal conductivity and cross-sectional area, 𝑘𝑦𝐴𝑦) 

measured as a function of surface helix angle of the yarn. Variation of thermal conductance with 

twist is not very significant (<6%) for the range of twist levels evaluated.  
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Figure 6: (a) IR temperature map of the wire–fabric experiment at a current input of 300 mA. 

Temperatures shown are based on corresponding emissivity values of the nichrome wire and the 

fabric, within the regions as indicated, and (b) the corresponding temperature profiles. 

Representative error bars in the experimental temperature data are shown in cyan near the center 

of each profile. (b) Heat flux as a function of sample temperature gradient at different levels of 

input current for different experimental trials: Run 1 is performed with the thermal gap pad 

between the wire and fabric for enhanced thermal contact, while Run 2 is performed without this 

pad. The slopes of the linear fit from both runs are extracted to calculate an average fabric thermal 

conductivity of ~9.5±0.6 Wm-1K-1.  
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Figure 7: (a) Schematic (top-view) of a plain-weave fabric showing the boundary conditions 

associated with the heat transfer nodal-network model to calculate the effective thermal 

conductivity of the fabric in the 𝑦 direction (along the blue yarns). (b) Schematic drawings of the 

plain-weave fabric cross-section, showing only the blue yarns that participate in heat conduction. 

These drawings illustrate the effective area-based packing fraction for a loose fabric (𝑙𝑦/𝑑𝑦 =  1) 
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as compared to a tight fabric (𝑙𝑦/𝑑𝑦 =  0.5). (c) Effective thermal conductivity as a function of 

𝑙𝑦/𝑑𝑦 as predicted by the reduced order model. The measured fabric thermal conductivity from 

the experiments is shown as a ‘star’ symbol and agrees well with the prediction from the reduced-

order model.  
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