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ABSTRACT 

INVESTIGATING NEST BOX UTILIZATION BY BUMBLE BEES AND 

REPRODUCTIVE DEVELOPMENT OF MALE BUMBLE BEES 

by 

James D. Herndon, Master of Science 

Utah State University, 2020 

 

Major Professor: Dr. Karen M. Kapheim 
Department: Biology 
 

Bumble bees (Bombus Latrielle) provide pollination services which are highly 

important for food security and ecological resiliency. This thesis centers around two 

major phases of the bumble bee life cycle. I first investigate nest-founding by wild queen 

bumble bees in arboreal nest boxes. Given that bumble bees are attracted to blue and UV 

reflectance, I investigate whether color cue on nest box entrances increases nesting. Since 

aspect influences floral composition, I compared the frequency of nesting in nest boxes 

placed on different slope aspects. I compared bumble bee species occurrence in the 

environment to which species were observed in nest boxes. Slope aspect and color cues 

of nest boxes did not affect nesting numbers. 34% of nest boxes had queens interact with 

them, Bombus appositus being the most frequent species. This suggests arboreal nest 

boxes effectively attract specific species like B. appositus regardless of placement and 

color entrance. The second study quantifies changes in the reproductive anatomy of male 

Bombus vosnesenskii. The changes noted were the diminishment of the testes, which day 

accessory testes were opaque, accessory gland length, and which day trachea 
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concentrated around the testes over a 2-week sampling period. Differences were 

measured between males from microcolonies and males from queen-right colonies. Major 

reproductive system changes of B. vosnesenskii happened in the first eight days. Changes 

included a rapid diminishment of testes surface area and accessory teste opacity due to 

mature sperm content in bees eight days or older. The number of bees with a high 

concentration of trachea covering the testes surface area increased as males aged while 

accessory gland length did not increase. Body size was a significant predictor for all 

metrics of reproductive development. There were no significant differences between 

microcolony and queen-right colony males. In summary, this research chapter shows that 

major changes in the reproductive apparatus of B. vosnesenskii 8 days post-eclosion and 

the size of the male affects the male reproductive development, but not colony type. This 

thesis provides baseline data for understanding bumble bees in their role as effective 

pollinators by investigating nesting preferences and reproductive development. 
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PUBLIC ABSTRACT 

INVESTIGATING NEST BOX UTILIZATION BY BUMBLE BEES AND 

REPRODUCTIVE DEVELOPMENT OF MALE BUMBLE BEES 

by 

James D. Herndon, Master of Science 

Utah State University, 2020 

 

 Bumble bees (Bombus Latrielle) are a wide-spread group of pollinating insects 

that are important species to conserve across many environments to ensure both 

ecological and economic resiliency because they pollinate important agricultural, 

horticultural, and wild flora. Surprisingly, fundamental questions still remain about this 

important charismatic group of pollinators. The investigations in this thesis are but two of 

many topics that require further research. The topics investigated are understanding 

bumble bee nest site preferences and reproductive development of both sexes of bumble 

bees. The first experiment (Chapter 2) investigates whether nest boxes elevated off of the 

ground and attached to trees attract bumble bees to initiate and start nests. This study 

documents which species interact with these nest boxes the most. Aspect of box 

placement and blue and ultraviolet (UV) painted entrances are tested for increased 

nesting by vernal queen bumble bees. Bumble bees interacted with 34% of nest boxes 

with Bombus appositus being the most abundant species observed interacting with nest 

boxes. Aspect and entrance color showed no significance in increasing nest-box 

interactions by bumble bee queens. The second experiment (Chapter 3) is the first study 

to document developmental patterns in the internal reproductive anatomy of adult male 



vi 
 

bumble bees as they age and investigates differences between males from queenless 

microcolonies to males produced from standard queenright bumble bee colonies. The 

species used is a bumble bee of interest for pollination of greenhouse crops, Bombus 

vosnesenskii. Overall, male development continues for up to 7 days in adult males and 

overall slows down once adult males are 8 days old. No significant differences in 

development are observed between males from microcolonies and males from queenright 

colonies but the size of the male is shown to be significant in the reproductive 

development of male bumble bees. The reproductive development of B. vosnesenskii 

males offers the first insights into development that takes place in bumble bees post-

eclosion. These experiments provide knowledge on fundamental questions still 

unanswered about the bumble bee life cycle. These experiments are much needed to 

further understand how to utilize and conserve bumble bees for ecological and economic 

benefit.  
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CHAPTER 1 

INTRODUCTION: PHASES OF THE BUMBLE BEE LIFECYCLE 

Thesis overview: 

Bumble bees are important pollinators in their native habitats and are now 

integrated into modern agricultural practices to increase food yields and ensure food 

security. Even though these species are paramount to wildlands and to food production, 

many details of their basic biology are still unknown. One of the most effective ways to 

fill these knowledge gaps is by studying bumble bee colonies in captivity. This thesis 

investigates periods of the bumble bee life cycle that offer insight into improving bumble 

bee domestication practices through trap-nesting and captive breeding. Establishing nests 

using bumble bee nest boxes in wildlands, or trap nesting, provides habitat for wild 

bumble bees and is a less labor-intensive method of keeping bumble bee colonies. 

Chapter 2 of this thesis investigates the efficacy of nest boxes elevated off of the ground 

by attaching them to trees on forested land. Further, I investigate whether mountain slope 

aspect or entrances painted with colors known to attract bumble bees on nest box 

entrances increases or decreases the rate of interaction among bumble bees and arboreal 

nest boxes. While neither mountain slope placement nor painted color entrances on nest 

boxes increased or decreased nesting events, arboreal nest boxes did have reasonable 

success in attracting bumble bees, especially Bombus appositus Cresson. These results 

mean that arboreal nest boxes are effective in attracting vernal queens to initiate nests but 

certain species within a community such as B. appositus are more likely to utilize them 

than other bumble bee species. Chapter 3 is the first study to investigate internal 

reproductive morphological changes occurring in adult male bumble bees, a major gap in 
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our understanding of bumble bee reproductive biology. Chapter 3 investigates the 

reproductive maturation of male bumble bees, using a wild species that has been the 

target of captive breeding programs, Bombus vosnesenskii Radoszkowski. Changes 

measured in adult bees with age include the surface area change in testes as compared to 

the surface area of the accessory testes; sperm presence in the accessory testes, accessory 

gland length; and trachea covering most of the surface area of the testes. Using these 

metrics to quantify morphological change I find that most change in the reproductive 

apparatus occurs from eclosion and ends at 8 days of age. I also found that while the 

colony type (microcolony or queen-right colony) doesn’t affect the rate of change in 

these metrics the size of the bee does. This chapter provides the first quantification of the 

morphological changes occurring in male bumble bees and shows that males of either 

colony type are similar in morphology and in the changes taking place as they age but 

larger bees have variation in these morphological variations. Together these research 

chapters investigate major gaps in the life history of bumble bees. These research 

chapters show that arboreal nest boxes are effective in trap-nesting some vernal queen 

bumble bee species and males are still undergoing major developmental processes up to 8 

days post eclosion making 8 day old males the earliest age to utilize for mating bumble 

bees in captivity.  

Background: 

Humans have been fascinated by and dependent upon bees for millennia 

(Crittenden, 2011). The earliest fascination with bees came with the exploitation of social 

bee species that store food in the form of honey. Cave paintings throughout the world 

from 40,000–8,000 years ago suggest that humans relied on bees as early as the Upper 
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Paleolithic (Dams & Dams 1977, Crittenden 2011).  Marlowe et al. (2014) argue that pre-

human hominid species were likely to take energy-rich honey and nutrient–rich larva 

from wild bee hives, contributing to the caloric investment needed to develop a large 

brain (Crittenden, 2011; Marlowe et al., 2014). In this way, honey may have been the 

most important insect related component of the diet of foraging humans of the 

Pleistocene. The continued advancement of human societies then led to agriculture which 

then led to the first civilizations. Early civilizations developed apiculture with honey bees 

in the Old World and meliponiculture with stingless bees in the Neotropics and Australia. 

Domestication of honey bees provided a reliable source of honey and other goods such as 

wax and propolis.  

Bees still play a vital role in human society, but their utility has shifted from hive 

products to the agricultural and ecosystem services they provide as pollinators. The 

primary function of beekeeping in Europe and North America gradually shifted focus 

from honey production to pollination services to increase certain crop yields of food and 

seed production in agriculture (Torrey Botanical Society Bulletin 1950; Vogel 1996). 

Simultaneously, 18th century naturalists became interested in the interactions of insects 

with wildflower species and gained knowledge on their role in flowering plant 

reproduction (Vogel 1996). For example, Charles Darwin was fascinated by the flower 

morphology of orchids and their insect pollinators including bumble bees, then known as 

humble-bees. These advancements in understanding the benefits of bees to plant 

reproduction, their role on shaping floral morphology and to shaping larger-scale plant 

communities has occurred relatively recently. This shifting interest on utility of bees has 

also expanded out to managing other species of bees that pollinate other plant species 
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differently than honey bees do (James & Pitts-Singer, 2008; Portman et al., 2019). While 

this paradigm shift brought about much more understanding of the important role that 

bees play, many fundamental questions still exist today, especially for non-Apis species 

of bees (Cane 1997; Portman et al., 2019). This thesis is a testament to the expanded 

interest in wild bees and their utility as pollinators, as my goal is to answer some of these 

questions about non-Apis bees.  

Today many more bee species have been studied than ever before which has now 

made some bee species model organisms for understanding many principles in biology 

such as insect vision (Chittka, 1997; Greiner et al., 2004), gene flow and biogeography 

(Jackson et al., 2018; Jha & Kremen, 2013; Kapheim et al., 2019; López-Uribe et al., 

2016), effects of climate change on insect pollinators (Dew et al., 2019; Miller-

Struttmann et al., 2015; Ploquin et al., 2013), the evolution of eusociality (Amsalem et 

al., 2014; Danforth, 2002; Kapheim et al., 2015; Kapheim et al., 2013; Rehan & Toth, 

2015; Shell & Rehan, 2018; Smith et al., 2007; Yanega, 1997), and insect learning and 

cognition (Ben-shahar & Robinson, 2001; Leonard et al., 2015; Muth et al., 2017; Muth 

et al., 2015). The disciplines of melittology, pollination biology, and agriculture continue 

to contribute to our understanding of bees and the plants that they pollinate. While bees 

are model organisms for these major disciplines in biology, there are still fundamental 

questions that remain about many species.  This thesis focuses on bumble bees (Bombus), 

which play an important role in food production in agricultural settings and ecological 

processes in wildland landscapes. 

Bumble bees are important pollinators of many wild and agricultural plants 

making them both ecologically and economically valuable (Alford 1975; Goulson 2010; 
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Potts et al., 2010; Sladen 1912; Strange, 2010). Recent documented declines in bumble 

bee species due to habitat loss warrants investigations into the habitat needs of bumble 

bees (Goulson 2010; Potts et al., 2010). Therefore an aim of bumble bee conservation and 

of this thesis is to provide necessary habitat for bumble bees (Johnson et al., 2019). The 

other way to bolster their populations while utilizing bumble bees for their pollination is 

rearing them in captivity or “domesticating” them. 

Domestication of bumble bees was first discussed by Sladen (1912) but did not 

become a commercial industry until the late 1980s for pollination services. Although 

several bumble bee species have been domesticated, there are primarily two species that 

are domesticated on an industrial scale; the buff-tailed bumblebee (B. terrestris) from 

Europe and the common eastern bumble bee (B. impatiens) from eastern North America. 

In North America, more than 100,000 domesticated colonies of B. impatiens are 

produced and moved across the continent annually (Strange 2015, Cameron et al 2016). 

Recent declines in wild bumble bees are associated with pathogen spillover from 

domesticated bumble bees escaping greenhouses (Cameron et al., 2016; Otterstatter & 

Thomson, 2008). Further, concerns about domesticated bumble bees naturalizing outside 

of their native range and affecting native bees include introductions of B. terrestris in 

Japan (Kanbe et al., 2008; Tsuchida et al., 2019), South America (Torretta et al., 2006), 

Australia (specifically Tasmania) (Hingston et al., 2002; Stout & Goulson, 2000) and 

deliberate introductions in New Zealand (Macfarlane & Gurr, 1995).  Further, B. 

impatiens has been documented outside of its historic range in North America (Looney et 

al., 2019; Palmier & Sheffield, 2019; Ratti & Colla, 2010), presumably from escaping 

greenhouse containment. Developing husbandry techniques for locally appropriate 
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bumble bee species that have large colonies and can be industrially produced is one way 

to eliminate the movement of these non-native species (Strange, 2015).  

An emphasis on developing a localized approach of using only regionally 

appropriate bumble bee species for commercial pollination services would help to 

eliminate these concerns of hybridization with native species, outcompeting native 

species, and potential novel pathogen spread from many bumble bees being contained in 

the same facility (Aizen et al., 2018; Velthuis & van Doorn, 2006). One species 

considered for commercialization is the Vosnesensky bumble bee (B. vosnesenskii) 

because it is a very common species in its range (Cameron et al., 2011; Strange & 

Tripodi, 2019), has been shown to be a very effective pollinator for greenhouse tomatoes 

and cranberries grown in the Pacific Northwest (Broussard et al, 2011; Dogterom et al., 

1998; Macfarlane & Gurr, 1995; Strange, 2015). This species is abundant along the 

Pacific coast of the United States, northern Mexico and southwestern Canada (Koch et al 

2012). It produces very large colonies making it an excellent bumble bee species for 

pollination in greenhouses. Despite interest in this species for greenhouse pollination, 

some basic knowledge of this species’ biology is lacking.  

 A brief summary of the bumble bee life cycle needs to be understood in order to 

address which questions about bumble bees remain unanswered. The basic biology of B. 

vosnesenskii (and other bumble bee species) is understood to occur according to the steps 

listed below as described by Alford (1975), Heinrich (1979), and Goulson (2010):  
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Life cycle of a bumble bee (example: B. vosnesenskii) 

1) Diapause 

After mating, the inseminated gyne forages to build up fat to prepare for diapause.  

Once the gyne has mated she locates an underground hibernaculum and excavates 

the site to begin diapause. Diapause will last throughout the winter until the 

average ambient temperature increases to 5-25°C (Heinrich 1979). The queen 

then breaks diapause and leaves her hibernaculum to begin nesting.  

2) Nesting 

The gyne exits her hibernaculum, and forages on nectar post-diapause. Once the gyne 

collects enough nectar for herself, she will then search for a suitable nesting site 

for her colony. Bumble bee nests are not exposed in the open but are initiated in 

an enclosed environment, whether it be a cavity or within a clump of dead grass 

or other surface level dead vegetation. Bumble bees hide their nests by initiating 

them in the ground, on the ground surface, or sometimes in cavities elevated off 

of the ground, such as tree holes or bird houses. Bumble bees incubate their 

brood, so they prefer to find a nest site with some sort of insulation material 

already present. Old rodent dens are often where many bumble bee species will 

nest, because rodents insulate their nests and the bumble bees repurpose this 

insulation. Once the nest site is selected, the gyne then collects pollen to create a 

provision on which she can oviposit. The gyne secretes wax from her sternal wax 

glands and forms the wax into a cup (sometimes termed a “honey pot”). She then 

continues to forage for nectar to make a nectar reserve for the developing colony.  

3) Colony development 
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Once the pollen provision is large enough, the gyne lays a clutch of eggs, coats them 

in wax she secretes, and incubates them until they hatch into the first larval instar. 

She progressively provisions the larvae and continues to incubate them as they 

pupate, and finally eclose as adults. This first clutch of adult bees are workers 

(sterile females) that take over the tasks of brood care, foraging, and other colony 

maintenance while the queen increases her egg-laying rate. The colony continues 

to grow in size and in its number of workers. Colonies of B. impatiens and B. 

vosnesenskii typically will produce several hundred workers. Different bumble 

bee species will invest differently and produce fewer non-reproductive workers. 

Bumble bees native to the Arctic Circle such as B. polaris will lay one clutch of 

eggs that become workers and immediately afterwards lay reproductive castes 

(Vogt et al., 1994). This is likely due to the Arctic’s truncated flowering season.  

4) Reproductive production 

The colony eventually switches to producing reproductive bees (males, then new 

gynes). Both B. impatiens and B. vosnesenskii can produce hundreds of male 

offspring and dozens of gynes in the wild (Heinrich 1979). B. impatiens will 

produce many new gynes in captivity, but B. vosnesenskii does not produce many 

gynes in captivity. This lack of gyne production has hindered the efforts in 

creating captive lines of bumble bees.  

5) Mating 

From early summer to late fall, B. vosnesenskii gynes (that year’s generation of virgin 

queens) and males leave their natal nests to mate. Gynes typically receive sperm 

from a single male from a single copulation (Owen & Whidden, 2013). The 
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inseminated gyne does not mate again at any other phase in her life cycle. 

Mating, like in all social Hymenoptera, is the shortest period of the queen’s life 

cycle, yet immensely impactful in the colony that the gyne will produce the 

following spring. Unlike in honey bees and stingless bees, males can mate with 

multiple females and these females enter into a solitary diapause. The cycle then 

begins again with the inseminated queen going through diapause (Phase 1).  

   

6) Colony Senescence 

Meanwhile the maternal colony continues producing reproductive bees, but 

eventually senesces, leaving the only bees to survive through winter being the 

gynes. In the maternal colony, the queen dies, followed soon after by the workers 

and the males which are unable to diapause.  

Thesis Outline: Focus on phase 2 and 5 

This thesis focuses on phase 2 and phase 5 of the bumble bee life cycle. Chapter 2 

focuses on Phase 2 in the life cycle of bumble bees by investigating the efficacy of 

bumble bee nesting in arboreal nest boxes (ANBs) in montane subalpine environments of 

northern Utah. The geographic placement of ANBs and visual appearance of the entrance 

of ANBs were manipulated to test whether these variables influence the establishment of 

bumble bee nests. I tested whether northerly versus south-facing aspect was important on 

nest selection by placing nests in trees on north and south facing slopes.  To test the 

impact of visual stimuli on nest selection, the entrance was manipulated by painting an 

ultraviolet blue circle around the nest entrance of half of all nests deployed. Presence of 

nesting and nesting behaviors were documented to understand the level at which bumble 
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bees established nests in the ANBs. The species of bumble bees in the nest boxes were 

also recorded to account for whether certain species in the sub-alpine environment had a 

higher affinity ANBs. This was done by comparing the community of bumble bees 

known to occur in the environment to the species observed interacting in the ANBs. 

Other non-Bombus species that nested in the boxes were also noted, because they may 

compete for nesting territory in the nest box and influence the progression of nesting in 

the ANBs.  

Chapter 3 investigates phase 5 of the bumble bee lifecycle by investigating the 

reproductive development of bumble bees. Specifically, I looked at reproductive 

development in B. vosnesenskii males as they aged by quantifying changes in the surface 

area of the testes over time relative to the accessory testes, the length of the accessory 

glands, the presence or absence of sperm in the accessory testes, and the predominance of 

trachea covering the surface area of the testes. It is often noted in the literature that male 

insects do not have continual gametogenesis, and that with this limited production of 

gametes there is a reduction in the internal reproductive apparatus of males (Duchateau & 

Mariën, 1995; Duvoisin et al., 1999; Ferreira et al., 2004; Tasei et al., 1998). However, 

there is no literature on the rate of diminishment of the testes as the insect ages. Most 

studies detail the histological and physiological changes of tissues or germ cells of the 

testes (Cruz-Landim et al., 1980; Cruz-Landim, 2001), but the study of B. vosnesenskii in 

chapter 3 is intended to quantify morphological changes in the reproductive apparatus as 

a whole. With these criteria for change in the internal reproductive apparatus, I then make 

a refined qualitative description of what to expect to observe in the internal reproductive 
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apparatus of bees of various age groups. This may guide captive management protocols 

in selecting males of the appropriate age for mating.  

The following chapters contribute to a better understanding of basic bumble bee 

biology questions that are still unanswered. Investigating methods of attracting bumble 

bees to nest in the wild and understanding patterns of reproductive maturation in males in 

a bumble bee species showing promise to be a future domesticated species are what these 

chapters entail. I thank you for reading these chapters and hope they are utilized to further 

understand these important and charismatic insects. 
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CHAPTER 2 

BUMBLE BEE ARBOREAL NEST BOX EFFICACY IN A MONTANE SUBALPINE 

ENVIRONMENT 

Abstract: 

Bumble bees (Bombus spp.) are key pollinators across many habitats, but several 

species within this group are experiencing dramatic declines. Insights into bumble bee 

nest establishment are essential in managing and conserving these important pollinators. 

Establishing colonies in lab settings is time-consuming, costly, and variable in success 

rate. Providing proper nesting habitat to establish colonies in the field would save time, 

effort, money, and may reduce pathogen exposure from captive breeding programs. Self-

established colonies can also provide researchers with access to observations on wild 

colony initiation, growth, and symbiotic relationships among Bombus and other species. 

A potential way to increase wild colony abundance is to increase nesting habitat by 

providing arboreal nest boxes for wild queens to establish colonies in the wild. I 

investigated bumble bee use of arboreal nest boxes as a function of landscape attributes 

and visual stimuli in montane subalpine habitat in northern Utah, USA over two years. Of 

the 204 nest boxes sampled, 34% showed some sign of Bombus activity and 16% were 

occupied by colonies that produced workers. Aspect placement and visual color cue did 

not significantly affect the likelihood of Bombus activity in the box, but boxes on south 

facing slopes without color cues tended to have the highest levels of bumble bees 

interacting with them. We observed the presence of the social parasite B. insularis and 

nesting from other non-focal species that may compete for nest-sites with bumble bees. 
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This study suggests that arboreal nest boxes may be an effective means of encouraging 

bumble bee nesting in natural landscapes. 

 

Keywords: Bombus appositus, Vespinae, Aspect, Artificial domiciles, Troglodytes 

pacificus, nest usurpation, trap-nesting, social parasitism 

 

Introduction:  

It is critical to conserve bumble bees because they are abundant and adaptable 

pollinators in a wide variety of ecosystems (Goulson 2010; Velthuis & van Doorn 2006). 

Bumble bees are generalist pollinators that pollinate both common and rare plants, so 

conserving them in natural environments helps to conserve a wide variety of plant species 

that many other organisms depend on (Ackerman, 1981; Pitts-Singeret al., 2002; Rhoades 

et al., 2016; Tuomi, et al., 2015). Bumble bees colonies are composed of many individual 

bees with subsequent castes (queens, workers, and males) providing robust pollination 

services over a wide temporal range (Alford 1975; Goulson 2010; Heinrich 1979; Ostevik 

et al. 2010). The reproductive castes  have differing, behavior, foraging and dispersal 

patterns (Ostevik et al., 2010) The predominant castes pollinating wild flowers are the 

workers but both queens and males are also pollinators visiting flowers for vital resources 

in early spring and in late summer/fall. Vernal queens forage flowers to increase 

metabolic activity and to collect pollen as nesting substrate while in the fall new gynes 

are foraging plants for building fat body for diapause and eventually ovary development 

to produce eggs and males are foraging nectar and establishing territory to mate with a 

new gyne (Ackerman 1981; Alford 1975; Goulson 2010; Heinrich 1979; Malfi et al., 
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2019; Martinet et al., 2019; Ostevik et al. 2010; Vogt et al., 1998).For these reasons, 

conserving bumble bees is of utmost importance in broader landscape scale conservation 

efforts (Williams & Osborne, 2009).  

Many factors affect bumble bee communities, including the absence of proper 

nesting habitat due to various types of land management (Goulson 2010). Anthropogenic 

stressors include land-management practices such as urban development without proper 

greenspaces, intensified conventional agriculture, and high frequency grazing regimes 

(Goulson 2010). These types of land-usage can be deleterious to bees finding proper 

nesting habitat because they alter soil composition for bumble bees that nest in burrows 

(Potts et al., 2010).  

 A common approach to bolster habitat for bumble bee conservation is 

enhancement of floral resources within otherwise depleted habitats, such as agricultural 

or urban environments (Cameron et al., 2011; Cusser & Goodell, 2013; Jacobson et al., 

2018; Malfi et al., 2019; Martinet et al., 2019; Pywell, 2005; Spivak et al., 2011). While 

these efforts have been successful, this does not address nesting availability, which is also 

a critical aspect of bumble bee conservation (Johnson et al., 2019; Lye et al. 2011; Potts 

et al., 2010; Spivak et al., 2011). Utilizing nest boxes is an additional component in 

efforts to conserve these pollinators by bolstering habitat availability for them. Some 

success has been shown in establishing bumble bees inside of nest boxes by simply 

placing them in a landscape containing bumble bees. Typically managing for both habitat 

and foraging preferences is a more holistic approach to conserving any species of interest. 

Man-made nesting structures for the purpose of animal nesting have been used to 

conserve and increase populations of various organisms where the environment may lack 
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the nesting requirements of that organism (Baranauskas, 2009; Bender et al., 2016; 

Bortolotti, 1994; Radunzel et al., 1997). While this approach has been previously 

implemented in bee conservation efforts, the results have been mixed for bumble bees 

(Johnson et al. 2019; Sladen 1912; Frison 1926; Fye & Medlar 1954).  Nest boxes of 

many different designs have been built and deployed in a variety of ways to attract 

bumble bees to nest in them (Donovan and Wier 2012; Fye and Medler 1954; Hobbs et al 

1960; Johnson et al., 2019; Lye et al. 2011). These studies started in 1912 with Sladen 

and have been conducted across North America, Europe, and New Zealand (all non-

native species) with highly varied results ranging from 0% to over 50% of nest boxes 

deployed containing bumble bee colonies (Donovan and Wier 2012; Frison 1926; Fye 

and Medler 1954; Hobbs, et al., 1960; Johnson et al., 2019; Lye et al. 2011; Sladen 

1912). In North America, 21 species of bumble bees have been shown to use nest boxes, 

including species that face population declines (Johnson et al., 2019). Many of these 

studies on creating nesting structures have mixed results due to variation in experimental 

design specifically in design and materials of nest boxes. Barron et al., 2000; Donovan & 

Wier, 1978; Fye & Medler, 1954; Hobbs et al., 1960; Johnson et al., 2019; Lye et al., 

2011). Further investigation of what types of structures bumble bees prefer to nest in 

need further investigation as these studies provide tools for land managers in conserving 

these important insect pollinators. This study follows up on some previous work by Dr. 

James P. Strange where nest boxes were deployed within a subalpine montane portion of 

the Cache-Wasatch National Forest known as Tony Grove. Design of this experiment 

was informed by observations and preliminary data of the nest boxes placed there in 

2009.  
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Previous studies have deployed boxes that are buried, placed on the ground 

surface, or suspended off of the ground (Donovan & Wier 2012; Fye & Medler 1954; 

Hobbs et al., 1960; Johnson et al., 2019; Lye et al., 2011; Sladen 1912). A recent 

comparison of these three placements of nest boxes demonstrated that boxes suspended 

off of the ground have more bumble bees nest in them (Johnson et al., 2019). 

Additionally, prior observations by Strange (unpublished data) where nest boxes were 

mostly subterranean or at surface level above-ground showed 16.3% of nest boxes 

showed evidence of bumble bees interacting with nest boxes, but only 1.9 % developed 

into bumble bee colonies (Strange unpublished data). A small subsample of nest boxes in 

2009 were placed above ground on the sides of tree trunks. Arboreal nest boxes (ANBs) 

were the smallest sample of boxes (n = 5), but 40% contained fully developed bumble 

bee nests by the white-shouldered bumble bee (B. appositus) (Strange, unpublished data). 

In Europe and North America there are bumble bees known to nest in tree cavities and 

bird boxes. The tree bumblebee (B. hypnorum) is a known tree nesting species, preferring 

to nest above ground more than other bumble bees that co-occur in this species’ habitat 

(Crowther et al., 2014) and there are North American species that have been shown to 

nest in ANBs (Hobbs et al., 1960). Given the past success of ANBs in other studies I used 

only ANBs in this study. I tested whether the placement of ANBs on a given aspect and 

color cues on the nest box entrance would increase or decrease bumble bee nesting in the 

ANBs.  

A challenge in having wild bumble bees establish in ANBs is attracting foundress 

queens to the boxes. There is very little known about what attracts a bumble bee queen to 

a nesting site and how bumble bee queens find these nesting sites (Goulson 2003; 
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Richards 1978; Goulson 2010). Because of this lack of understanding of nest site 

initiation preference, most studies have mimicked characteristics known from natural 

nesting sites but with well-developed colonies and not in the initiation phase of the 

colony cycle.  Abandoned rodent dens often make ideal nesting habitat for bumble bees 

(Alford 1975; Sladen 1912). Rodents excavate a cavity and collect some type of 

insulation material to line that cavity to start nesting. Bumble bees require, but do not 

collect, insulating material for nests. They therefore utilize left over nesting material from 

rodent nests to insulate incubating brood and the colony as a whole (Goulson 2010; 

Velthuis & van Doorn, 2006). This known nesting preference can be emulated by 

creating an enclosure/cavity with an enclosure with some kind of insulation material 

(Alford 1975; Goulson 2010; Sladen 1912). Emulating abandoned rodent nests by placing 

insulation material has shown success in getting bumble bees nest in artificial domiciles 

(Alford 1975; Sladen 1912).  

Other attempts to increase nesting in nest boxes have taken further steps to 

emulate old rodent dens through bumble bee foundress sensory cues such as olfaction by 

placing upholsters cotton that rodents had used for nesting inside of the nest structure 

(Slatkosky, personal communication). However, these efforts have shown little to no 

success to increase nesting in bumble bee nest boxes. However, there may be other 

sensory cues produced from rodents that bumble bees use to detect nesting sites.  

Visual cues may attract bumble bees to ANBs and in turn increase nesting in 

ANBs with added visual stimuli on the ANB entrance. The visual system is a major 

component of the bumble bee neural anatomy and has a significant impact on many 

aspects of the bumble bee’s interaction with its environment (Raine and Chittka 2005). 
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Specifically, bumble bees have a high visual acuity to blue wavelengths and also are able 

to visualize ultraviolet (UV) wavelengths (Raine and Chittka 2005). The ability to detect 

UV reflectance aids in many functions across insect taxa including hunting/foraging, 

sexual signaling, and nest site recognition (Honkavaara et al., 2002). Bumble bees may 

find rodent nests to uptake as their own through other sensory stimuli and one such 

stimulus may be the abundance of UV reflectance around rodent nests. Rodent urine 

contains high concentrations of the highly UV reflective compound uric acid so rodent 

nests and rodent trails give off a lot of UV reflectance (Honkavaara et al., 2002; Viitala et 

al., 1995). Raptorial birds which also are able to detect UV reflectance visually, use this 

uric acid reflectance to stalk and hunt rodents (Honkavaara et al., 2002; Viitala et al., 

1995). It is therefore possible that bumble bees may also use UV reflectance from rodents 

to identify old rodent nests sites. Bumble bees also show an attraction to blue UV before 

learning which colors are associated with food rewards as evidenced by behavioral 

experiments (Raine & Chittka, 2005) and in passive sampling protocols using blue vane 

traps (Sircom et al., 2018). I tested the hypothesis that bumble bee use of ANBs would 

increase in response to a visual stimulus of blue UV paint around the entrance.  

Aspect is a physical landscape characteristic that may influence nest site 

preferences of bumble bees and affect the efficacy of ANBs. Landscape features have 

been shown to affect bumble bee abundance and diversity in montane environments 

(Hatfield & Lebuhn, 2007). It has been well documented that aspect (slope direction of a 

landscape) has profound effects on floral composition due to different rates of snowmelt 

because of differing sun exposure on the cardinal direction the slope faces (Gillott 2003). 

In the northern hemisphere, south-facing slopes have a higher rate of snow melt than 
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northerly slopes (Billings & Bliss, 1959; Jones et al., 1985). The effect of aspect 

difference is particularly pronounced at high elevations (Billings & Bliss, 1959; Jones et 

al., 1985). Figure 2-1 is exemplary of many regions throughout the subalpine zone of the 

mountain western U.S., south-facing slopes are xeric with a mix of mountain-brush and 

aspen forest edge environments, while northerly slopes retain more moisture and thus 

have a continual canopy cover from a mixed conifer forest with patches of aspen. Both 

snow melt and angiosperm community differences on these slopes likely affect when 

vernal bumble bee queens break diapause and where they search for nest sites. Bumble 

bees in diapause on south facing slopes likely break diapause sooner, and are therefore 

seeking nest sites sooner than bumble bees in diapause on north-facing slopes (Heinrich, 

1984; Vogt et al., 1994). The only natural nest sites available for bumble bees that nest in 

the ground would be on south-facing slopes. Arboreal nest boxes may provide earlier 

habitat for the earliest emerging bees but temperature differences and floral foraging 

resources differ considerably between slopes. Given the proximity to the earliest vernal 

queens, earlier flower phenology, and warmer temperature of south facing slopes it is 

most likely for bees to nest in south-facing ANBs than in northerly ANBs. 

Northern Utah’s rich bumble bee fauna offers an opportunity to test which of a 

wide variety of species are attracted to ANBs. I focused on a small basin called Tony 

Grove. This USEPA Level III ecoregion, the Wasatch and Uinta Mountains, has a total of 

18 species historically and in a recent survey (Strange & Tripodi 2019) 12 species were 

detected at Tony Grove. This species richness allows for us to investigate the efficacy of 

ANBs across many different bumble bee species. This also offers unique insights into 

how species interact as they initiate and develop colonies in nature. 
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Figure 2-1. Photo from mid-June 2016 illustrating differences in flora due to aspect. This 

photo was from a south-facing slope and the north facing slope is visible in the distance 

to the left of the road system in this valley bottom. This photo shows that while south-

facing slope flora is dominated by shrubs and largely dry open meadow and aspen 

woodland north facing slopes have a mixed conifer forest. This photo also shows 

differences in phenology of the two slopes where the south-facing slope has many vernal 

plants in bloom while there are still patches of snow on the north-facing slope.   
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Methods: 

Nest box construction and installation 

 Bumble bee nest boxes were constructed using 12.5 mm plywood (23 x 21 x 19 

cm with a 1.6 cm diameter entrance) and installed above ground on trees at Tony Grove 

(N 41.888193, W 111.603520) in the Uinta-Wasatch-Cache National Forest before spring 

bloom and complete snow melt in the last week of May. Upholsters cotton was added to 

each box as a nest insulation substrate (Hobbs et al, 1960; Johnson et al., 2019; Plowright 

& Jay 1966). All nest entrances were facing an easterly cardinal direction. Half of the 

boxes had a blue UV reflective paint around the entrance. I placed 102 boxes in clusters 

of groups of six. There was a total of seventeen clusters, with nine clusters placed on 

north-facing slopes and eight clusters on south-facing slopes. In each cluster of six nest 

boxes, three of the nest boxes had blue/UV reflectant paint around the entrance (Figure 2-

2) and three boxes did not have a color cue on the nest entrance. I performed the study in 

2016 and 2017 for a total of 204 ANBs. Nest boxes were left up between years and 

repaired as needed in 2017 to begin that year’s census of ANBs.  
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A) 

 

B) 

 

Figure 2-2.A) An example of an ANB installed on a south-facing slope with a blue/UV 

painted entrance showing dimensions of the ANB. Upholsters cotton was placed inside of 
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each box. B) Installation of ANB on north facing slope. Both photos were taken May 

2016. Note the difference in snow level in A) compared with B)  

Nest Box Censuses 

Censuses of all ANBs were conducted once every two weeks after installation. At 

each census, we searched the contents of the ANBs for evidence of bumble bees and 

recorded 3 developmental categories of bumble bee occupancy: 1) “none” meaning there 

was no evidence of bumble bees interacting with the box; 2) “nest initiation” which 

encompassed observing a queen in the box or any progressive behavior in nest building 

up to the point of having brood present; and 3) “social phase” when workers were present 

in the colony. These categories differentiated how many boxes bumble bees interacted 

with and how many boxes actually contained mature colonies that may have produced 

gynes and males. Specific observations and how they were categorized are listed in Table 

2-1. When possible, the bumble bee species present in the box was recorded.  

To investigate whether some species prefer nest boxes more than other species, 

the abundance and diversity of bees occupying nest boxes were compared to community 

data recorded in Tony Grove (Strange and Tripodi 2019). In mid-September, all contents 

of every ANB were collected and searched for evidence of bumble bees that were missed 

during field checks. Observations of any Psithyrus species were noted as well as any 

other animal found nesting within the ANBs. 
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Table 2-1  

Observations recorded for evidence of bumble bees. The right column shows the 

categorization of the evidence of bumble bees in the nest box. 

 

Evidence of 
bee Description 

 
Developmental 

Category 
None No evidence of bumble bee presence No nesting 

Bee entered 
box 

Bee was seen inside the box or observed 
entering the box 

 
 
 
 

Nest initiation 
Pollen present 

Pollen was found in the cotton substrate with 
or without a bee present. 

Wax honey pot 
present 

Wax was found in the cotton substrate with or 
without a bee present. 

Brood present 
Brood was found on a pollen provision with or 

without the presence of a bumble bee. 
Workers 
present 

Workers present within the box. Species of 
workers was also documented. 

Social phase 

 

Statistical Analysis  

Logistic regression was used to compare year of survey, the presence or absence 

of a blue/UV color entrance, and aspect (north versus south facing slope) for all boxes. 

The binomial distribution for this model was boxes with no interaction from bumble bees 

and boxes with any type of interaction by bumble bees, regardless of whether they 

reached the social phase or not (n = 204). Analysis was conducted in R version 3.6.1 

using the “glm” function in the lme4 package (Bates, Mächler, Bolker, & Walker, 2015). 

A second logistic regression was run on only boxes that had any sign of bumble bees (n = 

70).  The same variables from the previous model were used in this model (year, presence 

or absence of a blue/UV color entrance, aspect, and aspect in relation to year), but the 
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binomial distribution was amongst nest boxes that reached social phase or boxes with any 

other sign of bumble bee interaction. A probability table was made for each unique 

condition to find which unique scenario with the ANBs had the highest bumble bee 

interaction. A table of the 8 unique conditions can be found in Table 2-2 below. Finally, a 

chi square analysis was used to compare the community of bumble bees using ANBs 

compared to bumble bee community surveyed by net collection on flowers in area 

(Strange & Tripodi, 2019). 

Table 2-2. 

 List of unique conditions ANBs were placed in 

Unique 
conditions Year 

Blue/UV 
color cue 
present Aspect 

Sample 
size  
(n) 

1 2016 No  North 27 
2 2016 Yes North 27 
3 2016 No  South 24 
4 2016 Yes South 24 
5 2017 No  North 27 
6 2017 Yes North 27 
7 2017 No  South 24 
8 2017 Yes South 24 

 

Results: 

Bumble bees interacted with 34% and achieved social phase in 16% of all ANBs 

 Over the two-year survey, 34.32% (n = 70 nest boxes) of nest boxes had recorded 

bumble bee activity (Table 2). Of these 70 ANBs, 18.14% (n = 37) did not progress 

beyond nest initiation and 16.18% (n = 33) eventually had colonies that developed into 

the social phase (Table 2-3).  
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Six species of bumble bees detected in ANBs 

Six species of Bombus were detected in the nest boxes, 5 of the species detected 

were non-parasitic Bombus and one was in the parasitic subgenus Psithyrus. B. appositus 

was the species most frequently (n = 27) encountered and the most likely to advance to 

social phase in ANBs (n = 22) (Table 2-3) All B. appositus nests that reached social 

phase had one or more conspecific queen found dead inside the ANB.   

Table 2-3 

All observations of bumble bees interacting with the arboreal nest boxes. Observations 

were categorized as either nest initiation or social phase. All species documented are listed 

by row. Total Bombus row is the sum of all of the bumble bee species observed. Unknown 

Bombus represent nests where evidence of nesting occurred, but no adult bees were found 

to allow for species identification. Psithyrus is not in this table because they usurp other 

bumble bee colonies and never initiate nests.  

Aerial Nest Boxes with Bombus interactions 
Bumble bee species Nest Initiation Social Phase Sum of interactions 

B. appositus 5 22 27 
B. centralis 1 4 5 

B. huntii 1 3 4 
B. mixtus 0 3 3 

B. rufocinctus 2 1 3 
Unknown Bombus 28 N/A 28 

Total Bombus 37 33 70 
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Year, aspect and nest entrance color did not predict whether bumble bees would interact 

with ANBs 

Year (z = 1.42 p = 0.156), aspect (z = 1.138 p = 0.255), and entrance color (z = 

1.478 p = 0.139) showed no significance in predicting the number of boxes that had 

bumble bees interact with them (χ2 = 4.2729; N = 204; p = 0.3703) (See tables 2-4, 2-5, 2-

6). Year (z = -0.12 p = 0.904), aspect (z = 1.14 p = 0.255), and color cue on the nest 

entrance (z = 0.56 p = 0.575) also showed no significance in predicting which boxes 

would develop into a social phase colony (χ2 = 6.4136; N = 70; p = 0.1703). Table 2-7 

lists the scenarios and probability of nesting based on the results of the survey. Boxes 

installed on a southern aspect without a blue/UV color cue in 2016 were the most likely 

boxes to have bumble bees interact with them in this experiment.  
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Table 2-4 

 All observations of bumble bees interacting with the arboreal nest boxes. Observations 

were categorized as either nest initiation or social phase. All species documented are 

listed by row. Total Bombus row is the sum of all of the bumble bee species observed. 

 

Comparisons between year of survey: 2016 and 2017 

 Nest Initiation Social Phase 
Sum of all Bombus 

interactions 
Bumble bee 

species 2016 2017 
All nest 
boxes 2016 2017 

All nest 
boxes  

B. appositus 4 1 5 10 12 22 27 
B. centralis 1 0 1 3 1 4 5 

B. huntii 0 1 1 2 1 3 4 
B. mixtus 0 0 0 0 3 3 3 

B. rufocinctus 2 0 2 1 0 1 3 
Unknown 
Bombus 15 13 28 N/A N/A N/A 28 

Total Bombus 22 15 37 16 17 33 70 
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Table 2-5 

The number of boxes that initiated nests and how many made it to the social phase for 

each aspect placement. All species documented are listed by row. Total Bombus row is 

the sum of all of the bumble bee species observed 

Aspect: Boxes placed on North vs. South facing slopes 

 Nest Initiation Social Phase 
Sum of all Bombus 

interactions 
        

Bumble bee 
species North South 

All nest 
boxes North South 

All nest 
boxes  

B. appositus 4 1 5 8 14 22 27 
B. centralis 1 0 1 2 2 4 5 

B. huntii 0 1 1 2 1 3 4 
B. mixtus 0 0 0 0 3 3 3 

B. rufocinctus 0 2 2 1 0 1 3 
unknown 
Bombus 19 9 28 N/A N/A N/A 28 

Total Bombus 24 13 37 13 20 33 70 
 

. 
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Table 2-6 

The number of boxes that initiated nests and made it to the social phase for each aspect 

placement. All species documented are listed by row. Total Bombus row is the sum of all 

of the bumble bee species observed. 

 

Presence of Blue/UV color cue: No Color vs. Blue/UV Entrance 

 Nest initiation Social phase 

Sum of all 
Bombus 

interactions 
Bumble bee 

species 
No 

color 
Blue/UV 
entrance Total 

No 
color 

Blue/UV 
entrance Total  

B. appositus 1 4 5 13 9 22 27 
B. centralis 0 1 1 3 1 4 5 

B. huntii 1 0 1 1 2 3 4 
B. mixtus 0 0 0 0 3 3 3 

B. rufocinctus 1 1 2 1 0 1 3 
unknown 
Bombus 19 9 28 N/A N/A N/A 28 

Total Bombus 22 15 36 18 15 33 70 
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Table 2-7 

Probability table of each unique scenario of the nest boxes. The boxes with the highest 

success were nest boxes placed on a south facing slope without a blue/UV entrance in 

2016. 

 

Unique 
conditions Year 

Blue/UV 
color cue 
present Aspect 

No 
Bombus 

Nest 
Initiation 
observed 

Social 
phase 

Total 
observations 
of Bombus 

1 2016 No  North 60.35% 20.26% 19.39%  39.65% 
2 2016 Yes North 69.35% 16.72% 13.93%  30.65% 
3 2016 No  South 57.32% 21.26% 21.42%  42.68% 
4 2016 Yes South 66.62% 17.88% 15.50%  33.38% 
5 2017 No  North 65.06% 18.51% 16.43%  34.94% 
6 2017 Yes North 73.45% 14.86% 11.69%  26.55% 
7 2017 No  South 62.15% 19.62% 18.23%  37.85% 
8 2017 Yes South 70.93% 16.02% 13.04% 29.07% 

 

 

Bumble bee species interacting with ANBs were not exemplary of the bumble bee 

community. 

B. appositus was the most common species found interacting with the ANBs (n = 

27; Fig. 2-3). However, this species is not the most common species of bumble bee found 

at Tony Grove (Fig. 2-3). The local community of bees in Tony Grove is more diverse 

than what was found interacting with ANBs. The most common bumble bee in the local 

community is B. bifarius, but we did not find this in any ANB. Overall the difference in 

bumble bee species detected in ANBs compared to the overall community is significantly 

different (χ2 = 86.242; df = 11; p <0.001). 
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Figure 2-3. Stacked bar plot showing the abundance of bees found in nest boxes and from 

net surveys. The top bar represents bees found in nest boxes and the bottom bar 

represents the community of bees in the study site. 

  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Community

Species Interacting with ANBs

Community Species Interacting with ANBs
B. appositus 28 27
B. bifarius 104 0
B. centralis 22 5
B. fervidus 3 0
B. flavifrons 2 0
B. huntii 4 4
B. insularis 39 0
B. melanopygus 1 0
B. mixtus 5 3
B. occidentalis 3 0
B. rufocinctus 4 3
B. sylvicola 1 0
unknown Bombus 0 28
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Psithyrus usurpation 

Bombus (Psithyrus) insularis was the only socially parasitic species detected in 

ANBs, totaling seven usurpations detected over two years (Table 2-8). Most were found 

to parasitize B. appositus nests (14.8%), but a higher proportion of B. insularis occurred 

in B. centralis nests (40%). 

 

Table 2-8 

Table showing the number of boxes that had colonies that contained the social parasite B. 

insularis. 

Presence of B. 
insularis 

B. 
appositus 

B. 
centralis 

B. 
huntii 

B. 
mixtus 

B. 
rufocinctus Total 

Absent 23 3 3 3 3 35 

Present 4 2 1 0 0 7 
 

Other animals that utilized the boxes for nesting were chipmunks, Vespinae 

wasps, pacific wrens, ants and earwigs (Table 2-9). In 2016, Vespinae wasps nested in 

more boxes than any other animal taxa and 2017 had more chipmunks present in the nest 

boxes. The presence of Vespinae wasps did not exclude bumble bee nesting (5 boxes had 

both Bombus and wasp nests actively foraging simultaneously).  
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Table 2-9  

Table showing all of the counts of animals that nested in ANBs. “Vespinae and Bombus” 

indicates ANBs that were cohabited by both wasp colonies and bumble bee colonies. 

Animals in nest boxes Count 
Bombus 45 
Vespinae 45 

Vespinae and Bombus 5 
Formicidae (ants) 4 

chipmunk 15 
Dermaptera (earwigs) 1 

Pacific wren 12 
none 77 

 

Discussion:  

A relatively high number of ANBs had bumble bees initiate nesting and a modest 

number of those went on to produce full colonies within the nest boxes. Of the 204 boxes 

deployed, 34% of them had detectable nest initiation activity from bumble bees and 16% 

of the nest boxes developed into colonies. Bombus appositus was the most common 

nesting species in the boxes (B. appositus; n = 27). Experiments testing the efficacy of 

constructed nesting sites have been done in Europe, New Zealand and in North America 

with varying results. Some studies show no nesting in nest boxes and some have shown 

over half of the man-made structures having had bumble bee queens interact with them 

(Johnson et al., 2019). This study focused on arboreal placement of nest boxes, but most 

studies have included them as a small subsample of nest boxes and have compared 

subterranean, surface level above-ground, and aerial or arboreal nest boxes. A total of six 

species of bumble bees used the boxes including one social parasite (B. insularis).  
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Neither blue/UV nest entrances on ANBs nor placement of nest boxes based on 

aspect increased nest initiation and/or colonies that reached social phase. Color vision in 

bees is shown to be strongly linked with foraging and associated with food rewards. This 

lack of nesting is evidence that color vision specifically the blue/UV reflectance in this 

study does not attract queens to nest boxes and is not an important cue for queen bumble 

bees searching for nesting sites. One can also infer that a blue/UV color entrance doesn’t 

inhibit nesting in nest boxes either. Aspect of the nest box also showed no significant 

difference in both nest initiation events and ANBs that develop into social phase colonies. 

This is surprising since ANBs on south-facing slopes are where natural bumble bee 

nesting sites and foraging sites are likely to be available first due to this being the aspect 

with the earliest snow melt. Since nest boxes are arboreal this may negate the effect of 

earlier phenology on south-facing slopes. Finally, since ANBs have most of their surface 

area exposed to air then they are likely to encounter temperature changes on south facing 

slopes where there is less canopy density and more sun exposure, making nest boxes on 

the south slope more difficult to colonize and raise a colony within them. This may 

actually be because the species that interacted with ANBs were mostly B. appositus, a 

species with queens late to break diapause. The implications of B. appositus’ breaking 

diapause later than other bumble bees is discussed later in this section.  Regardless of the 

lack of significant results, this study had its highest number of bumble bee interactions in 

2016 in ANBs deployed on south-facing slopes without color entrances. This high 

number of interactions by bumble bees with nest boxes shows that arboreal placement 

may be one of the better types of deployment for nest boxes in wildlands.  
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Bombus appositus was the predominant nesting species in ANBs with 66.7% of 

ANBs containing mature social phase B. appositus colonies. The species richness of 

bumble bees that would nest in ANBs did not reflect that of the surrounding community 

(Tony Grove) of bumble bees. Bombus appositus is an abundant bumble bee species, but 

the most common species in Tony Grove is B. bifarius. Hobbs 1966 notes that B. 

appositus in Alberta readily nested in both underground and surface level nests, and 

concludes that B. appositus is less specialized in its nest site selection. Also worth 

mentioning is that according to unpublished data utilizing three nest box types 

(underground, ground surface, and arboreal), B. appositus only nested in aboveground 

nest boxes. B. appositus may be more specialized for arboreal nesting in the Wasatch 

Range of Utah than in Alberta based on the high number of nest boxes inhabited by this 

species in the current study. Among this rich bumble bee community of Tony Grove are 

species that have experienced notable decline such as B. occidentalis (Cameron et al., 

2011; Rhoades et al., 2016) however no species of concern were found nesting in the 

ANBs. 

Bombus appositus readily nesting in ANBs may provide an opportunity to study a 

new study species of bumble bees for which little is known. Additionally, little is known 

of the subgenus Subterranobombus for which B. appositus is a part of. Augmentation of 

nesting in wild lands can be used to help manage endangered plants by providing 

supplemental pollination service in Tony Grove and other similar habitats. Bombus 

appositus is abundant in the high elevation areas of the intermountain west, Rocky 

Mountains, the Sierra Nevada, and high elevation subalpine and alpine environment 

(Koch et al 2012). This species is one of three representatives of the subgenus 
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Subterranobombus found in the US (the other species being B. borealis and B. 

distinguendus, a mostly Holarctic species that extends into the new world on Attu Island 

in the Aleutian Arc of Alaska (Williams et al., 2014). Bombus appositus is a pollinator of 

Cirsium, Delphinium, Linaria, Trifolium, Geranium, and Penstemon (Hobbs 1966; Koch 

et al 2012) therefore ANBs may increase fecundity through pollination of common and 

rare plants in these genera within similar subalpine plant communities. Hobbs (1966) and 

Plowright (1966) note that in Canada and in the United States, B. appositus is a woodland 

species. The current study area, Tony Grove, is a mosaic of alpine meadows and 

subalpine woodland with aspen groves and stands of conifers which provide an excellent 

habitat for this species. Bombus appositus spring queens are observed later in the season 

than other bumble bees occurring in the same habitat as them (Hobbs 1966; Koch et al., 

2012).  

Late nest-searching may be a reason this species may be taking to these boxes 

over the other species in the community is that there may be limited sites for nesting at 

the point that this bee breaks out of diapause. Also, by the time B. appositus queens are 

searching for nests, undergrowth can be in excess of 1 m tall, on the southern slopes of 

Tony Grove. The height of the vegetation may influence the search image for finding 

nesting sites in spring B. appositus queens and these ANBs are potentially elevated at a 

height that is optimal for the search image of the late vernal queens of B. appositus. 

Hobbs (1966) also notes that B. appositus produces small colonies which may not be 

optimal, in that this species will not produce many workers that will pollinate plants on 

the landscape. Overall, these results are exciting because they show that B. appositus 
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prefers these ANBs substantially more than other species, which may provide unique 

opportunities to observe and understand the colony development of this species. 

A large proportion of the ANBs showed signs of bumble bee interaction without 

positive identification of the species. These missed identifications should be clarified for 

future use in understanding more about which species interact with the ANBs for further 

optimization of this method. While observations of the nest boxes were conducted during 

the day, it would have been more effective to survey the nest boxes at night when bees 

would not be out foraging. This would also increase the incidents of early observations of 

bumble bees that enter nest boxes, but do not leave pollen provisions.  

It is important to consider whether ANBs could have negative consequences for 

bumble bee populations, because they may benefit species that compete for nesting sites 

with bumble bees. Bombus insularis is a common bumble bee species within the 

subgenus Psithyrus, a subgenus of bumble bee where all species are adapted to being 

social parasites. Social parasitism within Psithyrus occurs when a female Psithyrus 

species invades established nests from another species of bumble bee (Lhomme & Hines, 

2018, 2019). The Psithyrus female then usurps the colony by killing the foundress queen, 

often before the colony develops enough for the host foundress queen to produce 

reproductive castes (Lhomme & Hines, 2018, 2019). The usurping female Psithyrus do 

not lay non-reproductive (worker) castes and do not collect pollen for the colony they 

usurp skipping the social phase and the colony development phases of a typical bumble 

bee life cycle (Goulson 2010; Lhomme et al. 2013). Alford (1975) noted that nest boxes 

placed off of the ground may expose more colonies than usual to Psithyrus usurpation 

because of how exposed they are to nest-searching Psithyrus females. This experiment 
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showed that 20% of colonies were exposed and usurped by the generalist social parasite 

B. insularis. An interesting finding is that B. insularis were found in 2.8% of nests that 

had not reached the social phase of development. This illustrates the importance of 

phenology between bumble bee host and the bumble bee social parasites, because 

Psithyrus rely on colonies that mature to the social phase so that the foundress’ workers 

will care for the Psithyrus’ offspring. Even though usurpation by Psithyrus may be an 

impediment to increasing non-parasitic bumble bees, it could also provide an opportunity 

to understand more about socially parasitic bumble bees (Lhomme et al., 2013; Martin et 

al., 2010). Removing ANBs containing Psithyrus usurped colonies can mitigate the 

effects of increasing social parasite abundance and simultaneously provide opportunities 

to observe social parasitism within bumble bees of which very little is known (Lhomme 

et al. 2013; Lhomme and Hines 2019). 

Both interspecific and intraspecific usurpation of nests may be high due to 

increased exposure of ANBs and due to facultative social parasitism in non-Psithyrus 

species (Fisher 1987). Intraspecific usurpation or attempted usurpation was assumed to 

have taken place often in B. appositus nests due to at least one dead B. appositus queen 

found in all social phase B. appositus nests. Bombus appositus may carry out intraspecific 

usurpation naturally, possibly because this species has later vernal queens (Fisher 1987). 

However, it is possible the frequency of nest usurpation increases in ANBs. Further 

investigation of ANBs needs to be conducted to model whether ANBs can be used for 

conservation efforts in supporting bumble bee populations, particularly in the face of 

possible increased exposure to social parasites and usurping congeneric bumble bees.  
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 Many other organisms besides bumble bees were detected in ANBs. These 

include wasps in the subfamily Vespinae, Chipmunks, and Pacific wrens. Making the 

nest entrance smaller may be an effective way to exclude these organisms from nesting 

since they do not cohabitate nest boxes. No nest boxes with any vertebrate present had 

any bumble bees nesting in the box after the vertebrates started nesting. An interesting 

aside for the vertebrate nesters is that the only bird species that was known to nest in 

these boxes were Pacific Wrens (Troglodytes pacificus). Although some nesting of birds 

in these boxes was expected, it was surprising that the pacific wren was the only species 

that could nest in the box. The small entrance is likely a cause of the pacific wren nesting 

fidelity in ANBs. This population of pacific wren is an interesting population because it 

is a small isolated year round resident population (Sibley 1961). Deploying these boxes 

for these birds is an opportunity to observe this isolated population and understand 

differences that may occur in nesting in this population compared to the Pacific 

Northwest population. For land managers seeking to increase these insectivorous birds in 

the Wasatch Range, this ANB design may be improved upon to increase nesting of these 

birds instead of bumble bees. The previous 2009 sampling showed that ants nested in 

8.4% of partially buried boxes in Tony Grove. Birds such as chickadees (Parus) will nest 

in arboreal boxes meant for birds, showing that there is competition amongst birds and 

bumble bees for nest sites (Bowles 1909). It was mentioned earlier that often bumble 

bees utilize old rodent nests for nesting sites, however these old rodent nests are also 

ideal for rodents to reuse or takeover and rodents will often compete for nesting sites with 

bumble bees or even destroy bumble bee colonies (Hobbs et al. 1960). These vertebrate 

and invertebrate competitors alike need to be documented to understand competition for 
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nest sites and the efficacy in attracting bumble bees versus other animals that compete 

with bumble bees. 

Vespinae wasps were a prominent species within nest boxes, especially in 2016. 

Vespinae species are likely undesirable inhabitants for anyone managing for wild bumble 

bee species. Simple design modifications of ANBs can help reduce the number of nesting 

wasps, because Vespinae wasps build nests from the top down. Lining the ceiling of the 

nest box with either a removable layer of material or material that make nest building 

difficult for wasps if boxes are deployed in locations that cannot be regularly checked. 

One would assume that Vespinae wasps would inhibit simultaneous nesting with bumble 

bees, but this experiment showed that bumble bees and wasps shared ANBs on occasion 

(n = 5). This has also been observed in eastern United States bumble bee communities 

where similar ANBs have been deployed for bumble bees (Slatkosky et al, personal 

communication). The only species that cohabitated with wasps in this study were B. 

appositus, but this may just reflect the frequency with which this species used ANBs in 

general. However, seeing as B. appositus may also be an arboreal nester, it is possible 

these interactions may occur naturally as well. One of the cohabitation nests produced 

relatively large colonies of both the Vespinae wasps and B. appositus. This relationship 

needs further study to understand how often bumble bees and wasps cohabitate nesting 

sites in arboreal cavities.  

Overall, providing these ANBs for nesting bumble bees shows promise for bees in 

the montane subalpine environments of the Wasatch Range, specifically for recruiting 

nesting B. appositus. This approach should be repeated in other similar nearby 



48 
 

environments to investigate whether this is a site specific phenomena or an effective 

means to bolster nesting habitat for a variety of bumble bee species. 

 

Conclusion: 

This experiment demonstrated that vernal bumble bee queens in the Cache-

Wasatch subalpine environment are attracted to and can successfully nest in arboreal nest 

boxes (ANBs). I did not find any evidence that landscape properties such as slope aspect 

or visual stimuli such as blue/UV color entrances influence how many bumble bee 

queens initiate nests or how many bumble bee queens are able to develop mature 

colonies. Bombus appositus interacted with more ANBs than any of the five species that 

initiated nesting (non-Psithyrus) and had more nests enter into social phase, suggesting 

this species is particularly adept at utilizing ANBs. This experiment shows that ANBs are 

effective in attracting bumble bee queens, specifically B. appositus and can serve as a 

tool for creating habitat for this species of bumble bee. Many nest box studies explore the 

utility of nest boxes placed on the ground, but this study suggest future efforts should 

focus on ANBs across different habitats to test their efficacy in providing optimal nesting 

habitat for these important pollinators. 
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CHAPTER 3 

REPRODUCTIVE DEVELOPMENT OF MALE BOMBUS VOSNESENSKII 

RADOZKOWSKI 

Abstract: 

Bumble bees, genus Bombus (Latrielle), are important pollinators for agricultural 

and wild flowering plants. Several species of bumble bees are produced and moved 

worldwide for commercial pollination of several crops. Understanding Bombus 

reproductive biology is a critical aspect of commercial breeding, but our knowledge of 

this is restricted primarily to females from limited species. I investigated morphological 

changes of the male internal reproductive apparatus (MIRA) in a species of commercial 

interest, Bombus vosnesenskii, for which little reproductive biology is known.  Age-

related changes in three of the major structures of the MIRA, the testes, the accessory 

testes, and the accessory glands, were studied in male bees that ranged from 0-14 days 

post-eclosion. Testes size diminished rapidly from eclosion until bees were eight days 

old, and this corresponded with a transfer of sperm to the accessory testes where sperm 

was present in all bees sampled at eight days old. The size of the accessory gland 

remained stable through reproductive maturation but varied with the size of the male bee. 

Sperm viability assays showed a large amount of sperm being produced in B. 

vosnesenskii without much variation of sperm present between age groups. Based on the 

timing of these observations, I conclude that male B. vosnesenskii are not fully sexually 

mature before they are eight days old. These patterns of reproductive maturation were 

similar for males produced by workers in microcolonies and those produced by queen-

right colonies, indicating that timing of mating does not need to be adjusted when 



56 
 

breeding males are produced by workers. This is the first study to document changes of 

the MIRA of bumble bees, provides a baseline for future studies of reproduction in male 

bumble bees, and guidance when selecting males for captive breeding.  

 

Keywords: bumble bees, reproduction, reproductive development, testes, accessory 

testes, accessory glands 

 

Introduction: 

Modern captive rearing of bumble bee colonies began early in the 20th century 

with Sladen (1912). However, the first commercial line of bumble bees began with the 

European species Bombus terrestris in 1987 (Velthuis & van Doorn 2006). Since then, 

bumble bee colony production has become a multi-million-dollar industry and an 

important contribution to food security in pollination of crops in controlled environment 

(e.g., greenhouse agriculture) and open field agriculture (Banda & Paxton, 1991; Strange, 

2015; Velthuis & van Doorn, 2006). Captive colonies used for pollination in agricultural 

environments primarily consist of two species of bumble bees, B. impatiens and B. 

terrestris, which both pollinate a wide variety of crops (Artz & Nault, 2011; Banda & 

Paxton, 1991; Desjardins & De Oliveira, 2009; Morandin et al., 2001; Sapir et al., 2019; 

Strange, 2015; Stubbs & Drummond, 2001; Sutherland et al., 2017; Velthuis & van 

Doorn, 2006; Vergara & Fonseca-Buendía, 2012; Whittington et al., 2004; Zhang et al., 

2015). These commercial colonies provide pollination outside of the natural growing 

season by pollinating plants grown in greenhouses. Greenhouse pollination continues to 
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increase in production and over half of the crops grown in green houses worldwide 

require buzz pollination from bumble bees (Lensing, 2018; Thornsbury et al. 2016). 

Thus, the demand for commercial rearing of bumble bees to accommodate pollination 

needs continues to increase.  

 Challenges caused by expanding captive breeding of bumble bees include 

potential threats to native bumble bee communities (Byatt et al., 2016; Ings et al., 2006) 

from both the direct competition of non-native bees in the environments (Morales et al. 

2013; Looney et al. 2019) and the spread of pathogens (Cameron et al., 2016; Goka et al., 

2001; Graystock et al., 2013). Breeding facilities have the potential to release bees into 

the surrounding area (Byatt et al., 2016; Graystock et al., 2013; Otterstatter & Thomson, 

2008; Whittington et al., 2004). If the species being bred is non-native, direct competition 

with native species is expected (Aizen et al., 2018; Kanbe et al., 2008; Morales et al., 

2013). Both of the commercially available Bombus species have now established 

populations outside of their native range (Looney et al., 2019; Morales et al., 2013; Stout 

& Morales, 2009). Bombus terrestris has caused declines in native bumble bee 

populations in South America (Morales et al. 2013), and hybridized with native species in 

Japan (Kanabe et al., 2008). Bombus terrestris have established in areas where no native 

bumble bee fauna existed previously, such as New Zealand and Tasmania, where they 

pollinate and propagate non-native plants (Buttermore et al. 2015; Donovan and Wier 

1978; Stout & Goulson 2000).  

Cultivated colonies may also pose a health risk to local species if they harbor 

pathogens or parasites to which native species have not been previously exposed 

(Cameron et al., 2011; Goka et al., 2001; Graystock et al., 2013; Murray et al., 2013; 
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Sachman-Ruiz & Reynaud, 2015; Velthuis & van Doorn, 2006). Phoretic mites and the 

queen castrating nematode Sphaerularia bombi have both been introduced as bumble bee 

species have been moved to novel environments (Goka et al., 2001; Meeus et al., 2011).  

 One way to mitigate the harmful effects of commercial propagation of bumble 

bees on local bee communities is to focus commercial efforts on species native to a given 

region. This requires the development of captive breeding methods for additional species, 

because B. impatiens is native to only eastern North America and B. terrestris is only 

native to Europe and the northern Africa. However, these species are currently being used 

for pollination services worldwide (Velthuis & van Doorn, 2006). Early attempts at 

domesticating a western North American species focused on the production of B. 

occidentalis, but this was unsuccessful due to the difficulty of raising colonies in 

captivity (Velthuis & van Doorn, 2006; Rao and Stephen 2007). Since B. occidentalis 

was unable to be sustained in captivity, the primary species used in North and Central 

America has been B. impatiens (Velthuis & van Doorn, 2006). Growing concerns of the 

ecological consequences of the use of this species have precipitated the development of 

other western North American bumble bees for commercial use (Ratti and Colla; Colla et 

al. 2008; Looney et al., 2019). 

One western North American bumble bee species that has shown potential for 

commercial breeding is the Vosnesensky bumble bee (B. vosnesenskii) because of its 

extended native range (Jackson et al., 2018; Williams et al., 2014), large colony size 

(Malfi et al., 2019; Strange, 2015), and effectiveness at pollinating greenhouse crops such 

as tomatoes (Dogterom et al., 1998; Strange 2015). Bombus vosnesenskii occurs along the 

North American Pacific coast from far southern British Columbia to the northernmost 
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part of the Baja peninsula in Mexico, and it does not occur much further east than the 

Sierra Nevada – Cascade mountain crest (Koch et al 2012). Vosnesensky bumble bee 

colonies have hundreds of workers, which makes them cost-effective for pollination 

(Malfi et al., 2019; Strange, 2015). Expanding efforts to commercialize the species would 

benefit from an understanding of the mating biology of the species, including both female 

and male sexual maturation. 

Despite its potential as a managed pollinator species, continual captive rearing of 

B. vosnesenskii colonies has been unsuccessful for commercial producers of bumble bee 

colonies and researchers alike. This is largely because of the difficulty to get B. 

vosnesenskii to produce queens once colonies mature (personal observation). Even in 

commercialized species like B. terrestris, not all gynes go on to produce colonies.  It is 

therefore important to select the highest quality males for mating with the available gynes 

(Velthuis & van Doorn, 2006). Like most other social Hymenoptera, mating is a brief 

period of the colony cycle. Yet this event has a huge impact on colony establishment and 

reproductive potential (Duvoisin et al., 1999; Velthuis & van Doorn, 2006). 

 While the reproductive physiology of female bumble bees has received some 

attention (Alaux et al., 2007; Duchateau & Velthuis, 1989; Vogt et al., 1994; Vogt et al., 

1998), we know comparatively little about the timing of male reproductive maturation at 

any stage of the male bee’s lifecycle. Prior research of bumble bee reproductive biology 

is primarily focused on one species, B. terrestris of which the following information is 

based (Greeff & Schmid-Hempel, 2008; Tasei et al. 1998). Most bumble bee queens and 

many other social Hymenoptera are monandrous and the females copulate with males for 

a brief period during maturation (Baer et al., 2003). Females store viable sperm from 
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their single mate to fertilize eggs over their one-year lifespan (Baer et al., 2003). A 

thorough understanding of male reproductive biology will result in higher success rates of 

captive breeding. The goal of this study is to describe temporal patterns of reproductive 

maturity in male B. vosnesenskii by quantifying changes in the male internal reproductive 

apparatus (MIRA) of B. vosnesenskii. Because little is known about this development in 

male bumble bees, this study simultaneously answers questions about specific 

developmental trends in B. vosnesenskii and the broader trends in MIRA 

development/diminishment occurring across all bumble bee males.  
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A) 

 

B) 

 

Figure 3-1. Ventral view of the bumble bee male internal reproductive apparatus (MIRA) 

with the anterior at the top and posterior portion at the bottom. A) Diagram showing the 

basic structures composing the MIRA. B) MIRA of B. vosnesenskii removed from the 

abdomen. This specimen was 1-day post-eclosion.  
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The bumble bee MIRA is composed of two sets of testes, accessory testes and 

accessory glands (Fig. 3-1) (Duchateau & Mariën, 1995; Duvoisin et al., 1999; Ferreira et 

al., 2004; Tasei et al., 1998). Spermatogenesis begins during the pupal stage and 

continues post-eclosion. Each of the two testes is an assemblage of four testis tubules 

encased within the scrotal membrane. These germ cells initiate spermatogenesis by 

undergoing multiple mitotic divisions to form mature sperm known as spermatozoa 

(Cruz-Landim ey al., 1980). After eclosion, the spermatozoa migrate from the testes to 

the accessory testes, where they are stored until ejaculation. Hymenopteran insects 

produce a finite number of spermatozoa as germ cells terminate during spermatogenesis 

(Cruz-Landim et al., 1980). As a result, the testes diminish once all mature spermatozoa 

have migrated to the accessory testes, which takes place post-eclosion. The age-based 

patterns of this diminishment has not been quantified in any bee species (Duchateau & 

Mariën, 1995; Duvoisin et al., 1999; Ferreira et al., 2004; Snodgrass, 1910). This 

diminishment is linked with reproductive maturation and can provide evidence for when 

male bumble bees are reproductively mature along with documentation of when sperm is 

present in the accessory testes.  

Another important component of the bumble bee ejaculate is the seminal fluid, 

which is primarily produced in the accessory glands. During mating, mature sperm and 

seminal fluid are transferred to females to facilitate sperm entering the spermatheca, a 

specialized organ where the gyne stores sperm for starting a colony the following spring. 

Seminal fluid from the accessory glands has many functions in social hymenopterans 

beyond creating a medium for sperm motility.   It also functions in altering the behavior 

and physiological processes of the female post-copulation (Liberti et al., 2019; Mikheyev, 
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2004). The seminal fluid of B. terrestris delivers a lipid based “mating plug” that 

reinforces monandry of the females by preventing secondary copulations from successful 

sperm transfer to the female’s spermatheca (Baer et al., 2001; Duvoisin et al., 1999; 

Korner 2003). Although accessory glands appear to be fully developed post-eclosion, it is 

unknown how the size of this gland changes with age or body size. In this study, I 

measured accessory gland length to detect any changes that may occur as adult males 

become reproductively mature. 

While knowing the age that accessory testes fill with spermatozoa and become 

opaque indicates development in adults, knowing when the maximum number of viable 

spermatozoa are in the accessory testes is a more accurate measure of peak mating 

potential. Quantifying how many viable spermatozoa are present provides a more detailed 

assessment of when males are of their highest mating quality, as early in development 

sperm may not be mature and later in development sperm cells may die. I measured the 

viable sperm count within the accessory testes of males to know at what age males had 

the highest viable spermatozoa counts. 

An additional limitation to mating success in captivity is timing the availability of 

males to that of when mature colonies are producing females. A commonly used 

technique is thus to produce males from “microcolonies” (Regali, et al., 1995; Klinger et 

al. 2019). Microcolonies are queen-less colonies composed of several workers where one 

worker exerts social dominance and begins laying unfertilized eggs, while the other 

workers remain sterile and care for the resulting male brood (Klinger et al. 2019). Queen 

bumble bees have much larger amounts of fat body and ovariole investment than workers 

do (Alford 1975) and thus, worker-laid males are typically rare in wild bumble bee 
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colonies (Huth-Schwarz et al., 2011), though workers can sometimes lay their own 

unfertilized eggs toward the end of the colony life cycle  (Cnaani et al., 2002). Given the 

large differences in physiology between queens and workers, it is possible that males that 

develop from worker- and queen-laid eggs could have important phenotypic differences. 

A successful captive rearing program requires knowledge of any differences in the timing 

of male reproductive maturity that may stem from whether they were laid by queens or 

workers. I used males from microcolonies and males from queen-right colonies to 

investigate differences in MIRA between males of these colony types.  

 I investigated the timing of reproductive maturation in male B. vosnesenskii by 

quantifying morphological changes in the MIRA and sperm maturation as a function of 

age. Specifically, I measured the surface area of the testes and accessory testes in 

relationship to one another as a metric of sperm maturation and migration. An additional 

metric of maturation is the observation of which age groups had opaque accessory testes 

indicating stored mature sperm inside of them. A final observation of the testes included 

whether or not the scrotal membrane was predominately covered by trachea. This was an 

additional feature noticed in older males and I sought to document when it occurs in what 

age-group of males. I also documented changes in the length of the accessory gland to 

determine whether it undergoes changes in size to prepare for mating. Sperm viability 

was measured on some age groups of male B. vosnesenskii from queen-right colonies to 

investigate when the highest sperm counts are present in B. vosnesenskii.  
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Methods: 

Producing males of known ages post-eclosion 

 To produce males of known ages, whole colonies of bumble bees needed to be 

produced in a lab setting to closely monitor which day eclosion occurred for each male 

within the colony they were produced in. Males were produced using two methods of 

production to look for differences in development between worker-laid males and males 

from a standard queen-right colony. To ensure males were laid by workers, microcolonies 

were produced and males were pulled directly from queen-right colonies. Both methods 

of production require raising natal colonies from solitary queens but detail in this part of 

male production can only be provided for microcolony males because all queen-right 

males used were delivered from Biobest Inc. which uses a patented methods for raising 

bumble bee colonies from solitary queens. Therefore, details on bumble bee rearing only 

apply to males produced from microcolonies. In total males, came from 10 natal colonies 

with worker-laid males coming from six of those natal colonies and queen-right produced 

males coming directly from four natal colonies.  

Worker-laid male production from microcolonies 

Queen B. vosnesenskii were collected while foraging or flying using aerial insect 

nets, transferred to shipping vials and placed in a cooler for transport to the USDA-ARS 

Pollinating Insect Research Unit (PIRU) bumble bee rearing facility. At PIRU, queens 

were then induced to produce colonies following Evans, Burns, and Spivak (2007) with 

the following modifications. Each queen was given a unique identification code and 

placed in 2.25 L plastic queen initiation boxes (Biobest Canada Ltd., Leamington, ON) 

with approximately 500 mg of honey bee collected pollen and sugar syrup ad libitum.  
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Sugar was fed in a 60 mL plastic reservoir as a 50% total sugar solution containing 

sucrose:fructose:glucose at 2:1:1 and containing 0.5% by volume of sorbic acid to 

prevent spoilage, 0.5% Honey B Healthy® (Honey-B-Healthy, Inc. Cumberland, MD) as 

a feeding stimulant, and 0.5% Amino-B Boost® (Honey-B-Healthy, Inc. Cumberland, 

MD) as a supplement of amino acids. Initiation boxes were maintained in the dark at 

28°C ± 1° and at 55-60% humidity (Strange 2010). Queens were checked daily for signs 

of nesting behavior, including wax secretion, honey pot construction, or presence of 

brood and workers. Once five adult workers had eclosed, the colony was moved into a 

7.75 L plastic hive box (Biobest Canada Ltd., Leamington, ON).  

When queen-right colonies contained 40-50 adult workers, microcolonies were 

created following the same protocol of Klinger et al (2019). Five workers were removed 

from the natal nest and placed in 2.25 L plastic queen initiation boxes and given pollen to 

stimulate oviposition (Regali & Rasmont, 1995). Microcolonies were checked daily for 

eclosed males, which we removed from the microcolony and placed in another container 

labeled with their parental colony ID and the date that they were collected. These males 

were provided pollen and lab-made sugar water solution (described above) ad libitum to 

sustain them as they aged. Age groups of male bees ranged from callow (i.e., newly 

eclosed) up to 14 days post-eclosion. These males are referred to as microcolony males.  

Queen-right colonies 

Additional male B. vosnesenskii from queen-right colonies were provided by 

Biobest USA, Inc. 1-day post-eclosion. Ten bees were dissected the day of arrival for an 

age grouping of 1-day old bees. The rest of the male bees were stored in empty queen-

initiation boxes mentioned in the previous paragraph and kept in the dark at 28°C ± 1° 
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and at 55-60% humidity. These remaining males were stored until becoming 4, 7, or 10 

days old post-eclosion. Once bees reached these one of these ages they were dissected, 

providing a 4 ages groups of all queen-right males sampled. Ten bees were dissected 

from each of the age groups for a total of 40 males dissected from Biobest queen-right 

colonies. All males in this study were virgin males and were never exposed to gynes once 

removed from their queen-right colony.  

Dissection procedures 

Bees were dissected to remove the MIRA for measurement. Males were briefly 

chilled, then pinned ventral side up to foam board coated with parafilm. I removed the 

sternites and gut tissue to expose the reproductive apparatus. The MIRA was then 

removed from the metasomal cavity by cutting the base of the ejaculatory duct and 

placing the intact apparatus in a bath of insect Ringer’s solution ventral side-up on a 

green background for contrast. Images were taken using a Leica dissecting microscope 

and the Leica LAS v4.5 imaging software. The Leica LAS v4.5 software also placed a 

scale bar on each photo in order to measure surface area. The surface area of the testes 

and accessory testes was measured using ImageJ software (Schneider et al 2012). The 

total length of the accessory glands (sum of left and right glands), testes area, and 

accessory testes area were measured for each individual. A testes ratio was calculated as 

the total testes area divided by the total accessory testes area (Figure 3-2A). Thus the 

ratio was inversely proportional to maturation of the MIRA. The change in the ratio was 

used to quantify the change of the testes surface area and the accessory testes area over 

time and to quantify the change occurring in the testes size. I visually assessed the 

opacity of the accessory testes and coverage of trachea on the scrotal membrane of the 
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testes (Figure 3-2B). Presence of sperm was observable by the presence of opaque rather 

than translucent accessory testes. Changes in accessory glands as bees aged were 

assessed by measuring the sum of the length of both accessory glands (Figure 3-2C). A 

high concentration of trachea due to the diminishment of the testes was scored visually by 

whether or not more than half of the testes surface area is covered by trachea (Figure 3-

2D).   

To assess body size of the individual bees, I measured the marginal cell length of 

the right forewing of each dissected male with Leica LAS v4.5 software under a 

dissecting stereoscope (Owen, 1989). Body size has been shown to affect spermatozoa 

counts in other corbiculate bees and marginal cell length is known to accurately reflect 

overall body mass in bees (Owen, 1989). Wings were removed from each bee and 

adhered to a glass slide with transparent tape to flatten the wing for more accurate 

measurements. I was blinded to the age, colony source, and marginal wing cell 

measurements by assigning new IDs during all dissections and measurements (Fig 3-3). 

A) 
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B) 

C) 
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D) 

 

Figure 3-2. Measurements of B. vosnesenskii MIRA. (A) The testes ratio measurements 

and how the value is calculated. The gray shaded area represents the testes surface area 

measured and the light blue is the area of the accessory testes measured. These 

measurements were used to create the teste ratio illustrated on the right (B) Observation 

of the accessory testes storing mature sperm and scoring as a binomial response. The 

yellow circles show the accessory testes that are being quantified in a callow male (left) 

and a 14 day old male (right). Opaqueness is observed in the callow male, but not in the 

14 day old male (C) An example of accessory gland length measured in a callow male 

and a 14 day old bee (D) Scoring the testes as being covered in trachea as a binomial 

response: Callow male (left) most of the surface area is not covered with condensed 

trachea and a 14 day old male (right) with a high concentration of trachea on the testes. 
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Sperm viability assay 

I assessed sperm viability within the accessory testes using fluorescent nucleic 

acid staining dyes following procedures of Tasei et al. (1998), but modifying the 

procedure to work with the SYBR14 Live/Dead sperm kit™. I used queen-right males 

ages 4, 7, and 10 days to qualitatively assess live sperm availability at different ages post-

eclosion. I first made a fluorescence working solution containing both SYBR 14 and 

propidium iodide from an Invitrogen™ LIVE/DEAD™ Sperm Viability Kit. In one 2.5 

mL vial, I added 2 µL of SYBR 14 with 98 µL of insect Ringer’s solution and another 

solution of 10 mL of propidium iodide mixed with 90 mL of insect Ringer’s. I then 

placed 25 µL of the working solution in a 2.5 mL tube to be mixed with extracted sperm. 

I placed a 25 µL drop of insect Ringer’s solution on the dissecting platform covered with 

a layer of fresh parafilm for extracting sperm within. After removing the guts, 

Malpighian tubules, and ganglia, I used two forceps to remove each of the accessory 

testes by holding the apical and basal end of the accessory testes so as not to lose sperm 

in the metasomal cavity. The sperm was extracted by pulling apart the accessory testes 

with the forceps inside of the 25 µL drop of Ringer’s solution on the dissecting platform. 

When the accessory testes pull apart, the sperm could be viewed leaving the accessory 

testes quickly within the 25 µL of insect Ringer’s solution on the dissecting platform. The 

~25 µL solution of sperm and insect Ringer’s solution was then added to the 25 µL of 

working solution of fluorescent dyes placed in the 2.5 mL vial of working solution. After 

a 10 min incubation at 37 ℃ in a water bath, the solution was added to a Fuchs-Rosenthal 

hemocytometer. Slides were viewed under a green filter and a red filter sequentially to 

reflect green for living and red for dead sperm (Figure 3-4). All sperm appeared green 
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whether viable or not during the count under the green filter and all dead sperm appeared 

red under the red filter. Viable sperm counts were then determined by the difference of 

the green sperm counted on the green filter to the red sperm counted on the red filter. 

  

Figure 3-3. Measurement of the marginal cell for measuring the body size of the bees. 

The yellow line is an example of how the marginal cell length is recorded (Owen 1989) 
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Figure 3-4. Bombus vosnesenskii sperm dyed with SYBR 14 under a green filter. 

 

Statistical analysis: 

I used generalized linear mixed models (glmm) to model the testes ratio and 

accessory gland length as a function of age, body size, colony type (queen-right or 

microcolony), and colony of origin (modeled as a random effect) using the glmer function 

in the lme4 package in R version 3.6.1 (Bates, Mächler, Bolker, & Walker, 2015). Testes 

ratio and accessory gland length were log-transformed to account for departures from 

normality. I used a generalized linear mixed model with a binomial distribution and logit 

link function to model the probability of opaque accessory testes and trachea covering 

most of the testes surface area as a function of age, colony type, and body size using the 
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glmer function in the lme4 package. Colony of origin was included as a random effect in 

generalized linear mixed models. 

 

Results: 

Testes ratio diminishes with age during the first week of adulthood 

Age and body size, but not colony type, were significant predictors of testes ratio 

(F = 52.35; N = 101; p < 0.001). Testes ratio significantly decreased with increasing age 

(t = -11.51; p < 0.001), indicating that the size of the testes decreased relative to the 

accessory testes. Bees that were older than 8 days had a testes ratio close to a value of 1, 

indicating that testes had shrunk to about the same size as the accessory testes (Figure 3-

5). Change in both structures occurred with age, but testes surface area had a larger 

influence on the decreasing testes ratio than value the accessory testes. Larger males 

tended to have a larger testes ratio, independent of age (t = 2.00; p = 0.048). There was 

not a significant difference in colony type (microcolonies vs. queen-right) (t = -0.745; p = 

0.458), and these types showed a similar trend in testes ratio compared with age. 
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Figure 3-5. The testes ratio value compared with age across all bees sampled in a dot box 

plot graph. Dots are individual values; the box represents the interquartile range of testes 

ratio values for each age group (the range between the 25% quartile and the 75% 

quartile). The upper whisker of each box is the maximum value of the data that is within 

1.5 times the interquartile range over the 75th percentile while the lower whisker is the 

minimum value of the data that is within 1.5 times the interquartile range under the 25th 

percentile. Any data points above the upper whisker and any points below the lower 

whisker are outlying testes ratio values. 

Body Size, but not age, affects the accessory gland length 

Body size, but not age or colony type, was a significant predictor of the length of 

the accessory glands. (F = 17.88; N = 101; t = p < 0.001). Larger bees had longer 

accessory glands (t = 5.66; p < 0.001; Figure 3-6). There was no significant difference in 

the length of the accessory glands among colony types (microcolony vs queen-right) (t = 

0.74; p = 0.463).  
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Figure 3-6. The relationship between the total accessory gland length and the marginal 

cell length. The length of the forewing’s marginal cell is a proxy for body size (Owen 

1989). The blue line shows the fitted prediction of the relationship between accessory 

gland length and body size, based on the glmm. The shaded region shows the 95% 

confidence interval along the trend line of the accessory gland length as the bees increase 

in size. 

8-day old and older bees are most likely to have opaque testes. 

Both age and body size were significant positive predictors of accessory testes 

opacity (χ2 = 55.043; N = 101; p < 0.001). Opaque accessory testes indicating mature 

sperm were visibly present in a larger percentage of older males than younger males (z = 

4.014; p < 0.001) and all males had visible sperm in the accessory testes at day 8 and 

older (Fig. 3-7). Larger bees were more likely to have opaque accessory testes (z = 2.421; 
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p = 0.016). Colony type showed no significant relationship to sperm presence (z = 0.815; 

p = 0.415).  

 

 

Figure 3-7. The predicted proportion of bees sampled that contain mature sperm in the 

accessory testes compared with age. The solid line represents microcolony males and the 

dashed line represents the queen-right males. The shaded portion of the graph represents 

the standard error of the model for each type of colony that the males came from with the 

darker gray being an overlap in standard error 
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Older males are more likely to have trachea covering the scrotal membrane surface area 

Both age and body size were significant positive predictors of whether bees had 

trachea covering most of the scrotal membrane surface area of the testes (χ2 = 58.587; N 

= 101; p < 0.001). Older bees were more likely to have trachea covering most of the 

scrotal membrane surface area than younger bees (z = 5.339; p < 0.001; Fig. 3-8). Larger 

bees were more likely to have trachea covering most of the scrotal membrane surface 

area (z = 0.968; p = 0.333). Colony type was not a significant predictor of trachea on the 

scrotal membrane, and each colony type followed a similar pattern with increasing age (z 

= 1.614; p = 0.106). 
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Figure 3-8. The predicted proportion of bees with surface area of the testes covered in 

trachea compared with age of male bees. The solid line represents microcolony males and 

the dashed line represents the queen-right males. The shaded portion of the graph 

represents the standard error of the model for each type of colony that the males came 

from with the darker gray being an overlap in standard error 
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Estimated viability and sperm counts observed in accessory testes 

The assessment of sperm viability suggests that sperm counts and viability were 

relatively stable as males mature (Table 3-1). Sperm viability ranged between 79% and 

84% in 4-10 days old males, except for one 7-day old outlier with 56.5% viability. Small 

sample size did not allow for a statistical analysis of sperm count and viability. All males 

sampled were from queen-right colonies. 

Table 3-1 

Data on sperm count and sperm viability (N = 8 bees). Includes calculated percentage of 

viable sperm for each sample, total number of viable sperm in the accessory testes.  

Age of 
bee 

(Days) 

Sperm counted 
on 

hemocytometer 

 Dead sperm 
counted on 

hemocytometer 
Live sperm on 
hemocytometer  

viability 
% 

Estimated total 
viable sperm of 

extracted sample 

Total 
viable 

sperm of 
bee 

4 335 63 272 81.3 15,300 1,530,000 

4 450 70 380 84.4 21,375 2,137,500 

7 409 73 336 82.2 18,900 1,890,000 

7 428 69 359 84.0 20,194 2,019,375 

7 600 106 494 82.3 27,788 2,778,750 

7 177 77 100 56.5 5,625 562,500 

10 473 99 374 79.1 21,038 2,103,750 

10 433 79 354 81.8 19,913 1,991,250 

 

Overall the data show that changes in the reproductive apparatus occur primarily 

within 8 days where the testes have diminished in surface area to approximately the size 

of the accessory testes and the point that 100% of males sampled had opaque accessory 
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testes indicating spermatozoa. Figure 3-9 shows images of three exemplary age group 

samples to illustrate the differences in the morphology of the MIRA of B. vosnesenskii. 

These age groups seem to be the points at which major changes occur or stabilize.  

 

 

Figure 3-9. B. vosnesenskii MIRA removed at the day of eclosion (callow), 7 days post-

eclosion and at 14 days post eclosion showing the observed changes in the MIRA from 

eclosion to sexual maturity. This figure illustrates the change that occurs in the MIRA of 

B. vosnesenskii.  

 

Discussion 

This study provides the first quantification of the post-eclosion development of 

the MIRA in bumble bees. This is important for optimizing the timing of mating between 

captive born bumble bee males and gynes for continuously production of commercial 

colonies. Additionally, it is important to detect differences in how males born to workers 

or queens mature, because generating males from workers is a commonly used practice to 

rapidly generate a pool of males outside of the constraints of a typical colony cycle 

(Strange personal communication; Velthuis & van Doorn 2006). However, males born to 
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queens are most likely to mate with gynes in nature. Despite the importance of males in 

breeding, much of what is known about reproductive development in bumble bees is 

focused on females (Baer & Schmid-Hempel, 2000; Bloch, Hefetz, & Hartfelder, 2000; 

Geva, Hartfelder, & Bloch, 2005). Previous studies have described spermatogenesis in 

male bees at a cellular level (Cruz-Landim et al., 1980) or documented reproductive 

structures in bumble bees (Duchateau & Mariën, 1995; Ferreira et al., 2004). However, it 

is unknown how these reproductive structures change as males reach sexual maturity 

(Duvoisin et al., 1999; Ferreira et al., 2004). Determining optimal mating age requires an 

understanding of changes that occur throughout the entire male reproductive apparatus. 

Moreover, anatomical measurements can provide a simple heuristic for determining age 

of reproductive maturity that can be easily transferred to additional species. This study 

documents the pattern of male reproductive maturity in a species that is targeted for 

commercial production, but that is also easily applicable to other species.  

This assessment of anatomical changes in the MIRA suggests male B. 

vosnesenskii are mature by 8 days post-eclosion. This is based on several lines of 

evidence. First, all of the bees in our study had opaque accessory testes by day 8. This 

indicates that male bumble bees 8 days or more post-eclosion have spermatozoa ready for 

mating with queen bumble bees. Second, I observed that the surface area of the testes 

diminishes up to the age of 7 days old. Samples 8 days old or older had an average testes 

ratio value of ~1, indicating the size of the testes was similar to the size of the accessory 

testes. This diminishment has been noted but has never been quantified with regard to age 

(Baer & Schmid-Hempel 2000; Baer 2003; Baer & Schmid-Hempel 2005; Duchateau & 

Mariën 1995; Ferreira et al., 2004; Greeff & Schmid-Hempel 2008; Tasei et al., 1998). 
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The proportion of bees with trachea covering most of the scrotal membrane surface area 

increased with age, and nearly all males had higher concentrations of trachea on the testes 

surface by 14 days of age. This suggests that the large concentrations of trachea found on 

the bee’s testes are a result of the diminishment of the size of the testes that comes with 

age. The more gradual slope of predictive probability that the scrotal membrane of the 

testes will be predominately covered in traches indicates further degradation of the testes 

over time. 

Adult male bumble bees show behavioral and other anatomical changes that also 

indicate sexual maturity occurring at 8 days post-eclosion. In B. terrestris males, 

reduction of the cephalic region of the labial gland is associated with the production of 

patrolling pheromones used to mark mating-flight territory of males and to attract gynes 

(Šobotník et al., 2008; Valterová, Martinet, Michez, Rasmont, & Brasero, 2019). 

Šobotník et al (2008) found that pheromone production and the main component of the 

marking pheromone of males (Dihydrofarnesol) increased from 1 day up to 7 days post-

eclosion in B. terrestris (Šobotník et al., 2008). This coincides with when 100% of B. 

vosnesenskii males had mature sperm in their accessory testes and the earliest age that B. 

terrestris males showed behaviors of reproductive receptivity (Tasei et al., 1998). This 

may mean that B. vosnesenskii has a similar pattern of pheromone production and sexual 

maturity as B. terrestris. These and other data suggest that sexual maturation across the 

genus Bombus occurs in males around 8 days of age, but empirical data across the genus 

is lacking. Future research could investigate whether reduction of the cephalic region of 

the labial gland and change in pheromone production correlates with testes diminishment 

and sperm presence in the accessory testes across the Bombus genus.  
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Sperm counts in the males sampled were relatively stable but high compared to 

other bumble bee species that have had their viable sperm counted (Tasei et al., 1998; 

Greeff & Schmid-Hempel 2008). It is hard to draw a conclusion to why they are stable 

when there are obvious changes occurring during spermatogenesis and other species 

show a fluctuation in sperm counts later than observed with B. vosnesenskii (Tasei et al., 

1998; Greeff & Schmid-Hempel 2008).  A study comparing sperm viability of 

monandrous and polyandrous insect species showed a trend towards higher viability and 

higher sperm quality within polyandrous species than in monandrous species (Hunter & 

Birkhead, 2002). Hunter and Birkhead (2002) suggest that higher sperm quality and 

viability is a selective pressure on polyandrous species and therefore higher sperm quality 

between highly related species may indicate polyandrous behavior in insects due to sperm 

competition (Hunter & Birkhead, 2002). Although rarely observed, B. vosnesenskii has 

been shown to have some polyandrous queens in the wild and therefore these highly 

viable and stable sperm counts could indicate adaptations to polyandry in queens that are 

facultative polyandrous (Strange & Picklum, unpublished data). Another consideration is 

that B. vosnesenskii produce large colonies compared to other bumble bee species, and 

continually lay workers before ever laying gynes when reared in captivity (personal 

observation). This species may thus have unusually large quantities of sperm compared to 

other species because there is a large paternal investment of sperm necessary to produce 

large colonies. However bumble bee queens have been shown to have large quantities of 

sperm stored in their spermatheca even during the senescence of the colony after laying 

the reproductive castes. A wider age of ranges and a larger sample size would allow for 

more detailed analysis of patterns of viable spermatozoa counts in B. vosnesenskii. 
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The results of this study suggest that B. vosnesenskii males aged 8 days or older 

have completed sexual maturation of MIRA development, thus this is the earliest age that 

males should be introduced to gynes for mating. Successful sperm transfer is also 

contingent on the copulatory behavior of both the male and the gyne. The low number of 

gynes produced by this species in captivity makes it difficult to investigate the 

precopulatory and copulatory behaviors of B. vosnesenskii (Šobotník et al., 2008; 

Valterová et al., 2019). In B. terrestris, males are known to be receptive to gynes and 

mate by as early as 7 days old, but the average age of male copulation was 12.1 days 

(Tasei et al., 1998). Therefore, determining optimal age of mating for B. vosnesenskii 

may require additional metrics, such as receptivity to gynes and vice versa. Based on 

morphology alone though, 8 days post-eclosion is the time period at which the bees are 

morphologically mature.  

Another method for breeding bumble bee colonies in captivity is artificial 

insemination (Baer & Schmid-Hempel, 2000). If B. vosnesenskii males require extra time 

to develop their sexually reproductive behaviors then this artificial insemination method 

may allow breeders to bypass that stage of development (Baer & Schmid-Hempel, 2000). 

This study is then valuable for knowing when one can extract spermatozoa from males 

for artificial insemination of gynes. This method of insemination is more time consuming 

and requires specialization in the methods presented by Baer & Schmid-Hempel (2001) 

but allows for more control over this portion of the colony life cycle. 

I investigated if there are phenotypic differences in males produced from each 

colony-type and found that the process of reproductive maturation is the same for males 

laid from microcolonies and from queen-right colonies. This is important, because large-
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scale production of bumble bee colonies relies on the successful reproduction of males 

and gynes. This requires a large investment of time and resources to have bumble bee 

colonies reach maturity in order to produce reproductive castes. Commercial producers of 

bumble bee colonies use males generated from microcolonies to mate with gynes for 

continual captive lines of bumble bee colonies (Klinger et al. 2019).  Male production 

with microcolonies reduces phenological constraints of the bumble bee lifecycle by 

having better control of when males are produced. The results of this study indicate no 

major differences in males from either colony. Therefore, utilization of worker-laid males 

from microcolonies may be a productive method for obtaining high quality males for 

mating with gynes. Besides the applied utility of males from microcolnies, it is a 

fascinating finding that there are no apparent differences between microcolony males and 

queen-right males because these 2 colony types likely also have eggs laid by the two 

different female castes (Owen & Plowright, 1982). Given the differences in reproductive 

physiology between queens and workers, one would expect that there may be differences 

in investment and development of the males that each female caste lays. This shows that 

offspring of workers is likely just as viable as offspring from queens but further research 

on differences between colony types should be done on sperm viability, quantity, and 

motility to further investigate whether there are differences between males from different 

colony types. 

The size of the bee sampled has a significant effect on all the morphological 

measurements of the MIRA except for the trachea covering the scrotal membrane of 

males. Body size was a significant predictor of the testes ratio, which could indicate that 

larger bees have larger testes at eclosion and therefore may produce more sperm. In 
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honey bees, larger males have 37% higher sperm counts (Schlüns 2003), and it is likely 

that the larger male bumble bees have higher sperm counts as well (Owen, 1989). The 

total length of the accessory glands increased as the size of the bee increased, but did not 

change in length as bees aged. This suggests the accessory glands are fully grown at the 

time of eclosion. However, there may be other post-eclosion physiological changes that 

occur in the accessory gland. The trend in longer accessory glands with larger body size 

is not surprising, but interesting because of the role that accessory glands play in 

preventing multiple males from mating with a gyne by producing larger mating plugs 

(Baer et al 2001).  

Further investigation into whether larger males are able to produce larger mating 

plugs that may last longer in the bursa copulatrix of the gyne may provide some insight 

into the evolution of multiple mating (Baer et al., 2003; Brown et al., 2002; Brown & 

Schmid-Hempel, 2003). Differences in the mating plug size have been documented 

across species (Brown et al., 2002; Brown & Schmid-Hempel, 2003). The size of the 

mating plug can be small enough to render it ineffective in stopping other male 

spermatozoa from entering the spermatheca, and ineffective in inhibiting gyne receptivity 

to extra-male copulations (Brown & Schmid-Hempel., 2003). Colony-level differences 

have been previously reported for accessory gland size in B. hypnorum (Brown et al., 

2002), but this showed no significant variation among source colonies or between colony 

types in B. vosnesenskii. This could have something to do with differences between B. 

hypnorum and B. vosnesenskii mating strategies. Bombus hypnorum and a few other 

species of bumble bees show some evidence of facultative polyandrous queens. Brown et 

al (2002) found that polyandrous colonies produced males that had smaller accessory 
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glands implying that there may be some correlation with investment in the size of the 

accessory glands and the investment in the size of the mating plug (Brown & Schmid-

Hempel, 2003), making it more likely to fail at inhibiting polyandry in the bumble bee 

queen (Brown et al., 2002). Interspecific variation in bumble accessory gland length 

could indicate a bumble bee species’ likelihood of multiple mating in nature as it has 

been observed. 

 

Conclusion: 

The MIRA of B. vosnesenskii undergo major morphological changes up to the age 

of 8 days post eclosion. These changes occur in the testes and accessory testes with 

spermatozoa presence in the accessory testes and the total surface area of the testes 

diminishing to about the size of the accessory testes occurring in male B. vosnesenskii. 

There is evidence of continual degradation of the testes beyond this age as well with 

more samples showing high concentrations of trachea as the males get older. Accessory 

gland length was not affected by the age of the bee indicating accessory gland 

development is completed pre-eclosion. All metrics of the morphological changes were 

significantly affected by the size of the bee with larger bees having a larger testes ratio, 

sperm more likely to be in the accessory glands, and longer accessory glands. This 

information can now help to understand basic biological processes occurring in adult 

male bumble bees.  

This study is a needed step to understand the reproductive development of male 

bumble bees. Because this study is the first to quantify these developmental changes 



89 
 

occurring in any species of bumble bees, it will not only help to understand the 

reproductive development of bumble bees with an applied usage but it also serves as a 

baseline for any bumble bee species. This opens opportunities into understanding other 

components of male bumble bee development and the effects of biotic and abiotic factors 

that may influence male bumble bee development. Now that the external morphology of 

bumble bee pupae has been quantified (Tian & Hines, 2018), it would then be of value to 

track these changes within the pupae because this is the life stage at which most of the 

MIRA development takes place (Ferreira et al., 2004).  
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CHAPTER 4: CONCLUSIONS 

 Bumble bees are a charismatic group of bees valued for their role in our food 

security and ecosystem services (James & Pitts-Singer, 2008; Pitts-Singer et al., 2002; 

Strange, 2015). Although bumble bees and many other native bees are being studied 

more than ever, there are still basic components of their natural history that are not well 

understood. This thesis investigated some of those basic questions that can contribute to 

supporting bumble bee populations both for ecological restoration and in production for 

greenhouse pollination on the west coast of North America. 

 My thesis investigated the efficacy of artificial arboreal nest boxes for attracting 

bumble bee foundresses and the development of adult male bumble bees as they age. 

Although these two studies focus on different parts of the bumble bee life cycle, they 

both shed light on topics that are important for the conservation of this important genus 

of bee: nest-site preference of sub-alpine/alpine bee communities and the paternal portion 

of the reproductive cycle. The following are some conclusions that add to the 

understanding of the bumble bee life cycle from these two experiments. 

 Many field experiments have been conducted that investigate what attracts 

bumble bees to nest boxes (Barronet al., 2000; Fye & Medler, 1954; Hobbs et al., 1960; 

Johnson et al., 2019; Lye et al., 2011). These experiments have been done all over 

temperate regions with varying bumble bee communities. The aspect and the presence of 

a blue UV entrance on the nest box showed no significant difference in the number of 

boxes that the bumble bees interacted with (although boxes on south-facing boxes 

without a blue/UV entrance had the highest number of boxes that had bees interact with 

them). This experiment showed high interaction with nest boxes by bumble bees with 
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34% of the nest boxes having some sort of observation of a bumble bee interacting with 

the nest box and about 16% of all of the boxes contained bumble bee nests that reached 

the social phase and produced workers. Results from other nest box or domicile projects 

have highly variable results but the number of boxes with any detectable interaction in 

them is fairly high (Johnson et al., 2019). Interestingly, the representation of bees that 

used the ANBs was not representative of the bumble bee community in the area. Only 5 

of the 11 documented species were detected, with the most frequent nester not being the 

most common bumble bees in the survey zone. This suggests that ANBs may be a 

valuable tool for studying the ecology and behavior of relatively unknown. The high 

percentage of boxes having mostly bumble bees interact with them may indicate that 

montane environments with B. appositus may be effective areas for installing these 

arboreal nest boxes. This experiment should be duplicated, but in other alpine locations 

where B. appositus is a component of the bumble bee community. If the boxes are 

effective elsewhere then they could be implemented for the conservation of bumble bees 

by providing habitat, monitoring bumble bee colony phenology and health, and it would 

be a powerful tool for public outreach and engagement on bumble bee life cycles.  

 My second experiment was the first to quantify the macro-scale changes of the 

internal reproductive apparatus that occur as male bumble bees mature, specifically in the 

Vosnesensky bumble bee. The MIRA of B. vosnesenskii shows the visible shrinking of 

the testes surface area during apoptosis of the germ cells as compared to the accessory 

testes ending in bees at the age of 8 days; all males having opaque testes indicating the 

presence of mature spermatozoa by the age of 8 days, and a high concentration of trachea 

covering the scrotal membrane in almost all male bees by the age of 14 days old. Males 
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showing no difference in reproductive development supports the usage of microcolonies 

to produce males for captive breeding and justifies the use of microcolony males for 

further research given no difference in reproductive development between the two. 

Microcolonies provide greater ease in production of males in captivity because they allow 

for scheduling of male production and easier extraction with so few workers present 

guarding the nest. Quantification of the internal development of the bees as they age 

serves as a reference for future research on male bumble bee development and factors 

that may affect development rates such as hormones, chemicals, or parasites. This also 

provides critical data for when males show internal signs of maturity for mating within 

this commercially viable species B. vosnesenskii. 

 Together these two chapters provide insight into processes occurring during vital 

stages of the bumble bee life cycle, those being nest establishment and reproductive 

development. Understanding ways to attract bees to nest in structures in the wild and 

quantifying changes in male morphology can be used to refine knowledge of bumble bees 

in their applied use in agroecosystems, in how to better conserve or bolster bumble bee 

communities, and in understanding their natural evolutionary constraints and pressures. 

Further investigation in knowledge gaps and establishing baseline data of bumble bee life 

cycles will better inform the conservation and utility of bumble bees.  
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Table S-1 

 Records of each specific observation of ANBs 

Evidence of bee Year of Census 
  2016 2017 Entire survey 

No Bombus 64 70 134 
Bee entered box 1 1 2 
Pollen present 7 7 14 
Wax honey pot 

present 4 1 5 
Brood present 10 6 16 

Workers present 16 17 33 
Total Observations 102 102 204 

 

Table S-2 

 Specific categorized data on all evidence of bees in ANBs 

 Year of survey 
Species Evidence of bee 2016 2017 Both Years 

none  64 70 134 
unknown Sum of evidence 15 13 28 

Pollen present 5 6 11 
Wax honey pot 

present 4 1 5 
Brood present 6 6 12 

B. appositus Sum of evidence 14 13 27 
Bee entered box 1 0 1 
Pollen present 0 1 1 
Brood present 3 0 3 
Workers 10 12 22 

B. centralis 

Sum of evidence 4 1 5 
Pollen present 1 0 1 
Workers 3 1 4 

B. huntii Sum of evidence 2 2 4 
Bee entered box 0 1 1 
Workers 2 1 3 

B. mixtus Sum of evidence 0 3 3 
Workers 0 3 3 

Sum of evidence 3 0 3 
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B. 
rufocinctus 

Pollen present 1 0 1 
Brood present 1 0 1 
Workers 1 0 1 

 Total 102 102 204 
 

Table S-3 

Name, Location, Elevation, Entrance color, and Aspect of every ANB 

Box ID: Latitude (N) Longitude (W) 
Elevation 

(ft.) 

Painted 
entrance 
(Yes/No) 

Aspect  
(North/South 
facing slope) 

S1-N1 41.875945  111.563564   6556  N North 
S1-N2 41.875945  111.563564   6556   N North 
S1-N3 41.875945  111.563564         6556 N North 
S1-B1 41.875945  111.563564   6556    Y North 
S1-B2 41.875945  111.563564   6556    Y North 
S1-B3 41.875945  111.563564   6556    Y North 
S2-N1 41.88623 111.58665 6996 N North 
S2-N2 41.88623 111.58665 6996 N North 
S2-N3 41.88623 111.58665 6996 N North 
S2-B1 41.88623 111.58665 6996 Y North 
S2-B2 41.88623 111.58665 6996 Y North 
S2-B3 41.88623 111.58665 6996 Y North 
S3-N1 41.88676 111.58935 7051 N North 
S3-N2 41.88676 111.58935 7051 N North 
S3-N3 41.88676 111.58935 7051 N North 
S3-B1 41.88676 111.58935 7051 Y North 
S3-B2 41.88676 111.58935 7051 Y North 
S3-B3 41.88676 111.58935 7051 Y North 
S4-N1 41.8872 111.59193 7091 N North 
S4-N2 41.8872 111.59193 7091 N North 
S4-N3 41.8872 111.59193 7091 N North 
S4-B1 41.8872 111.59193 7091 Y North 
S4-B2 41.8872 111.59193 7091 Y North 
S4-B3 41.8872 111.59193 7091 Y North 
S5-N1 41.87337 111.57931 6615 N North 
S5-N2 41.87337 111.57931 6615 N North 
S5-N3 41.87337 111.57931 6615 N North 
S5-B1 41.87337 111.57931 6615 Y North 
S5-B2 41.87337 111.57931 6615 Y North 
S5-B3 41.87337 111.57931 6615 Y North 
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S6-N1 41.87739 111.58066 6605 N South 
S6-N2 41.87739 111.58066 6605 N South 
S6-N3 41.87739 111.58066 6605 N South 
S6-B1 41.87739 111.58066 6605 Y South 
S6-B2 41.87739 111.58066 6605 Y South 
S6-B3 41.87739 111.58066 6605 Y South 
S7-N1 41.88651 111.62289 7864 N North 
S7-N2 41.88651 111.62289 7864 N North 
S7-N3 41.88651 111.62289 7864 N North 
S7-B1 41.88651 111.62289 7864 Y North 
S7-B2 41.88651 111.62289 7864 Y North 
S7-B3 41.88651 111.62289 7864 Y North 
S8-N1 41.88927 111.62102 7964 N South 
S8-N2 41.88927 111.62102 7964 N South 
S8-N3 41.88927 111.62102 7964 N South 
S8-B1 41.88927 111.62102 7964 Y South 
S8-B2 41.88927 111.62102 7964 Y South 
S8-B3 41.88927 111.62102 7964 Y South 
S9-N1 41.88512 111.61695 7839 N North 
S9-N2 41.88512 111.61695 7839 N North 
S9-N3 41.88512 111.61695 7839 N North 
S9-B1 41.88512 111.61695 7839 Y North 
S9-B2 41.88512 111.61695 7839 Y North 
S9-B3 41.88512 111.61695 7839 Y North 

S10-N1 41.888 111.61649 7774 N South 
S10-N2 41.888 111.61649 7774 N South 
S10-N3 41.888 111.61649 7774 N South 
S10-B1 41.888 111.61649 7774 Y South 
S10-B2 41.888 111.61649 7774 Y South 
S10-B3 41.888 111.61649 7774 Y South 
S11-N1 41.89144 111.62801 7962 N South 
S11-N2 41.89144 111.62801 7962 N South 
S11-N3 41.89144 111.62801 7962 N South 
S11-B1 41.89144 111.62801 7962 Y South 
S11-B2 41.89144 111.62801 7962 Y South 
S11-B3 41.89144 111.62801 7962 Y South 
S12-N1 41.88894 111.62972 7945 N North 
S12-N2 41.88894 111.62972 7945 N North 
S12-N3 41.88894 111.62972 7945 N North 
S12-B1 41.88894 111.62972 7945 Y North 
S12-B2 41.88894 111.62972 7945 Y North 
S12-B3 41.88894 111.62972 7945 Y North 
S13-N1 41.89183 111.62986 7974 N South 
S13-N2 41.89183 111.62986 7974 N South 



105 
 

S13-N3 41.89183 111.62986 7974 N South 
S13-B1 41.89183 111.62986 7974 Y South 
S13-B2 41.89183 111.62986 7974 Y South 
S13-B3 41.89183 111.62986 7974 Y South 
S14-N1 41.89161 111.59645 7314 N South 
S14-N2 41.89161 111.59645 7314 N South 
S14-N3 41.89161 111.59645 7314 N South 
S14-B1 41.89161 111.59645 7314 Y South 
S14-B2 41.89161 111.59645 7314 Y South 
S14-B3 41.89161 111.59645 7314 Y South 
S15-N1 41.89212 111.6078 7614 N North 
S15-N2 41.89212 111.6078 7614 N North 
S15-N3 41.89212 111.6078 7614 N North 
S15-B1 41.89212 111.6078 7614 Y North 
S15-B2 41.89212 111.6078 7614 Y North 
S15-B3 41.89212 111.6078 7614 Y North 
S16-N1 41.89725 111.60231 7649 N South 
S16-N2 41.89725 111.60231 7649 N South 
S16-N3 41.89725 111.60231 7649 N South 
S16-B1 41.89725 111.60231 7649 Y South 
S16-B2 41.89725 111.60231 7649 Y South 
S16-B3 41.89725 111.60231 7649 Y South 
S17-N1 41.8964 111.6004 7711 N South 
S17-N2 41.8964 111.6004 7711 N South 
S17-N3 41.8964 111.6004 7711 N South 
S17-B1 41.8964 111.6004 7711 Y South 
S17-B2 41.8964 111.6004 7711 Y South 
S17-B3 41.8964 111.6004 7711 Y South 
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