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Robot Navigation Using Human Cues: A robot navigation system for
symbolic goal-directed exploration*

Ruth Schulz, Ben Talbot, Obadiah Lam, Feras Dayoub, Peter Corke, Ben Upcroft, and Gordon Wyeth!

Abstract—In this paper we present for the first time a com-
plete symbolic navigation system that performs goal-directed
exploration to unfamiliar environments on a physical robot.
We introduce a novel construct called the abstract map to link
provided symbolic spatial information with observed symbolic
information and actual places in the real world. Symbolic
information is observed using a text recognition system that
has been developed specifically for the application of reading
door labels. In the study described in this paper, the robot was
provided with a floor plan and a destination. The destination
was specified by a room number, used both in the floor plan and
on the door to the room. The robot autonomously navigated
to the destination using its text recognition, abstract map,
mapping, and path planning systems. The robot used the
symbolic navigation system to determine an efficient path to
the destination, and reached the goal in two different real-
world environments. Simulation results show that the system
reduces the time required to navigate to a goal when compared
to random exploration.

[. INTRODUCTION

Humans use navigational cues—door labels, sign posts,
and maps—to perform everyday navigation, particularly
when visiting a location for the first time. Human naviga-
tional cues are typically symbols—text or graphics—where
each symbol attributes a particular meaning to a location,
or perhaps indicates a relationship to a distal location. The
process of navigation using human cues is about finding
meaning in the symbols located in the environment, then
reasoning about those symbols to solve the navigation prob-
lem.

Robots, on the other hand, typically navigate by inte-
grating sensor information from range sensors, cameras and
odometers. Sensor information is geometric in nature, and
each measurement of the environment’s geometry must be
made to mesh with previous measurements; the well-known
problem of Simultaneous Localization and Mapping. A robot
that navigates using symbolic information from human cues
requires a different approach.

In this paper, we describe a robotic system that uses
symbolic human cues to perform goal-directed navigation
(see Fig. 1). The key contribution of the paper is the abstract
map: a construct that links symbolic spatial information from
multiple sources and robot observations to make inferences
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Fig. 1: Our robot after reaching its coffee delivery goal.
The robot, like a delivery person, started in an unfamiliar
environment and used observed symbolic information to
guide itself toward the room that ordered the coffee.

about the location of places. Sources of spatial information
in the abstract map might include floor plans, campus maps,
web queries, sketch maps, or even natural language state-
ments (“Peter’s office is S1104A”) and directions (“Access to
S1104A is via S1105”). Such symbolic spatial information is
potentially very rich, but may also be redundant, inconsistent,
or ambiguous. In the system described in this paper, the robot
reads a graphical floor plan containing textual room names,
and then uses wild text recognition to find door labels that
can guide the robot to its goal. A simple instance of an
abstract map resolves the symbolic information to infer the
goal’s location. We demonstrate the successful use of our
symbolic navigation system to navigate to an unseen goal in
two different real-world environments.

II. RELATED WORK

This section reviews related work on symbolic spatial in-
formation, existing robotic systems for wild text recognition,
and existing symbolic navigation systems.

A. Symbolic spatial information

Symbolic spatial information comes in many forms, in-
cluding natural language, route directions, gestures, signs,
and pictorial representations. In this paper, we focus on
information that can be independently used within buildings:
floor plans and signs indicating location. Locations of interest
are rooms, which are often named by numbers. Floor plans
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Fig. 2: Examples of symbolic spatial information a) Door
label, b) Floor directory

use the visual space in a picture to represent space between
geometric features such as rooms [1]. Non-metric sketch
maps have been shown to be an even more effective tool for
navigation than route directions [2], using the relationship
between spatial features to describe space. Room numbers
are often found both in floor plans and evacuation maps as
well as on the doors to the rooms and on signs providing
directions to commonly used rooms (see Fig. 2).

B. Wild text recognition

Symbolic spatial information is abundant in built environ-
ments, often as text visible to the camera of a robot exploring
the world. Although systems for recognizing printed text
are advanced, the application of such systems to read and
interpret visible text from a robot’s perspective remains a
current research problem [3].

There are multiple stages in a scene text reading pipeline.
First, text is detected within an image. This text is passed
on to the character recognition stage, which determines
individual letters and numbers in the text region. Finally, the
sequence of recognized characters is collected into a word,
and a dictionary of possible words may be used to correct
the outputs.

A method for text detection was introduced in [4] called
the stroke width transform. This uses the prior that text
characters are generally the same width throughout the
stroke. In [5], colour and geometrical features from de-
tected maximally stable extremal regions [6] were used
to determine whether candidate text regions contained text
characters. Leading wild text recognition pipelines, such as
PhotoOCR [7], treat the character recognition problem as
an object recognition problem. These methods use Convo-
lutional Neural Networks [8] as the recognition process and
train the networks with very large training sets (more than 2
million images). An alternative approach is to take the output
of the text detection step and pass it to a traditional document
Optical Character Recognition engine such as Tesseract [9].
Previous work in [3] showed that Tesseract is unreliable due

to false positives in texture images such as walls and fences.

C. Symbolic navigation systems

Symbolic navigation systems use symbolic spatial infor-
mation to aid navigation. The autonomous city explorer
project [10] was an early example of a symbol-based nav-
igation system, using pointing gestures alone to guide a
mobile robot to a requested destination in a city. The level of
interaction has been extended in Walter’s work [11] where
rudimentary language was used to build a semantic graph
of an environment. Fasola [12] and Kollar [13] on the other
hand, used labeled spatial maps and spatial object associa-
tion respectively to complete symbolic navigation directions.
Elements that are required by these systems, but which are
not guaranteed to be available to our system, include human
supervision, qualitative feedback, symbols which are already
grounded to data, or object recognition based classification,
making them not directly suited for the autonomous scope
of this research.

III. APPROACH

Consider a robot that is given the task of finding room
‘103’ and provided with a floor plan that shows the positions
of several nearby rooms (see Fig. 3a). One type of informa-
tion that can be extracted from a floor plan is the relative
location of each room, as indicated by the position of the text
labels. This information, an embedded graph, can be held in
an abstract map (see Fig. 3a overlay). The assumption is that
the robot will be able to match the text labels of rooms on
the floor plan to door labels in the world (such as Fig. 2a).

As the robot explores its world (see Fig. 3b), it builds up
a representation of the world, including a map and symbol
observations. Once symbolic information such as a door label
has been observed and internally stored, the robot can use the
information it conveys by transforming the information in the
abstract map into the robot’s representation of the world. The
system needs symbol observations from at least two different
doors to estimate the translation, scale, and rotation. Once
transformed, locations in the abstract map can be used in
goal-directed exploration. The robot can confirm that it has
reached ‘103’ by a symbol observation of the door label (see
Fig. 3c).

Symbolic spatial information is dealt with in the system
outlined in this paper in a novel spatial data structure
called the abstract map. Symbol observations are obtained
from the world through the vision system. Symbolic goal-
directed navigation is performed by linking the information
in the abstract map with symbol observations grounded
in the robot’s world map, and setting goals based on the
transformed information.

A. Storing symbolic information in an abstract map

The abstract map functions as a data structure to capture
pieces of symbolic spatial information into a meaningful
collection, and uses this information to facilitate symbolic
goal-directed exploration. In the experiment described in this
paper, we illustrate the concept by constructing an abstract



(a) The robot extracts information from the floor plan (black)
and constructs an abstract map (green).
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(b) After two symbol observations of door labels the robot
grounds its abstract map by performing an initial transform.
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(c) The robot uses its grounded abstract map to plan a path
to the destination, updating the transform as more door labels
are observed, and reaches the goal, indicated by observing the
door label 103.

Fig. 3: Exploration process, with the robot’s destination set
to ‘103’

map using just one source of symbolic spatial information—
a floor plan. We show the efficacy of the approach for
targeted exploration using a second source of symbolic
spatial information—door labels.

The information held in the abstract map is the relative
location of rooms as indicated by the pixel coordinates of
room label text in the provided floor plan. For the study
described here, this is a manual process; pixel locations are
calculated from mouse clicks on text in the floor plan image
and are stored together with the transcribed text. We are
currently developing an automated system for the extraction
of room locations from floor plans that are obtained either
from the internet or from the robot’s camera as it explores
the world. All rooms that are included in the abstract map are
compiled into a room-name dictionary. A vision system is
required to detect symbolic spatial information in the world
that matches items in the dictionary.

B. Vision system for wild text detection

In our vision system [14], designed for detecting door
labels, we begin by applying a guided filter [15] to the input
image from the camera as an edge enhancing technique. We
use the minimally stable extremal regions detector to find
potential text regions [6]. These regions are filtered using
the stroke width transform [4], as well as weak geometric
constraints such as minimum size and aspect ratio. The
bounding box of each region is expanded horizontally to
collect geometrically adjacent characters into words. We
then perform character recognition. This is done using a
convolutional neural network which has been trained on the
computer font subset of the 74k dataset [16]. Our network
(see Fig. 4) has an architecture similar to the one proposed
in [17] with 4 layers, 2 of which are convolutional and 2 are
fully-connected.

We trained the network for 25 epochs with small random
affine distortions applied to the training set to improve gen-
eralization. We used backpropagation with an initial learning
rate of 0.001, decreasing by a factor of 0.794 every 4 epochs.
We then trained it for 3 additional epochs on undistorted
images at a constant learning rate of 0.0002 to stabilize the
weights. The network’s performance on the training set is
3.3% error.

Not all text in the world corresponds to door labels.
Text that does not match an item in the robot’s room-name
dictionary is ignored. When text corresponding to an item
in the robot’s room-name dictionary is detected (a symbol
observation), a link between the symbol observation and
the robot’s map of the world is established. Each symbol
observation comes with bearing and distance information
calculated from the position of the text in the image from
the robot’s camera, the field of view of the camera, and laser
range readings.

C. Symbolic navigation with an abstract map

In order for the robot to use the symbolic spatial infor-
mation from the floor plan when navigating, a link needs
to be established between this information and the world
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Fig. 4: Network architecture for character recognition

representation used by the robot via symbols observed in
the world. The robot operates in its own coordinate frame
and the symbolic spatial information from the abstract map
is in the pixel coordinate frame of the floor plan. A scaled
2D coordinate transform is required to link between these
two frames.

A 2D coordinate transform 7" is comprised of horizontal
and vertical scaling, horizontal and vertical translation, and
rotation (ts,, ts,, tt,, tt,, and tg respectively). Under the
assumption that floor plans are scaled equally in both direc-
tions, as is the robot’s coordinate system, the scaling can be
combined into one parameter (¢s). The order was defined as
rotate, scale, then translate.

For a piece of symbolic spatial information of the form
‘a is at z,y in floor plan F” (denoted by F, , F), ), the
coordinate transform 7' to convert this to location a in the
robot’s coordinate frame R (denoted by IR, R, ) is defined
as:

R,, F,
Ry, | =T(to = ts = ta,ty) | Fy. (1
1 1

As a homogeneous coordinate transform matrix, the trans-
form operation can be expressed as:

R., [tscos(tg) —tssin(te) to| [Fa,
Ry, | = |tssin(tg) tscos(ty) ty| |Fy.
1 0 0 1 1
- (2
t1 —ta t3| |Fy,
= |ty t1 4 Fya
0 0 1][1

As the robot gathers more symbolic spatial observations,
the system of linear equations relating places in the floor
plan to those in the robot’s map grows as follows:

R., F,, -F, 10

R,, F, F., 0 1| |h

e O )
3

Rqy Foy —Fyy 1.0 tyg

Ryy F,, F., 01

This linear system of equations is solved using an ordinary
least squares estimator to find the linear transformation.
The estimates for these parameters are used to transform
the symbolic spatial information from the floor plan to the
robot’s map. An estimate for these parameters can only be
obtained once the robot has observed the door labels for two

distinct locations (four equations for four parameters). Not
all doors in the real world have labels that are used in the
floor plan. However, the system works with small numbers
of observations, with every additional door label observation
refining the robot’s estimate of the transform.

Once the abstract map has been transformed into the
coordinate frame of the robot’s world map, the coordinates
for the destination can be set as the robot’s goal. Standard
methods for map building and path planning are used that
allow a goal to be set beyond the edges of the current world
map.

IV. EXPERIMENTAL SETUP
A. Robot platform

The robot used in this paper to demonstrate and evaluate
the system is a GuiaBot from MobileRobots, shown in
Fig. 1. This robot is equipped with a spherical video camera,
Ladybug2, which provides the robot with six 0.75M pixel
1/3"” CCD sensors and a FireWire interface. The robot
has four on-board computers all running Robotic Operating
System, ROS.

B. Environments

Experiments were performed in two environments, both in
simulation and in the real world. The simulated environments
were created from cleaned versions of the floor plans, with no
noise in mapping or localization, and a simulated door label
detector providing symbol observations. The environments
were Levels 11 and 4 of S Block at QUT Gardens Point
Campus (see Fig. 5). Printed door labels were added to the
environment to enable successful OCR using the Ladybug2
cameras.

C. Task

The task for the robot was to reach a destination, specified
by a number, for example, ‘1105’. The number matched the
room name on both the floor plan and the physical door
to the room. Successful task completion was defined as the
robot stopping outside the door to the room.

D. Experiment

The system was tested in 10 trials in both simulated
environments, and the results were confirmed by a single
trial in both real-world environments. An abstract map and
associated room-name dictionary constructed from a floor
plan of the environment was provided to the robot prior to
each trial. The robot was started at the same initial position
and assigned a destination from the room-name dictionary. In
the simulated environments, we compared our system with
a left wall-follower and a right wall-follower using random
exploration to attempt to reach the destination.

V. RESULTS

In each of the ten trials in both of the simulated envi-
ronments, our system successfully reached the destination,
often after backtracking several times to find a path. In both
trials in the real-world environments, our system successfully
reached the goal location, using an efficient path after two
door labels were detected.
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Fig. 5: Floor plans

A. Simulation-World Experiments

The results for the three different systems (left wall-
follower, right wall-follower, and our floor-plan system)
across the ten trials for both simulated environments (Level
11 and Level 4 of S Block) can be seen in Fig. 6. In the
simulated Level 11 environment, the wall-following system
took, on average, more than 6 times as long and the robot
traveled approximately 7 times as far as with our system. The
only cases where our system was outperformed by the wall-
following system was when the goal location was the first
room on its path. In the simulated Level 4 environment, the
wall-following system took, on average, more than 6 times
as long and the robot traveled approximately 6 times as far
as with our system. In this environment, our system was
outperformed by the wall-following system when the goal
location was the first or second room on its path.

B. Real-World Experiments

Here we provide a detailed description of the trial on Level
11 of S Block, shown also in the accompanying video !.
The robot was provided with an abstract map (see Fig. 7a)
constructed from the floor plan of S Block Level 11 (see
Fig. 5a). The robot was initially located in the lobby next to
the data room ‘1138’ and the destination was set to ‘1105’.
The first door label, ‘1138’, was detected as the robot spun
around to an exploration goal behind its starting position. The

'The video is available at http://tinyurl.com/HumanCues
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Fig. 6: Total distance traveled to reach the goal for 10 trials
in the simulated environments

robot continued to explore towards the bathrooms, ‘1191’
and ‘1192°, and detected the label ‘1136°. The robot then
estimated an initial transform between the world map and
abstract map, set a goal for the destination, and planned a
path to the goal (see Fig. 7b).

As the robot followed its path to the goal, it received
more evidence in the form of door labels ‘1139 and ‘1107,
updating its transform each time. The goal set by the robot
was inside Room 1105 rather than at the door, due to
the location of the label ‘1105 on the floor plan. The
robot initially attempted to enter the door to room ‘1105’
before detecting the door label and stopping as visual text
recognition indicated that the goal had been reached (see Fig.
7c).

In the second environment, Level 4 of S Block, the robot
was initially located in the lobby next to the data room ‘416’,
and the destination was set to ‘410’. The robot set an initial
transform after detecting door labels for ‘416’ and ‘417’, and
followed the path plan to ‘410’ (see Fig. 8).

VI. CONCLUSIONS AND FUTURE WORK

The system presented in this paper provides an architecture
for thinking about how to use symbolic spatial information
to aid navigation. These studies demonstrated the utility of
a symbolic goal-directed exploration system in two real-
world environments. Our system can use an embedded graph
created from information in a metric floor plan to plan
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(b) The robot explored the world and estimated the transform to ground the
abstract map in the world map after observing ‘1138 and ‘1136’.

(c) After more evidence (‘1139” and ‘1107’), the robot updated the trans-
form. As the robot neared the goal coordinate estimated from the abstract
map transform, it observed ‘1105” and stopped at the destination.
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Fig. 7: Real-World Experiment in S Block Level 11

Fig. 8: Real-World Experiment in S Block Level 4: The robot
started near the lifts, set an initial transform after detecting
‘416’ and ‘417, and successfully reached ‘410’

efficient paths to the rooms shown in the floor plan.

The proof-of-concept system presented in this paper will
become more useful as we extend it to different types of
potentially conflicting information that humans typically use
for navigating the world, including non-metric information;
different types of potentially noisy symbol observations from
the robot’s cameras; and different methods of navigation.
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