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Numerical analysisfor the time distributed-order and Riesz space
fractional diffusions on bounded domains

H. YE?, F. LIu®, V. ANHP, |. TURNER?
aDepartment of Applied Mathematics, Donghua University, Shanghai 201620, P. R. China
bSchool of Mathematical Sciences, Queensland University of Technology, Qld. 4001.
Australia

Sub-diffusion equations with distributed-order fracabuerivatives describe some important physical
phenomena. In this paper, we consider the time distribatddr and Riesz space fractional diffusions
on bounded domains with Dirichlet boundary conditions. é{dhe time derivative is defined as the
distributed-order fractional derivative in the Caputo sgnand the space derivative is defined as the
Riesz fractional derivative. Firstly, we discretize theegral term in the time distributed-order and Riesz
space fractional diffusions using numerical approximmati@hen the given equation can be written as
a multi-term time-space fractional diffusion. Secondlye propose an implicit difference method for
the multi-term time-space fractional diffusion. Thirdlysing mathematical induction, we prove the
implicit difference method is unconditionally stable armheergent. Also, the solvability for our method
is discussed. Finally, two numerical examples are giverntwvsthat the numerical results are in good
agreement with our theoretical analysis.

Keywords: fractional diffusion; distributed-order fractional deative; multi-term time-space fractional
diffusion; Riesz fractional derivative; implicit diffenee method; stability and convergence.

1 Introduction

Time-fractional derivatives can be used to model time delaya diffusion process. When the order of
the fractional derivative is distributed over the unit v, it is useful for modeling a mixture of delay
sources (see Meerschaert et al. (2011)). Distributedratiffeisions are also used to model ultraslow
diffusion where a plume of particles spreads at a logaritimaiie (see Sinai (1982); Kochubei (2008)).
There were many very interesting developments concernamgénal diffusion equations, such as frac-
tional advection dispersion equation (see Benson et ab02®)), fractional Pearson diffusions (see
Leonenko et al. (2013)), fractional diffusion equationfhwandom initial condition (see Anh and Leo-
nenko (2001)). A more extensive development on fractioifhigions presented in the monograph of
Meerschaert and Sikorskii (2012). Recently, with the agglons arising in distributed-order diffu-
sions, some attention has been paid to the time-fractianedteons with distributed-order (see Naber
(2004); Eab and Lim (2011); Jiao et al. (2012)). Chechkin.€2802) proposed diffusionlike equations
with time and space fractional derivatives of the distrdaLiorder for the kinetic description of anoma-
lous diffusion and relaxation phenomena and demonstrhtgdétarding subdiffusion and accelerating
superdiffusion were governed by distributed-order fiawdil diffusion equation. The fundamental solu-
tions for the one-dimensional time fractional diffusioruatjon and multi-dimensional diffusion-wave
equation of distributed order were obtained by Mainardile{2007, 2008) and Atanackovic et al.
(2009Db), respectively. Atanackovic et al. (2009a) alswpdthe existence of the solution to the Cauchy
problem for the time distributed order diffusion equatiodaalculated it by the use of Fourier and
Laplace transformations. Furthermore, they studied wavasviscoelastic rod of finite length, where
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viscoelastic material was described by a constitutive tguaf fractional distributed-order type (see

Atanackovic et al. (2011)). Luchko (2009) proved the unitess and continuous dependence on ini-
tial conditions for the generalized time-fractional dgfon equation of distributed order on bounded
domains. Meerschaert et al. (2011) provided explicit gjrenlutions and stochastic analogues for
distributed-order time-fractional diffusion equatiomstsounded domains, with Dirichlet boundary con-
ditions.

On the other hand, many numerical methods for fractiondigatifferential equations have pro-
posed (see Liu et al. (2004, 2007, 2012); Zhuang et al. (300®Ere are also some papers discussing
numerical methods of the distributed-order equations. example, Diethelm and Ford (2009) devel-
oped a numerical scheme for the solution of a distributetioordinary differential equation and gave a
convergence theory for their method. Based on the matrix f@presentation of discretized fractional
operators (see Podlubny (2000)), Podlubny et al. (201®nedad the range of applicability of the ma-
trix approach to discretization of distributed-order datives and integrals, and to numerical solution of
distributed-order differential equations (both ordinand partial). As to the multi-term fractional par-
tial differential equations, Liu et al. (2013) proposed sawomputationally effective numerical methods
for simulating the multi-term time-fractional wave-diffion equations. Jiang et al. (2013) derived the
fundamental solutions for the multi-term modified power laave equations in a finite domain. But
there seemed to be little concern about multi-term timessactional wave-diffusion equations.

Our attention in this paper is focused on the numerical aisfpr the time distributed-order and
Riesz space fractional diffusions on bounded domains. Héretime derivative is defined as the
distributed-order fractional derivative in the Caputo sesnand the space derivative is defined as the
Riesz fractional derivative. Firstly, we approximate theegral term in the time distributed-order and
Riesz space fractional diffusions using numerical appnation. Then the time distributed-order and
Riesz space fractional diffusion can be written as a matirttime-space fractional diffusion. Second-
ly, we propose an implicit difference method which is unigusolvable for the multi-term time-space
fractional diffusion. Thirdly, using mathematical indiset, we prove the implicit difference method
is unconditionally stable and convergent. Finally, two ruital examples are provided to show the
effectiveness of our method.

The rest of the paper is organized as follows. We present pliditrdifference method in Section 2.
Section 3 gives some relevant lemmas. In Section 4, we dirévsolvability, stability and convergence
for the implicit difference method. Two examples are giverSection 5 and some conclusions are
drawn in Section 6.

2 Implicit difference method
Consider the following distributed-order diffusion eqoas

dPu(x,t)

+ f(x,t) (2.1)

in an open bounded domainOx < L,0 <t < T. HereKg > 0, x andt are the space and time variables.
The time fractional derivativﬁ)tw(o'> of distributed order is defined by (see Luchko (2009))

1
DP@u(x,t) :/ SDAu(x,t)m(a)da (2.2)
0
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with the left-side Caputo fractional derivatifp{ defined as (see Podlubny (1999))

1 t —a du
t—1) (x,7)dr, O<a<1
SDAu(xt) =<¢ [T-a) 7 Jol grit ’ 2.3
o+t ( ) { du(x t) ’ a 1’ ( )

and with a continuous non-negative weight function [0, 1] — Z that is not identically equal to zero
on the interval0, 1], such that the conditions

0< w(a),w;éo,ae[O,l],/olw(a)da:W>O (2.4)

hold true, wherdV is a positive constant. The space fractional derivaiﬁly‘i):-é’;—t> is the Riesz fractional
derivative operator for & 3 < 2 defined by (see Celik and Duman (2012))

Pu(xt) 1 g2 /L B
o|x[P :_2co$%")r(2—[3)@/o x—& I PucE ndé. (2.5)

5 dPu(xt)  92u(x)
Whenp = 2, P = o

In this paper, the initial-boundary conditions
u(x.0) = p(x), 0<x<L, (2.6)

u0,t)=0, u(Lt)=0, 0<t<T 2.7)

for Eq. (2.1) is considered.

Now, we state our numerical method as follows.

Step 1: Discretize the integral term in the distributed-order&tipn.

Let us discretize the interval [0,1], in which the oraeis changing, using the grid8 &y < &1 <
& <o < &g =1(q e /), with the stepi s not necessarily equidistant. We obtain

ID)tw(a)U(Xat) ~ iw(as)(th“Su(X,t))Afs

q
= Z dS thaSu(Xat)v (28)
s=1

Whereas € (ES*]-? ES]’ d5 = W(GS)AES, AES = ES_ EsflaS: 11 21 0.
For the simplicity of the presentation, but without losslué generality, we takdés = % =o(gqe

) andds = % We can use the mid-point quadrature rule for approximatiegrntegral (2.2). Let
s = EH;ES =21 5-12 ... q. Consider the following multi-term fractional diffusion eation

oPu(x,t
st §D{su xt =Kp a|(|ﬁ)+f(x,t), (2.9)

with the initial-boundary conditions (2.6)-(2.7).
Step 2: Solve the multi-term equation.
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We assume that we are working on a uniform ggid= ih,i = 0,1,--- ;M; Mh = L;ty = kt,k =
0,1,---,N;NT = T. Letuf = u(x;,t), f¥ = f(x;,t),0<i <M,0< k< N.

For 0< as < 1, adopting the L1 discrete scheme in Oldham and Spanier (19&djliscretize the
Caputo time fractional derivative as

1 k .
eDYsy k+1 IJS |fjk+1 Z (agsj akSJJrl) uiJ _agsuio‘| , (2.10)

=1

where
ags: (k_|_ 1)1fas_klfas’ Us = TGS[_(Z—GS), S= 1’2’... ..

Using the fractional centered difference (see Celik anchBiu (2012); Ortigueira (2006)) and noticing
the boundary-value condition (2.7), we can obtain the feithg numerical discretization scheme for
space-fractional derivative:

OB
e Ut~ —hP z gi_pultt, (2.12)

where
(- >pr<ﬁ+1>
O = 1<B<2 (2.12)
r-p+ur+pry)

LetUik be the numerical approximation tgx;, ty). We can derive the implicit numerical scheme
% % U-k+1 _ i (ags o ak ) UJ aﬁSU-O (2 13)
& Us i & —] j+1 i

M-1
= —Kgh? ¥ g pUf "+ 1<i<M—-1, 0<k<N-L
p=1

Denote

Kgh™B _ 1 d

5 dr ’ D= qa d° DS: qs d ’ 321727"'7(]- (214)
2r=1 m 2r=1 m Hs3r—1 m

Thus we have the following implicit difference approxinoati

D:

M—1
U|k+1+D z gi—pufl§+1
p=1
_ d Qs Qs j d [of fk+l
= Z Ds (& — a1 U,+ZD ul+D
j=1[s=
i=12---.M—-1, k=0,1,---,N—1, (2.15)
U=d’=0(x), O0<i<M, (2.16)

U§=Uf =0, O0<k<N. (2.17)
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3 Somelemmas

To analyze the difference scheme, we need the following lasam

LEMMA 3.1 (See Celik and Duman (2012).) Lat= i k+>1) (f;i)ku) be the coefficients of the

centered finite difference approximation (2.11) ket 0, il +2,---,and 1< 3 < 2. Then
(1)go = 0; (2)g_k=0k <O, forall |k >1,;
(3) Yk =0; (4) 90 = Y koo k0 K-

LEMMA 3.2 (See Gao and Sun (2011).) Suppose® < 1, u is absolutely continuous inon [0, T]

and ‘;tg’ e C([0,L] x [0,t]). Then

cpa 71 k P a a i a 0
§D{ I ui_JZl(akjl_akj)ui_aklu

wheread = (k+1)1 9 -k pu=19r(2—a), 0Kt < T

+0(127%), (3.1)

LEMMA 3.3 (See Celik and Duman (2012).) L%i%“ € C(|0,L] x [0, T]) andu satisfies the boundary
condition (2.7). Then

P e n 'S g O 3.2

WUi =- legl—pUp+ (h%), (3.2)

whenh — 0, 5“9 7 U uk is the Riesz fractional derivative ford 3 < 2 andg,, is as in the expression (2.12).
LEMMA 3.4 (See Diethelm and Ford (2009).) Suppase absolutely continuous ihon [0, T] and
g—;‘ € C([0,L] x [0,T]). For every fixedx,t) € [0,L] x (0,T], consideigDf u(x,t) =: z(a) as a function
of a. Thenzis aC* function on(0, 1].

LEMMA 3.5 (See Faires and Burden (2013).x(&) € C?[0,1], Aa = %1 =0 (qe /), then

1 d /2s—-1\1
/ 2(a)da = ;z( S )—+0(02). (3.3)
0 £ 29 /q
4 Analysisof theimplicit difference scheme
4.1 Solvability
The difference scheme (2.15)-(2.17) can be written in thleviang matrix form:
AU =bylu®+Dfl, (4.1)
K B J—
AU"“:ch,,-|ul+bk|u°+ka+l, k=1,2,---,N—1, (4.2)
J:
where
1+Dggy Dg1 - Dg-mi2
a=| DB TO® o PO , @3

Dgv-2 Dgu-3 -+ 1+Ddo / i 1)1
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uk= (Uf,Ug, o 7U§71)T7 fl= (ff fé(v"' ) fl\ijl—l)Tv by = Elleaﬁsv Ccj = zqleS(agij _aigijﬂ)'
Lemma 3.1 implies that matri& is strictly diagonally dominant; thud?® can be obtained from (4.1)
andu?,U3,... .UN can be obtained from (4.2). This can be written as the fohowesult.

THEOREM4.1 The difference scheme (2.15)-(2.17) is uniquely sdézab

4.2 Sability

In this subsection, we consider the stability of the impliifference approximation (2.15)-(2.17). We
assume that the initial data have erref§i = 1,2,--- ,M —1). Let ¢° = ¢° + &0, UX andUK(i =
1,2,---,M — 1) be the numerical solutions of Eq. (2.15) corresponding ®itiitial datag® and
@(i=1,2,--- ,M—1), respectively. Thes* = U — UF satisfies

M-1 q
& +D > Gi-p& = Dsagee’ = &’ (4.4)
p=1 s=
M-1 k
£_k+1+D Z g P g D Qs _ o0s el d D.a%g0
i I—p<p Z S akfj ak71+1 i Z s &
p=1 j=1[s=1 s=1
k=1,2,--- ,N—1. (4.5)

i ek gk k T
In the following theorem, we denofe* = (X, &, .- &f 7.

THEOREM 4.2 The implicit difference approximation defined by (2-(8)17) for distributed-order
fractional diffusions is unconditionally stable, where:]3 < 2.

Proof. The stability condition is equivalent to
IE“ oo < [E%e, k=10,1,2,---. (4.6)

We will use the mathematical induction to get the above te§idrk = 0, let [g!| = max<i<m_1 /&
Noticing thaty ' ;' g/, > 0 and Lemma 3.1, we have

M-1
1 1 1 1
BTl = [&<Ig|+D Y a-plef]
p=1
1 1 Nt 1
= |&|+Dgolg|+D Y g-ple]
p=Lp#l
1 1 Nt 1
< |e}+Dgols!-D Y o ped
p=Lp#l

M-1
&' +Dgog +D Y 91 p&l
p=L,p#

N

M—1
1 1 0 0
= l§+D Y a-p&l =18 = [[E |
=1
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Suppose thatE! ||w < |E®|w, j = 1,2, - k. Let || = max<icm—1]€<. It follows that
k1 k1 k1 ot
[E o = 1§ <[§[1+D Y 99
o=1
M—1
= |gf"!|+Dgolgf |+ D 9 plg?|
=1,p#l
M-1
< |+ Dgolef =D Y g pgs™
p=L1p#l
M-1
< | k+l+ Dg £k+l_|_D g p£k+l|
=1p#l
k [a .
< Y | 30s(al —a ) |16+ ;Dsak )
j=1|s=
K J ds d 0
< 9> D Ds(as; - +ZDs [[=a[P
j=1|s=1
d K s s d s 0
= {50l ( ,,-—ak,,-ﬂ) + DA b [Ee
S= =1 S=
d 0 0
= ZDsIIE lleo = 1E”[o-
£
Hence, the proof is completed. O

4.3 Convergence
Suppose that the continuous problem (2.1), (2.6)-(2.7ghsmooth solutiomi(x,t) € C;Z}Z(Q), where
Q =1[0,L] x [0,T], and

5 2
i) - fu| Toet ZoiY e .

We now consider the convergence of the implicit differenmeraximation. Letu be the exact solution
of the system (2.1), (2.6)-(2.7), ahidbe the numerical solution of the implicit difference approation
(2. 15) (2.17). Let the errog = u—U, and at the mesh pom(zx,,tk) be defined b)elk =uk— Uk (| =
1,2,---,M—1;k=0,1,2,--- ,N). We ‘denote — e e, e )T ThenRO = [)€), - &l || =
0.

SubstitutingJX = uk — e into Eq. (2.15) leads to the following two cases. When 0,

M-1 M-1 q
&+D Y gip&=U+D Y gipUp— ZDsagsu?— Dfl. 4.7)
p=1 p=1 S=
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Based on (2.14), Lemma 3.2-Lemma 3.5 and (2.1), we have

M-1
el +D Z gifpefl;

st SDfsut — Kg f;|? B — 14 O(12 %) + O(h?)

- D [O(hz) +0(1* %) + 0 )} . (4.8)
Whenk > 1,

+1 = gkl <l as _ A0s J_ 2 as 0
4 DY gpd 3 |3 Da(a e ) [d - 3 D
p: J:

_ U-k+1—|—DM7 uk+1 K d D as U-j
- i Z Gi—p 0 : S ak j ak7j+1 i
s=

s

q J—
- ZDSagSUiO DL, (4.9)
S=

Based on (2.14), Lemma 3.2-Lemma 3.5 and (2.1),
i{ k+1+DZg| pUsHt qu(aﬁ’S-—aﬁ's- 1) u
D & ; = —j+
_ Z Dsaffsuio— Efik+1}

B
= ZidsoD"Suk“ K —a‘i |Buk“ £ 4 O(1%79%) + O(h?)

— O(t*%)+0(h?) +0(a?). (4.10)
Thus,

Qk+l+D Z gl p k+1

%+ZD e

Z Z DS( aSJ+1)

+D [O(T %)+ O(h?) + O(0? )}. (4.11)
Now we can derive the following result by mathematical intture

THEOREM 4.3 Suppose that the continuous problem (2.1), (2.6)-(2ag)a smooth solution(x,t) €
C,E}Z(Q), and letU be the solution of the difference scheme (2.15)-(2.17) farA < 2. Then thereis a
positive constan€ such that the error satisfies

IR <C(MP+ 1% +0?) /Z A —*1 k=1,2---,N. (4.12)
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Proof. Fork=1, let||RY. = |e| = max<i<m_1|€!|. According to Lemma 3.1, (2.14) and (4.8), we
have

IRl

M-1
e <|ef|+D S aplel]
p=1

M-1
&'l +Dgole'|-D Y |gipepl

p=L,p#

M-1
§+D' Y g pehl
p=1

N

VAN

N

— ag ag q d aS
CDW?+ 12 o =C(h®+ 12 + 02)/ Zﬂ
&S Hs

q:
dsai®;

Suppose thatRl|j < C(h2 4112 +02)/2;1 1 j=1,2,--- kandletld"?| = max<icm_1 &Y.

Hs

Based on Lemma 3.1, (2.14), (4.11) and noticing that theficterits a‘j”S are decreasing fof =
0,1,2,---, we obtain

M-1
IR = (<D Y g pes
p=1

as

Ds (agij - ak7j+1) el +CDP? + 1% + 07

N
M=

j=1[s=

a [k " 9 dsas
< D Jso—ak. L )cn? itz 4 02)/ -t

P S _jZl (ak j 2% J+1) ; Us

+CD[N? + 112 + 07

q [k - q4 d.a%s
< D Jso—als. L JC(nP Ttz 4 02)/ ™S

P S _jZl (ak j ak J+1) ; Us

+CD[P? + 1% + 07
. © gal
= C(h2+rl+2+02)/zﬂ.
&S Ms

Thus, the theorem is proved. O

Since
lim < jim ! _ 1
k—00 ags _kamk[(l_p%)l*as_]_} o 1—0{37

there is a constafi; such thataﬁ’s > C1k %(1— as). It follows that

(4.13)

3 deal ds
>C ———
PARNTA 15;(kr)asr(1_as)

d d L w(a)
> Y — C/ — " da=C,.
12 TaEr1oa o T Aoy~
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Theorem 4.3 implies that there is a cons@rmstuch that
IR0 < C(h2+ T % + 0?).

In fact, we can obtain the following result.

THEOREM 4.4 Suppose that the continuous problem (2.1), (2.6)-(2ag)a smooth solution(x,t) €
C,E}Z(Q), and letU be the solution of the difference scheme (2.15)-(2.17).nTthe solutiorlJ uncon-
ditionally converges ta ash, T and o tend to zero. Furthermore, there is a positive constastich
that

K —UK <CcP+124+09),i=12- M—1k=1,2--N.

5 Numerical results

In order to illustrate the behaviour of our numerical metlaod demonstrate the effectiveness of our
theoretical analysis, two examples are now presented.

ExAaMPLE 5.1 Consider the following time distributed order and Rigigace fractional diffusion equa-
tion:

dPu(x,t)

———— 0<x<1,0<t<T, 51
L (5.1)

1
/ va-1EDu(x t)da =K
0

wherev is a positive constant that can be physically interpretadeaselaxation timeK is also a positive
constant representing the diffusion coefficient; B < 2. Whenf3 = 2, Chechkin et al. (2002) showed
that the distributed-order time fractional diffusion etjoa describes the subdiffusion random process
that is subordinated to the Wiener process and whose difiustponent decreases in time (retarding
subdiffusion). This process may lead to ultraslow diffusiwith the mean square displacement growing
logarithmically in time.

Here, the initial-boundary conditions

u(x,0) =x3(1—x%), 0<x<1, (5.2)

u0,t)=0, uLt)=0, O0<t<T (5.3)

for Eq. (5.1) are considered.

Using the numerical method described in Sec. 2, we obtaimtimeerical solutions (Fig.1) of
the fractional diffusion equation for = 0.5,K = 1, f = 1.6,1.8,2, respectively, withh = 0.02,T =
0.0150=0.1.
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T
\AAA 4 -
vvY Vvvv v =16
0.025 vY v * p=18 | |
vV v m p=2
v v
v v
oozl vy PR L A 00 PN v i
v x X g v
v * * v
— *
n v * *
T v x ¥ .m * v
L o015 v mu = "ag =
2 v x* an"" LI * v
5 v ** " L * v
v * a " L *
001 v ** a® n * v B
MR a " [ ] *
v % L] L] v
vV % = m *
v, X I. n *V
0.005— *
Vi _nm *
V*.. [ v
140 ":
1 1 1 1 1 1 1 1 1
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9

X
Fig.1. The numerical approximation of u(x,t) for the system (5.1)—(5.3) when t=D% and K=1.

ExXAMPLE 5.2 Consider the following time distributed-order and Risgace fractional diffusion equa-
tion:

JT (3~ a)gDFu(x )da = ZUX0 4 f(x t).

0<x<10<t<T, (5.4)
ux,0) =x?(1-x)2, 0<x<1,
u(0,t)=u(1,t)=0, 0<t<T,

where 1< 3 < 2,

f(xt) = ﬁ31{[3_271)(142) {% (xH’ + (1—x)2*’3)

r(4) - - r(5) - _
— ZW(XE‘ B+(1—X)3 B)—Fw(%l B+(1—X)4 B):|
— 2¢(1—x)>2(t2—1)/Int.

The exact solution of the above problemuig,t) = x>(1 — x)2(1 —t?).

1 1 1 1 1 1 1 1
0.1 02 03 0.4 05 0.6 0.7 08 0.9 1
X

Fig. 2. Exact solutions (lines) and numerical solutions (symbols) with B=1.8 at t=0.3 (triangles), t=0.75 (stars)
and t=1.5 (squares).
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A comparison of the exact solution and the numerical safuibo 8 = 1.8 withh=0.02,7=0.0150 =
0.1 att = 0.3 (triangles)t = 0.75 (stars) and = 1.5 (squares) is shown in Fig. 2. From Fig. 2, it can
be seen that the numerical solution is in good agreementthétiexact solution.

6 Conclusion

In this paper, an implicit difference scheme for the timerisited-order and Riesz space fractional
diffusions on bounded domains has been described. We gravthe implicit difference scheme is un-
conditionally stable and convergent. Two numerical exasplemonstrate the effectiveness theoretical
results.
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