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ABSTRACT

Exact Generalized Voronoi Diagram Computation using a Sweepline Algorithm

by

Daniel Marsden, Master of Science

Utah State University, 2020

Major Professor: John Edwards, Ph.D.
Department: Computer Science

We introduce a geometric algorithm that computes the exact 2D Generalized Voronoi

Diagram restricted to point, line segment, and non-overlapping simple polygon sites using

a sweepline method. Our algorithm is an extension of Fortune’s algorithm which computes

the GVD on points and lines. With our approach, the Voronoi diagram can be computed

in O(n log n) run-time with O(n) space requirements. We describe the algorithm, show

run-time complexity, and discuss algorithm robustness through testing.

(50 pages)
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PUBLIC ABSTRACT

Exact Generalized Voronoi Diagram Computation using a Sweepline Algorithm

Daniel Marsden

Voronoi Diagrams can provide useful spatial information. Little work has been done

on computing exact Voronoi Diagrams when the sites are more complex than a point. We

introduce a technique that measures the exact Generalized Voronoi Diagram from points,

line segments and, connected lines including lines that connect to form simple polygons.

Our technique is an extension of Fortune’s method. Our approach treats connected lines (or

polygons) as a single site.
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CHAPTER 1

INTRODUCTION

(a) (b)

Fig. 1.1: The Voronoi diagram vs the GVD. Figure a shows the Voronoi diagram of point
sites, while figure b shows the the Voronoi diagram of polylines and higher-order sites.

1.1 Overview and Motivation

The Voronoi diagram, along with other concepts such as triangulation and convex hull,

are fundamental in computational geometry. The 2D Voronoi diagram of points is a plane

partitioned into Voronoi regions about sites. For any site s, points in the region about s

are closer to s than any other site [4]. Edges of Voronoi regions are equidistant from two or

more sites. The Voronoi diagram is good at solving spatial problems. It is especially good

at providing solutions to path planning problems [5]. A Voronoi diagram for which sites are

objects other than points is often referred to as the Generalized Voronoi Diagram (GVD) [6].

Like the Voronoi diagram of point sites, the GVD is a plane partitioned into individual

generalized Voronoi cells (GVCs) where points in the GVC are closer to the contained site

than any other site. Applications of the GVD include path planning, computer graphics,

pattern recognition, terrain modeling, and reconstruction [6].
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Many methods have been introduced to compute the regular Voronoi diagram of points

ever since the concept came about many years ago. Computing the GVD is more difficult due

to the added complexity of handling higher-order sites and the impact it has on constructing

the correct GVD. For this reason, it is common to compute an approximation to the GVD

and thus avoid some complexities. In chapter 2 we discuss published methods that compute

the regular Voronoi diagram including Fortune’s method [1]. We also discuss approximation

and exact algorithms for computing the GVD.

Our work presents an algorithm to compute the exact GVD of points, line segments,

and polylines including polylines that close into a polygon. Our work follows Fortune’s algo-

rithm [1] with additions that handle line segments that are connected on a non-intersecting

polyline. An intuitive approach to extending Fortune’s algorithm to polylines would be to

simply compute the diagram on all points and line segments and then prune out GVD edges

that bisect line segments that are connected by a vertex. However, the pruning approach

is challenging because Fortune’s algorithm requires that y coordinates of all points and ver-

tices are unique (assuming a horizontal sweep line, as we do). Our approach avoids these

singularities by handling a polyline (or polygon) as a single site. In chapter 3 we discuss

terms and definitions specific to our approach and describe algorithm details in chapter 4.

To our knowledge, our work presents the first sweep line algorithm that computes the GVD

on a variety of datasets including sets with closely spaced objects.

1.2 Main Contribution

The main contribution of our work is the algorithm definition to compute the exact

GVD. Our algorithm breaks down each unique case for handling polyline input. We prove

that our approach maintains an optimal runtime complexity of O(n log n) and space O(n).

To the best of our knowledge, our approach introduces the first sweep line method to compute

the GVD with optimal worst-case complexity.

In verifying our algorithm, we include the development of the webGVD software. webGVD

is used to validate the capability of the algorithm in practice. With webGVD we demonstrate

applications of the GVD including shortest path queries and shortest path queries with
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path diameter requirements. In chapter 5 we illustrate our results and performance on

datasets. We also analyze some applications of GVD including shortest path planning with

path diameter requirements.
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CHAPTER 2

PRIOR WORK

2.1 Fortune’s Work

In the paper "A Sweepline Algorithm for Voronoi Diagrams", Steven Fortune [1] intro-

duces a sweep line algorithm for generating the Voronoi diagram of points, line segments,

and weighted point sites on a 2D plane. Central to his approach is the geometric transform

through the mapping defined in section 2.1 of his paper which allows the Voronoi diagram to

be computed. In our work, we follow the usage of this mapping and refer to it as the beach

line. His algorithm is a classic algorithm for computing the Voronoi diagram of points but

its extension to line segments is largely ignored. The support of line segments introduces

some complexity as extra cases need to be handled. We discuss Fortune’s method in more

detail in chapter 4.

2.2 GVD Approximation Algorithms

Because of the complexity of the GVD, several approximation algorithms have been

proposed. Hoff et al. [7] and Garrido et al. [8] proposed grid-based approximation approaches

that are highly efficient and suitable for graphics hardware but that have no approximation

guarantees. Our approach avoids grid-based computation since nearest neighbor objects are

tracked and stored as they are visited.

K. Sugihara [9] found a way to compute the approximation to the GVD by using

the solution from the traditional Voronoi diagram. Other algorithms obtain a solution

by computing distance fields between sites. Edwards et al. [3] and Coll et al. [10], [11]

purposed methods using domain decomposition to construct distance fields for measuring

an approximation to the GVD in both 2D and 3D. In both methods, quadtrees and octrees

are used as data structures for distance field measurement. Edwards et al. [3] uses an



5

adaptive algorithm with scalable space requirements when sites are closely spaced. The

main benefits of these methods include their easy implementation, efficiency, robustness,

and generality. Our approach eliminates the need to decompose the scene since it is not

dependent on creating distance fields in mapping the GVD.

Since computing the GVD is processor-intensive, many methods choose to take advan-

tage of the GPU hardware to accelerate the computation. Fischer et al. [12] introduced a

tangent-plane algorithm for computing the kth-order Voronoi diagram of a set of point sites

in image space. Their algorithm uses graphics hardware to compute the distance transform

based on the input. Similarly, Hsieh et al. [13] purposed a GPU based method to compute an

approximation of 3D Voronoi diagram using an incremental algorithm. For practical usage

of these methods, they typically require extra hardware and software for GPU processing

along with a rigorous compilation process. This makes it difficult for long term support,

access, and portability.

Teichmann et al. [14] purposed an algorithm to compute the approximation to the GVD

of convex polygonal data in 3D. Their work describes a robust adaptive marching algorithm

which sub-divides space into tetrahedral and smaller type cells to build the set of Voronoi

regions. Likewise, Vleugels et al. [15] introduced a general method which divides space into

components called axial cells. In both cases, cell intersection is used compute the GVD

approximation. These methods often have a O(n2) worst case runtime complexity when

computing the approximation in three dimensions.

2.3 GVD Exact Algorithms

Compared to approximation algorithms, less work has been done on computing the

exact GVD when the sites are more complex than a point. Computation typically requires

computing all possible site bisectors between neighboring sites. The complexity of GVD

computation increases quickly with the number of supported site types. Points and line

segments are most common with circle and semi-circle sites being less common.

Yap [16] shows a model for computing the Voronoi diagram from a set of simple curve

segments. "Slabs" are placed between segments and later merged with other "slabs" to
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create the diagram in a divide and conquer fashion. The benefit of this type of approach

is that work can be done concurrently. Our approach generates the GVD of polylines and

avoids the need for any merging since the exact GVD is generated altogether linearly.

Mark de Berg et al. [4] make claim that the exact GVD of a set of n disjoint line

segment sites can be computed in O(n log n) time using O(n) storage using a technique

called retraction. Given a set of disjoint line segments the retraction technique creates two

discs to map the GVD. The algorithm moves each disc about the plane such that the two

discs with radius r always touch a site but never cross the line segment sites. Our approach

maintains the same runtime and space complexity while having the capability to compute

the exact GVD of polylines.

Imai [17] introduces a topological algorithm to compute the Voronoi Diagram of poly-

gons using this approach resulting in the PLVOR program. Here the challenge is finding all

nearest neighbors for each newly inserted site. A brute-force search for the nearest neighbors

would require O(n2) time. Our method tracks nearest neighbor sites naturally as each site

is visited and stored through the linear progression of the sweep line.

Influenced by Imai [17], Held [18] introduces an enhanced algorithm that uses geomet-

ric hashing to reduce the run-time complexity of finding the nearest neighbor. With this

approach, the number of grid hash cells must be predetermined. If the number of cells is

too small, there will be a high number of collisions. Using too many cells might result in

a sparse matrix with no benefit since the algorithm may have to iterate through more cells

than objects. The VRONI program is the current implementation of the Held algorithm. In

his approach, the number of hash cells chosen is largely dependent on the density of the

dataset. The higher the density the more cells will be needed for the hashing method to be

effective. Our approach functions independently of predetermined variables on both sparse

and very dense datasets illustrated later in chapter 5.

Sethia et al. [19] published introduce the PVD software that computes the GVD on

polygon pockets using geometric predicates for robustness. Their approach targets a specific

class of polygonal input whereas our method handles polylines and polylines which are closed
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to a polygon.

Zavershynskyi et al. [20] introduce an algorithm for higher-order Voronoi diagrams

which relate to the GVD as they compute the Voronoi diagram of points, line segments and

polylines. Similarly to our approach, the authors follow Fortune’s method [1] for computing

the GVD of point and line segment sites. Their approach incurs a higher runtime cost of

O(nk2 log n) and space cost of O(nk) where k is the level in the tree structure used to store

input site information.

Our approach is an improvement from previous methods because it scales well to handle

large datasets and computes the exact GVD in O(n log n) time using O(n) space without

the need for predefined runtime variables.
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CHAPTER 3

TERMS and DEFINITIONS

3.0.1 Common Notations and Terms

Notation Description

B(a,b) Bisector between a and b

I(a, b) Intersection between a and b

d(a, b) Euclidean distance from point a and b that is ||p− v||

lp1p2 The line from point p1 and p2

quad(a, b, c) The quadratic equation: x = −b±
√
b2−4ac
2a

• Point Site. A point in 2D composed of an x and y value {x, y}

• Point Site Queue Order. Here we follow the ordering outlined by [1] in section 2 and

additionally we define the order for comparison between point sites and line segments.

Each point p in 2D is sorted in lexicographical order where p < q, if any of the following

cases are true:

– py < qy

– py = qy and px < qx

When compared to a line segment site l, p < l is true if any of the following cases are

true:

– py < lp1y

– py = lp1y and px < lp1x

• Line Segment Site. A line segment in 2D composed of two connected points lp1 and

lp2



9

• Line Segment Queue Order. Each line segment is ordered such that l1 < l2 if any of

the following cases are true:

– l1p1y < l2p1y

– l1p1y = l2p1y and l1p1x < l2p1x

– l1p1 = l2p1 and the cross product of the vectors v1, v2 is less than 0 where

v1 = l1p2 − l1p1 and v2 = l2p2 − l2p1

In the final case where l1p1 = l2p1 by using the cross product we can know that l1p2

is either left or right of l2p2.

• Close Event. A close event C composed of a point Cp which is the point which marks a

vertex on the GVD. This vertex is equidistant neighboring sites. A y-value Cy defined

as Cy = Cpy − r where r is the radius to all nearest sites.

• Close Event Queue Order. Each close event C1 when compared to another event such

as a line segment site l, point site p or another close event C2 is ordered such that

C1 < l, C1 < p and C1 < C2 in the following cases:

– C1y < lp1y

– C1y < py

– C1y < C2y

• Beach Line Tree. A binary search tree representing the placement of all nodes and

edges (See Fig 3.1).

• Usegment. A Usegment represents the parabola beach line segment about a point site.

It is the bisector between the sweep line and a point site (See Fig 3.2).

• Vsegment. A Vsegment represents the V beach line segment about a segment site. It

is created from the bisector between the sweep line and line segment site (See Fig 3.2).

• Segment Node. A node in the beach line tree representative of a Usegment or Vsegment

(See Fig 3.1).
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• Edge Node. Internal nodes in the beach line tree connecting separate segment nodes.

Each edge node e is representative of the connection between two adjacent segment

nodes (See Fig 3.1).

• Edge. An edge represents the intersection between beach line segments. Each edge is

created with a start point and directional data. These components of the edge allow

for the algorithm to predict close events as we will discuss later in section 3.3.1.

2

4

5

4-52-4

(a) (b)

Fig. 3.1: Beach line tree components. In figure a we highlight the Usegment corresponding
to node 4 of the tree. Figure b shows the beach line tree T. In figure a we show edge
nodes 2-4 and 4-5 which form the parent edge nodes to leaf nodes with adjacent beach line
segments. We mark each edge with its directional component. This is the direction of travel
along the GVD edge.

3.1 Input Queue

We define the input priority queue Q as the structure containing all input. The sort

order is determined by the definition of the object sort order as points are sorted differently

than line segments and close events. For the most part, we follow Fortune’s approach [1]
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with the exception that polylines are sorted in a contiguous fashion next to their connected

counterparts at specific y values. We note that each line segment site l consists of two

endpoints points (lp1, lp2) in 2D where p1y 6= p2y and p1y > p2y. Every point site p is also

in R2. Point sites are sorted by the y component. Line segment sites are sorted by p1y and

in case of a tie are sorted left to right. Close events are ordered based on the y component

of the event. Polylines are labeled to differentiate medial axis edges from the GVD. Like

in Fortune’s method we require sites to be in general position in that y-coordinate of point

sites and end points of line segments must be unique.

3.2 Beach Line

The beach line is the boundary of where the structure of the GVD is known and where it

is not known – the GVD is known in the region above the beach line. We call the constituent

parts of the beach line Usegments and Vsegments. A Usegment is a parabolic beach line

segment that bisects the sweep line and a point, and a Vsegment bisects the sweep line and

the line portion of a line segment (See Fig 3.2). We also use the term Bsegment to refer to a

generic beach line segment, whether it is a Usegment or a Vsegment. Intersections of beach

line segments trace out edges of the GVD.

3.2.1 Beach Line Structure

We follow Fortune’s [1] suggestion in Algorithm 1 for the usage a binary tree structure.

The purpose of the tree is to store each visited site along. Leaf nodes have a one-to-one

correspondence with a Bsegment. Internal nodes correspond to intersections of Bsegments

(see figure 3.1). Ordering of nodes is based on their Usegment or Vsegment intersection

boundaries in 2D. An in-order traversal of the tree visits Bsegments ordered from left to

right. The beach line tree forms a hierarchical structure of all objects in a scene. The

advantages of using a binary search tree include the ability to track neighboring sites.

3.2.2 Beach Line Segments
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v1

p1 p2

v2
v1

p3A
B

C

Fig. 3.2: Beach line composition. The beach line, highlighted in light blue, is composed
of both lines and parabolic elements. We show individual Usegments (p1, p2, and p3) and
Vsegments (v1 and v2) representing the locus of bisecting points between the sweep line and
each site (A, B, and C). Usegments are formed about all point sites including start and
endpoints of each segment site. Vsegments are formed from bisecting the line portion of the
line segment with the sweep line.

Segment bisectors act as tracking mechanisms for nearest neighbor sites to allow for the

computation of node insertion points. Figure 3.2 shows the rendering of both Usegment and

Vsegment bisectors. As a bi-product they provide a visualization aid for the development of

the GVD. The computation of each bisector is as follows:

• Usegment Bisector. Provided the sweepline location sly and the site location p we can

compute the site bisector. The resulting bisector is a geometric parabola that follows

the vertex form equation, y = (x− h)2/4p+ k where:

h = px

k = (sly + py)/2

p = (py − sly)/2
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• Vsegment Bisector. Provided the sweepline sl and the site location l we can compute

the Vsegment. The bisector is composed of two directional vectors Vv1 and Vv2 a single

point Vp. Vp is the intercept point between the line segment and the sweep line. To

compute each directional vector we compute θ as the smallest positive angle between

l and sl. We define the angle β = θ/2. Using the sin and cos function we can compute

each directional vector as:

v1 = {x, y} = {cos(β), sin(β)}

v2 = {x, y} = {cos(β + π/2), sin(β + π/2)}

3.2.3 Intersections

For the beach line to function properly we must be able to determine the intersection

between all types of Bsegments. Intersection points mark the boundary or edge between

Bsegments. The order of Bsegment pairs is maintained through a parent edge node in the

beach line tree (See Fig 3.1). Intersection points between pairs is done in order with the

following definition for each case:

• Usegment to Usegment: From section 3.2.2, we use h1, k1, and p1 for variables of the

first parabola Usegment and h2, k2, and p2 for variables of the second parabola. We

compute the x-value of each intersection using the quadratic formula where:

a = 0.25 ∗ (1/p1− 1/p2)

b = 0.5 ∗ (h2/p2− h1/p1)

c = 0.25 ∗ (h1 ∗ h1/p1− h2 ∗ h2/p2) + k1− k2

xvals = quad(a, b, c)

From xvals we determine all intersection points. If a single solution is found we use

that point. For multiple solutions we determine which Bsegment is lower at centerx
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value between each intersection point. If the previous Bsegment is lower at f(centerx)

the right most intersection is used otherwise the left most intersection is used.

• Usegment to Vsegment: From the Vsegment, we identify the directional vector v from

the Vsegment incident to the Usegment based on the order of the Bsegments. We

use the parametric from of the vector q(t) = q + tv where the point q and directional

vector v is used from the Vsegment. From the Usegment we use variables h, k, and p

as defined in section 3.2.2. tvals are computed from using the quadratic equation:

a = vx ∗ vx/(4 ∗ p)

b = 2 ∗ vx ∗ (qx − h)/(4 ∗ p)− vy

c = (qx ∗ qx − 2 ∗ qx ∗ h+ h ∗ h)/(4 ∗ p) + k − qy

tvals = quad(a, b, c)

Using the tvals we can determine the points of intersection along the Usegment. Just

like in the case for Usegment to Usegment we determine the solution using centerx.

• Vsegment to Vsegment: Before the intersection between Vsegments is computed, we

determine the intersection point between segment sites s1 and s2 where p = I(s1, s2).

We compute the intersection as if s1 and s2 are unbounded lines. If p ∈ s1 or s2 we

set s. Here we refer to the associated Vsegment of s as sv. From s know that there can

be at most two intersection points along only one directional vector of sv. We know

this because the site s obscures the other directional vector. If p /∈ s1 or s2 then we

know that there is at most one intersection between all directional vectors. We know

this since the two outer vectors will be obscured. With this information we compute

intersection points between non-obscured directional vectors by following the solution

for any two parametric equations with where:

L = p1 + t ∗ v1 =M = p2 + u ∗ v2
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To solve this we isolate the unknowns and compute t and u where:

t = p2 + u ∗ v2− p1/v1

u = p1 + t ∗ v1− p2/v2

Each equation is really two equations for both the x and y component where:

(p2x + u ∗ v2x − p1x)/v1x = t = p2y + u ∗ v2y − p1y)/v1y

(p1x + t ∗ v1x − p2x)/v2x = u = p1y + t ∗ v1y − p2y)/v2y

When t and u are isolated we get the result:

t = (v2x ∗ (p1y − p2y) + v2y ∗ (p2x − p1x))/(v1x ∗ v2y − v1y ∗ v2x)

u = (v1x ∗ (p2y − p1y) + v1y ∗ (p1x − p2x))/(v2x ∗ v1y − v2y ∗ v1x)

If multiple intersection points are the result from the vector intersections, we follow

the same procedure as the two previous cases to find a single solution.
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3.3 Site Bisectors

P1 P2

(a)

R1

R2

R3
S1

P1

(b)

S1

S2

S3

(c)

Fig. 3.3: Site bisectors. We illustrate bisectors between site types. Line bisectors are
highlighted in turquoise and parabola bisectors are highlighted in yellow. The bisector
between point sites is line between p1 and p2 perpendicular to the vector connecting the
two sites (See Fig 3.3a). A Point-segment bisector is a parabola about p1 in figure 3.3b.
We note that is bisector is bounded to region R2 determined by the size of the segment site.
Regions R1 and R2 are formed from the line bisectors between P1 and the endpoints of S1.
Figure 3.3c shows two cases of segment to segment bisector creation. In the first case, a
single bisector between S1 and S2 is formed. It is important to note that their intersection
point p is p /∈ S1 or S2. In the second case, the intersection between segments S2 and S3
is ∈ S2. This results in two bisectors around S3 which are within the bounds of S2.

We define the computation for site bisectors. The computation of site bisectors is similar

to that of Bsegments except bisectors are determined from site to site in general position

instead of the sweep line with a fixed orientation.

• Point Point Bisector. The bisector between p1 and p2 is computed by first computing

the mid point as: m = (p1 + p2)/2. The vector from p1 to p2 is then computed as

v = p2− p1. Lastly we compute each endpoint for the bisecting line l as:

lp1 = {x, y} = {vy +mx,−vx +my}

lp2 = −lp1

• Segment Point Bisector. For any point q /∈ s and not co-linear to s. We compute θ as
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the angle of rotation of s. Much like the computation of the bisector for a point site

arc node, the resulting bisector is a parabola, however, in this case we must account

for θ of s. We refer to the angled parabola as a general parabola. The computation

of a general parabola can be done by first the computing the parabola about q given

s vertex form equation, y = (x− h)2/4p+ k where:

h = qx

v1 = normalize(sp2 − sp1)

v2 = p− sp1

p = k = cross(v1, v2)z/2

The second component of computing the general parabola requires us to apply a ro-

tational transform of θ to the result of the previous equation. In special cases if q is

co-linear to s, then the bisector is the equal to the bisector between q and the closest

endpoint point of s either sp1 or sp2.

• Segment Segment Bisector. The bisector between s1 and s2 results in either one or

two bisectors b1 and b2. Each bisector is in parametric form given a point and a

directional vector. Angle θ is computed as the smallest angle between sites. For any

pair of disjoint segments we compute their intersection point as p = I(s1, s2). If p /∈ s1

and p /∈ s2, then the result is a single bisector b1 where:

b1p = p

b1v = {cos θ, sin θ}

If p exist on either s1 or s2 a second bisector is created in the same fashion except angle

θ is the large angle between sites. For connected line segments we know only a single

bisector exists within the bounds of each segment. We also know that it is bisector
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created from the smallest angle which must be less than π. With this information we

compute a single bisector just like in the two previous cases with θ as the smallest

angle between the sites.

3.3.1 Bisector Intersection

P1

P2

P3

E1

B1

B2
B3

B4

(a)

P1
P2

S1

B2

B3
E1

L1B1

B4

(b)

B2

B1
E1

S1

S2

S3

(c)

Fig. 3.4: Directional Bisectors. We show each bisector mapped with a directional component.
As edges are formed between Bsegments the direction of the edge is determined by site, sweep
line and order information. In Fortune’s paper [1] these are called half edges. Each half edge
follows the bisector between sites. In figure 3.4a we show individual half edges between
point sites. Using the intersection from B2 and B3 we compute the close event at E1. Figure
3.4b shows the half edges formed between a point site and a line segment site. Again, E1
is computed except the half edges B2 and B3 are parabolic bisectors. In computing E1 the
line L1 is purposed for the re-use of ray to parabola intersect methods. L1 is defined as the
bisector between points P1 and P2. We provide an example of half edges between segment
sites in figure 3.4c. From two half edges we can determine the point E1 equidistant between
S1, S2 and S3.

Bisector intersection is important for determining equidistant points between a group 3

or more sites. The intersection of bisectors follows the same equations for that of Bsegments

as discussed in section 3.2.3 except for some differences for general parabolas and lines. In

these cases, angle θ is used to determine the angle of rotation of the parabola. The bisecting

line is transformed using a rotational matrix. We then compute the tvals using the quadratic

equation to determine the intersection points along the general parabola.
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CHAPTER 4

ALGORITHM

4.1 Fortune’s Algorithm

We give a brief description of Fortune’s algorithm [1] here. While most descriptions

treat only point sites, we include Fortune’s handling of line segment sites as well.

Let G be a collection of points, line segments, connected line segments, and simple

polygons. GVD(G) computes the GVD using the elements of G as sites. We maintain two

lines, a sweep line, and a beach line. The sweep line, by our convention, extends horizontally

and travels down (along the negative y axis). We execute changes to the current GVD state

when the sweep line intersects "events" (defined below). The locus of points equidistant from

the sweep line and a point site is a parabola and similarly, the locus of points equidistant

from the sweep line and a line segment site is a line segment (for the site itself) and two

parabolas (for the endpoints of the site). The beach line is a collection of line segments and

parabolas (see Figure 3.2) representing the locus of points equidistant from the sweep line

and sites above the sweep line.

As the sweep line travels down it encounters "events", which are points at which the

hierarchical structure of the beach line changes. For example, a point site is a point event

that adds a Usegment to the beach line. Consider a line segment site with endpoints a and

b. By convention, ay > by. a is a specialized site event called a start segment event that adds

two Usegments split by a Vsegment (see Figure 3.2). The Vsegment bisects the line segment

site and the sweep line, one bisection on the left, and one on the right. The two Usegments

are subsets of the parabola bisecting endpoint a and the sweep line and lie to the left and

right of the bisecting Vsegment. b is an end segment event that inserts a Usegment splitting

the Vsegment opened by event a. In addition to site events, close events represent points at

which beach line segments get "squeezed" out by neighboring segments. Determining where
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these close events belong is a matter of finding the point equidistant from the points or lines

corresponding to the beach line segment being closed and its neighbors on either side.

Assume sites are in general position in that all points sites and line segment site end-

points have unique y coordinates. Events, both site and close events, are reverse sorted by

y. Line segment sites add two events, one for each endpoint (a start segment event and

an end segment event). A priority queue Q is typically used to maintain the events, giving

O(log n) performance for insertions and removals, where n is the total number of events.

See Algorithm 1. Our extension to Fortune’s algorithm is in the AddBSegment subroutine

(line 7).

4.1.1 Polylines

We extend Fortune’s algorithm to handle polylines, including polylines that are closed

into a polygon. Our contribution is updating the beach line structure appropriately when

encountering vertex point sites (sites that are endpoints of two line segments). In the

following discussion, we use b((U |V )∗), where ∗ is the Kleene star, to describe a series of

beach line segments defined by Usegments (U) and Vsegments (V). For example, b(UV V U)

corresponds to the four segments shown in Fig. 4.1a.

Inserting into the beach line

When encountering site events, our contribution is appropriately handling a vertex

event e that is the vertex of two adjacent line segments C and D. Where the original

algorithm handles the b(UV U) beach line segments corresponding to a single line segment

(see Fig. 3.2), our extension handles the b(UV V U), b(V U), and b(UV ) beach line segments

corresponding to vertex sites (see Fig. 4.1).

Algorithm 2 describes the algorithm for updating the beach line structure when en-

countering a point or vertex event. If the event is a vertex site event (line 2) we test for

three cases. The first is the Ca = Da case (Fig. 4.1a) where we insert four segments into the

beach line: a Usegment for the vertex itself, split into two pieces by two Vsegments, one for

each line segment. The second case is when the line segments make a left-hand turn from C
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Ca=Da
U

V V

U

(a) B(UV V U)

U
V

Ca

Cb

Db

(b) B(UV )

V

U

Db

Ca

Cb

(c) B(V U)

Fig. 4.1: Three configurations of vertex events with beach line highlighted in light blue. a
Ca = Da case, where four beach line segments are inserted. b Cb = Da left-hand turn case,
where two beach line segments are inserted. c Cb = Da right-hand turn case, where two
beach line segments are inserted. The case where Cb = Db is not shown as it is handled the
same as a non-vertex point site.
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to D (lines 9-10 and Fig. 4.1b). In this case, the Usegment for the vertex appears only on

the left with the Vsegment for the line segment on the right. The third case is symmetric

to the second (lines 11-12 and Fig. 4.1c). There is a fourth case, where e = Cb = Db (lines

14-15), but it turns out that this is identical to the non-vertex case (lines 17-18) with one

caveat: instead of splitting an existing beach line segment (lines 23-24), the new Usegment

will be inserted between two existing Vsegments, which are the two Vsegments bisecting the

two line segments. It is tempting to handle inserting the Usegment between two existing

Bsegments as a special case when e = Cb = Db. However, we note that any new Bsegment

to be born exactly at the intersection of two existing Bsegments, so this is a case not unique

to our extension.

In the original sweep line algorithm, all Bsegments in the interior of the beach line had

a corresponding close event that generated a Voronoi edge. In our case, however, when a

Bsegment is surrounded by other Bsegments from the same polyline, handling of the close

event (line 10 of Algorithm 1) does not create an edge. Handling this case requires a little

more bookkeeping – each site must carry a label.

Algorithm 1 GVD
1: Initialize beach line L
2: Populate priority queue Q with point sites and endpoints of line segment sites
3: while Q is not empty do
4: e← pop from Q
5: dirty ← empty list
6: if e is a site then
7: dirty ← AddBSegment(e)
8: end if
9: if e is a close event then

10: dirty ← RemoveBSegment(ebsegment)
11: end if
12: for Bsegment in dirty do
13: c← CreateCloseEvent(Bsegment)
14: add c to Q
15: end for
16: end while
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Algorithm 2 AddBSegment

1: Accept as an argument site event e
2: if e is a vertex then
3: Let C and D be adjoining line segments
4: if e = Ca = Da then
5: t← b(UV V U)
6: else if e = Cb = Da then
7: u← Ca − Cb

8: v ← Db −Da

9: if (u× v) · (0, 0, 1) > 0 then
10: t← b(UV )
11: else
12: t← b(V U)
13: end if
14: else if e = Cb = Db then
15: t← b(U)
16: end if
17: else
18: t← b(U)
19: end if
20: if T not defined then
21: T ← t
22: else if ∃ c ∈ T s.t. cxmin < ex < cxmax then
23: Find c ∈ T s.t. cxmin < ex < cxmax

24: Split c with t
25: ret ← cleft, cright
26: else
27: Find c, d ∈ T s.t. cxmax = ex = dxmin

28: Insert t between c and d
29: ret ← c, d
30: end if
31: return ret

4.1.2 Complexity

Fortune’s algorithm is O(m logm) time and O(m) in space [1], where m is the number

of sites. As our sites are arbitrarily complex, our complexity is derived in terms of the

number of point sites summed with the number of vertices in polyline sites, which we call n.

Using this definition, Fortune’s algorithm would remain O(n log n) and O(n) in space and

time, respectively.

Lemma 1. Algorithm AddBSegment (Algorithm 2) is O(log n) in time.
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Proof. At most 4 bsegments are added to tree T . The 4 bsegments are leaf nodes of tree t,

so the tree has O(1) nodes and can be constructed in linear time. One insertion (the root

of tree t) into tree T is made, requiring a O(log n) search and O(1) insertion.

Theorem 1. Algorithm GVD (Algorithm 1) is O(n log n) in time.

Proof. The main while loop in Algorithm 1 executes O(n) times. By Lemma 1 AddBSegment

is O(log n). All other portions of the algorithm are as in the original algorithm, resulting in

O(n log n) run-time complexity.

Theorem 2. Algorithm GVD (Algorithm 1) is O(n) in space.

Proof. Instead of the one Bsegment added by Fortune’s algorithm in AddBSegment, we add

at most 4. No other changes to Fortune’s algorithm affect space.
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CHAPTER 5

RESULTS

5.1 Implementation

The enhanced GVD algorithm is implemented in JavaScript and, as such, is run in a

browser. As performance isn’t our primary goal at this stage, we chose this implementation

strategy for explanatory and educational purposes. JavaScript was chosen to make develop-

ment, testing, replication, and adoption simple because the code needn’t be compiled. The

software implementation is referred to as webGVD.

Results for the webGVD were gathered using various datasets presented in published

papers.

• Cities Dataset. With the publication of the article "Benchmarks for Grid-Based

Pathfinding" by N. Sturtevant [2] the cities dataset was also released. We use this

dataset for stress testing our implementation. Shown in figure 5.2 we compute GVD

along with its counter-part the medial axis of many line segments. The reason for so

many line segments is due to the fact that this data was in a pixel grid type format

instead of point to point format. All outer edges and pixels are traced and converted

to individual segments.
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(a) (b)

(c) (d)

Fig. 5.1: City Data GVD. In his work, [2] provides a number of useful city data-sets that
can be used as input into our algorithm. This shows the computed the GVD for some of the
cites in the cities dataset including the Sydney a, Boston b, Berlin c and Moscow d. At the
bottom of each figure the beachline or wave-front can be identified as plays a major role in
generating the GVD. Using the computed results we can extract helpful information such
as identifying the most narrow streets or alleyways in a city or find the shortest path from
one side of the city to the other.
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Fig. 5.2: Medial Axis. As a measure of robustness we show the computed GVD along with
it’s counterpart the medial axis. The medial axis is computed similarly to the GVD but
encodes additional shape information. The GVD is show in the thicker lines while the medial
axis is shown with thinner lines. Indeed, the medial axis is a complete shape descriptor.
Here the medial axis of the Berlin city dataset [2] is shown using thin lines alongside the
GVD indicated by thicker lines.

• Maze Dataset. In article "Approximating the Generalized Voronoi Diagram of Closely

Spaced Objects" by Edwards et al. [3] the authors used a dataset to test algorithm

robustness on densely packed objects. In figure 5.3b we compare their computed GVD

to ours at roughly 80000 zoom resolution. Additionally we show our algorithm with

the capability to find the shortest path through the maze in figure 5.8.
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(a)

(b) (c)

Fig. 5.3: Approximate GVD compared to the exact GVD. In figure 5.3a we show the context
area to be zoomed in at roughly 80,000 zoom resolution. We use our results from the maze
dataset [3] to compare the computed approximation to the GVD (figure 5.3b) and our
computed exact GVD (figure 5.3c).



29

• RPG Dataset. In a recent article "On Generating Polygons: Introducing the Salzburg

Database" by G. Eder et al, the authors released the Salzburg Database of Geometric

Inputs and with it the random polygon generator (RPG) [21]. We use RPG for per-

formance testing using the generated unit square (See Fig 5.6b). We also use RPG to

for verification purposes of webGVD through the generation of the cluster dataset and

star dataset in figures 5.4 and 5.5.

Fig. 5.4: RPG Cluster Dataset.

https://sbgdb.cs.sbg.ac.at/
https://sbgdb.cs.sbg.ac.at/
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Fig. 5.5: RPG Star Dataset.

• Holes Dataset. The Holes dataset was introduced by Held [18]. We were able to

generate it for performance and verification purposes as shown in figure 5.6a.
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5.2 Run-time Analysis

(a) (b)

Fig. 5.6: Generated Datasets. We illustrate the Holes with 64 segments and the RPG Unit
Square with 1024 segments.

We use both the Holes [18] and RPG [21] datasets to gather our timing results to show

scalability (See Fig 5.6). These datasets were chosen due to their flexibility to scale the size

of n without generating invalid data. Fig. 5.7 shows results from a scaling test. With the

two datasets, we measure the runtime as we scale up in the number of sites. The results

show performance in practice is well within the O(n log n) worst-case bound. Table 5.1 shows

runtimes from tests on various datasets with comparison to other algorithms where available.

We expect that implementing our algorithm in a high-performance language would put our

results closer to but not necessarily on par with VRONI [18].
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(a)

(b)

Fig. 5.7: Run-time Analysis. The log-log plots show run-time spent on the insert operations
and the total processing time of the algorithm.
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5.3 Performance Vs Other Algortihms

For good measure we show recorded benchmarks from webGVD. We compare our results

to similar algorithms. We note that PLVOR, PVD, VRONI were all implemented using optimized

compilation [18].

Our Other

Dataset time (s) time (s) # sites

Maze [3] 2.0 2.0 [3] 4,456

Sydney [2] 1.3 - 3,260

Berlin [2] 1.7 - 4,239

Boston [2] 3.0 - 7,813

Moscow [2] 1.5 - 4,081

Table 5.1: Results of timing tests. Where available, timings on the same dataset using a
different algorithm are also provided.

Size PLVOR PVD VRONI webGVD

64 1.359 0.164 0.109 0.390

128 0.922 0.160 0.107 0.392

256 0.657 0.162 0.108 0.336

512 0.565 0.158 0.115 0.244

1024 0.517 0.167 0.114 0.259

2048 0.511 0.167 0.117 0.276

4096 0.561 0.175 0.126 0.661

8192 0.643 0.185 0.136 0.474

16384 0.898 0.209 0.148 0.387

Table 5.2: RPG Dataset Results (time per segment in ms)
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Size PLVOR PVD VRONI webGVD

64 1.250 0.469 0.156 0.516

128 0.859 0.625 0.078 0.501

256 0.625 1.289 0.078 0.367

512 0.508 3.477 0.117 0.336

1024 0.449 15.53 0.098 0.381

2048 0.444 99.23 0.098 0.314

4096 0.532 732.2 0.105 0.365

8192 0.621 5671.0 0.117 0.438

16384 0.982 n/a 0.132 0.504

Table 5.3: Holes Dataset Results (time per segment in ms)

5.4 GVD Applications

We discuss applications of the GVD including shortest path applications and path

planning with path diameter requirements. The GVD allows for elegant solutions to these

types of problems. By coupling our algorithm with Dijkstra’s algorithm we can analyse

paths through each dataset. Figure 5.8 shows our capability to navigate the maze dataset

using the GVD.

Fig. 5.8: Shortest Path Capability. We illustrate our ability to determine the shortest path
through the maze dataset [3] which tests the algorithm’s ability to compute the GVD at
multiple scales.
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In Dijkstra’s path algorithm, a start and end are known. We begin by evaluating all

paths leading outward from the start position. Paths with the lowest cost are chosen before

those with higher costs. The algorithm finishes when the end is reached. Using the GVD we

retrieve the exact cost or length of each edge between sites. The computed length is based

on the equidistant path which is the path taken by someone traveling down the very center

of the path.

We can use the GVD to compute new routes when under constraints such as a required

minimum path diameter. Consider a scenario where an object is transported through a

maze. Depending on the size of the object it might be impossible to take the shortest path

if at any point the path that is smaller than the object itself. In this case, a new route is

computed to allows for the object to pass freely through the maze. Figure 5.9 illustrates

this scenario where a longer but less narrow path is chosen.

(a) (b)

Fig. 5.9: Path Planning with Diameter Requirements. We show the computed GVD as the
black line and the computed shortest path with the blue line. Figure a shows the shortest
path through the objects with no minimum size requirements. All units are in relations to
unit grid comprising the scene from -1.0 to 1.0. The shortest path passes through a narrow
section. When the shortest path is limited only to routes with a minimum diameter of at
least 0.03 units a different route that is less narrow must be chosen (See Fig b).
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To do this, we modify Dijkstra’s algorithm slightly. We pass the requirement criteria

into the algorithm. In this case, we pass in dmin as the minimum diameter. We modify the

algorithm to check the minimum path diameter Pmin before choosing which path to take.

Since the GVD marks all points equidistant between sites the Pmin is of any path is known.

If Pmin < dmin, we add an infinitely high cost to the potential path. Since the cost is too

high, the algorithm will naturally ignore the invalid path and find an alternative cheaper

route. The GVD is well-suited to handle these types of problems. Exact path requirements

are easily stored and retrieved in the result itself.



37

CHAPTER 6

Conclusion

6.1 Conclusion

This thesis presents our work to advance the capability of the sweep line method in-

troduced by Fortune [1]. We have presented a sweep line algorithm to compute the exact

GVD in the Euclidean plane for point, line segment, polyline, and polygon sites. Despite

no mention of polygons in our algorithm description, the implementation works as polygons

are handled naturally. We have derived identical time and space bounds to Fortune’s origi-

nal algorithm and shown experimental behavior consistent with those bounds in tests. We

have also shown robustness across a variety of datasets. Our method scales well with large

datasets without extra runtime configurations or variables.

Our work is different from previous methods because we focus on the utilization of a

sweep line to maintain optimal runtime complexity. The large majority of previous methods

use incremental algorithms to compute the GVD. With these methods, it is challenging to

avoid a O(n2) complexity for nearest neighbor discovery.

In our results, we present practical applications of the GVD. We show how the GVD

can be exploited to compute the shortest path through a maze of closely spaced objects.

We illustrate how our method is well suited in finding solutions for path planning problems

with path diameter requirements (See Fig 5.9).

6.1.1 Future Work

Our work brings a sweep line approach forward as a possible framework for handling

higher-order sites. Whether our approach would be suitable for curved or circular sites is

a topic for future study. We have shown that the sweep line method can be extended and

generalized to handle higher-order data naturally. The sweep line approach is well suited
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to handle general input as long as event order and bisector segment mapping is handled

correctly. Whether or not the sweep line approach may prove effective in generating the

3D Voronoi diagram is another topic for future study. The Voronoi diagram in 3D remains

largely unexplored in general.

6.1.2 Implementation Benefits

The benefit of implementing our algorithm in JavaScript allows it to be easily adapt-

able in a variety of environments since it is run in the browser. The source code of our

work is hosted publicly. Future researchers or contributors can easily submit changes and

enhancements. Additionally, we provide public access to our application on a hosted web

page 1. Our hope is that is can be used as a platform for getting more people interested in

Voronoi diagrams, the sweep line method, and computational geometry concepts in general.

1https://edwardsjohnmartin.github.io/gvd-fortune/
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