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Abstract 

Machine learning using convolutional neural networks (CNNs) is investigated for the 

imaging of sparsely sampled seismic reflection data. A limitation of traditional imaging 

methods is that they often require seismic data with sufficient spatial sampling. Using 

CNNs for imaging, even if the spatial sampling of the data is sparse, good imaging results 

can still be obtained. Therefore, CNNs applied to seismic imaging have the potential of 

producing improved imaging results when spatial sampling of the data is sparse. The 

imaged model can then be used to generate more densely sampled data and in this way be 

used to interpolate either regularly or irregularly sampled data. Although there are many 

approaches for the interpolation of seismic data, here seismic imaging is performed directly 

with sparse seismic data once the CNN model has been trained. The CNN model is found 

to be relatively robust to small variations from the training dataset. For greater deviations, 

a larger training dataset would likely be required. If the CNN is trained with a sufficient 

amount of data, it has the potential of imaging more complex seismic profiles. 

 

Keywords: Seismic inversion; Machine learning; Convolutional neural networks; 

Interpolation of seismic data 
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1. Introduction 

In this study, machine learning using convolutional neural networks (CNNs) is 

applied for the imagining of seismic reflection data. CNNs have had a number of successful 

applications for image analysis in different fields (LeCun et al., 2015), and are modeled 

after the structure of visual systems (Hubel and Wiesel, 1962). Fukushima et al. (1982) 

proposed a neural network with a multi-layer structure as a predecessor of CNNs (Bhandare 

et al., 2016). An early example of CNNs was given by LeCun et al. (1998) and used to 

classify handwritten letters from patterns of digital pixels. It was however limited by the 

speed of computing at that time. With the development of machine learning algorithms and 

the availability of sufficient computational resources in recent years, CNNs have become 

increasingly popular and more accessible for image analysis. Efficient ways to train CNNs 

using GPU computing has also been developed (Chellapilla et al., 2006; Hinton et al., 2006; 

Bengio et al., 2007). In 2015, the Google Brain Team implemented an open-source math 

library called TensorFlow for machine learning applications, including the use of CNNs 

(Abadi et al., 2016). Keras, a high-level open source neural network library written in 

Python, was also released in 2015 (Chollet, 2015). The Keras library provides a user-

friendly set of tools for the building and training of neural network and has been fully 

integrated into the TensorFlow framework. Here we apply CNNs with Keras using GPU 

computing. 
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There have been many successfully applications of CNNs in the science and 

engineering. For example, a common application in computer vision is for facial 

recognition. CNNs can extract features at different locations of the face as an input image 

and then output a number of feature maps (Bhandare et al., 2016). In the medical fields, 

researchers have been successful in detecting skin cancer using CNNs (Esteva et al., 2017). 

CNNs have also been applied to the game of Go (Maddison et al., 2014; Clark et al., 2015) 

and has beaten many of the Go masters in the world since 2015.  

Given the successful applications of CNNs in other scientific fields, they are 

becoming increasingly popular for solving problems in the geosciences. CNNs provide 

new ways for high-performance automatic interpretation, complex relationship modeling 

and data-driven information extraction of geoscience data (Bergen et al., 2019) 

Convolutional neural network have been designed for earthquake identification which is 

faster and more sensitive than traditional methods for detecting induced seismicity (Perol 

et al., 2018). Neural networks have also been trained to automatically identify seismic 

waveforms and identify first breaks of seismic data (Yuan et al., 2018). 

CNNs are also showing potential for solving inverse problems in imaging such as 

for image denoising, reconstruction and interpolation (McCann et al., 2017). However, 

CNNs have only recently been used in seismic data processing. Support vector regression 

(SVR) has been applied to reconstruct sparsely sampled seismic data by Jia et al. (2017). 

Li et al. (2019) successfully built deep neural networks (DNNs) seismic data inversion for 
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time-series. Wang et al. (2018) interpolated seismic data for missing traces by developing 

a CNN-based residual learning network. 

In the energy industry, an important problem is the identification of salt bodies in 

the subsurface. The TGS Salt Identification Challenge was a Kaggle competition to identify 

the boundaries of salt deposits based on selected seismic images (TGS Salt Identification 

Challenge, 2018). The traditional interpretation of seismic data is an important and time-

consuming part of the exploration workflow, but it is greatly dependent on experienced 

interpreters. It also relies on high-performance computational resources (Waldeland et al., 

2018; Araya-Polo et al., 2018). In addition, manual interpretation is highly time-consuming 

and subject to human bias (Di et al., 2018).  

In this paper, we first generate synthetic zero-offset seismic reflection data from 

simple subsurface interface models. A CNN model is then built based on the U-net 

architecture to automatically image the seismic data. The input images are the seismic 

reflection data and the goal is to output the imaged subsurface models. The trained CNN 

is robust to small variations from the training dataset, but for larger deviations a larger 

training dataset would likely be required. If the CNN is trained with a sufficient amount of 

data, it should potentially be capable of imaging more complex data. Here we also use 

CNNs to image sparsely regularly and irregularly sampled seismic data. Although there are 

many approaches for the interpolation of seismic data, here seismic imaging is performed 

directly with sparse seismic data using a CNN model. 
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2. The U-net Architecture 

The CNN architecture used in this study is the U-net which is a fully convolutional 

network developed earlier for biomedical image segmentation problems (Ronneberger et 

al., 2015). This convolutional network can work with fewer training images but still 

produce accurate image segmentations (Ronneberger et al., 2015). The U-net is an encoder-

decoder neural network architecture consisting mainly of two paths, the contracting path 

(encoder) and expanding path (decoder). Each block in the two paths contains different 

sub-layers (Figure 1). The contracting path consists of repeated application of convolutions, 

activation functions, max pooling and dropout operations which capture important features 

from the input images. The expanding path constructs the high-resolution feature maps by 

combining low-resolution feature maps and spatial information from the contracting path 

and includes several repeated layers of transposed convolution, concatenation, dropout and 

convolution operations. 

 

2.1 The Contracting path 

The contracting path is typical of convolutional neural networks. Here we use four 

blocks in the contracting path where each block contains four layers (Figure 1). The first 

two layers in each block are convolutional layers, where the kernels (filters) are 3x3. The 

stride (the steps to skip in the convolution operation) is 1. Each convolutional layer includes 

an activation function called a Rectified Linear Unit (ReLU). This layer serves the purpose 
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of extracting the features from the input images. For all the 3x3 convolutional layers in this 

architecture, each edge of the input images is zero-padded by one pixel so that the output 

feature map size is the same as the input size. The weights and the bias are two important 

sets of learnable parameters from the convolutional layers. The weights are the values of 

the kernels. The bias is a parameter added after a convolution output before passing it to 

the nonlinear activation function (a ReLU). Figure 2 shows how each convolutional layer 

is configured. The third layer of each block is a 2x2 max pooling layer which halves the 

matrix size in order to reduce the number of parameters in the layer. For example, the 

original figure size is 128x128 and after the first max pooling layer is reduced to 64x64. 

The fourth layer of each block is a dropout layer. It is designed to randomly drop out nodes 

during the training process and serves the purpose of reducing overfitting for deep neural 

networks. The dropout rate that we use here is 0.5 which means it will randomly drop out 

50% of the nodes for this step. 

After the first contracting block extraction, the parameters are sent to the next 

contracting block and the process is repeated for each block. At the same time, the number 

of kernels after each block doubles so that the architecture can learn the complex image 

features effectively. After the contracting path, there are two padded convolutional layers 

with 3x3 kernels following the fourth contracting block. Each is followed by an activation 

function-Rectified Linear Unit (ReLU) and these mediate between the contracting path and 

expanding path (Figure 1). 
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2.2 The Expanding path  

The expanding path has four blocks, and each expanding block has five layers 

(Figure 1). For each block in the expanding block, the first layer is a transposed 

convolutional layer (a deconvolution layer) and is designed to up-sample the feature maps 

from low resolution to higher resolution. The kernel (filter) sizes are 3x3, and the stride is 

2. The transposed convolutional layers with 3x3 kernels are zero-padded by one pixel. The 

input size is 8x8 in the first transposed convolutional layer and the output size is 16x16. 

The second layer of each expanding block is a concatenate layer which concatenates the 

feature maps from the contracting path to the expanding path at the same level. This action 

can get localization information from the contracting path and help to reconstruct high 

resolution feature maps in the expanding path. For example, the first block in the expanding 

path concatenates with the fourth block in the contracting path. The third layer of each 

expanding block is a dropout layer and the dropout rate is set to 0.5. The fourth and fifth 

layers of each expanding block are padded convolutional layers. The kernels are 3x3 and 

the stride is 1. The activation function for each convolutional layer is a Rectified Linear 

Unit (ReLU). The number of kernels after each expanding block now halves in contrast to 

the contracting blocks. After the first block expansion, the parameters are sent to the next 

block and the process is repeated. After four expansion blocks, the figure size is 128x128 

which is the same as the original image size (Figure 1). 
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The last layer after the expanding path is the output layer which is a 1x1 padded 

convolutional layer with a 1x1 kernel and a stride of 1 and this maps the feature maps from 

8 to 1. The activation function here is a sigmoid (Han et al., 1995), and the output of the 

sigmoid function is between 0 and 1 and can be interpreted as a probability. 

The neural network then computes the loss function which measures the average 

difference between the predicted values and the true subsurface interface models. The 

lower the value of the loss function, the more correct the prediction is. An optimizer 

(optimization algorithm) is then applied to estimate the model parameters (kernel weights 

and biases) that minimizes the loss function. The parameters of the neural network are then 

iteratively updated using a backpropagation algorithm (Rumelhart et al., 1986). The 

iterations are repeated until the loss function reaches a global minimum.  

 

3. Synthetic Data 

We first build subsurface models and compute synthetic zero-offset synthetic 

seismic reflection data. The synthetic seismic reflection data are generated using the 

Gaussian beam modeling code Triseis in the Seismic Un*x package (Stockwell et al., 1999). 

 

3.1 Subsurface interface models and reflection seismic profiles 

For the simple interface models considered here, we set the horizontal distance of 

the subsurface interface model from -1 km to 5 km, and from 0 km to 4 km to compute the 
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corresponding reflection profiles. The depth range of the subsurface interface models is 

from 0 km to 3 km. In order to create models with different interface shapes, there are 5 

interface control points with horizontal distance intervals from 0 km to 4 km and 2 fixed 

points at -1 km and 5 km. Each control point can move up and down at depths of 1.1, 1.3, 

1.5, 1.7, 1.9 km and the two fixed points at the beginning and the end are at the depth of 

1.5 km. Therefore, there are 55 or 3125 subsurface interface models and 3125 

corresponding synthetic seismic reflection profiles (Figure 3). The upper layer “sloth” 

(inverse of the velocity squared) is 0.25 s2/km2 (or a velocity equals to 2 km/s) and the 

lower layer sloth is 0.1 s2/km2 (or a velocity equals to 3.16 km/s).  

When computing the zero-offset seismic reflection profiles, the horizontal range is 

from 0 km to 4 km along the surface, including 101 traces with a horizontal distance 

interval of 0.04 km. Each trace has 101 time samples with a time sampling interval of 0.03 

s. For the Gaussian beam modeling, the first ray takeoff angle is set at -55°and the last ray 

takeoff angle is 55°. To avoid possible aliasing, the peak frequency of the Ricker wavelet 

is set to 4 Hz. For the 3125 subsurface interface models, corresponding seismic reflection 

profiles are generated in this way. 

 

3.2 Dataset preprocessing 

The subsurface interface model used in the Gaussian beam modeling code is 

converted to a gridded model using the code tri2uni in Seismic Un*x and the gridded 
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subsurface interface models are then stored as binary files. The seismic data generated from 

Seismic Un*x are also stored as binary files. The models and computed seismic reflection 

data are then randomly divided into 1875 (60%) for the training dataset, 625 (20%) for the 

validation dataset and 625 (20%) for the test dataset. The training dataset is initially used 

to estimate the parameters of the neural network model. The validation dataset is then used 

to evaluate the performance of the neural network model fit from the training dataset and 

can be used as an indicator if the neural network model is being overfit by the training 

dataset. The test dataset is then used for evaluating the final neural network model, where 

these data have not been used in the training process. 

Since data normalization can accelerate neural network training and avoid local 

minima of the loss function (Ioffe et al., 2015), the sloth values of the subsurface models 

are normalized to 0 (for 0.1 s2/km2) and 1 (for 0.25 s2/km2) and the amplitude data which 

contain positive and negative values are scaled to a range from -1 to 1 by dividing by the 

maximum absolute value of the seismogram datasets. For the imaging here, the velocities 

are assumed to be known from earlier processing steps of the data, and here we are only 

imaging the structure aspects of the model. This is similar to classical seismic migration 

imaging where the velocity model is given prior to imaging for the structure.  

 

4. Model Training 

4.1 Loss function and metrics 
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The performance of CNNs in this study is measured and correspondingly optimized 

by using a binary cross entropy loss function. For each pixel in the predicted model, the 

values are interpreted as a probability from 0 to 1. For this example, 1 represents the upper 

layer and 0 represents the lower layer. The binary cross entropy loss function is given by: 

L = −[ylog(p) + (1 − y) log(1 − p)] 

where y is the true value (true distribution) and p is the predicted distribution. In our case, 

y is 1 and p is the predicted probability of upper layer. (1-y) is equal to 0 which is the true 

value of lower layer and (1-p) is its predicted probability. The binary cross entropy loss 

function as used in the image segmentation is the average evaluation of the class prediction 

for each pixel in the predicted models and is used to optimize the neural network.  

Metric functions are used to evaluate the performance of the neural network. 

Although these can also be used as loss functions, the evaluation results of the metric 

functions are not used to train the neural network. Here we choose binary accuracy and the 

dice coefficient as metric functions (Dice, 1945; Sørensen, 1948).  

The binary accuracy gives the percentage of correctly classified pixels in the images 

and is given by: 

Binary accuracy =
(TP + TN)

(TP + TN + FP + FN)
 

where TP (true positive) is the number of pixels that successfully predict the upper layer, 

TN (true negative) is the number of pixels that correctly predict the lower layer. FP (false 
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positive) is the number of pixels that wrongly recognize the upper layer as lower layer and 

FN (false negative) is the number of pixels which fail to predict the lower layer. 

The dice coefficient, also known as the dice score or F1-score, measures the overlap 

of the true binary subsurface interface models and the predicted models. The dice 

coefficient is given by:  

Dice coefficient =
2TP

2TP + FP + FN
 

where the TP, FP, FN are the same as for the binary accuracy. 

 

4.2 Starting kernels (filters)  

Kernels work as feature extractors in the neural network. Their weights are initially 

random and then updated after each iteration of the training process. As mentioned 

previously, the number of kernels in the first contracting block need to be set first and the 

number of kernels after each block then doubles. Here we choose 2, 4, 8, 16, 32 for starting 

numbers of kernels. We then use an Adam optimizer to train the model (Kingma and Ba, 

2014). Figure 4 a), b), c) shows examples of the binary accuracy, dice coefficient and 

binary cross entropy loss function for different numbers of starting kernels. The results 

show that the convergence of binary accuracy, dice coefficient and binary cross entropy 

loss function are the fastest when the number of starting kernels is 8. 

 

4.3 Optimizers  
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The optimizers are designed to minimize the loss function in the training process. 

We compare several optimization algorithms in the model training: Adadelta (Zeiler, 2012), 

Adagrad (Duchi et al., 2011), Adam (Kingma and Ba, 2014) and Rmsprop (Hinton et al., 

2012). We use the default parameter values for each optimization algorithm in the Keras 

deep learning library. Here we set 8 starting kernels (filters) for the first block. Figure 4 d), 

e), f) compare the binary accuracy, dice coefficient and binary cross entropy loss functions 

where the starting kernels are set to 8 for the first block. The results show that the Adam 

algorithm has the fastest convergence for the binary accuracy, dice coefficient and binary 

cross entropy loss function and is used for our study. 

 

5. Results 

In the model training process, we set 8 starting kernels (filters) in the first block of 

the contracting path and choose an Adam optimizer to minimize the loss function since the 

accuracy of this combination converges faster than other combinations according to our 

tests. The binary accuracy, dice coefficient and binary cross entropy loss function for our 

model are shown in the Figure 5. The triangles are for the training dataset and the squares 

are for the validation dataset. 

The neural network model is implemented in Keras and is trained using a NVIDA 

RTX 2070 graphics card on a single workstation. The batch size (the number of training 

samples used to train the neural network in a single batch) is set to 32 and the epoch (the 
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number of times that the entire training dataset is used to train the neural network) is set to 

40. Since the neural network can’t pass through the entire training dataset all at once, the 

training dataset is randomly divided into several batches by the defined batch size, and all 

the batches pass through the neural network for one epoch. The training dataset is then 

randomly separated again, and the process is repeated in the next epoch. In Figure 5, we 

see that the model only needs 5 epochs to get a high accuracy and after that the accuracy 

increases slowly. The training process stops at 35 epochs after applying an early stopping 

regularization with a patience (the number of epochs before stopping the training process 

if the model hasn’t improved) of 10. This means that the binary accuracy and the binary 

cross entropy loss function don’t improve after 25 epochs. The total training process takes 

approximately 2 minutes for a NVIDA RTX 2070 GPU on single workstation. We 

performed similar computations on the larger Purdue Gilbreth GPU Cluster with NVIDA 

Tesla V100 GPUs. Although the results were faster, they were limited by the user 

allocation limits on the larger machine. 

Figure 6 shows several examples for the imaged models using the trained neural 

network. For the given seismic profiles shown on the left, the true models are shown in the 

middle and the imaged models are shown on the right. As can be seen, the trained neural 

network does an excellent job of estimating the imaged models from the seismic profiles. 

Figure 7a shows a seismic profile where the upper layer velocity of the model is 

10% higher than the models used to generate the seismic profiles in the training dataset. 
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Figure 7b shows the true subsurface interface model with the correct velocity model and 

Figure 7c shows the CNN imaged model resulting in a slightly elevated interface from the 

true model.  

Figure 7d shows a seismic profile with 10% Gaussian noise added which is not 

included in the training dataset. Figure 7e shows the true subsurface interface model and 

Figure 7f shows the CNN imaged model from the noisy seismic data in Figure 7d. In this 

case the model is well imaged by the CNN.  

Figure 7g shows a seismic profile from a model not included in the training dataset 

by adding a depth of 0.7 km to the interface depths. The true model is shown in Figure 7h) 

and the CNN imaged model is shown in Figure 7i. In this case the average depth of the 

interface is correct, but the details of the imaged interface have some discrepancies with 

the true model in Figure 7b. Nevertheless, the overall shape and depth of the CNN imaged 

model is similar to the true model.  

From these examples it can been seen that the CNN model is relatively robust for 

small variations from the training dataset. However, larger deviations from the training 

dataset would likely require a larger training dataset. 

Traditional migration methods are sensitive to the spatial sampling of the data. In 

order to get the best resolution of the subsurface images, the seismic data needs to be 

sufficiently sampled prior to migration imaging. Here we use the migration code Sustolt in 

Seismic Un*x and show several examples of the migration of seismic profiles with a 
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different number of traces (Figure 8). For these examples, when using 51 and 101 traces, 

accurate migration images can be obtained. However, for fewer traces, aliasing effects 

substantially degrade the images. 

In order to see how the convolutional neural networks (CNNs) perform for a 

different number of traces, we input seismic profiles with 5, 9, 17, 26 and 51 traces with 

larger station spacings to the trained CNN model based on the seismic profiles with 101 

traces. Figure 9 shows the seismic profiles with a different number of seismic traces, 9, 17 

and 26. The corresponding imaged interfaces comparing with true interfaces are given in 

the Figure 10. The comparisons show that when there are just 9 traces, the CNN results are 

fair but are still better than the results from seismic migration. When the number of traces 

is 17, the CNN results are improved but still have slight differences with the true interfaces. 

When the number of traces is 26, the CNN results are now very good and almost the same 

as the true models. The evaluation of the results of how well the CNN model trained using 

the 101 traces dataset performs on datasets with a different number of traces is given in 

table 1. 

The imaged models from the trained CNN model when the number of regularly or 

irregularly sampled seismic traces is 26 are then used to create new more densely sampled 

seismic reflection profiles in Figure 11. Figure 11 a), d), g) show sparse seismic profiles 

where the number of regularly sampled seismic traces is 26. Figure 11j shows sparse 

seismic data when the traces are irregularly sampled. Figure 11 b), e), h), k) are the 
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interpolated seismic data from the CNN imaged models and Figure 11 c), f), i), l) are the 

true seismic data when the number of seismic traces is 101. As can be seen, the CNN 

provides interpolation capabilities which can prove useful in cases without a sufficient 

spatial sampling needed for traditional migration imaging methods. Although there are a 

number of approaches for the interpolation of seismic data (for a survey see Chen et al., 

2019), for the approach followed here the CNN model is used to directly image the sparse 

seismic data. Although the training process requires some computational and data 

resources, once the CNN is trained the imaging and interpolation processes are very fast. 

 

6. Discussion and Conclusions 

We have shown that machine learning with a CNN U-net architecture works well 

for the seismic imaging test cases given here. A limitation of traditional migration imaging 

methods is that they often require sufficient spatial sampling of the data. Although there 

are a number of approaches for the interpolation of seismic data (Chen et al., 2019), a 

novelty of the approach used here is that imaging can be performed directly on sparse 

regularly or irregularly sampled data once the CNN has been trained. Even when the spatial 

sampling of the seismic profiles is large, the CNN can still obtain good imaging results. 

Convolutional neural networks therefore have the potential of providing improved imaging 

results compared with traditional migration imaging methods when the spatial sampling is 

sparse. The CNN model is robust to the small variations from the training dataset. However, 
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for larger deviations a larger training dataset would likely be required. Since CNN is a kind 

of supervised learning, the parameters of CNN model are trained based on the most 

important features from training dataset. If the CNN is trained with a sufficient amount of 

data, the CNN has the potential of imaging more complex seismic profiles.  

There are several possible approaches in applying CNN to real seismic data. If 

enough data for a given region are available that have been previously imaged, then these 

data can be used for training and validation to obtain the parameters of the CNN model. 

The trained CNN can then be used for the imaging of new observed data. However, this 

assumes that the training data are obtained from regions that are sufficiently similar to that 

of the new observed data. 

A second alternative is to use synthetic data for the training and validation of the 

CNN. If fast forward modeling codes are used for the training and validation, as is done 

here using asymptotic beam codes, then this would result in an efficient approach for 

generating the parameters of the CNN for the imaging of the observed data. However, the 

synthetic data needs to be generated for models that are sufficiently similar to the real 

subsurface structures that result in the observed data. 

For either alternative, if the CNN model can still perform well for real seismic data, 

which are much more complex, then once the training and validation have been performed, 

then very fast seismic imaging can be performed. It can also potentially reduce the amount 
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of data required for seismic imaging and at the same time be used to interpolate sparse data 

to a finer grid. 
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Table 1 

 

 

 

       Score 

Traces 

Binary cross entropy Binary accuracy Dice coefficient 

5 0.756 0.905 0.911 

9 0.257 0.953 0.965 

17 0.059 0.973 0.986 

26 0.027 0.977 0.990 

51 0.011 0.980 0.993 

101 

(From the test dataset) 0.009 0.981 0.994 

Table 1. Performance evaluation results of the model trained using a 101 trace dataset and 

applied to datasets with a different number of traces. For the binary cross entropy lower is 

better and for the binary accuracy and dice coefficient higher is better. 
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Figure 1. a) The architecture of the U-Net Convolutional Neural network in this study. The 

architecture contains two paths, the contracting path and the expanding path. The 

contracting path has four blocks each with several layers. The size of the feature maps 

halves after each block, and the number of feature maps doubles. There are then two 

convolution layers each with 3x3 kernels (filters) between the contracting path and the 

expanding path. The expanding path also has four blocks. The size of the feature maps now 

double and the number of feature maps halves after each block. There is then a final 1x1 

convolutional layer that maps the feature maps from 8 to 1. b) Each contracting block has 

two convolutional layers with 3x3 kernels, a 2x2 max pooling layer and a dropout layer 

with 50% dropout rate. c) An expanding block contains a transposed convolutional 

(deconvolutional) layer with 3x3 kernels, a concatenation layer that gets the spatial 

information from contracting blocks, a dropout layer with a 50% dropout rate and two 

convolutional layers with 3x3 kernels.  
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Figure 2. An example showing how a single convolutional layer with 3x3 kernels (filters) 

is configured. The MxMx1 size input image is zero padded by one pixel on each edge and 

is then convolved with N 3x3 kernels. These convolution operations result in N MxM 

convolution outputs. After the addition of a bias parameter, convolution outputs are input 

into an activation function (ReLU) resulting in N MxM feature maps for this layer. 
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Figure 3. A diagram for the building of the subsurface interface models. The triangles show 

the zero-offset location of the sources and receivers at the surface. For each subsurface 

interface model, there are 5 interface control points and 2 fixed points at the beginning and 

the end distance. Each control point can move up and down with depths of 1.1, 1.3, 1.5, 

1.7, 1.9 km and each fixed point is at a depth of 1.5 km. Therefore, there are 55 or 3125 

interface models and 3125 corresponding computed seismic reflection profiles. 
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Figure 4. The experiment scores of the CNN models for 10 epochs. Subplots a), b), c) are 

binary accuracy, dice coefficient and binary cross entropy loss function of the CNN models 

with a different number of starting kernels (filters) optimized using an Adam optimizer. 

The numbers of starting kernels are set in the first contracting block and double after each 

contracting block. They then gradually halve after each expanding block. Subplots b), e), 

f) are the binary accuracy, dice coefficient and binary cross entropy loss function of the 

CNN models with 8 starting kernels optimized using different optimizers. 
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Figure 5. The binary accuracy, dice coefficient and binary cross entropy loss function of 

CNN models with 8 starting kernels (filters) optimized by an Adam optimizer.  
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Figure 6. Imaged models from the trained neural network. Subplots a), d), g) give seismic 

profiles with 101 seismic traces. Subplots b), e), h) are true subsurface interface models 

and subplots c), f), i) are the corresponding imaged models from the CNN imaging given 

the input seismic profiles. 
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Figure 7. Imaged models from the trained neural network using seismic profiles with 

different effects not included in the training dataset. a) is the seismic profile when velocity 

model is inaccurately estimated, the upper layer velocity of the model is 10% higher than 

model used for the training dataset. d) is the seismic profile with 10% Gaussian noise to 

the data. g) is the seismic profile of a model that is outside the training dataset with an 

interface 0.7 km deeper than the training dataset. For each case b), e), h) are true subsurface 

interface models. For each case c), f), i) are the corresponding imaged models from the 

CNN given the input seismic profiles in a), d) and g). 
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Figure 8. Migration imaging results for seismic profiles with a different number of traces. 

Subplot a) is the seismic profile with 101 traces. Subplot b) is the corresponding subsurface 

interface model. Subplots c), d), e), f), g), h) are the migration imaging results where the 

numbers of seismic traces are 5, 9, 17, 26, 51 and 101, respectively.  
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Figure 9. Several seismic profiles with a different number of seismic traces. Subplots a), 

d), g) are seismic profiles when the number of seismic traces is 9. Subplots b), e), h) are 

seismic profiles when the number of seismic traces is 17. Subplots c), f), i) are seismic 

profiles when the number of seismic traces is 26. 
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Figure 10. The CNN imaged interfaces when the number of seismic traces is 9, 17 and 26, 

respectively, comparing with the true interfaces. The solid lines are CNN imaged interfaces 

and the dashed lines are the true interfaces. Subplots a), d), g) are comparisons of interfaces 

when the number of seismic traces is 9. Subplots b), e), h) are comparisons of interfaces 

when the number of seismic traces is 17. Subplots c), f), i) are comparisons of interfaces 

when the number of seismic traces is 26. 
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Figure 11. Interpolated seismic data obtained using the CNN imaged results from the 

trained CNN model when the number of regular and irregular seismic traces is 26. a), d), 

g) are sparse seismic data when the number of regularly sampled seismic traces is 26. j) is 

the sparse seismic data when the number of irregularly sampled seismic traces is 26. b), e), 

h), k) are the interpolated seismic data from the CNN imaged models, and c), f), i), l) are 

true seismic data when the number of traces is 101. 
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