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Abstract—In some delay-tolerant communication systems such
as vehicular ad-hoc networks, information flow can be repre-
sented as an infectious process, where each entity having already
received the information will try to share it with its neighbours.
The random walk and random waypoint models are popular
analysis tools for these epidemic broadcasts, and represent two
types of random mobility. In this paper, we introduce a simulation
framework investigating the impact of a gradual increase of bias
in path selection (i.e. reduction of randomness), when moving
from the former to the latter. Randomness in path selection can
significantly alter the system performances, in both regular and
irregular network structures. The implications of these results
for real systems are discussed in details.

I. INTRODUCTION

In order to efficiently control large-scale structures such

as sensor networks (see e.g. [1]) and ad-hoc networks, it is

necessary to understand their dynamics, especially in terms of

information diffusion. Experiment analysis is essential in this

process [2], but often challenging. This paper is an example

of computer-based modelling used as an aid and complement

in this investigation.

In most of these systems, the information flow can be

modelled as an infectious process: as soon as one entity of

the system receives information, it starts sharing it with its

neighbours. Information diffusion can therefore be represented

as an epidemic spread on a complex network.

This representation is valid for several systems in the

context of information networking. This includes message

dissemination in mobile ad-hoc networks, computer virus

spreading in the Internet and word-of-mouth communication

in online community.

In this paper, we introduce a modelling framework for

computer-based analysis of such epidemic broadcasts. In par-

ticular, we look at the impact of bias in path selection for a

number of network configurations. Implications for practical

applications in communication networks are also discussed.

II. EXPERIMENTAL FRAMEWORK

A. Motivation

Epidemic broadcast is an approach dedicated to specific

contexts where a centralised information dissemination is

either impossible or not cost-efficient. It can be seen as an

opportunity-based flooding for message broadcasting, where

an originating entity has a message that needs to be delivered

to all others in the system.

As there is no centralised control, performance may be

affected by a number of factors, in particular node mobility,

(through characteristics such as velocity, destination, path

selection, interference with other nodes, etc.) and network

topology, (e.g. network size, average degree, degree distribu-

tion, clustering coefficient, spectral radius).

While some of these characteristics has previously been

investigated, (see e.g. [3]–[5]), we focus here on the specific

impact of randomness. Is randomness in path selection an

advantage, or does decelerate information diffusion? Does

increasing randomness in the network structures have any

impact on the optimal path selection strategy?

These questions are crucial to designing efficient commu-

nication systems. This type of randomness is largely uncon-

trollable, and difficult to manage in communication systems.

It is therefore essential, in the context of network design, that

it is understood in details.

B. Broadcast simulation platform

The computer-based modelling framework used in this

paper relies on an agent-based structure. Each communicating

entity is modeled as an independent agent, which can move

on the network as well as share information with other agents

co-located on the same node of this network.

Such an approach is particularly suited to the context of

epidemic broadcasts, as it permits reciprocity between agents

and the counterpart communicating entities, and reflects inter-

actions of the real system as exchanges between agents.

Naturally, epidemic broadcasts are closely related to epi-

demic disease outbreaks. These biomedical systems have

proved suited for agent-based analysis on numerous occasions,

(see e.g. [6]–[8]), thus guaranteeing the validity of our ap-

proach for their communication network counterparts.

C. Agent mobility

Even though more refined mobility models exist, the random

walk and random waypoint models are still widely used in

communication network research because of their simplicity



Fig. 1. One node is disconnected, and linked to random nodes

and analytical tractability. Clarifying the impact of randomness

on these two models, and the intermediate strategies between

these two, is therefore crucial, and an objective of this paper.

In the former configuration, an agent chooses a destination

on the network, and moves towards this node using the shortest

path available from its current location. Once the destination is

reached, it randomly selects its next target. This represents an

extension to discrete graphs of the classical random waypoint

model, that was developed on a continuous space. In the

latter configuration, the agent does not use any specific path.

At every time step, it randomly selects one node from the

neighbours of its current location, and moves to this node.

In our simulation platform, we focus on randomness in

path selection, (agent velocity is fixed), and extend these

two mobility models by introducing a parameter β, which

represents a bias towards the shortest path. At the start of

the simulation, each agent is initially given a random position

and a random destination on the network (and single agent

is given the information that needs to be shared). Then, at

each time step, the agent moves by exactly one node. With

a probability β, it moves using the shortest path from its

current location to this destination. The probability to move

to a random neighbouring node is therefore 1 − β. Once the

destination is reached, a new one is randomly selected.

Clearly, if β = 0, the destination is never taken into account

when deciding the next step, and this mobility model is then

equivalent to the standard random walk. Conversely, when

β = 1, the agent always chooses the shortest path to its

destination, (a lower degree of randomness), and is therefore

restricted to the random waypoint model. Intermediate values

of β represent hybrid mobility patterns with various degrees

of randomness.

D. Network topology

Network topology must also be taken into account, and

mobility models must be tested on several structures. To this

end, we introduce a parameter ρ, which represents a level of

distortion added to the network.

ρ = 0 corresponds to a regular n × n 2D grid. Increasing

values of ρ lead to the destruction of grid-type network links,

which are replaced by an equal number of randomly-generated

links, as shown in Figure 1. At ρ = 0.1, 10% of nodes are

detached from the network and re-connected in this manner.

The average degree remains constant, but the grid structure is

gradually lost. At ρ = 1, we obtain a random network.

0 100 200 300 400

Iterations

0.2

0.4

0.6

0.8

1

P
ro
p
o
rt
io
n
 o
f 
a
g
e
n
ts
 w
it
h
 i
n
fo
rm
a
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Influence of β for a 2D 10× 10 grid with 5 agents
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Fig. 3. Influence of the number of agents for a 2D 10×10 grid with β = 1

III. RESULT ANALYSIS

A. Path selection on regular networks

Simulations on the 2D n×n grid show that more structured

mobility models spread the information faster. This is shown in

Figure 2 for n = 10 and a population of 5 agents. Increasing

the number of agents has a positive impact on information

diffusion, as shown in Figure 3. Effects of the network size

are discussed in Section III-E.

Interestingly, adding even a limited amount of structure to

the mobility model significantly improves performance. The

speed-up when moving from β = 0 to β = 0.2 is larger than

when going from β = 0.2 to β = 1, even though each increase

resulted in an improvement.

The positive impact of structured mobility results from a

better network coverage. In a purely-random walk (β = 0), an

agent may remain trapped in the subset of neighbours for long

periods. When β is increased, such oscillations and cycles are

gradually removed, as the agent more frequently choses the

shortest path. The agent therefore visits a larger region of the

network. Interact with not previously-encountered counterparts

thus becomes more likely.

This is confirmed by looking at how the average ratio of

visited nodes evolves over time, as shown in Figure 4 for the

random walk (RW) and random waypoint (RWP) models on

a 10 × 10 grid with 5 agents. For both models, each agent

eventually visits all nodes. However, it clearly appears that, at
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Fig. 4. Visited nodes in the random walk and random waypoint models

any given time point, an agent has on average visited more

nodes using the random waypoint model than when using

random walk. This improved coverage is responsible for the

accelerated information diffusion.

B. Influence of network topology

Tests have shown that larger values of β (i.e. more structured

mobility patterns) are more effective at information diffusion

in the context of a 2D grid. In this subsection, we investigated

whether this bias in path selection remains efficient for higher

values of ρ, and focus on the two extreme mobility models:

RW (β = 0) and RWP (β = 1). Of particular interest is the

ratio between the number of agents who have received the

information in both models. In what follows, this is referred

to as the “RWP/RW ratio”.

Figure 5 shows the evolution of this ratio for increasing

values of ρ, with n = 10 and population of 5 agents. All

simulations start with a single agent given the information, so

the ratio is initially equal to 1. Similarly, all agents eventually

receive this information, and the ratio tends to 1 as the

simulations progresses. More interestingly, this ratio is never

smaller than 1. This means that the random waypoint model

is always more efficient than random walks.

It should also be noted that the ratio is increasing with

ρ. The less structured the network becomes, the greater

the advantage of the random waypoint model gets. As was

observed for β, even small changes have a significant impact:

the difference between ρ = 0 and ρ = 0.1 is greater than to

between ρ = 0.1 and ρ = 1.

This increasing ratio can be explained by opposite reactions

to the grid perturbation level ρ. Looking at each mobility

model individually, it appears that, as ρ increases, the random

waypoint model performs better, while information diffusion

is degraded in the random walk model.

This results from distinct responses to a less regular network

structures. Let us consider the subnetwork shown in Figure 6.

When β = 0, an agent located on node 7 has a 50% chance

of reaching node 6. If this occurs, it returns to node 7 at the

following time step, where it has a 50% chance of moving

back to node 6. These oscillations means that, on average,

agents take longer to visit the whole network. We have seen

0 200 400 600 800

Iterations

1

1.2

1.4

1.6

1.8

2

R
W
P
/R
W
 r
a
ti
o

    0%

  10%

  20%

  30%

  40%

  50%

  60%

  70%

  80%

  90%

100%

Fig. 5. Influence of ρ for 5 agents and 10× 10 grid

Fig. 6. Example subnetwork

earlier that this leads to degraded performances. When β is

increased, the shortest path is chosen more frequently, and

oscillations within a subset of nodes become less likely.

In Figure 6, two paths (1-2-3-4 and 2-5-9-8) are essential to

linking the distant regions of the network , and are therefore

included in a large number of shortest paths. As β increases,

these paths are used with a greater frequency, and the likeli-

hood of agent interactions on these nodes is increased. This,

in turn, speeds up information diffusion.

It should also be noted that, even though some paths have

a greater frequency of visits, this does not mean that some

regions of the network are completely “abandoned” when

β increases. Complete coverage of the network is ensured

by randomly choosing the destinations. At any point in the

simulation, and for all values of ρ, agents in the random

waypoint model have visited more nodes than those limited

to random walks.

Overall, greater values of β are always associated with faster

information diffusion. The gap is increases with ρ.

C. Time to complete diffusion: delay and stability

For some communication systems, the stability of informa-

tion diffusion can be almost as important as its average speed.

To investigate this, it is useful to look at the time to complete

information diffusion, which correspond to the number of

iterations it took for all agents to obtain the information.

In previous sections, we have seen that, on average, at any

time point during a simulation, the proportion of agents who

have received the information is higher for greater values

of β, irrespective of the perturbation level ρ. In systems

information may change over time, or loses its value very

quickly, this becomes crucial, as it is more important to share



ρ Average Median Standard deviation

0.0 154.8 112 140.4
0.2 67.2 62 33.9
0.4 62.5 56 32.1
0.6 78.7 67 48.0
0.8 73.2 64 42.6
1.0 65.2 58 34.9

TABLE I
INFLUENCE OF ρ ON THE COMPLETE DIFFUSION TIME (RWP)

ρ Average Median Standard deviation

0.0 243.2 197 146.9
0.2 265.8 236 145.8
0.4 277.7 249 152.3
0.6 335.2 300 203.0
0.8 321.1 279 200.4
1.0 369.5 315 257.8

TABLE II
INFLUENCE OF ρ ON THE COMPLETE DIFFUSION TIME (RW)

the information with as many agents as possible over a short

time, than to reach all agents.

Conversely, there are systems where the emphasis is on

complete information diffusion. It is investigated here by

looking at the average and median time to complete diffusion,

as well as the standard deviation.

When gradually increasing β for simulations on 2D grids,

the median time is monotonously reduced. This pattern is also

observed for the average time and standard deviation for high

values of β. For intermediate values, however, there is some

instability: even though the median times is improved, the

average and standard deviation are not.

As expected, altering the grid perturbation level, ρ, improves

the performances of the random waypoint model, and degrades

those of the random walk. It does not result in any instability.

This is summarised in Tables I and II for RWP and RW,

respectively.

D. Communication redundancy and efficiency

To investigate the efficiency of each mobility model, we first

focus on the number of messages sent between the agents.

Unsurprisingly, for a given mobility model, the number of

messages increases quadratically with the number of agents,

as a result of the greater number of interactions.

More interestingly, the mobility model also has an impact on

the number of messages. The random waypoint model leads

to an increased number of messages, both during the initial

stages (information diffusion is faster, so more agents start

sending the information) and for whole simulation (due to

more frequent encounters between the agents). This begs the

question of the efficiency of the various strategies.

In a perfectly efficient system, messages would be sent only

to agents which are yet to receive the information, and the

ratio between the number of agents who have received the

information, and the number of messages that are exchanged,

would be equal to 1.
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Fig. 7. Influence of the number of agents on efficiency (random walk model)
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Fig. 8. Influence of the mobility model on efficiency (5 agents)

Here, there are no mechanisms for the agents to know

whether their counterparts already have the information, so

we know that the ratio will always be smaller than 1, and that

it will tend to 0 as the simulation progresses. Of particular

interest, therefore, is the early progression of the ratio.

The influence of the number of agents on efficiency is

shown in Figure 7 for random walks. Performances are largely

similar during the early stages, but degrade faster for larger

populations of agents. The faster spread does not balance the

quadratic increase in exchanged messages.

Figure 8 highlights the importance of the mobility model.

Despite a larger number of messages sent at any given time

during the simulations, RWP is confirmed to be the most

efficient choice. Only after all agents have received the infor-

mation does it become more wasteful than random walks. This

is a crucial result, as this mobility model was also associated

with both the largest proportion of agents with information

and the smallest time to complete information diffusion.

As the number of agents increases, complete diffusion is

obtained faster, and the point where RWP becomes wasteful

is reached earlier. Despite this, this mobility model can be

considered the most efficient communication strategy.

E. A note on network size

The figures above correspond to networks with 100 nodes.

Similar simulations were performed with network sizes rang-

ing from 16 to 2500 nodes.
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Fig. 9. Influence of β for a 2D 50× 50 grid with 25 agents

For a fixed agent population, increasing the network size

results in slower information diffusion. This is a direct conse-

quence of a drop in the likelihood of two agents being located

on the same node of the network, and does not affect the

overall diffusion pattern. The results above on the influence of

β and ρ are therefore valid for all tested sizes. For illustrative

purposes, Figure 9 shows the influence of β for a grid network

with 2500 nodes.

Network size may have a greater impact for dynamic

network topologies, (where edges are added or removed as

the simulation progresses), and for mobility models including

congestion avoidance. These, however, are not in the scope of

this paper, and will be covered in a future study.

IV. IMPLICATIONS FOR PRACTICAL APPLICATIONS

As we have discussed in Section II-A, this paper focuses

on uncontrollable randomness. Agent mobility is generally

difficult to control, (VANETs being a typical example).

First, our findings therefore clarify applicable areas of an

epidemic broadcast. Our simulation results help us to predict

and understand the performance of an epidemic broadcast for

a given node mobility and network topology. If we know the

node mobility and network topology of a target system, we

can predict how effectively and stably an epidemic broadcast

works. Second, our findings give us a design guideline for

an epidemic broadcast system. Although randomness in agent

mobility and network topology are generally not easy to

control, there are several systems in which those random

features are controllable.

Our findings clearly indicate that randomness in agent

mobility and network topology has a significant impact on

the performance of an epidemic broadcast.

Small bias greatly improves the information dissemination

speed: This implies that an epidemic broadcast works quite

effectively if agent mobility has bias in terms of path selection.

Since agent mobility in a real system generally has a certain

level of bias, this implies favorable characteristics of an

epidemic broadcast.

Small randomness in agent mobility in terms of path se-

lection might make the system less stable: This implies that

there is a trade-offs among efficiency and stability. Namely,

too much randomness in node mobility makes the system less

efficient while too much bias in node mobility makes the

system less stable. Note that an epidemic broadcast is one of

opportunistic-based communications, stability should not be

one of the most important design goals for a real system.

Larger number of agents multiplicatively increases the

information dissemination speed: This implies a desirable

property of an epidemic broadcast. Even though the impact

of agent density on the performance of an epidemic broadcast

is non-linear, it is still easy to predict. In particular, if one

knows the performance of an epidemic broadcast for a given

agent density, its performance with other agent densities can

be easily predicted. Thus, one can easily choose an appropriate

agent density according to the desired performance goals.

Larger topological dimension causes higher trapping effect:

This implies that in real systems, which generally have a

two-dimensional network topology, bias in agent mobility is

particularly important. Most communication systems used for

epidemic broadcast are geographically sparse; i.e. nodes are

geographically dispersed on a field. The network topology can

be seen as one of planar graphs. This indicates that understand-

ing (and sometimes controlling) randomness in node mobility

is the key for realising an efficient epidemic broadcast.

V. CONCLUSION

This study investigated the impact of randomness on infor-

mation diffusion, in particular in terms of node mobility, and

produced a number of important results. Simulation results

showed that bias in agent mobility (towards the shortest path)

significantly improves the information dissemination speed.

Interestingly, mobility models with a higher bias are also more

suited to deal with randomness in network topology: their

performances are improved when a structured grid is gradually

distorted, while those of purely-random mobility models are

degraded.

These results have significant implications for the develop-

ment of future communication networks. Further work will

investigate dynamic network topologies, additional aspects

of mobility (e.g. velocity, congestion avoidance) and more

advanced mobility models.
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