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Abstract

The Flight Risk Assessment Tool (FRAT) was developed and is recommended by the Federal Aviation Administration to provide a
solution of proactively identifying and mitigating risk before each flight. General aviation (GA) operators are encouraged to adapt the
FRAT based upon specific operational characteristics. Currently, most safety management systems-compliant GA operators have
implemented various versions of FRATs with different operational purposes. However, the FRAT could be inappropriately implemented
because of the dynamic operational features of GA operations. The purpose of this study is to explore insights into potential approaches to
validate the FRAT that is used for flight risk assessment in routine GA operations. A FRAT from a flight school regulated under Title 14
Code of Federal Regulations Part 141 was used as a study case. In total, 1,832 sets of FRAT data were collected from flight operations
between November 2016 and February 2017. Confirmatory factor analysis (CFA) was adopted in this research. The CFA results indicated
that the studied FRAT model did not provide good fit with the root mean square error of approximation (RMSEA) 5 0.13, standardized
root mean square residual (SRMR) 5 0.08, comparative fit index (CFI) 5 0.98, and Tucker–Lewis index (TLI) 5 0.98. Based on the
modification indices, the studied FRAT model was restructured by removing 11 risk items from the original 33 risk items. The new model
fitted the data acceptably (RMSEA 5 0.07, SRMR 5 0.05, TLI 5 0.76, CFI 5 0.69). In addition, implications and directions for further
study are discussed.
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Introduction

Air transportation plays a critical role in driving the growth of the global economy. To maintain healthy development of
the air transport industry, adequate efforts must be invested in safety, security, efficiency, and sustainability of flight opera-
tions at the global, national, and regional levels (International Civil Aviation Organization [ICAO], 2016). With the
continuous development of aviation technology and managerial strategies, the overall safety of commercial air transport
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services has been enhanced dramatically over the past few
decades (National Transportation Safety Board [NTSB],
2014). As a major component of civil aviation, the general
aviation (GA) accident rate has indicated a decreasing trend
over the last few decades, but there were still 1,233 GA
accidents which involved 331 fatalities within the United
States in 2017 (NTSB, 2019).

Improvement of GA flight safety has been a challenge
for many years due to a variety of limitations of GA opera-
tions, such as an aged GA fleet, large scope of operational
purposes, and diverse pilot demographics. To enhance
GA safety, the safety management system is recommended
by ICAO, which should practically have the functions of
identifying safety hazards, assessing the associated risk
levels, developing and implementing remedial actions,
and continuously monitoring and regularly assessing the
appropriateness and effectiveness of safety management
activities (ICAO, 2018). However, considering that GA
accidents share fewer common accident causes presently,
it becomes more difficult to further enhance flight safety
by analyzing past aircraft accidents to develop preventive
measures reactively (ICAO, 2018). Therefore, ICAO
encourages aviation stakeholders to develop and imple-
ment more proactive approaches to supplement traditional
reactive safety management (ICAO, 2018). A proactive
safety management approach is accomplished by routinely
collecting and analyzing safety-related data and identifying
and mitigating the associated risk issues (ICAO, 2013;
Maurino, Reason, Johnston, & Lee, 1995).

The Flight Risk Assessment Tool (FRAT) was devel-
oped and is recommended by the Federal Aviation Admi-
nistration (FAA) as a proactive risk identification and
mitigation strategy (FAA, 2016). As a proactive safety tool,
the FRAT enables pre-flight hazard identification and risk
assessment, and assists pilots to make better go/no-go
decisions before each flight. Similar to other proactive
safety management strategies, the FRAT was particularly
developed for the GA community to improve flight safety.
As per the FRAT instruction from the FAA, GA operators
could flexibly modify the standard FRAT to better fit
specific operational characteristics as needed (FAA, 2016).
Currently, most safety management system-compliant GA
operators have implemented various versions of FRATs for
pre-flight risk assessment. However, there is no guideline
or publication providing best practices of modifying the
FRAT for GA operations. Therefore, the FRAT could be
inappropriately modified and ineffectively used in flight
risk assessment. The purpose of this study was to explore
insights into potential approaches to validate the fitness of
modified FRATs in routine GA flight risk assessment.

Literature Review

Hazards are intrinsic components of flight operations.
Through appropriate risk management processes, the

associated flight risk is expected to be identified and
possibly reduced to an acceptable level. In general, the risk
management process is comprised of three steps: hazard
identification, risk assessment, and risk mitigation and
monitoring. The hazard identification process allows rele-
vant personnel to identify hazards in a proactive manner.
Once hazards have been identified, associated risk level
should be evaluated in the process of risk assessment. The
risk assessment process involves analyses of the likeli-
hood and severity of identified hazards. From the perspec-
tive of pilots, risk assessment is a key component of the
aeronautical decision-making process (FAA, 2016). Risks
evaluated as being unacceptable must be mitigated before
a flight to reduce the severity and/or the likelihood of an
undesired bad outcome. Pilots should suspend flight acti-
vities associated with intolerable flight risks. For the last
step, appropriate mitigation measures should be developed
and implemented based upon the assessed flight risk.

Hazard identification and risk assessment have been used
as effective strategies to mitigate risk in many areas. In
aviation, a variety of approaches are being used by aviation
operators and organizations to identify and evaluate flight
risk. One of the most popular approaches to study aviation
risk is to analyze historical accident data to identify and
estimate the likelihood and severity of risk events. For
example, the European Space Agency’s risk assessment
strategy is based on the probabilistic evaluation of aircraft
accidents or incidents as the basis of risk management
(Preyssl, 1995). Janic (2000) and Lee (2006) presented
probabilistic models for risk assessment by treating the
pattern of accidents as a Poisson process. Shyur (2008)
developed a specified proportional hazard model consider-
ing the baseline hazard function as a quadratic spline
function to quantify human error-related risk. Those app-
roaches provide insights into overall risk level and safety
status of fleet operations relying on historical accident
data analysis. This is usually regarded as post-flight risk
assessment.

Pre-flight risk assessment is another type of strategy
highly encouraged by ICAO to assist pilots in making the
right decision by evaluating the risk for each flight (ICAO,
2013). One example of pre-flight risk assessment is use of
the Pre-flight Risk Assessment Score (PRAS). The PRAS
is a tool used to assess flight risk factors such as pilot
experience, operational environment, and human factors.
A pilot uses the go or no-go decision matrix to understand
the flight risk and make the corresponding flight decision.
The PRAS is recommended by the FAA for Helicopter
Emergency Medical Service to help pilots assess flight risk.
The use of the PRAS is also mandatory for Civil Air Patrol
flight operations (Thomas, Groke, & Handrahan, 2011; U.S.
Civil Air Patrol, 2018).

To promote pre-flight risk assessment in GA, the FAA
facilitated the development of the FRAT through the
General Aviation Joint Steering Committee for GA pilot
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pre-flight risk assessment (see Table 1) (FAA, 2016). As an
outcome of the FAA Safety Enhancement Project 42, the
FRAT is expected to enable proactive hazard identification
and risk assessment, helping pilots make better go/no-go
decisions before each flight (FAA, 2016).

As shown in Table 1, the FRAT lists a series of
questions designed to identify and quantify risk level for
each flight. The current version of FRAT proposed by the
FAA Safety Team (FAAST) is based on the PAVE check-
list, covering questions from the perspectives of pilot,
aircraft, environment, and external pressure (FAA, 2016).
The risk of each flight is evaluated by filling out of the
FRAT by pilots. Pilots are expected to check all applicable
items before each flight. A risk value is predetermined for
each item and counts into the total factor score if the item is
checked. The total factor score will be used to indicate the
general risk level for a specific flight. Therefore, operators
would have an overall view of the risk level and could call
off a flight if necessary.

Problem Statement

It is critical for pilots to identify hazards and have
knowledge of the associated risk level so that effective
mitigation strategies and right decisions could be made for
flight operations. The FAA recommends that operators and
pilots familiarize themselves with the FAAST-proposed
FRAT and the Advisory Circular 120-92B to decide to use
either the FAAST’s FRAT or a modified version based on
specific operational characteristics (FAA, 2007). Currently,
various versions of FRATs have been adopted and used
by GA operators in routine operations. For instance, in
comparison with the FAAST’s FRAT which assesses the
risk level from the perspectives of pilot, aircraft, environ-
ment, and external pressure, flight training schools may
modify FRATs to incorporate additional risk items and
different predefined risk values to better fit flight training
operational features. However, there are no guidelines or

literature to date regarding how to adapt the FRAT in
routine flight operations. Given the current situation
whereby the FRAT could be modified by operators with
no instruction or official guideline, it is possible that the
FRAT could be inappropriately modified and used in
routine flight risk assessment. Therefore, it is crucial to
investigate whether the FRAT is appropriately modified to
fit operational characteristics as the operator wishes. The
purpose of this study is to explore insights into potential
approaches to validate the FRAT in GA operations by
analyzing collected FRAT flight risk data from Purdue
University from November 2016 to February 2017.

Methodology

This section introduces the methods used in this study to
explore the use of confirmatory factor analysis (CFA) for
validating the fitness of modified FRATs in daily hazard
identification and flight risk assessment. A modified FRAT
based on the FAA publication was implemented for hazard
identification and flight risk assessment in daily flight
operations at Purdue University. Available FRAT data from
November 2016 to February 2017 were retrieved from the
Purdue fleet operations center for analyses. CFA is a type
of structural equation modeling specifically working with
measurement models, which could be used to investigate
the relationships between observed measures and latent
variables (Brown, 2014). CFA is one of the most used
statistical procedures to test whether a hypothesized model
fits the measured data (Kline, 2010). Numerous studies can
be found on the application of CFA to evaluate the fit of
a hypothesized framework to collected data or to validate
models. In this study, CFA was adopted to evaluate
whether the modified FRAT legitimately assesses flight
risk in daily flight operations. The studied FRAT model
works as the pre-specified hypothesized model; CFA was
applied to validate whether this FRAT fits the collected
data from flight operations.

Table 1
A simplified example of FRAT, adapted from the FAA Information for Operators 07015 (FAA, 2007).

Risk value Assessed value

Pilot qualifications and experience
1 Captain with less than 200 hours in type 5
2 First Officer with less than 200 hours in type 5
3 Single pilot flight 5
Operating environment
4 VOR/GPS/LOC/ADF (best approach available w/o vertical guidance) 3
5 Circling approach (best available approach) 4
6 No published approaches 4
Equipment
7 Special flight permit operation 3
8 MEL/CDL items (items related to safety of flight) 2
9 Special flight limitations based on AFM equipment limitations 2
Total factor score
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The FRAT of the Empirical Field

As described in the FAA Information for Operators
07015 and Advisory Circular 120-92B, it is up to an
operator to adapt a specific version of FRAT in routine
flight risk assessment. In this study, Purdue University
professional flight training fleet operations were used as
the empirical field. A modified FRAT (see Table 2) was
developed and implemented by the Purdue fleet operation
center for routine hazard identification and flight risk
assessment. The specific risk items and values were deter-
mined by relevant flight safety personnel. This FRAT and
collected flight risk assessment data were analyzed as a
study case for factorial validity using CFA.

The studied FRAT, shown in Table 2, must be filled out
by pilots before each flight, without knowing the risk value
of each item. The value of each item adds up to the total

factor score to indicate the overall risk level of the assessed
flight. Purdue flight safety rules require pilots to call off a
flight if the total factor score is higher than the threshold of
16 points.

Data Analysis

In this research project, CFA was explored to validate
the studied FRAT. Items of the studied FRAT are observed
measures. The upper level perspectives (pre-flight informa-
tion, flight operations, weather, and training flights) of
flight risk assessment could be regarded as latent variables
(Figure 1).

In Figure 1, all ellipses represent unmeasured variables.
The large ellipses are latent factors, whereas the smaller
ellipses are errors of measurement. The rectangles stand for
the measured variables, which are the items to be assessed

Table 2
The FRAT used at the empirical field.

Risk Value Flight Value

Pre-flight information
1 Solo flight (pre-private) 1
2 Student less than 50 flight hours 2
3 Student 50–150 flight hours 1
4 Instructor’s first semester teaching 1
5 Instructor has CFII or MEI 21a

6 Stress factor 2
Flight operations
7 Runway less than 4000 feet 2
8 Night landing 1
9 No precision approaches available at destination (IFR only) 2
10 Non-towered airport 2
11 Unfamiliar airport (departure) 2
12 Unfamiliar airport (destination) 2
13 Class C operations 1
14 Student has not flown in the last 2 weeks 2
15 Last sleep period (less than 4 hours) 3
16 Last sleep period (4 to 6 hours) 2
17 Last sleep period (6 to 8 hours) 1
18 Show time (between 7 and 8 a.m.) 2
19 Show time (after 6 p.m.) 3
20 Maintenance test flight 3
21 First flight after a Phase or 50hr inspection 3
Weather
22 Departure—MVFR 1
23 Departure—IFR 2
24 En route—turbulence forecasted along route 1
25 En route—thunderstorm forecasted 2
26 Arrival—MVFR 1
27 Arrival—IFR 2
28 Arrival—winds . 15 knots 1
Training flights
29 Behind flight schedule 2
30 Flying multiple approaches 2
31 Pattern work 1
32 Instructor or student back-to-back training 1
33 Class immediately before/after flight 1
Total factor score

Note. This version of FRAT is for the use of piston-engine aircraft operations.
aNegative value indicates that the corresponding item contributes to mitigating the overall flight risk.
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in the FRAT. The single-headed arrows are causal influ-
ences. The two-headed arrows associated with the latent
variables represent variances, while gk (k 5 1, 2, 3, 4)
represents the latent factors. li,j represents the factor
loading that item i loads on factor j and Var(ei) represents
the error variance of item i (MacCallum, 1995; McArdle &
Boker, 1990).

Like a factor in CFA, a construct is a theoretical con-
cept. For instance, pilot qualification and experience is a
construct manifested by eight items in the FAAST FRAT.
Different from correlation, multiple regression assumes that
variables are free of measurement error. The fundamental
asset of CFA in construct validation is that the resulting
estimates are adjusted for measurement error. Therefore,
CFA is expected to provide a stronger analytic result
compared to traditional methods that do not account for
measurement error (Brown, 2014).

In order to test the fitness of the studied FRAT model,
the assessment was conducted based upon the CFA
method. However, variables in the FRAT are not conti-
nuous, and each item of the FRAT has a predetermined
constant value and could be varied by operators. Only if the
item is checked by pilot does the risk value of that item
count into the total factor score. Therefore, the measure-
ment of variables in the FRAT is a categorical value of yes
or no. In this study, CFA is conducted with dichotomous
data. To prepare data for analysis, the measurement of an
item was first transformed into a binary value: 1 or 0. For
example, if the item was checked by the pilot, the value of

that item was assigned as 1; otherwise a 0 was assigned to
the item. However, Pearson correlations tend to under-
estimate the relationship between underlying continuous
variables that give rise to binary variables (Pearson, 1900;
University of California at Los Angeles, 2020). In that
case, the tetrachoric correlation coefficient is used to
measure the relationship between dichotomous variables
that represent categorized continuous variables. Therefore,
CFA was conducted on tetrachoric correlations that reflect
the associations among the FRAT items.

Results

Data Description

Historical flight risk assessment data were collected
using a modified FRAT at Purdue University from
November 2016 to February 2017. There had been no
major change regarding the flight operating procedures and
flight risk assessment methods across the period of the
data collection process. Analyses of historical data across
November 2016 to February 2017 were expected to ref-
lect reliable information. In total, 1,832 sets of data were
collected. The FRAT has been primarily used by pilots
enrolled in the Purdue professional flight program.
The collected data included the information of flight risk
assessment for flight training using Cirrus SR20 aircraft.
The frequencies of FRAT total factor scores are shown in
Figure 2.

Figure 1. The path diagram of the selected FRAT using CFA.
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As mentioned previously, a flight will be grounded if the
total factor score is above 16 points (including 16). In the
empirical field, the collected FRAT data indicated that no
flight was grounded during this period (from November 28,
2016 through February 21, 2017). To prepare data for CFA,
collected data were converted into binary format. Table 3
describes the summary statistics of the transformed binary
data.

Data in Table 3 show that two items have never been
checked in flight risk assessment, namely no precision
approaches available at destination and arrival—IFR. No
precision approaches available at destination indicates that
there is no available precision approach equipment at the
destination airport; arrival—IFR describes that instrument
flight rule (IFR) is required for arrival traffic. Therefore,
these two items were eliminated in the confirmatory factor
analysis since no data were observed. In addition to the two
items that had never been checked as described above,
runway less than 4000 feet, maintenance test flight, first
flight after a Phase or 50hr inspection, departure—IFR, en
route—turbulence forecasted along route, and en route—
thunderstorm forecasted are risk items that were checked
with low frequency (less than 1%). Runway less than 4000
feet describes a situation where either the takeoff or land-
ing runway length is less than 4,000 feet; maintenance
test flight indicates that the flight was for maintenance

inspection rather than a training flight; first flight after a
Phase or 50hr inspection shows the flight was the first
flight after finishing either a phase maintenance inspection
or 50hr maintenance inspection; departure—IFR shows
that instrument flight rule was required at departure airport;
en route—turbulence forecasted and en route—thunder-
storm forecasted indicate an undesired weather situation
was forecasted along the flight route.

Because the data came from a collegiate aviation flight
training school, the majority of flights were flown by
student pilots. In the collected FRAT data student less than
50 flight hours, student 50–150 flight hours, last sleep
period (6 to 8 hrs), and instructor has CFII or MEI were
four of the most frequently (greater than 20%) checked risk
items. The first three items describe the flight experience of
student pilots by cumulative flight hours and the fatigue
risk reflected by the last sleep period. Instructor has CFII
or MEI indicates that the instructor on the flight is certified
to teach instrument flying or multi-engine aircraft. This is
the only item in the model that shows a negative risk value,
which contributes to mitigating the total flight risk.

Parameter Estimation and Model Fit

Before conducting CFA, the tetrachoric correlation
coefficients were calculated to measure the relationship

Figure 2. Frequency of FRAT total factor scores.
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between dichotomous variables. A set of tetrachoric cor-
relations is shown in Table 4.

The studied FRAT framework is a four-factor model
with preflight information, flight operations, weather, and
training flight. The fitness of the model was evaluated
using fit index levels identified by reviewing previous
literature (Hu & Bentler, 1998, 1999). The indices include
the root mean square error of approximation (RMSEA),
comparative fit index (CFI), standardized root mean square
residual (SRMR), and the Tucker–Lewis Index (TLI). The
cutoff values for both RMSEA and SRMR were 0.05 as the
ideal situation, while 0.08 was an acceptable value. In other
words, the model fits well if both RMSEA and SRMR #

0.05, and the model is acceptable if both RMSEA and
SRMR # 0.08. For CFI and TLI, the cutoff values were
0.95 as ideal, while 0.90 was an acceptable value. The

model fits well if both CFI and TLI > 0.95, and the model
is acceptable if both CFI and TLI > 0.90. The goodness-of-
fit indices of CFA are shown in Table 5.

As shown in Table 5, the studied FRAT model does not
provide a good fit. By reviewing the result of measurement
loadings and the maximum likelihood estimation for the
measurement in this model, this result suggests that the
model might be improved by removing several items. In
total, the following nine items were removed: last sleep
period (less than 4 hrs), last sleep period (4 to 6 hrs), show
time (between 7 and 8 a.m.), maintenance test flight, first
flight after a Phase or 50hr inspection, en route—turbu-
lence forecasted along route, en route—thunderstorms
forecasted, pattern work, and class immediately before/
after flight. CFA was conducted after removing the above
nine items; the model fit indices are shown in Table 6.

Table 3
Descriptive statistics of collected data.

Items
Frequency of
being checked % Items

Frequency of
being checked %

Solo flight (pre-private) 105 5.73 Student has not flown in the
last 2 weeks

153 8.35

Student less than 50 flight hours 403 22.00 Last sleep period (less than 4 hrs) 33 1.80
Student 50–150 flight hours 749 40.88 Last sleep period (4 to 6 hrs) 170 9.28
Instructor’s first semester teaching 76 4.15 Last sleep period (6 to 8 hrs) 997 54.42
Instructor has CFII or MEI 466 25.44 Show time (between 7 and 8 a.m.) 159 8.68
Stress factor 124 6.77 Show time (after 6 p.m.) 32 1.75
Runway less than 4000 feet 8 0.44 Maintenance test flight 4 0.22
Night landing 72 3.93 First flight after a Phase or

50hr inspection
7 0.38

No precision approaches available at
destination

0 0 Departure—MVFR 39 2.13

Non-towered airport 73 3.98 Departure—IFR 3 0.16
Unfamiliar origin airport 152 8.30 En route—turbulence forecasted

along route
2 0.11

Unfamiliar destination airport 50 2.73 En route—thunderstorms
forecasted

1 0.05

Class C operations 67 3.66 Arrival—MVFR 23 1.26
Arrival—IFR 0 0 Arrival—winds . 15 knots 65 3.55
Behind flight schedule 181 9.88 Flying multiple approaches 140 7.64
Pattern work 349 19.05 Instructor or student back-to-back

training flights
123 6.71

Class immediately before/after flight 209 11.41
Minimum Median Maximum

Total factor score 21a 3 15

aNegative value indicates that the corresponding item contributes to mitigating the overall flight risk.

Table 4
Tetrachoric correlations among the first six items.

Solo flight
(pre-private)

Student less than
50 flight hours

Student 50–150
flight hours

Instructor’s first
semester teaching

Instructor has
CFII or MEI

Stress
factor

Solo flight (pre-private) 1
Student less than 50 flight hours 0.4982 1
Student 50–150 flight hours 0.1908 20.0000 1
Instructor’s first semester teaching 0.0330 0.3018 0.1151 1
Instructor has CFII or MEI 0.2540 0.4168 0.2109 0.2045 1
Stress factor 0.3574 0.2753 0.2466 0.0581 0.03120 1
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Considering the result for the goodness-of-fit indices, the
improved FRAT model, as shown in Table 7, is acceptable
to fit the data. However, the correlations between four
factors, especially the higher correlation between training

flight, pre-flight information, and flight operations, suggest
that flight risk items might be overlapped across pre-
flight information, flight operations, weather, and training
flights.

Table 5
Goodness-of-fit indices for original FRAT model.

Fit indices Value Interpretation

RMSEA (95%) 0.13 Ideal value # 0.05, acceptable value # 0.08
SRMR 0.08 Ideal value # 0.05, acceptable value # 0.08
TLI 0.99 Ideal value > 0.95, acceptable value > 0.90
CFI 0.98 Ideal value > 0.95, acceptable value > 0.90
x2 (df) (p) 1891.23 (p , 0.01) To accept H0, model fits data (p . 0.01)

Table 6
Goodness-of-fit indices for improved FRAT model.

Fit indices Value Interpretation

RMSEA (95%) 0.07 Ideal value # 0.05, acceptable value # 0.08
SRMR 0.05 Ideal value # 0.05, acceptable value # 0.08
TLI 0.76 Ideal value > 0.95, acceptable value > 0.90
CFI 0.69 Ideal value > 0.95, acceptable value > 0.90
x2 (df) (p) 918.17 (p 5 0.0113) To accept H0, model fits data (p . 0.01)

Table 7
CFA model of FRAT.

Loading Standard error

Pre-flight information
1 Solo flight (pre-private) 0.88 0.019
2 Student less than 50 flight hours 0.84 0.055
3 Student 50–150 flight hours 0.72 0.026
4 Instructor’s first semester teaching 0.69 0.007
5 Instructor has CFII or MEI 0.78 0.013
6 Stress factor 0.71 0.007
Flight operations
7 Runway less than 4000 feet 0.62 0.012
8 Night landing 0.75 0.019
9 Non-towered airport 0.77 0.023
10 Unfamiliar airport (departure) 0.72 0.033
11 Unfamiliar airport (destination) 0.83 0.023
12 Class C operations 0.91 0.032
13 Student has not flown in the last 2 weeks 0.87 0.004
14 Last sleep period (6 to 8 hours) 0.78 0.006
15 Show time (after 6 p.m.) 0.69 0.009
Weather
16 Departure—MVFR 0.74 0.105
17 Departure—IFR 0.69 0.003
18 Arrival—MVFR 0.71 0.056
19 Arrival—winds . 15 knots 0.90 0.007
Training flights
20 Behind flight schedule 0.88 0.089
21 Flying multiple approaches 0.91 0.025
22 Instructor or student back-to-back training 0.82 0.039

Factor correlation Pre-flight information Flight operations Weather Training flights
Pre-flight information 1
Flight operations 0.24 1
Weather 0.09 0.34 1
Training flights 0.38 0.42 0.15 1
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Discussion and Conclusion

Pre-flight risk assessment is a critical component of flight
operations, which helps prevent aviation operations with
unacceptable risks. Although GA operators can hardly
anticipate all possible hazards, pre-flight risk assessment
enables pilots to identify hazards and assess risk level before
takeoff. The FRAT, as a pre-flight risk assessment tool, is
highly encouraged by the FAA (2016). It is important to note
that diverse versions of FRAT are being used by a variety of
GA operators. However, the lack of guidelines and instruc-
tions for appropriate implementation of the FRAT leaves its
effectiveness uncertain. This study, from a statistical per-
spective, explored CFA as a possible validation approach for
the use of FRATs in GA operations.

In this study, CFA was used to test whether flight
operational data fitted a hypothesized FRAT measurement
model. A FRAT implemented at Purdue University was
investigated with historical FRAT data collected from the
empirical field. Descriptive statistics of the transformed
binary data were presented. Based on the CFA results, the
studied FRAT model does not show an ideal fit of collected
data (RMSEA 5 0.13; SRMR 5 0.08). The CFA result
suggests that an improvement of the studied FRAT might
lead to a better fit of the data. An improved FRAT model
was constructed by removing eleven items from the studied
FRAT model based on the fit indices. The improved FRAT
model shows an acceptable fit (RMSEA 5 0.07; SRMR 5

0.05). However, the improved FRAT model should be
further examined from the perspective of flight safety
management personnel. CFA was studied as an option for
aviation operators to validate whether the implemented
FRAT model fitted the actual flight operations, as well as to
help further develop a more effective FRAT. In general,
this study is expected to provide references for GA
operators in validating and improving their implementation
of the FRAT. However, limitations were observed in this
study, and further studies are necessary to include the con-
sideration of both the FRAT framework and the weight of
FRAT items into validation.

Limitations

A few limitations were observed in this study.

1. CFA only considered validation by examining whether
the model framework fitted the data. The value of each
item (equivalence of weight) was not considered in this
study.

2. The analytic results suggested removal of a few items
from the studied FRAT to better fit the data. However,
most of removed items were rarely checked by pilots as
unusual events. A simple removal of those items might
exclude important unusual risk factors.

3. The flight operations in the empirical field are pri-
marily flight training activities. Education of proper

use of the FRAT for students was unknown. The
collected data might only reflect the characteristics of
student pilots and might have resulted in biased study
results.
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