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ABSTRACT

Development and identification of metrics to predict the impact of dimension reduction

techniques on classical machine learning algorithms for still highway images

by

Wasim Akram Khan, Master of Science

Utah State University, 2020

Major Professor: Douglas Galarus, Ph.D.
Department: Computer Science

The US Transportation System is heavily monitored by cameras and other sensors,

generating large amounts of data which can be analyzed to extract actionable insights to

improve transportation. Closed-Circuit TV cameras (CCTVs) monitor the highway and

produce high dimensional images which make it challenging to apply machine learning

algorithms. Dimension reduction techniques can help in dealing with a large amount of

high dimensional data. Faster training and inference time on dimension-reduced data and

smaller models which can be deployed on commodity hardware are a critical advantage

of dimension reduction. This thesis explores the impact of dimension reduction on the

performance of classical machine learning algorithms, and identifies and devises measures

that best predict the impact. The dataset used is a time series of images from several camera

feeds observing the traffic, weather and road conditions along the highways. Readings from

other sensors were used to label images to facilitate the application of supervised machine

learning algorithms.

(97 pages)
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PUBLIC ABSTRACT

Development and identification of metrics to predict the impact of dimension reduction

techniques on classical machine learning algorithms for still highway images

Wasim Akram Khan

We are witnessing an influx of data - images, texts, video, etc. Their high dimension-

ality and large volume make it challenging to apply machine learning to obtain actionable

insight. This thesis explores several aspects pertaining to dimensional reduction: dimension

reduction methods, metrics to measure distortion, image preprocessing, etc. Faster training

and inference time on reduced data and smaller models which can be deployed on com-

modity hardware are a critical advantage of dimension reduction. For this study, classical

machine learning methods were explored owing to their solid mathematical foundation and

interpretability.

The dataset used is a time series of images from several camera feeds observing the

traffic, weather and road conditions along highways. The time-series nature of dataset

gives rise to interesting questions which are investigated in this work. For instance, can

machine learning models trained on past data be used on future camera feed data? This

is highly desirable and yet difficult due to the changing weather, road conditions, traffic

conditions and scenery. Can dimension reduction models obtained from past data be used

for reducing dimensionality of future data? This thesis also examines the difference between

the performance of machine learning methods before and after application of dimension

reduction. It tests some existing metrics to measure quality of dimension-reduced data set

and introduces several new ones. It also examines the application of image pre-processing

methods to boost the performance of classifiers. The classification performance with and

without random sampling has been studied as well.
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CHAPTER 1

INTRODUCTION

United States highways are monitored to improve and advance the state of transporta-

tion. Doing so generates a large amount of data - still CCTV images, live videos, and

readings from numerous other sensors observing weather, road surfaces, and a multitude

of other factors that impact transportation - in the range of terabytes or more. In this

thesis, we examine still images generated by roadside CCTV cameras and use readings of

weather and other sensors to label the images. Images convey a lot of information like the

status of the roads, the weather in and around the place under observation, etc. Images

are a classic example of high dimensional data; high dimensionality is a curse. It makes it

computationally expensive to apply machine learning algorithms and other algorithms to

extract useful insights from the data.

In this thesis, we reduce data sets into lower dimensions using dimension reduction

techniques and then train classical machine learning algorithms on the reduced datasets.

The performance of a classifier on reduced data may be better or worse than the classifier

trained on the original, high-dimensional dataset depending on the reduction method used,

the classifier type, and the size of the reduced data set. Classifier performance can be directly

measured using recall, precision, accuracy, and f1 score versus the size of the reduced data

set. Classifier performance can also be estimated by using proxy metrics measuring the

preservation of the relative structure of the data set before and after dimension reduction.

Only a handful of classical machine learning classifiers are studied in this thesis. Study-

ing all of them would not be feasible. Convolution Neural Networks which are very famous

for dealing with images is not studied in this thesis. It is because this thesis does not aim

at building successful image classifiers, rather it intends to develop and/or identify met-

rics to predict the impact of dimension reduction techniques on classical machine learning

algorithms.
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1.1 Background

Even though the capacity of storage mediums is increasing and costs are falling rapidly,

it would be ideal to not have to store forever the images obtained from CCTV cameras

monitoring roads. There also might be legal reasons to not store images beyond a certain

duration for privacy or other reasons.

As we have the images and sensor readings for any particular location, we can merge

both of them to label the images. It is possible to automatically generate road warnings

or guidance using classifiers trained on the resulting labeled dataset. Since the data can

be huge we are interested in training classifiers on projected (dimension reduced) dataset.

The challenge, however, is preserving the optimal number of components in the projected

data. If the dimension of the projected data is too low then the classifiers’ performance

will suffer and if it is too high then we waste compute resources for a minor reduction in

the dimension of the dataset. The performance of classifier and the quality of a reduced

dataset vary according to the method used to reduce dimension.

In this study, we measure the impact of dimension reduction on the classifiers’ perfor-

mance both directly using metrics based on a confusion matrix and indirectly using multiple

metrics for preservation of local structure of the data set.

1.2 Related Works

There are a few related works, which we used for guidance and understanding. Maaten

et. al [1] focus on the comparison of non-linear dimension reduction techniques and not on

developing metrics that measure preservation of the underlying structure after dimension

reduction. They use data sets that are artificial and thus do not necessarily tell us how the

metrics fare on natural datasets. They also used natural datasets whose dimension is in the

range of 1000 which is much less than the dimensionality of our dataset which is 506,880.

The dimensions of their artificial datasets are also low compared to the datasets used in

this thesis. Gracia et. al [2] also use data sets similar to those mentioned above in their

experiments to compare several linear and non-linear dimension reduction methods using

preservation of geometry as the objective function for measuring loss of quality. Neither [1]
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nor [2] study time-series data.

The paper by Wang et. al [3] also studies the role of dimension reduction in classification

in a qualitative manner. It studies the optimization of classification performance over

dimension reduced dataset. It does not introduce any metric and focuses more on the

runtime of classifiers on reduced data sets.

Keller et. al [4] study the impact of dimensionality reduction and feature selection on

the classification performance but it focuses entirely on hyperspectral EnMAP data. They

use the following metrics to measure the performance of the classifers: overall accuracy,

Cohen’s kappa coefficient, average completeness, average correctness, and average quality.

It does not measure the quality of projection and is hyper-focused on a particular type

of remote sensing dataset. In this thesis, we focus on a transportation dataset and also

measure the quality of the dimension-reduced dataset.

The paper by Jelena et. al [5] compares different dimension reduction methods based

on computation speed and accuracy. The accuracy measures are Stress, Spearman coef-

ficient, and Shannon entropy. It uses three different groups of data- randomly generated

clustered data, randomly generated nonclustered data and financial data. It does not deal

with transportation images or time-series data and focuses on visualization. Nikkila et

al. [6] also use metrics that measure topology preservation after dimension reduction on

gene expression data to compare Self Organizing Map with Multidimensional Scaling and

Hierarchical clustering. They study impact on visualization due to dimension reduction.

Obaid et. al [7] specifically report only time saving and classifiers’ accuracy resulting

from the usage of several pre-processing and dimension reduction techniques. In this thesis,

we estimate the preservation of the structure of the data after dimension reduction as well

as classifier performance on it. We do not examine computation time.

None of the related works above experiment on time-series data while our work is

specifically on time-series data.
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1.2.1 Metrics for Measurement of Quality of Projection

We opted for preservation of structure as the objective for projection quality of di-

mension reduction methods. There are many metrics to measure preservation of structure.

Not all of them are general purpose and applicable to every method of dimension reduction.

Many of them are very specific to the type of projection method used and the type of dataset

on which reduction was carried out. In this thesis, we use some of the existing metrics to

measure the projection quality and introduce several measures of our own. The metrics to

measure preservation of structure are described in Chapter 3 ’Dimension Reduction.’
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CHAPTER 2

DATASET

This thesis is based on the exploration of novel datasets acquired from still CCTV

cameras located on roadsides. Series of labeled images belonging to the same location form

a dataset. There are datasets belonging to various locations. The availability of datasets

from multiple locations helped us to test the generalization of algorithms and metrics from

one site to another.

2.1 Acquisition of Image Dataset

The dataset consists of images from several locations in California whose roads/highways

are monitored by CCTV cameras. There are multiple sensors placed along the roads to

monitor the state of the roads. Weather is monitored and the status of the road surface

is observed and recorded. The images and all the other information from the sensors are

time-stamped.

2.2 Acquisition of Weather and Road Conditions Data

Thousands of files containing time-stamped sensor data for the locations monitored

by the CCTV cameras were gathered from the California Department of Transportation

(Caltrans) sensors. The files were collated into a single CSV (comma separated values) file

to act as a central database. This allowed us to refer to just one file while labeling images.

The records/rows were sorted according to locations and for each location, they were sorted

in increasing order of the timestamps for labelling. An illustrative sample of the collated

database is shown in Table 2.1.
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recordDate recordTime essPrecipYesNo essSurfaceStatus.1 locationName
3/7/2019 16:38:21 2 4 Spring Garden
1/25/2019 21:38:03 2 4 Spring Garden
1/27/2019 22:38:01 2 4 Spring Garden
12/4/2018 0:07:57 2 4 Spring Garden
11/8/2018 3:08:08 2 3 Spring Garden

Table 2.1: Sample weather.csv showing records of the Spring Garden site after collating
weather and other sensor data from multiple files. Note that some columns were removed
for display purposes.

2.3 Labeling Images

The central database has multiple attributes to explore. However, some attributes

have more missing cells/records than others. The attributes which have been explored are

precipitation (essPrecipYesNo), precipitation1hr (essPrecipitationOneHour), surfaceStatus

(essSurfaceStatus.1), recordDate, and recordTime. The attribute recordDate and record-

Time are not directly explored. They are combined to form a binary attribute named

”daynight” which tells us whether it is day or night at the time of reading sensors. All

of the attributes are detailed here [8]. One of the classification problems we subsequently

address is that of determining day/night status. Thus, classification algorithms are trained

individually on one of these four attributes.

The process of labeling images from a particular location involves the following step:

• Get the latitude and longitude of the location.

• For each image:

– Read date and time stamp for the image. Compensate for the daylight savings

and timezone differences.

– Obtain the sunset and sunrise time.

– Find the record containing the closest timestamp in the weather.csv file. Using

binary search on pre-sorted timestamps would give optimal performance.

– Read the values for the required attributes: precipitation, precipitation1hr, sur-

faceStatus.



7

It is important that the images are correctly labeled. To that end, a substantial portion

of the images for one location was manually verified to confirm the correctness of the data

collating and labeling scripts.

2.4 Properties of the given dataset

A (perfectly) balanced dataset for an attribute is a dataset containing an equal number

of samples for each class of the attribute. For instance, for the attribute ’precipitation’, the

classes are ’Yes’ and ’No’ indicating precipitation and lack of precipitation respectively.

This dataset would be balanced for the attribute ’precipitation’ if the dataset contains an

equal number of images having precipitation and lacking precipitation. (It does not).

A balanced dataset is considered ideal because while sampling to form training and

testing sets both the sets would have equal or nearly equal samples of each class. This,

in turn, implies that the classification algorithm is trained on each class equally; it com-

pensates for errors while classifying all classes equally and results in performance metrics

which make more sense in general. Our datasets have no such advantage. For instance,

California, like almost any other place, witnesses fewer times having precipitation than

without precipitation. It implies that there will be more images without precipitation than

images with precipitation. This makes it harder for classifiers to learn what exactly con-

stitutes precipitation in an image, as most of the images it sees are examples of lack of

precipitation.

A few properties of the dataset have been enumerated below to clarify the nature of

the dataset at disposal.

• Unbalanced.

• High dimensional

A dataset based on the Spring Garden site is the most used dataset for experiments

in this thesis. Originally, the image capture-date ranged from 05/31/2018 to 02/12/2019,
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which is dominated by summer which witnesses little to no precipitation causing the at-

tributes to be highly unbalanced. To make the attributes more balanced, we reduced the

dataset to use images captured from 01/01/2019 to 02/12/2019.

2.5 MNIST Dataset

We also use MNIST dataset to measure performance of classifier on dimension-reduced

data set, and quality of projection of dimension reduction techniques. The results on MNIST

dataset are used as general guidelines and not as ground truth to be achieved on our dataset.

MNIST and our dataset have the following differences:

• Our dataset is time-series dataset while samples in MNIST are not time-related.

• The dimensionality of MNIST image is 28 * 28 while the dimensionality of an image

in our dataset which is originally in RGB color space is 704 * 240 * 3.

• MNIST is a balanced dataset with roughly equal samples for each of the ten classes.

Our dataset is highly unbalanced.

2.6 Motivation

The primary objective of this thesis is to study the impact of dimension reduction on

classifiers. However, the temporal nature of the dataset opens up interesting avenues to

explore. For instance, does a classifier trained to predict precipitation in images on last

year’s dataset work for images from the current year? Do reduction parameters extracted

from the previous dataset preserve the local structure of the next batch of sequential data?

The purpose of this study is not to study the many different ways to mitigate the

effects of unbalanced datasets. We explored classification performance on dimension reduced

dataset for some of the attributes that were less unbalanced compared to others.
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CHAPTER 3

DIMENSION REDUCTION

3.1 Introduction

This thesis primarily deals with still images obtained from roadside CCTV cameras.

An image is basically made up of dots called pixels. For a grayscale image, each dot is

just one value (generally 0-255) representing color intensity. The product of weight and

height is the dimension of the image. For RGB color space, each pixel is made up of a

combination of these three colors (Red, Green, Blue). The product of width, height, and

the number of channels (3) is the dimension of the image in RGB color space. An image in

a data set is called a data point or, simply, a point. The dimension-reduced image in the

low-dimensional space is also called a data point.

A data point is described by several variables or parameters. The number of variables

is the dimension of the data point. The primary basis of dimension reduction is that all

of the variables that describe a data point may not be actually required to describe the

data point. We call the number of parameters or variables required to describe a data point

without any loss of information as the intrinsic dimension. The dimension of a data point

can also be traded off for faster computation with minimum loss of information.

Dimension reduction (DR) is the process of reducing the number of variables that

describe a point in a vector space using statistical methods. DR uses both linear and non-

linear transformations to determine the intrinsic dimension of a dataset. In this thesis,

we explore PCA (Principal Component Analysis) and Random Projection which use linear

transformation and Image Scaling which may use either linear or non-linear transformation.

3.2 The case for Dimension Reduction

We are overwhelmed with data in all forms- images, text, video, and combinations of
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these. Images, videos, text, etc. are examples of high-dimensional data. The high dimen-

sionality of data is a curse. It makes visualizing the data difficult making it challenging

to gain insights into the data. It also makes it computationally expensive to apply ma-

chine learning or other algorithms to extract insights from the data. Dimension reduction

techniques are helpful in dealing with a large amount of high dimensional data.

Some of the benefits of dimension reduction are:

• The reduced dimensionality of the dataset results in faster training and inference

times, which is a critical advantage of dimension reduction.

• It reduces the size of machine learning models, which, in turn, enables them to be

run on less powerful, commodity hardware. It enables wide on-machine deployment

of machine learning on commodity hardware.

• Wang et. al [3] state that DR methods can have a regularizing effect which helps to

avoid overfitting. They further argue that DR can remove two types of noise from

the input: (1) independent random noise, which is uncorrelated with the input and

the label, and mostly perturbs points away from the data manifold. (2) Unwanted

degrees of freedom, which are possibly nonlinear, along which the input changes but

the (class) label does not.

• The data projected into lower dimension requires less storage capacity; storage of

data, however, is a smaller concern due to the falling prices of storage mediums.

3.3 Dimension Reduction Methods

There are many dimension reduction methods. We explored Image Scaling which is

specific to images, Random Projection, and Principal Components Analysis (PCA) in this

thesis. These are described in more detail below.
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3.3.1 Image Scaling

Image Scaling refers to the change (increment or reduction) of an image’s height and

width with (or without) its aspect ratio kept intact. For the purpose of this study, only a

reduction in image height and width with aspect ratio kept intact is considered as Image

Scaling. Increasing the size of the image does not lead to a reduction in the number of

parameters that describe an image. Image Scaling is one of the obvious ways of reducing

dimensionality of an image and equally ignored. While it is obvious that reducing the size

of an image causes loss of detail, it is also obvious that the scaled-down image preserves

features of the original image. Nearest Neighbor Interpolation [9] was used to scale down

images in this thesis. It provides a good trade-off between computational complexity and

quality of scaled image.

An advantage of Image Scaling is that it is intuitive. A drawback is that it treats all

samples in the dataset individually. It fails to leverage the relation that might be present

between two data points or the dataset as a whole.

3.3.2 Principal Components Analysis (PCA)

Invented in 1901 by Karl Pearson [10], PCA is one of the most used dimension reduction

methods owing to its simplicity.

PCA can be intuitively thought of as trying to find new basis axes that are linear

combinations of the original axes. The new basis axes are called principal components.

The first basis axis explains the highest variability in the data and the variability explained

decreases with each succeeding basis axis. The variability of a dataset explained by the

principal components is called explained variance. The last few basis axes may hopefully

explain little to no variability of the data set and are redundant leading to dimension

reduction. The orthogonal transformation ensures that all of the principal components are

orthogonal to each other. PCA assumes that the data set has Gaussian distribution [11].

Unlike Image Scaling and Random Projection, PCA exploits relationships among data

points to project data into a lower dimension. The paper by Shlens [11] explains the concept

of PCA with a rare combination of mathematical rigor and intuitiveness. Bhagoji et. al [12]
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demonstrate the usage of PCA to build machine learning systems resilient against evasion

attacks.

3.3.3 Random Projection

Random Projection is a simple and computationally fast method of dimension reduc-

tion. It is based on the Johnson-Lindenstrauss Lemma [13] which states that the pairwise

distances can be almost preserved for a dataset of sufficiently high dimension when projected

into a suitable lower dimension.

It also gives the lower bound on the number of components required to preserve the

pairwise distances given the original dimension d. Given that we are willing to tolerate

relative error ε, the number of components required to preserve pairwise distances is given

by the equation 3.1

k =
⌈
4(ε2/2− ε3/3)−1log(d)

⌉
(3.1)

To project a d-dimensional data into k-dimensional data, we use a random projection

matrix of dimension k*d where k << d.

XRP
k∗N = Rk∗dXd∗N (3.2)

where Xd∗N is the original d-dimensional data, Rk∗d is the randomly-generated projection

matrix, XRP
k∗N is the projected k-dimensional data.

There are a few different ways to compute the random projection matrix. For this

thesis, we used Sparse Random Projection [14] which is described by the following equation:

Ri,j =


0, with probability 1− 1/s√

s
n component , with probability 1/2s

−
√

s
n component , with probability 1/2s

(3.3)

where s = 1 / density and n component is the size of the projected subspace. Density
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is the ratio of non-zero component in the random projection matrix to the total number

of components in the matrix. The range of density is [0, 1]. We computed density as

1/
√
n features as recommended by Li et al [15]. n features is the number of variables that

define a data point or the dimensionality of the data point.

Random Projection only requires as input the number of components to preserve to

generate the random projection matrix. If the random state of the random projection

matrix generator is fixed, the same projection matrix is obtained every single time which is

helpful in processing batches of data. In other words, it is easy to ensure that each batch of

data will undergo the same random linear transformation while projecting them into lower

dimensions.

3.4 Ranking Data Points

To measure the quality of projection, we also have to introduce metrics to measure the

distance between data points. The following metrics described below were used to measure

the distance between two data points:

3.4.1 Euclidean Distance

Euclidean distance between two N dimensional data points p and q is defined as the

following:

d(p, q) = d(q, p) =

√√√√ n∑
i=1

(qi − p2i ) (3.4)

It is simple, widely used, and easy to understand.

3.4.2 Cosine

Cosine is a well-known metric to measure similarity of two data points. The distance

between two points u, v is given by 1 - cos(u, v). The cosine of the angle between two
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vectors u, vεD is defined as the following

cos(u, v) =
u.v

|u||v|
(3.5)

Given a transformation function f, two points in projected space would be f(u) and

f(v). The cosine distance between the two points would be f(u).f(v)
|f(u)||f(v)| . This assumes that

the origin is preserved during projection which may not necessarily be the case. Let’s

take a reference point w which can be safely assumed to be the origin in high-dimensional

space and f(w) be the projected origin in low-dimensional space. So, the cosine distance in

projected space would be the following:

cos(f(u), f(v)) =
(f(u)− f(w)).(f(v)− f(w))

|(f(u)− f(w))||(f(v)− f(w))|
(3.6)

Cosine distance is widely used in Natural Language Processing [16]. Computing Eu-

clidean distance is computationally cheaper than computing cosine distance for images.

Both the distances can be used to compute k-Nearest Neighbors. The impact of the choice

of distance metric is detailed in later sections.

3.5 Measurement of quality of dimension reduction methods

The quality of dimension reduction methods can be measured in different ways- the

quality of point reconstructed from projected point, the preservation of local structure of

the data, etc. In this paper, we measure the preservation of structure of the data as a

measure of the quality of dimension reduction.

Maaten et. al [1] argue that measuring preservation of local structure is more important

than measuring reconstruction error because for successful visualization or classification

of data, its local structure needs to be preserved. An evaluation of the quality based

on generalization errors, trustworthiness, and continuity has an important advantage over

measuring reconstruction errors because a high reconstruction error does not necessarily

imply that the dimensionality reduction technique performed poorly.
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3.5.1 k-Nearest Neighbors (kNN)

The k-Nearest Neighbors algorithm is used to find k closest data points for all the data

points in the dataset using a defined metric for distance. It is not a metric to measure

quality of projection in itself but can be used with other metrics.

In this algorithm, for each point, the distance with every other point in the dataset is

computed. Then, the points are sorted according to their distance. The first k neighbors

are then considered as the k-nearest neighbors. It is an unsupervised algorithm since it does

not require the dataset to be labeled.

This algorithm is useful to measure the impact of dimension reduction on the preserva-

tion of local structure of the data. First, the k nearest neighbors of each data point in the

dataset are computed in the original high-dimensional space. Then, the k nearest neighbors

of each point in the dataset are computed in the low-dimensional space. Then, several

metrics described below were computed using the ranking of neighbors for each point in

high-dimensional space and low-dimensional space.

3.5.2 Cosine Deviation

Cosine Deviation was developed in this thesis to measure the preservation of angles

between data points after dimension reduction. Mathematically, to measure if the angles

are preserved by the transformation function f, we compute the following:

CosineDeviation(u, v) = |cos(u, v)− cos(f(u), f(v))| (3.7)

Computing cosines between data points has been detailed in the equation 3.6. When

there is no preservation of cosine distance after dimension reduction, the Cosine Deviation

of two data points u, v is 2, and ideal preservation results in a value of 0.
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3.5.3 Trustworthiness

Trustworthiness [17] measures the proportion of points that are close together in the

low-dimensional space but not in the high-dimensional space. It is defined as the following:

T (k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
jεU

(k)
i

(r(i, j)− k) (3.8)

where n is the number of data points

k is the number of nearest neighbors to consider

r(i, j) represents the rank of the data point j according to the pairwise distances between

the high-dimensional data points.

The variable Uki indicates the set of points that are among the k nearest neighbors in the

low-dimensional space but not in the high-dimensional space.

The value of trustworthiness ranges from 0 to 1. The ideal value of 1 is achieved when

the k neighbors in the high and low-dimensional space are the same. One of the drawbacks

of trustworthiness measure is that it is hard to tell when the measure evaluates to 0.

3.5.4 Continuity

Continuity [17] measures the proportion of points that are close together in the high-

dimensional space but not in the low-dimensional space. Continuity [17] is defined using

the equation below:

C(k) = 1− 2

nk(2n− 3k − 1)

n∑
i=1

∑
jεV

(k)
i

(r(i, j)− k) (3.9)

where n is the number of data points

k is the number of nearest neighbors to consider

r(i, j) represents the rank of the data point j according to the pairwise distances between

the low-dimensional data points.

The variable V k
i indicates the set of points that are among the k nearest neighbors in the



17

high-dimensional space but not in the low-dimensional space.

The value of continuity ranges from 0 to 1. The ideal value of 1 is achieved when the

k neighbors in the high and low-dimensional space are the same. It has the same drawback

as trustworthiness. It is hard to analyze when the metric evaluates to 0.

Trustworthiness and continuity are complements of each other. Given two clusters A

and B, if you assume trustworthiness measures preservation of structure in B from A’s per-

spective, then continuity measures the preservation of structure in A from B’s perspective.

3.5.5 Ratio Preserved

Ratio Preserved is one of the new metrics developed in this thesis. It is defined as the

number of neighbors common in both the original, high-dimensional space and the reduced,

low-dimensional space divided by k (total number of neighbors considered for measurement

of structure preservation).

RatioPreserved(i) =
|Hi

⋂
Li|

k
(3.10)

where Hi is the neighbors of i in higher dimension Li is the neighbors of i in the lower

dimension

Ratio Preserved ranges from 0 to 1. A value of 0 means that the neighbors of a data

point in high dimension and low dimension space do not have any point in common. A

value of 1 implies that a point has the same neighbors in both the high-dimensional space

and the projected low-dimensional space.

Ratio Preserved is easy to compute and interpret. One drawback of the metric is

that it does not take the sample size into consideration. Also, as k increases from 0 to N

(number of samples), the value of Ratio Preserved rises for any arbitrary dataset and choice

of dimension reduction method. However, it is very useful when the number of neighbors

we are considering is small compared to the dataset size i.e. k << N.
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This metric stems from the idea that we are only concerned with how a dimension re-

duction method alters the closest neighbors of each data point. Only the closest k neighbors

influence the classification of a data point in the kNN Classifier algorithm. It is denoted as

ratio preserved k in the results and figures where k is the number of neighbors considered.

The paper by Maaten et. al [1] suggests using one Nearest Neighbor (1NN) classifier

to estimate the preservation of local structure after dimension reduction. We note that

1NN Classifier may not be a good measure because it implies that preserving the nearest

neighbor results in good classification or vice-versa which may not be the case. So we

propose computing Ratio Preserved with k = 1 as a better alternative because of the

following reasons:

• Ratio Preserved only cares about estimating the preservation of structure not that if

preserving the nearest neighbor leads to correct classification.

• It is possible that preserving the nearest neighbor does not lead to correct classification

of the data point being classified leading to false and lower estimate of preservation

of structure.

3.5.6 Distortion Factor

The Johnson-Lindenstrauss lemma states that given a dataset of sufficiently high di-

mensions, the pairwise distance can be preserved when projected to an optimal lower di-

mension. Mathematically the JL Lemma can be stated as,

(1− ε)|u− v|2 ≤ |f(u)− f(v)|2 ≤ (1 + ε)|u− v|2 (3.11)

where 0 < ε < 1 and f is a linear transformation map which maps data point from original

dimension into lower dimension.
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This inequality can be rewritten as:

(1− ε) ≤ |f(u)− f(v)|2

|u− v|2
≤ (1 + ε) (3.12)

From the above equation, it is evident that ε bounds the distortion between data points

in the original and projected dataset. The higher the value of ε the higher the distortion.

The minimum value of ε that makes the above inequality true for a data set given the

transformation function f can be considered as a measure of distortion. ε ε[0,∞]. Equation

3.12 is intended for use without pairwise distance scaling. We also considered allowing

transformations that scale pairwise distance. Let’s represent scale factor α relative to the

relationship:

α|u− v|2 ≤ |f(u)− f(v)|2 (3.13)

Then, the inequality 3.12 becomes:

(1− ε) ≤ |f(u)− f(v)|2

α|u− v|2
≤ (1 + ε) (3.14)

Let D be our dataset; u, vεD; and f be a transformation function on D. Let α be the

associated scale factor. In this thesis, we assume that our transformations preserve distance

(to some degree, which we are trying to measure) up to a scale factor. Of course, not all

transformations do this. We can estimate the scale factor as the expected value of the

distance ratios (the ratio of the distance between data points in low-dimensional space to

the distance between the same data points in high-dimensional space) over all pairs of points

u, vεD where u 6= v.

α = E(
|f(u)− f(v)|2

|u− v|2
) (3.15)

The estimate is not ideal, as we can see in the case of PCA. For PCA, the (theoreti-

cal) scale factor should be one, but because of distortion, the mean of the distance ratios
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will likely not be one. Returning to the inequalities above, extended from the Johnson-

Lindenstrauss lemma to account for scale factor, one way to define distortion would be the

following equation:

Distortion1(f,D) = V ar(
|f(u)− f(v)|2

α2|u− v|2
) =

1

α4
V ar(

|f(u)− f(v)|2

|u− v|2
) (3.16)

Note that α is computed as described above, estimating the scale factor in the trans-

formation. The variance here is computed on the squares of the distances between points.

Another way to define distortion, separate from the inequalities above, is to use the variance

of the distances:

Distortion2(f,D) = V ar(
|f(u)− f(v)|
α|u− v|

) =
1

α2
V ar(

|f(u)− f(v)|
|u− v|

) (3.17)

Distortion1, Distortion2 ε[0,∞]. The lower the distortion value the better the pairwise

distances are preserved after dimension reduction.

3.5.7 Spearman Rank Correlation Coefficient

Spearman Rank Correlation [18] is a non-parametric measure of rank correlation. It

measures how monotonically the ranks in one array change with respect to another array.

We use it to estimate the degree to which the relative order of neighbors of each data

point is preserved after dimension reduction. When all the ranks are distinct, the following

equation can be used to compute the Spearman Correlation.

rs = 1− 6
∑
d2i

n(n2 − 1)
(3.18)

where n is the number of data points in either array.

d i is the difference in rank of ith point in two arrays.
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Throughout this thesis, this metric has also been referred to as ’Spearman’. The idea

that Spearman could be used to measure quality of projection came from the fact that we

are dealing with arrays containing ranks of neighbors. The value of Spearman ranges from

-1 to 1 where -1 represents the two arrays of ranks are in reverse order while a value of 1

represents that two arrays of ranks are identical.

Spearman is a strict measure of preservation of the structure. It has one drawback

(when used with subsets of ranks) that it does not actually check the identity of the neigh-

bors preserved. For instance, if the neighbors of data points a and b have index [1, 2, 3, 4,

5] and [10, 20, 30, 40, 50] respectively, then their Spearman is 1 even though a and b do

not have common neighbors. This inspired the conception of Spearman Variant.

3.5.8 Spearman Variant

This thesis proposes the modification of the Spearman Rank Correlation Coefficient

metric to better reflect the difference in the rankings of a data points’ neighbor in the

original high dimension and the reduced lower dimension for the measurement of projection

quality. It also addresses the shortcomings of Spearman (when used with a subset of ranks).

For each point in the list of neighbors in high dimension, we compute the sum of the

difference of ranks in high dimension and low dimension. Spearman variant is optimistic in

nature. When a point that ideally should have been a neighbor is not found in the k nearest

neighbors list, it assumes that it is the first point outside the k nearest neighbor i.e it is

the k+1 th neighbor. If another neighbor that is expected to be in the list of neighbors for

projected neighbor is missing, we assume it is the k+2 th neighbor and so on. To normalize

the value of Spearman Variant, we divide the sum of differences by the maximum possible

difference sum for k neighbors under our optimistic assumption. To compute Spearman

Variant for the whole dataset, the score for each pair of data points should be averaged.

For points u, v with neighbors U and V respectively, the Spearman Variant can be

computed as the following:
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Algorithm 1: Spearman Variant

N = k

for i = 1 to k do

if U[i] in V then

diff += abs(i - rank U[i] in V)

else

diff += N - i

N += 1

end

end

score = 1 - diff / (k * k)

The optimistic assumption of the Spearman Variant makes it computationally efficient

because we do not have to determine the actual rank of missing neighbors. Like Spearman,

Spearman Variant is also concerned with the relative order in which the neighbors of a data

point are preserved.

3.5.9 Top k Normalized Distance

This metric developed in this thesis also considers the relative order in which the

neighbors of a data point are preserved after dimension reduction.

Intuitively, this metric describes how much better the preservation of neighbors in the

dimension-reduced dataset is compared to the worst possible preservation of neighbors.

If the order of neighbors are the same in the dimension-reduced dataset and the original

high-dimensional dataset then the metric has value 1. The range of Top k Normalized

Distance is [0, 1]. The higher the score the better preservation after dimension reduction.

The difference between the ranks can be computed in two ways using L1 norm and

using L2 norm. Top k Normalized Distance using L1 norm and L2 norm is referred to as

Top k L1 norm distance and Top k L2 norm distance respectively. L1 norm is defined as

the following:

‖x‖1 = |x| (3.19)
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Similarly, L2 norm is defined by the following equation:

‖x‖2 =
√
x21 + ...+ x2n (3.20)

For points u, v with neighbors U and V respectively the Top k Normalized Distance

can be computed as the following:

Algorithm 2: Top k Normalized Distance

N = number of samples in dataset

total diff = 0

total max diff = 0

for i = 1 to k do

diff = abs(V[i] - U[i])

max diff = abs(N - 1 - i * 2)

if norm == ’L2’ then

diff = diff * diff

max diff = max diff * max diff

else
pass

end

total diff += diff

total max diff += max diff

end

score = 1 - total diff / total max diff

3.6 Discussion and Results

The number of components preserved after dimension reduction, n component, was

chosen so that the initial improvement in classification performance and projection quality

could be captured easily. Both the quality of projection and the classifier performance peak

and plateau after the first few n components implying that fewer observations are required

as the size of reduced dataset increases. The results of quality of projection metrics for
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various dataset are presented here.

3.6.1 Results on MNIST dataset (Benchmark)

The MNIST [19] dataset was used for the purpose of demonstrating the changes in

projection quality on varying n component and subsequently measure it using the metrics

discussed above although it is different from our dataset in many ways like dimensionality

and the fact that it is a balanced dataset. Even though it might seem that transporta-

tion images for a specific location are mostly the same and thus different from MNIST.

The transportation images surely do have variations. The variation among the images is

caused by changing time of the day, changing climate throughout the year, weather change

throughout the day, movement of people, vehicle, animal, etc.

The number of MNIST dataset samples used is 1000 which was sampled randomly and

PCA was used for dimension reduction.

Compared to other metrics for quality of projection, Trustworthiness and Continuity

propose aggressive n components for equivalent projection quality. Trustworthiness and

Continuity assume the worst for the missing neighbors. So, when the neighbors start to

appear in the k nearest neighbors list after dimension reduction, the metric results in higher

values. The difference is not large when the number of nearest neighbors considered changes

from 10 to 20.

Ratio Preserved shows us that as n component increases, the proportion of common

neighbors in high-dimensional space and low-dimensional space increases. The increase is

significant for the first few n component and plateaus at n component > 200. Figure 3.3

shows that neighbors in both the Euclidean space and cosine space are preserved equally

well. The value of Ratio Preserved was computed for k = 1, 10, and 20. Ratio preserved

with k = 1 has special significance as it indicates if the nearest neighbor is preserved or

not. As stated previously, as the number of neighbors considered (k) increases, the value of

Ratio Preserved increases too which is evident in the comparative Figure 3.3.
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Fig. 3.1: Trustworthiness versus n component. Euclidean and cosine distances were used
to compute kNN with k = 1, 20. The range of vertical axis has been shortened for display
purposes.

Fig. 3.2: Continuity versus n component. Euclidean and cosine distances were used to
compute kNN with k = 1, 20. The range of vertical axis has been shortened for display
purposes.
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Fig. 3.3: Ratio Preserved vs n component. Euclidean and cosine distances were used to
compute kNN with k = 1, 20. The neighbors of data points are preserved equally well in
both Euclidean space and cosine space.

Spearman estimates the degree to which the relative order of neighbors of each data

point is preserved. The quality of projection increases gradually on increasing n component

as shown in fig: 3.4. It can be noted that spearman 10 > spearman N which implies that it

is easier to preserve the nearest neighbors and challenging to preserve the farthest neighbors.

Also, spearman 10 (considering the nearest 10 neighbors) increases faster than spearman N

(considering all the N-1 neighbors) in figure 3.4. spearman N tells us that the ranking

of all the neighbors are not preserved perfectly even at n component = 500 and initially

(n component < 200) the neighbors are preserved in somewhat random order.

Figure 3.5 shows quality of projection measured by Spearman Variant increases rapidly

plateauing at n component > 200. Spearman Variant behaves like Ratio Preserved except

that it also takes into account the relative order of preservation of the neighbors. It in-

creases on increasing the number of neighbors considered but does not become 1 until the

neighbors are preserved in perfect order. So unlike Ratio Preserved which is favorable to

use when k << N, Spearman Variant can also be used for k ε[1, N ].
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Fig. 3.4: Comparing the Spearman for different values of k (10, 20, N). Euclidean distance
was used to compute kNN.

Fig. 3.5: Comparing the Spearman for different values of k (10, 20, N). Euclidean distance
was used to compute kNN.
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The results of measure Top k L1 Normalized Distance and Top k L2 Normalized dis-

tance are shown in figure 3.6 and Figure 3.7 respectively. They were computed for the

following values of neighbors considered: 10, 20 and N. Like Trustworthiness and Conti-

nuity, Top k Normalized Distance also assumes the worst for the missing neighbors. The

estimates for the quality of projection tell us how the current structure preservation com-

pares with the worst i.e. if neighbors for all the data points were reversed in order. The

kNN was computed using Euclidean distance as distance metric.

Fig. 3.6: Top k L1 norm distance versus n component for k = 10, 20, N

Fig. 3.7: Top k L2 norm distance versus n component for k = 10, 20, N
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The results for Distortion1 and Distortion2 are shown in Figure 3.8 and Figure 3.9

respectively.

Fig. 3.8: Distortion1 versus n component. The value of Distortion1 at n component = 1 is
40.6 which is out of bounds in this graph.

Fig. 3.9: Distortion2 versus n component.
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Distortion Factors (Distortion1 and Distortion2) are based on distance ratios (the ratio

of the distance between two data points in the low-dimensional space to the distance between

them in the high-dimensional space). Even though the local structure of the whole dataset

is somewhat preserved when the number of components preserved is very low (1 or so),

distance ratio is < 1 leading to a very high distortion factor. As n component increases,

the distance ratio swiftly increases towards a value of 1. The quality of projection rapidly

increases as shown by the decreasing value of Distortion Factors.

3.6.2 Results on Spring Garden Dataset

The sample size for all the experiments below in this section was 1000 and PCA was

used for dimension reduction. The results of metrics measuring the quality of dimension

reduction for Spring Garden is given below. Euclidean distance was used to compute kNN

unless mentioned explicitly.

Fig. 3.10: Trustworthiness versus n component. Euclidean and cosine distances were used
to compute kNN with k = 1, 20. The range of vertical axis has been shortened for display
purposes.
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Fig. 3.11: Continuity versus n component. Euclidean and cosine distances were used to
compute kNN with k = 1, 20. The range of vertical axis has been shortened for display
purposes.

Fig. 3.12: Comparing Ratio Preserved vs n component for k = 1, 20. kNN was computed
using Euclidean distance and cosine distance metrics as indicated by the labels.
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Fig. 3.13: Comparing Ratio Preserved for different values of k (1, 10, 20). Euclidean distance
was used to compute kNN.

Fig. 3.14: Comparing Spearman for different values of k (10, 20, N). Euclidean distance
was used to compute kNN.
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Fig. 3.15: Comparing Spearman Variant for different values of k (10, 20, N). Euclidean
distance was used to compute kNN.

Fig. 3.16: Top k L1 Normalized Distance versus n component for k = 10, 20, N
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Fig. 3.17: Top k L2 Normalized Distance versus n component for k = 10, 20, N

Fig. 3.18: Distortion1 versus number of components preserved (n component)
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Fig. 3.19: Distortion2 versus number of components preserved (n component)

3.6.3 Comparison with benchmark: The similarities and differences

There are more similarities than differences between the results of metrics measuring

quality of projection even though the two datasets are different in many ways. Most of

the metrics have similar results on both the datasets. The cosine distances between two

data points are preserved better in MNIST dataset than in the Spring Garden dataset for

any given n component as shown in the results of Trustworthiness, Continuity, and Ratio

Preserved metrics.

3.6.4 Comparison of the Dimension Reduction methods

We computed the metrics for quality of projection for several values of n component for

PCA, RP, and Image Scaling. We plotted metrics for measuring quality of projection against

n component for all the methods of dimension reduction used. We found a unanimous result

that PCA has the best quality of projection, followed by Random Projection and Image

Scaling has the worst quality of projection. The same conclusion holds true for the Spring

Garden dataset. All the graphs in this section were plotted for MNIST dataset.
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Fig. 3.20: Trustworthiness versus n component for PCA, RP, and Image Scaling

Fig. 3.21: Continuity versus n component for PCA, RP, and Image Scaling
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Fig. 3.22: Distortion2 versus n component for PCA, RP, and Image Scaling

Fig. 3.23: Ratio Preserved versus n component for PCA, RP, and Image Scaling
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Fig. 3.24: Spearman Variant versus n component for PCA, RP, and Image Scaling

Fig. 3.25: Spearman versus n component for PCA, RP, and Image Scaling
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Fig. 3.26: Top K L1 Normalized Distance (top k l1 norm dist) versus n component for
PCA, RP, and Image Scaling

3.6.5 Why do different metrics peak and plateau at different n components?

First, they measure different aspects of preservation of structure of a dataset. For

instance, Ratio Preserved is only concerned with how k nearest neighbors of a data point

are preserved. It does not take into account sample size or the relative order in which

the neighbors are preserved. Spearman also measures the preservation of structure but it

estimates the preservation of order of neighbors for each data point. One major difference

between Spearman Variant and Top k normalized distance is the way they treat their missing

neighbors. Spearman Variant assumes optimistically that the first missing neighbor is the

k+1 th neighbor and the second missing neighbor is the k+2th neighbor and so on. Top k

Normalized Distance pessimistically assumes the worst i.e. the first missing neighbor might

as well be the last neighbor and the second missing neighbor is in the second to last position

in the list of the nearest neighbors after dimension reduction and so on. Trustworthiness and

Continuity do not account for the neighbors that are actually k nearest neighbors before as

well as after dimension of the dataset. They only deal with the missing nearest neighbors.
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3.7 Conclusion

Some of the notable conclusions reached in this chapter are.

• As the size of the reduced dataset increases, the quality of projection increases i.e.

the local structure of the dataset is better preserved.

• Random Projection has erratic performance throughout all n components owing to its

nature of generating the transformation matrix randomly. Even though the projection

of quality gradually increases on increasing n component, it cannot be ensured that

projection quality is greater for each successive n component.

• PCA outperforms Random Projection on every metric. Given the same number of

components, it preserves the structure of dataset better than Random Projection.

• Common statistical tools like Spearman Rank Correlation can be used to measure

quality of projection. It is perfect to estimate the order of preservation of neighbors

of each data point.

• Both PCA and Image Scaling plateau at n component > 200 while the quality of

projection for Random Projection keeps increasing on increasing n component.

• Among all quality of projection metrics, Trustworthiness and Continuity suggest

overly optimistic and aggressive n component for dimension reduction for a given

value of quality of projection.

• For any metric estimating projection of quality, Image Scaling requires the highest

n component to achieve equivalent projection quality which means that PCA obtains

better feature representation for given output dimension.

• Using cosine as a distance metric while computing neighbors yields a similar result to

that of using Euclidean distance as a distance metric. It also signifies that pairwise

distance is preserved both for Euclidean distance metric and cosine distance metric

when projected to lower dimension with optimal dimensionality.
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CHAPTER 4

Image Preprocessing

4.1 Introduction

In this chapter, we investigate the usage of appropriate image representation for all of

the experiments in this thesis. In this chapter, we can treat the classifiers as black boxes.

They are discussed in detail in the next chapter ’Image Classification.’

Pre-processing is performed in the early stages of machine learning pipeline. It is

done to represent the data better to subsequently improve classification performance. In

this thesis, pre-processing is mostly image processing. Image processing is the process of

manipulating images using some algorithms to achieve a desirable effect.

Considering that images of a single dataset belong to the same location, the images

taken on similar days (weather and lighting) should be very similar except for the movement

of people, animals, or vehicles. That is not the case, however. The change in time of the

day and seasonal variation cause variation among images of the same location. Even images

taken in sequence can be very much different from each other making the application of

algorithms difficult. For instance, it is comparatively easy to sample representative images

when there is less variation in images. Sampling representative images, in turn, lead to

better classification performances because a classifier trained on a highly representative

training set is bound to perform well on test sets.

Lack of data is often presented as a problem. However, the availability of gigabytes of

domain-specific datasets may also be a problem. The problem is that the available dataset is

not representative enough; that is there is not enough variance in the dataset or, simply, not

enough differences between two data points in the dataset. We also face the same problem.

Even though there are thousands of images taken from the same fixed spot overlooking the

same roads, there is always a chance that a newly captured image has not been seen before.
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With the application of image processing, the intent was to account for and compen-

sate lighting differences. To that end, several color spaces and other techniques such as

histogram equalization were explored. Note that the choice of image processing techniques

applied to the dataset has repercussions on both computational complexity and classifica-

tion performance.

4.1.1 Color Spaces

Fig. 4.1: RGB image and its’ channels. a, b, c and d indicate all RGB channel, red channel,
green channel and blue channel image respectively.

Fig. 4.2: HSV image and its’ channels. a, b, c and d indicate all HSV channel, hue channel,
saturation channel and variance channel image respectively.

Processing images is computationally expensive. A 704 * 240 color image implies there
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Fig. 4.3: RGB image on left and equivalent grayscale image on right.

are 704 * 240 * 3 (=506880) 8-bit integers in the image. It is desirable to reduce the

dimensionality of the dataset to reduce subsequent computations on the image.

Also, as the CCTVs are fixed with only some preset movements allowed we would

expect similar images except for vehicular, human, and animal movements which is not the

case. Even for the same time of the day, the variation in lighting causes the scenery to

appear different.

To compensate for lighting differences, we explored several color spaces. A color space

is a representation of colors. In the RGB color space, different values of the Red component,

Green component, and Blue component combine to represent a color. Similarly, in the HSV

color space, a color is represented by a combination of Hue, Saturation, and Variance values.

A grayscale image is obtained by computing an average or weighted average of R, G, B values

for every coordinate. A grayscale image can be stored in one-third of the memory required

for HSV or RGB images and has only one-third of the parameters required to represent

images in RGB or HSV color space. This is useful because it reduces computations on the

image. Each color space has its merit and drawbacks. For instance, the HSV color space

is particularly suitable to deal with changing illumination, the RGB color space is suitable

for viewing images on screens, the CMYK (Cyan, Magenta, Yellow, and Black) for printing

any document, and so on.

We performed several operations on images like color space conversion and histogram

equalization to reduce the variability between images to make the training dataset repre-

sentative enough.

4.1.2 Histogram Equalization



44

Fig. 4.4: RGB image on left and equivalent histogram equalized image on right.

Histogram equalization [20] is a process of adjusting contrast in images. It results in

contrast-balanced images. Histogram equalization is usually applied to grayscale images

because they are single-channel images. The idea behind using histogram equalized images

is that resulting images will have less lighting difference.

4.1.3 Single Channel vs Multi-channel Images

A single pixel in a typical image is represented as an (R, G, B) triple. This implies

that the image is made of three channels and a pixel is represented by the values of all three

layers at that position. While all the channels in total have more information compared

to a single channel, each channel can be considered to represent the same information but

differently.

Using just one of the single channels of the RGB or HSV color space or histogram

equalized or grayscale images reduces the dimension of the image. The images explored

and exploited in this thesis were originally captured and stored in the RGB color space.

4.2 Discussion and Results

All the experiments were carried on the Spring Garden dataset consisting only of day-

time images. The classifiers were trained on the Precipitation1hr attribute as that is the

most balanced attribute besides the daynight attribute. The dataset consists of 1600 im-

ages and the test to train split was 25 to 75. Only SVM and kNN classifiers were used for

classification. The last point on any graphs below shows the performance of classifiers on

data set without dimension reduction.
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4.2.1 Comparison of HSV Channels

Among the H, S, and V channels in HSV color space, the hue channel (H) has the best

performance in the Figure 4.5 and 4.6. The accuracy and f1 score of the classifier is shown

separately for the sake of clarity as differences are very small and all the lines clutter when

shown together.

Fig. 4.5: Accuracy for H, S, V channels of the HSV color space. The hue channel has a
clear lead.

Fig. 4.6: F1 score for H, S, V channels of the HSV color space.
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4.2.2 Comparison of RGB Channels

The accuracy and f1 score of the classifiers is shown in two separate Figures 4.7 and

4.8 respectively for the sake of clarity as differences are very small and all the lines clutter

when shown together.

Fig. 4.7: Accuracy for R, G, B channels of the RGB color space.

Fig. 4.8: F1 score for R, G, B channels of the RGB color space.
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It evident that the blue channel is the lowest performer while the performance of the

rest of the channels including full RGB is very similar. On closer inspection of Figures 4.7

and 4.8, it was found that the green channel has the best performance, but with a lead of

less than 1%. This might not be the case everywhere but it can be considered that full

RGB images perform at par with the best performing channel (R, G, or B) image.

4.2.3 Comparison of HSV versus RGB

The usage of full RGB color space results in 1-2% better performance than the usage

of full HSV color space. The usage of RGB results in higher accuracy and a higher F1

score compared to the classifier using HSV color space. RGB is the default color space that

images are most often stored which means no color space conversion is required to use RGB

images while conversion is required to use HSV color space images.

Fig. 4.9: Full Channel RGB versus full channel HSV. RGB has a couple of percentage point
advantage compared to HSV.
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4.2.4 Comparison of Single Channels

Fig. 4.10: Comparison of accuracy for Green, Hue, Grayscale, HistEq Image.

Fig. 4.11: Comparison of f1 score for Green, Hue, Grayscale, HistEq Image.

Among the R, G, B channels in RGB color space, Green has the best performance by

a tiny margin, and the Hue channel clearly leads the performance among Hue, Saturation,
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and Variance channel. The accuracy and f1 score of the classifier is shown in two separate

graphs for clarity’s sake as differences are very small and all the lines will clutter when shown

together. The histeq (histogram equalized) image and hue channel have poor performance

compared to grayscale image and green channel image; Green channel has the lead among

them all on comparing both accuracy and f1 score. The classifier using grayscale images

closely follows the performance of the classifier using the green channel image.

4.2.5 Performance on grayscale images

Classifiers trained on grayscale images perform on par with (or better than) other single

channels or full channel RGB image while being more interpretable than the individual

channels like Red, Green, or Blue. The performance of classifiers trained on grayscale

images is more consistent than others across all attributes. The computational gains from

not using full channel images or histogram equalized images are significant and it does not

come at the cost of classification performance too.

4.3 Conclusion

The results of the image processing on the dataset are surprising. The HSV color

space known for dealing with lighting changes in images did not help and the single-channel

images outperformed multi-channeled images.

• RGB color space has better performance than HSV color space for classification of

the attributes explored in this thesis.

• Using single-channel images like grayscale, green channel, or red channel leads to

better or at par performance than using all channel RGB image.

• Using single-channel images like histogram equalized, grayscale or individual channels

in the RGB color space leads to smaller model size and faster training and inference

time (by a factor of at least 3).
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• Classifiers trained on grayscale images performed on par or better than classifiers

trained on full RGB channel images or other single-channel images while also being

more interpretable.

• Since, the methods that we explored for compensating lighting difference did not work

out, adding more data and exploring other image processing options are the only way

to achieve better classification performance on the dataset explored in this thesis.
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CHAPTER 5

Image Classification

5.1 Introduction

The data set that has been used is a time-series data set consisting of images from

CCTV observing the roads and highways and sensors readings for weather and road condi-

tions along the highways.

Our goal is to investigate how dimension reduction impacts classification and identify

measures that best predict the impact. We explored a few classical machine learning algo-

rithms to measure their performance on projected data sets. Two of the attributes that we

build classifiers for are weather-related. Guerra et. al [21] state that a lack of discriminating

features among various weather conditions can make it challenging to classify.

The classification algorithms that have been explored have solid mathematical founda-

tions beneath them and have been part of numerous researches. They are listed below:

5.1.1 kNN Classifier

The kNN Classifier is a supervised classification algorithm based on the output of

k-Nearest Neighbors (kNN). Once the kNN is obtained for a data point, it is classified

according to the labels of its neighbors. In other words, the class assigned to a data point

is determined by the class of its k nearest neighbors. The majority class of the neighbors

can be assigned to be the class of the data point which is to be classified. The distance of

the neighboring data points can also be taken into consideration during the voting. Such

voting is termed as weighed voting.

5.1.2 Support Vector Machines

Support Vector Machines [22] (SVM) is a supervised classification algorithm. Given
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a set of labeled data with binary class, SVM finds an optimal hyperplane that separates

the two classes. By optimal hyperplane, we mean that the points belonging to either class

are the farthest possible from the hyperplane. The points belonging to either class that is

closest to the hyperplane are called support vectors. If you draw lines on either side of the

hyperplane which contains the support vectors, then the distance between these two lines

is called margin. SVM can also be considered as an algorithm that maximizes the margin

between two classes.

The one implicit assumption in the above description of SVM is that the data set

is linearly separable. When the data set is not linearly separable, SVM applies a clever

trick which projects the data set into higher dimensions in which the data set is linearly

separable; this trick is called kernel trick which was introduced in [22].

Fig. 5.1: Depiction of SVM hyperplane, margin and support vectors

Trying to find the hyperplane that separates both classes in a data set can be tricky and

can result in sub-optimal solutions. For instance, when just a couple of data points are close

to the hyperplane but others are relatively far away it would be a good decision to ignore

them to maximize the margin. This would make the SVM classifier more general to test

data or other unseen data. The hyperplane so obtained is called soft margin hyperplane.

The number of data points or variables that can be misclassified/ignored to obtain a larger
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margin hyperplane is called slack variables. Please refer to [22] to explore SVM in depth.

5.2 Sampling

Sampling, in the context of this thesis, refers to how data points are separated into test

set and train set. We used two sampling methods: serial sampling and random sampling.

5.2.1 Serial Sampling

In serial sampling, the images are sorted according to their timestamps. At some

timestamp, we split the data set into a test set and train set.

Serial sampling is crucial to test whether classifiers trained on the previous year’s data

set will work on the current year’s data. It also tells us how similar is the current batch of

the test set is compared to the previous batches of test sets or the train set.

MNIST data set cannot be serially sampled because the samples of the data set are

not time-related.

5.2.2 Random Sampling

In random sampling, images are randomly sampled without replacement from the data

set to form a train set and a test set. None of the attributes of the data point matter.

However, we strive to maintain the ratio of each label in the test set and train set equal to

that of the whole data set.

Random sampling is crucial to find out the best performance that can be obtained from

a classifier given a data set with well-represented classes.

5.3 Over-fitting and under-fitting a classifier

All classification algorithms try to find a set of parameters that describe the given data

set. Sometimes in the quest to achieve good results, the parameters of classifiers tend to

describe the training data set so well that they do not generalize to the test data set. This

is termed as over-fitting. The parameters describe the training data set too tightly for it

to be applicable to the test data set. In other words, when the classification error for the
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training set is lower than the testing set, the classifier is said to be over-fitted on the train

set. Under-fitting of a classifier happens when the classification error of a classifier is lower

on the test set than on the train set. Generally, machine learning practitioners try to attain

the sweet spot where the training error is equal to the test error which is difficult.

5.4 Measuring Performance of Classifier

For a balanced data set, accuracy is enough to describe the performance of a classifier.

However, when the data set is unbalanced, accuracy can be misleading. Since our data set

has mostly unbalanced attributes, we use the following metrics based on a confusion matrix

to measure and describe the performance of the machine learning algorithms that have been

used in this thesis.

• Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

• Precision

Precision =
TP

TP + FP
(5.2)

• Recall

Recall =
TP

TP + FN
(5.3)

• F1 score

F1score = 2 ∗ precision ∗ recall
precision+ recall

(5.4)

where TP is True Positive, FP is False Positive, TN is True Negative, FN is False

Negative

True Positives and True Negatives occur when classes are properly assigned. False

Positives and False Negatives imply wrong classes are assigned by the classifier.



55

Precision, recall, and f1 score can only be computed for binary attributes. For exam-

ple, classifying image into digits will give you 10 classes from 0 to 9, so only accuracy

can be computed to describe the classification performance. While classifying the

weather as precipitating and non-precipitating you can have all the four metrics since

the precipitation is a binary attribute.

None of the metrics alone describe all aspects of the classification performance that

someone might be interested in. A combination of the above metrics helps with this.

5.5 Discussion and Results

Results of classification on two data set using different classification methods, and

dimension reduction methods are discussed in this section.

5.5.1 Performance of classifiers on MNIST (Benchmark)

The accuracy of classifiers on MNIST was used as a general guideline to depict the

improvement in the classifier performance as the number of components increase. PCA and

RP were used as two different methods for dimension reduction. The classifiers used were

SVM and kNN Classifier. The parameters of the classifiers used are listed below. The same

parameters have been used for the classifiers throughout this thesis.

• kNN Classifier: k = 10, (distance) metric = euclidean, voting = majority.

• SVM Classifier: c = 10, gamma = scale.

Min accuracy is the theoretical minimum accuracy obtained when an over-fitted classifier

assigns every data point to the majority class. It is computed by dividing the number of

samples in the majority class for an attribute by the total number of samples. Similarly,

the label ’Accuracy svm pca’ indicates the accuracy of the SVM classifier with PCA being

used for dimension reduction. The other labels in the figures can be read similarly. Also,

note that the last point in any curve is the performance of the classifier on the original data

set.
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Fig. 5.2: Accuracy vs. n component for SVM and kNN Classifier using RP and PCA as
method of projection.

Of the two classifiers, SVM has higher accuracy for every n component and both di-

mension reduction techniques. The random nature of Random Projection results in an

erratic performance of classifiers. The following are the observations on using RP as the

dimension reduction technique:

• Even though the overall performance of the classifiers increases on increasing n component,

this cannot be ensured for every consecutive n component.

• The classifiers trained on the original data set outperform the classifiers on the reduced

data set for every n component. The trend line for accuracy or f1 score for classifiers

using RP increases on increasing n component, and the best performance was obtained

on the original data set.

The usage of PCA as a method of projection is satisfying. At some n component as

shown in fig. 5.2 the projected data set outperforms the original data set.

5.5.2 Performance of classifiers on Spring Garden data set (Random Sampling)

The description of the data set used is as follows:

• Number of samples: 1600
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• Train to test split: 75 to 25

• Image Preprocessing: None

• Color space: Grayscale

• Sampling: Random

The classifiers were trained separately on the following attributes:

• daynight: This attribute tells us whether the image was captured during nighttime

or daytime. The time duration between sunset to sunrise is defined as nighttime and

the rest is defined as daytime. The classifiers achieve pretty good performance even

at very small n component preserved. This attribute is nearly balanced as the f1

score and accuracy together suggest. Most of the classification error occurs during

the transitions from day to night or night to day. On removing transition images - two

each for day to night and night to day transition, the classification accuracy increased

an average of 0.3% to 1.2%.

Fig. 5.3: Accuracy, F1 score vs. n component for SVM and kNN Classifier using PCA as
method of projection to classify daynight.
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Fig. 5.4: Accuracy vs. n component for SVM and kNN Classifier using PCA as method of
projection to classify daynight after removing transition images. original refers to classifiers
trained on original data set and its absence refers to classifiers trained on data set with 4
less transitioning images for each day.

• precipitation: This attribute indicates whether there was precipitation or not when the

image was captured. It is 1 if there was precipitation when the image was captured else

it is 0. It is tricky to correctly classify precipitation in images because it is difficult to

tell apart images where it is currently precipitating versus image where it precipitated

half an hour ago even for a human participant. The classification performance on this

attribute is shown in Figure 5.5

• precipitation1hr: This attribute indicates whether there was precipitation in the last

one hour when the image was captured. It is 1 if there was precipitation in the last one

hour when the image was captured else it is 0. It is more balanced than surfaceStatus

and precipitation. The classification performance on this attribute is shown in Figure

5.6

• surfaceStatus: This attribute gives us information about the status of a road sur-

face like whether the road is dry or wet or has a presence of moisture, etc. It is a

multi-valued attribute with 14 classes from 1 to 14. The names of the classes are

other, error, dry, trace moisture, wet, chemically wet, ice warning, ice watch, snow
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Fig. 5.5: Accuracy, F1 score vs. n component for SVM and kNN Classifier using RP and
PCA as method of projection to classify precipitation.

Fig. 5.6: Accuracy, F1 score vs. n component for SVM and kNN Classifier using RP and
PCA as method of projection to classify precipitation1hr.
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warning, snow watch, absorption, dew, frost, and absorption at dew point. Since it

is multi-valued, a confusion matrix cannot be computed for the attribute, and thus

precision, recall, and f1 score cannot be computed. The classification performance on

this attribute is shown in Figure 5.7.

Fig. 5.7: Accuracy vs. n component for SVM and kNN Classifier using RP and PCA as
method of projection to classify surfaceStatus.

5.5.3 Do the classifiers generalize well to other data sets/locations?

All the data sets including MNIST and Spring Garden whose results have been reported

and Black Butte which has been relegated to the appendix A.1 (for being largely similar to

other results) were run using the same classification algorithm with the same parameters.

They performed as well as those reported in this chapter. This shows that the algorithms

and metrics generalize to other locations and data set well.

5.6 Performance of classifiers on serially sampled Spring Garden data set

The essence of measuring classifier performance on serially sampled train and test sets
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is to evaluate if the classifiers trained on the existing data set will be useful on images that

will be captured in the future.

As the figures 5.8, 5.9 and 5.10 show, the classifier performance on serially sampled data

set is not promising enough. The obtained performance is barely above minimum accuracy

for classification of precipitation1hr and surfaceStatus and lower than minimum accuracy

for classification of the precipitation attribute. The minimum accuracy is computed as the

ratio of the number of samples in the majority class to the total number of samples in the

data set. Also, the f1 score is relatively low compared to results obtained using random

sampling which hints that the trained classifier model is probably over-fitted. It simply tells

us that the train set was not representative enough of all the classes of the attributes that

are to be classified. The two ways to make the data set representative enough are to obtain

more data or reduce the variability between test set with the training set. The disappointing

performance of image processing techniques to reduce variability between images implies

that only more data is the answer to this problem. In Figure A.7 we demonstrated that

adding more data to the train set reduces the variability between images/data points.

Fig. 5.8: Accuracy, F1 score vs. n component for SVM and kNN Classifier using PCA as
method of projection to classify precipitation.
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Fig. 5.9: Accuracy, F1 score vs. n component for SVM and kNN Classifier using PCA as
method of projection to classify precipitation1hr.

Fig. 5.10: Accuracy, F1 score vs. n component for SVM and kNN Classifier using PCA as
method of projection to classify surfaceStatus.
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5.7 Performance of classifiers using same projection parameters for subsequent

batches of data

Consider the scenario where we obtain transformation parameters for a dimension

reduction method like PCA, RP, or Image Scaling from one batch of data. It would be highly

desirable to apply the same linear/nonlinear transformation on the consecutive batch of data

before training a classifier or classifying the data points using existing trained classifier

models. This allows us to not have to store batches of the data set. All that is required to

be stored is the set of projection parameters extracted from the first batch of data set and

the transformed values of subsequent batches. This assumes that the consecutive batch of

the data set is similar to the train set (first batch of data). Otherwise, the trained classifier

would perform poorly on the projected consecutive data set for two reasons:

• Projection parameters obtained from the original/first batch of data set do not de-

scribe well the subsequent batch of data set.

• The classification model is not trained or has not seen the similar instances of data

points it is having difficulty to classify.

It works for methods like Random Projection which does not depend on the data

set at all except for the number of features, and Image Scaling which treats each image

individually. PCA, on the other hand, tries to extract features from the whole of the data

set. The argument here is that even methods like PCA would work if the data on which

projection parameters were extracted are fairly representative.

The generalization of classifier performance over batches of a data set can be measured

by plotting classification performance on several batches of a data set. If the performance

decreases, the first batch of the data set was not representative enough of the subsequent

batches of the data set. Metrics for quality of projection can be plotted sequentially for each

batch of data set. Again, if the quality of projection decreases for subsequent batches of

the data set, the first batch of data set from which the projection parameters were obtained

were not representative enough.
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To obtain the results, we first train a classifier on a train set and also obtain projection

parameters. Each of the consecutive batches of data is projected using the projection

parameters obtained from the train set and is then classified using the classifier trained on

the train set. The results on daynight attribute of the Spring Garden data set are shown in

Figure 5.11. We varied the batch size for the first batch of data and the rest of the batches

and found that the larger the first train set the better the performance on the consecutive

batch of data sets.

In the results obtained in Figure 5.11, the batch size of the data sets (second through

last) is fixed to 400 samples. We vary the batch size of the first batch (or train set) from

400 to 2000 in the increment of 400. As the batch size of the first batch increases, the

performance increment is stark and significant. Also, PCA was used as the method of

projection and SVM was used as the classifier.

Fig. 5.11: Performance of SVM trained on first batch of data and using same parameters
of projection for subsequent batch of test data

5.7.1 Why small n component values give us good performance?

While it might seem a that small number of components preserved (n component) gives

us a good performance, we have to see the bigger picture to choose the amount of dimension
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reduction. It just might the case of overfitting or unbalanced attribute. Spring Garden

data set has mostly unbalanced attributes or attributes with binary classes where at least

an accuracy of 50% can be expected for even a random classifier. We computed minimum

accuracy as the ratio of the number of samples in the majority class to the total number

of samples in the data set for all attributes. The minimum accuracy for the attributes

’precipitation’, ’precipitation1hr’, ’surfaceStatus’, and ’daynight’ are 0.885, 0.718, 0.55 and

0.62 respectively. Also, looking at the f1 score might suggest that at small n component,

classifiers are good at classifying the majority class while classifying other classes poorly.

It also might be that the problem statement is really easy in which it is easy to observe

good classification performance even for small n component preserved. For instance, the

classification of daynight attribute is a relatively easy problem statement. It would not be

surprising for us to have good performance at small n component.

5.7.2 Comparison of the Dimension Reduction methods on the MNIST data

set

We plotted metrics measuring quality of projection for PCA, RP, and Image Scal-

ing against the accuracy of classifiers (SVM and kNN Classifier) to explain the impact of

dimension reduction on the performance of classifiers.

The metrics for quality of projection do not measure the classifier performance, rather

they provide clues as to what we can expect from the classifier, and when we can expect peak

performance from the classifier. They help to estimate relative performance of the classifier

as Maaten et. al [1] argue that for successful classification of data its structure needs to be

retained and these metrics measure how well the structure of the data is preserved.

A high value of any metric measuring quality of projection does not indicate that the

classifier will a have good performance on the reduced data set. Rather, it indicates that

the classifier will have relatively good performance.

Both the classification performance and quality of projection metrics were computed

on the same MNIST data set of 1000 randomly selected images. The dimensions of the

image are 28*28. The number of neighbors considered (k) is 10 for computing quality of
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projection metrics as well as for the kNN classifier. The minimum accuracy defined is the

ratio of the number of samples in the majority class to the total number of samples is 12.4%.

The accuracy of the classifier trained on a data set reduced using PCA can be noted to

increase steadily until it peaks and then starts declining. It can be noted that n component

increases from left to right in the graphs below.

Trustworthiness and Continuity are the best predictors of classification performance

among all the quality of projection metrics discussed in this thesis. It is evident in the

figures below that when the quality of projection measured by Trustworthiness and Con-

tinuity increase so does the accuracy of the classifiers (SVM and kNN Classifier). For the

same value of projection quality, Image Scaling has the lowest accuracy. As evident in the

prior section, Image Scaling requires the largest number of components to achieve similar

projection quality. Thus for a specific n component, Image Scaling has the lowest accuracy

and projection quality.

Fig. 5.12: Accuracy versus Trustworthiness for SVM classifier

Distortion1 and Distortion2 are pretty good estimators of accuracy. For Distortion2,

increase in quality of projection corresponds to increase in accuracy until they both peak or

plateau. As the n component increases, the decrease in distortion and increase in accuracy

is the fastest for PCA and the slowest for Image Scaling (n component increases from right

to left in this case).
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Fig. 5.13: Accuracy versus Continuity for SVM classifier

Fig. 5.14: Accuracy versus Distortion2
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The accuracy of the classifiers increases as the Ratio Preserved increases. For PCA,

once it achieves the peak accuracy its accuracy does not increase even on significant incre-

ment in Ratio Preserved while the accuracy of RP and Image Scaling increases slowly for

smaller gains in quality of projection until both accuracy and quality of projection plateaus.

PCA achieves a higher quality of projection and accuracy than RP and Image Scaling.

Fig. 5.15: Accuracy versus Ratio Preserved

Spearman Variant behaves similar to Ratio Preserved while also accounting for the

relative order of neighbors preserved.

Fig. 5.16: Accuracy versus Spearman Variant
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Spearman is the strictest quality of projection measure among all the metrics that have

been used in this thesis. It estimates the degree to which the relative ordering of neighbors

of each data point is preserved. The graph below suggests that preserving the relative

ordering of the nearest neighbors is a challenging task for a smaller size of reduced data set

and is not necessary to achieve a good classification performance. It can also be noted that

even as Ratio Preserved increases, Spearman may not increase for smaller n component.

After the first few n components, even as the projection quality increases, the accuracy

does not increase and stays relatively unchanged. PCA achieves both the best quality of

projection and accuracy.

Fig. 5.17: Accuracy versus Spearman

Like Trustworthiness and Continuity, Top k Normalized Distance also assumes the

worst for the missing neighbors. For the first missing neighbor, it assumes that it ranks the

last when all of the neighbors are considered and the second missing neighbor is second to

the last when all of the neighbors are considered and so on. For very small n component,

i.e. n component << num features, the change in projection quality does not correspond

to change in accuracy. PCA achieves both the best quality of projection and accuracy.
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Fig. 5.18: Accuracy versus Top k L1 Normalized Distance

5.7.3 Comparison of the Dimension Reduction methods on Spring Garden

data set

Both the classification performance and quality of projection metrics were computed

on the Spring Garden data set. The classification used 1600 images while quality of projec-

tion used only 1000 randomly selected images due to the computational cost of computing

values of multiple metrics. The number of neighbors considered (k) is 10 for computing

quality of projection metrics as well as for the kNN classifier. Unlike MNIST in which the

‘digit’ attribute has ten classes and the minimum accuracy was 12.4%, the ‘precipitation1hr’

attribute on which these tests are carried out is an unbalanced binary attribute with a mini-

mum accuracy of 71.8% because of which even at n components < 10, the accuracy is really

high. The rest of the discussion adheres to the MNIST data set’s discussion.

Please note that n component increases from left to right in the graphs below.
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Fig. 5.19: Accuracy versus Trustworthiness for SVM classifier

Fig. 5.20: Accuracy versus Continuity for SVM classifier

Fig. 5.21: Accuracy versus Distortion2 (n component increases from right to left in this
graph)
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Fig. 5.22: Accuracy versus Ratio Preserved

Fig. 5.23: Accuracy versus Spearman Variant

Fig. 5.24: Accuracy versus Spearman
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Fig. 5.25: Accuracy versus Top k L1 Normalized Distance

5.8 Conclusion

Here are some of the notable conclusions from this chapter.

• SVM outperformed kNN Classifier except for the ’daynight’ attribute. The best clas-

sification performances were obtained using PCA for dimension reduction.

• While classifiers trained on the data set reduced using PCA performs better than the

data set reduced using RP or Scaling, its performance plateaus at around 200 number

of components preserved. At its peak, a classifier trained on data set reduced using

PCA outperforms the original data set indicating the presence of noise in the original

data set.

• The performance of classifiers trained on serially sampled data set is really poor in-

dicating that the serially sampled data set is not representative of the test set or the

whole data set. Figure 5.11 suggests that adding more samples to the data set might

help to improve the performance of the classifier on serially a sampled data set.

• Classifiers trained on data sets reduced by Image Scaling have the lowest value of

accuracy for any value of quality of projection measured by any of the metrics esti-

mating quality of projection. Classifiers trained on data sets reduced by PCA have

the highest value of accuracy for any values of quality of projection.
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• Qualitatively, Trustworthiness, Continuity, Distortion1, and Distortion2 are good es-

timators of the accuracy of classifier while the rest of the metrics namely Spearman,

Spearman Variant, Ratio Preserved, and Top k Normalized Distance are decent pre-

dictors of the accuracy of classifiers.

• Even though the aim of this thesis is not to build classifiers, we were able to train

pretty good classifiers on all of the attributes that we explored.



CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

In Chapter 3, ’Dimension Reduction’, we introduced several parameters to measure

quality of projection and used some existing metrics as well. We also used some statistical

tools to measure quality of projection like the Spearman Rank Correlation Coefficient.

Spearman estimates the preservation of the relative order of the neighbors of each data point.

We also addressed its shortcomings as a metric for quality of projection and introduced

Spearman Variant. We rigorously tested Image Scaling which is not as established as

PCA and Random Projection for dimension reduction. Image Scaling required the highest

dimension of reduced dataset for equivalent quality of projection.

In Chapter 4, ’Image Preprocessing’, it was found that single-channel images performed

as well or better than full channel images which is quite surprising given that full channel

images are three times the size of the single-channel images. Of all the single channels, we

preferred grayscale because it performs at par or better than other single-channel images

including histogram equalized images and channels of other color spaces like HSV and is

more interpretable than all of them.

In Chapter 5, ’Image Classification’, we found that of the SVM and kNN Classifier,

SVM almost always outperformed the kNN Classifier without tuning for individual at-

tributes, locations, or colorspace. Even though it is not the aim of this thesis, the classifiers

trained on randomly sampled dataset performed pretty well for all of the attributes. It is

commendable since the problem of classifying weather or road status from images is difficult

and the dataset is highly unbalanced.

One of the interesting results from this chapter is that if a classifier is trained on

dimension reduced train set which is fairly representative of the dataset, then the consecutive
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batch of test sets can be reduced using the same transformation parameters that were

obtained from the first batch of a dataset without little compromise in classifier performance.

This also implies that the consecutive batches suffer a small loss in quality of projection

even if the transformation parameters were not computed from them.

We also found out that quality of projection metrics like Trustworthiness, Continuity,

Distortion1, Distortion2, Ratio Preserved, and Spearman Variant are decent predictors of

the accuracy of classifiers qualitatively.

6.2 Future Work

The essence of research is that it leaves you with more questions than you started with.

This thesis is no exception as it leaves me with multiple questions, some more exciting than

others. For instance, can we adjust the transformation parameters obtained after fitting

PCA (or other dimension reduction method) to a dataset so that it fits the next batch of

the dataset better?

Another more interesting topic of research is to quantify the number of components

that need to be preserved for preserving distance between data points. In this thesis, only

qualitative assessments were performed. Also, it would be useful to be able to compute the

equivalent number of components required by different dimension reduction methods for a

given projection quality metric.

Some more obvious things to do would be to extend the results of this thesis to other

projection methods like Non-Negative Matrix Factorization (NMF), Singular Value Decom-

position (SVD), Image patch sampling, etc. We only explored SVM and kNN Classifier in

this thesis. It would not be difficult to extend it to other classifiers like Decision Trees,

Random Forest, Logistic Regression, etc.
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APPENDIX A

Classification Appendix

A.1 Classifier performance on dataset of Black Butte

Fig. A.1: Accuracy vs. n component for SVM and kNN Classifier classifying precipitation
using PCA for dimension reduction

Fig. A.2: Accuracy vs. n component for SVM and kNN Classifier classifying surfaceStatus
using PCA for dimension reduction
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Fig. A.3: Accuracy vs. n component for SVM and kNN Classifier classifying precipita-
tion1hr using PCA for dimension reduction

A.2 Classifier performance on Spring Garden dataset reduced using Scaling

Fig. A.4: Accuracy, F1 score versus n component for SVM using Scaling as method of
projection for the classification of precipitation.
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Fig. A.5: Accuracy, F1 score versus n component for SVM using Scaling as method of
projection for the classification of precipitation1hr.

Fig. A.6: Accuracy score versus n component for SVM using Scaling as method of projection
for the classification of surfaceStatus.
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A.3 Performance of classifiers using same projection parameters for subse-

quent batches of data

In the results obtained in Figure A.7, the batch size of the data sets (second through

last) is fixed to 5000 samples. We vary the batch size of the first batch (or train set) from

5000 to 2000. As the batch size of the first batch increases, the performance increment in

stark and significant. Also, PCA was used as the method of projection and SVM was used

as the classifier.

Fig. A.7: Performance of SVM trained on first batch of data and using same parameters of
projection for subsequent batch of test data
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