
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

8-2020 

Improving Aquatic Habitat Representation in Utah Using Large Improving Aquatic Habitat Representation in Utah Using Large 

Spatial Scale Environmental Datasets Spatial Scale Environmental Datasets 

Gregory C. Goodrum 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Terrestrial and Aquatic Ecology Commons 

Recommended Citation Recommended Citation 
Goodrum, Gregory C., "Improving Aquatic Habitat Representation in Utah Using Large Spatial Scale 
Environmental Datasets" (2020). All Graduate Theses and Dissertations. 7902. 
https://digitalcommons.usu.edu/etd/7902 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7902&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/20?utm_source=digitalcommons.usu.edu%2Fetd%2F7902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7902?utm_source=digitalcommons.usu.edu%2Fetd%2F7902&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


IMPROVING AQUATIC HABITAT REPRESENTATION IN UTAH USING LARGE 

SPATIAL SCALE ENVIRONMENTAL DATASETS 

by 

Gregory C. Goodrum 

A thesis submitted in partial fulfillment 
of the requirements for the degree 

of 

MASTER OF SCIENCE 

in 

Watershed Sciences 

Approved: 

______________________ 
Sarah E. Null, Ph.D. 
Major Professor 

______________________ 
Brett B. Roper, Ph.D. 
Committee Member 

____________________                   
Jeffery S. Horsburgh, Ph.D.       
Committee Member 

____________________                      
Janis L. Boettinger, Ph.D.                 
Acting Vice Provost of  Graduate Studies 

UTAH STATE UNIVERSITY 
Logan, Utah 

2020 



ii 
 

 

 

 

 

 

 

 

 

Copyright © Gregory C. Goodrum 2020 

All Rights Reserved 

  



iii 
ABSTRACT 

 
Improving Aquatic Habitat Representation in Utah Using Large Spatial Scale 

Environmental Datasets 

by 

Gregory C. Goodrum, Master of Science 

Utah State University, 2020 

 
Major Professor: Dr. Sarah E. Null 
Department: Watershed Sciences 
 
 

Rivers provide habitat for aquatic species, but are often altered by human water 

development. Methods that quickly, simply, and affordably identify suitable aquatic 

habitat conditions across large spatial scales are needed to inform conservation planning, 

water resource management, and protect aquatic species. Habitat suitability models 

intersect environmental thresholds to quantify which habitats support species and present 

a simple solution to representing aquatic habitats. However, previous applications have 

not evaluated how well models predict habitat suitability when applied at monthly 

timesteps and large spatial scales often required in conservation and water resources 

management. In this study, 15 habitat suitability models used literature-based thresholds 

to classify suitable and unsuitable habitat as a function of unique combinations of percent 

mean annual discharge, velocity, stream temperature, and gradient. Habitat suitability 

classifications were compared to observed Bonneville Cutthroat Trout and Bluehead 

Sucker presence in Utah stream networks. The dendritic connectivity index quantified 

habitat fragmentation from physical barriers and also from habitats classified as 
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unsuitable in the habitat suitability models. The habitat suitability model using stream 

temperature best predicted Bonneville Cutthroat Trout presence, while a model including 

gradient and percent mean annual discharge best predicted Bluehead Sucker presence. 

Reducing model complexity improved habitat suitability classification accuracy for both 

species by removing environmental variables that were poor predictors at large spatial 

scales. Utah stream networks were fragmented, and Bonneville Cutthroat Trout’s 

historical range was significantly more fragmented than that of Bluehead Sucker. Habitat 

connectivity was similar between the physical barrier model and most models including 

monthly habitat suitability; although stream connectivity declined significantly in May 

and June and in warm months from April to September when stream temperature or other 

environmental variables limited habitat connectivity. Temporal variation in habitat 

quality can significantly fragment stream networks, and indicates habitat quality is an 

important factor affecting stream network connectivity. This research helps quantify 

habitat suitability and connectivity for Bonneville Cutthroat Trout and Bluehead Sucker 

in Utah, although the models are generalizable for other species, systems, and spatial 

scales. The approach demonstrates how model evaluation can identify optimal habitat 

suitability models that improve habitat quality estimates while reducing model 

complexity.  

(82 Pages) 
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PUBLIC ABSTRACT 

 
Improving Aquatic Habitat Representation in Utah Using Large Spatial Scale 

Environmental Datasets 

Gregory C. Goodrum 

 
Rivers provide habitat for aquatic species, but widespread human water 

development degrades aquatic habitat, fragments stream networks, and threatens native 

fish populations. Habitat suitability models are commonly used to identify current 

instream habitat conditions, but are often species-specific, data-intensive, and rarely 

suitable to the large spatial scales required in conservation and water resources 

management. Thus, there is need to develop and validate habitat suitability models that 

provide ecologically-meaningful estimations of aquatic habitat, but are simple enough to 

apply at large geographic areas and flexible to incorporate different species. I tested the 

accuracy of 15 habitat suitability models estimating Bonneville Cutthroat Trout and 

Bluehead Sucker monthly habitat suitability in Utah perennial streams using unique 

combinations of four modeled environmental variables; percent mean annual discharge, 

velocity, gradient, and stream temperature. Modeled discharge and stream temperature 

matched observed values well, explaining 78-89% of variability in the observed data. 

Habitat suitability model accuracy varied considerably, but simple models including 

fewer variables than considered in this study most accurately predicted Bonneville 

Cutthroat Trout and Bluehead Sucker habitat suitability. Temperature best predicted 

Bonneville Cutthroat Trout habitat suitability, while gradient and percent mean annual 

discharge best predicted Bluehead Sucker habitat suitability. Utah stream networks were 
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highly fragmented by instream barriers, but connectivity decreased significantly in May 

and June when habitat suitability was considered. This work demonstrates that habitat 

suitability models can accurately estimate habitat suitability when generalized for 

multiple species and large spatial scales, and that additional variables do not necessarily 

improve model accuracy. The modeling approach expands current methods for 

quantifying aquatic habitat conditions for use in conservation and water resources 

planning. 
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INTRODUCTION 

 
 Rivers provide the physical, chemical, and biological attributes to support fish and 

other aquatic organisms. However, humans alter natural rivers for societal benefits such 

as hydropower, water supply, and flood control that often compete with aquatic 

ecosystems. Human needs have driven water management, with environmental 

consequences considered after water allocation and development decisions have been 

made. This has resulted in widespread river fragmentation (Nilsson et al., 2005) and 

negatively affects aquatic ecosystems by altering streamflow and channel shape (Graf, 

2006), impairing water quality (Stanley and Doyle, 2003), disrupting biogeochemical 

processes (Friedl and Wüest, 2002), reducing biodiversity (Nilsson and Berggren, 2000), 

homogenizing aquatic ecosystems (Moyle and Mount, 2007), and restricting available 

habitat (Nehlsen et al., 1991). Methods that quickly, simply, and affordably identify 

aquatic habitat conditions across large spatial scales are needed to prioritize restoration 

actions, balance competing human water uses in water resources systems models, and to 

inform conservation and water resources management assessment. 

 A number of aquatic habitat suitability assessments have been developed, but 

have limitations. Simple approaches sum stream length or drainage area (Kuby et al., 

2005; Neeson et al., 2015), but fail to account for the spatial and temporal variability of 

aquatic organism distribution. Streamflow-habitat relationships are another common path 

in which streamflow is the sole variable used to characterize aquatic habitat (Richter and 

Thomas, 2007; Petts, 2009). However, streamflow often does not limit ecosystem 

function or correlate to organism presence (Conder and Annear, 1987; Hubert and Rahel, 

1989). More complex habitat suitability indices, such as the Instream Flow Incremental 
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Methodology’s Physical Habitat Simulation (PHABSIM), characterize aquatic habitat 

using depth, velocity, substrate, cover, and other environmental criteria (Bovee, 1982; 

Roloff and Kernohan, 1999). Despite widespread adoption, habitat suitability indices rely 

on data- and time-intensive hydraulic models that are difficult to apply at large spatial 

scales (Parasiewicz, 2004; Tiffan et al., 2004; Meixler and Bain, 2012), and can be 

unreliable when applied beyond the area considered in model development and 

calibration (Shirvell, 1989; Gan and McMahon, 1990; Loukmas and Halbrook, 2001; 

Caldwell et al., 2011). The result is lack of aquatic habitat assessments that are 

ecologically relevant, but sufficiently simple and generalized for large spatial scales. 

 Regional and national GIS and remote sensing datasets present a path to 

accurately represent aquatic habitat while remaining suitably generalized for use at large 

spatial scales. These publicly-available, large spatial scale environmental datasets provide 

a consistent geospatial framework and accessible data that reduce the need for costly and 

time-consuming data collection (Gorman et al., 2011). Large spatial scale environmental 

datasets can estimate continuous in-stream environmental variables such as gradient 

(Nagel et al., 2010), temperature (Isaak et al., 2017), and streamflow (McKay et al., 

2012) in habitat suitability models. This provides a cost-effective, generalized, and 

repeatable method for predicting instream conditions necessary to assess habitat quality.   

 Habitat suitability models use environmental variables to spatially predict whether 

a habitat can support a given species (Hirzel et al., 2006). These models quantify species’ 

habitat requirements by intersecting environmental variable thresholds that limit habitat 

occupation, then relate the thresholds to instream conditions using mathematical 

equations that predict the likelihood a location provides suitable habitat for a given 
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species. Habitat suitability models are a long-established tool for assessing habitat 

quality, and their use in natural resource management and decision-making is widespread 

(Brooks, 1997; Roloff and Kernohan, 1999). The generalized design, limited data 

requirements, and widespread application of habitat suitability models make them well-

suited to assess habitat across different systems, species, and scales. 

  Many fish species and other aquatic biota have distinct seasonal and life history 

movement patterns requiring habitat connected across large geographic areas (Fausch et 

al., 2002). However, instream barriers such as dams, waterfalls, and transportation 

structures fragment habitat, restrict movement, and threaten species persistence (Budy et 

al., 2007; Webber et al., 2012). Worldwide focus on aquatic system connectivity is 

increasing (Jones et al., 2019), and connectivity indices are used to quantify the impacts 

of aquatic habitat fragmentation at local to global scales (Barbarossa et al., 2020). 

Connectivity indices use graph theory to mathematically represent stream networks and 

quantify how the spatial distribution and passability of instream barriers affect stream 

network connectivity (Malvadkar et al., 2015). Some connectivity indices incorporate 

habitat quality weighting, which make them compatible with habitat suitability models to 

represent both habitat suitability and connectivity (Pascual-Hortal and Saura, 2006; Cote 

et al., 2009). Existing applications of connectivity indices have incorporated habitat 

quality (O’Hanley et al., 2013; Buddendorf et al., 2017), but connectivity indices 

including habitat suitability models are limited (Kraft et al., 2019).    

 To improve aquatic habitat representation at large spatial scales, I estimated 

average monthly habitat suitability and connectivity for Bonneville Cutthroat Trout 

(Oncorhynchus clarki utah) and Bluehead Sucker (Catostomus discobolus) in Utah 
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streams using large spatial scale environmental datasets. Specific research objectives 

were to: 1) validate modeled environmental variables with instream observations, 2) 

identify habitat suitability models which best predict observed species presence with the 

highest accuracy and fewest number of variables, and 3) determine whether stream 

network connectivity differs between species and with the inclusion of monthly habitat 

suitability. I represented environmental variables including streamflow, velocity, 

gradient, and water temperature using publicly-available, large spatial scale datasets and 

compared habitat estimates with observed instream conditions. I developed generalized 

habitat suitability models using thresholds obtained from the literature, and validated 

habitat suitability estimates with observed species presence data. I calculated stream 

network connectivity with habitat suitability weighting, and compared habitat suitability 

estimations with connectivity using only physical instream barriers. My approach is novel 

because it evaluates modeled environmental variables and estimated habitat suitability at 

the large spatial scale required for conservation and resource management using publicly-

available data. It identifies tradeoffs between habitat suitability model accuracy and 

generality and the influence of seasonality on model performance. My approach is 

generalized and can be easily adapted for different species, systems, and spatial scales.  
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BACKGROUND 

 
Study Area 

 Utah has an area of 219,887 km² and sits at the geographic confluence of the 

Central Rocky Mountains in the north, Basin and Range Province in the west, and the 

Colorado Plateau to the south and east. The state is both topographically and ecologically 

diverse, ranging from alpine environments of the Uinta and Wasatch Mountains, montane 

high plateaus and semiarid valleys of the intermountain basins, and tablelands and 

canyons of the southern slick rock desert. Utah’s climate is defined by extreme seasonal 

variation between hot, dry summers and cold winters, with 70-80% of precipitation 

occurring in the mountains and high plateaus (CES, 2009). Snow pack, which constitutes 

50-70% of annual precipitation in high-elevation regions, melts in spring and summer, 

and drives peak streamflow between April and July (Kalra et al., 2008). Lower elevation 

zones receive peak precipitation during summer monsoons, though mountain systems 

provide the majority of streamflow in late summer and fall as discharges return to 

baseflow conditions (CES, 2009). 

 Modern development of Utah’s water began in 1847 with Mormon settlement and 

agricultural irrigation in Salt Lake Valley (Strata, 2016). To circumvent Utah’s natural 

aridity, settlers rapidly built diversions and impoundments throughout the state, including 

large-scale trans-basin diversions with the completion of the Strawberry Valley Project in 

1912 (Stene, 1995). Utah currently has 831 impoundments over 6 feet high or designated 

as having significant hazard potential (USACE, 2020). Approximately 35% of available 

surface water is diverted for municipal, agricultural, and industrial uses (UDWR, 2001). 

Nationally, Utah ranks second in both aridity and per-capita usage of public water 
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supplies (UDWR, 2001). With state-wide population projected to nearly double by 2050 

(Utah Foundation, 2014) and global climate change predicted to significantly alter 

snowmelt and runoff hydrology (Knowles and Cayan, 2002; Adam et al., 2009), there is 

considerable pressure to continue developing and conserving freshwater resources (Bear 

River Development Act, 1991; Lake Powell Pipeline Development Act, 2006; Edwards 

and Null, 2019). 

 Water development and environmental change have impacted Utah’s stream 

habitats and ecosystems. Changes to flow timing, duration, and magnitude substantially 

alter physical habitat, promote non-native species, and limit conditions critical for 

reproduction in native species (Marchietti and Moyle, 2001; Bunn and Arthington, 

2002). Stream temperature, particularly important for the ectothermic physiologies of 

many stream biotas, restricts species distribution and reproduction, and is predicted to 

warm in the 21st century (Wenger et al., 2010; Isaak and Rieman, 2013). Stream 

fragmentation created by barrier construction, dewatered stream reaches, and unsuitable 

instream conditions isolate populations, inhibit movement critical to species life histories, 

and increase population vulnerability to other habitat alterations (Compton et al., 2008; 

Isaak and Rieman 2013; Peterson et al. 2014). In Utah, these trends have reduced 

populations, constricted range, and limited genetic diversity for native Bonneville 

Cutthroat Trout and Bluehead Sucker (Lentsch et al., 2000; UDWR, 2006).  

 This study was conducted in the 68 U.S. Geological Survey (USGS) sub-basin 

hydrologic units of Utah (Figure 1). Sub-basins include highly developed urban areas 

around Great Salt Lake, agricultural areas surrounding low- to mid-elevation streams, and 

wilderness areas in high elevation montane and low elevation desert landscapes. Sub-
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basins ranged in size from 1,672 km² for Ashley Creek to 14,178 km² for Deep Creek, 

with a median size of 3,994 km².  

 
Bonneville Cutthroat Trout 

 Bonneville Cutthroat Trout are the only trout native to the Bonneville Basin 

comprising much of central and western Utah (Behnke, 1992; Figure 1). Within their 

native range, Bonneville cutthroat trout occupy and move between a variety of habitats 

ranging from large lakes and mainstem rivers to small headwater tributaries (Hickman 

and Raleigh, 1982). Physical and chemical habitat conditions limit Cutthroat Trout 

populations during spawning, rearing, adult, and overwintering life stages. Ideal habitat 

includes clear, cold, well-oxygenated water, diverse physical complexity including deep 

pools and shallow riffles, and access to gravel substrates for spawning (Hickman and 

Raleigh, 1982; Behnke, 1992). However, larger Bonneville Cutthroat Trout can survive 

in marginal habitat including warm, turbid, or degraded streams (USFWS, 2001), likely 

influenced by their evolution in desert environments (Behnke, 1992).   

Bonneville Cutthroat Trout exhibit a variety of movement patterns including, 

fluvial, adfluvial, and tributary residency (USFWS, 2001), with multiple movement 

patterns occurring within a single watershed (Bennett et al., 2014).  These include 

localized movements to exploit food resources or avoid competition or predation, as well 

as long seasonal migrations to spawning habitat (Hilderbrand and Kershner, 2000; 

Carlson and Rahel, 2010). Movement is greatest in spring, with Bonneville Cutthroat 

Trout rapidly covering distances up to 82 km between late April and July to spawn in 

headwater tributaries (Schrank and Rahel, 2004; Bennett et al., 2014). Summer and fall 

movements are characterized by an extended return downstream to mainstem 
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overwintering habitat, where they remain throughout the winter with movement typically 

limited to within 1km, although occasionally moving up to 22 km (Schrank and Rahel, 

2004; Colyer et al., 2005; Carlson and Rahel, 2010). These movements allow Bonneville 

Cutthroat Trout to access preferred spawning reaches, exploit spatially and temporally 

variable habitat conditions, and maintain genetic variability and exchange between 

populations (Budy et al., 2007; Budy and Thiede, 2014). Habitat fragmentation restricts 

these movements, limiting access to spawning and seasonally-preferred habitat, isolating 

populations, and increasing potential extinction risk (Hilderbrand and Kershner, 2004).  

 
Bluehead Sucker 

 Bluehead Sucker occur in headwater, tributary, and large mainstem sections of 

Utah’s Green, Colorado, and Bonneville Basins (Minckley and Marsh 2009, Figure 1). 

Few studies relate Bluehead Sucker occurrence to physical habitat features (Propst and 

Gido, 2004; Bower et al., 2008), and habitat requirements remain generalized (Sublette et 

al., 1990; Bezzerides and Bestgen, 2002). Bluehead Sucker typically prefer large, cool 

streams with rocky substrates, fast-moving water, and a complex assemblage of deep 

pools and shallow riffles, they also thrive in small, warm streams and utilize shallow, 

low-velocity shoreline and backwaters for spawning (Sigler and Sigler, 1996; Bezzerides 

and Bestgen, 2002).  

Bluehead Sucker exhibit resident and fluvial life histories, but are uncommon in 

lacustrine environments (Bezzerides and Bestgen, 2002; Sweet and Hubert, 2010). 

Studies of Bluehead Sucker movement are limited (Bezzerides and Bestgen, 2002), but 

include both localized foraging movements and spawning migrations (Ptacek et al., 

2005). Bluehead sucker remain largely sedentary in summer, fall, and winter, typically 
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moving less than 2km (Sweet and Hubert, 2010). Spawning migrations begin in late 

spring with rapid upstream or downstream movements up to 19km, and individuals return 

to origin locations by early summer (Ptacek et al., 2005; Sweet and Hubert, 2010; 

Webber et al., 2012, Fraser et al., 2017;). Study areas typically include numerous 

instream barriers, which might impede longer movements important in Bluehead Sucker 

life histories (Webber et al., 2012). Instream barriers occur throughout Bluehead Sucker 

ranges ( Ptacek et al., 2005; Budy et al., 2015), block movement to spawning sites, and 

isolate populations which create genetic bottlenecks threatening species survival (Webber 

et al., 2012). 

 
Species Status 

 Once widespread throughout Utah, both Bonneville Cutthroat Trout and Bluehead 

Sucker have declined considerably within their native ranges. Bluehead Sucker are now 

estimated to occupy only 50% of their historical range, and Bonneville Cutthroat Trout as 

little as 33% (UDWR, 2006; Budy et al., 2007). The decline of both species is attributed 

to changing hydrologic and thermal regimes, physical habitat homogenization, 

competition and hybridization with nonnative species, and isolation of instream habitat 

caused by instream barriers (Lentsch et al., 2000; Webber et al. 2012).  

Threats to species survival have led the Utah Division of Wildlife Resources 

(UDWR) to designate both Bonneville Cutthroat Trout and Bluehead Sucker as species of 

special concern managed under multi-state conservation agreements (Lentsch et al., 

2000; UDWR, 2006). The statewide Utah Wildlife Migration Initiative (WMI) protects 

populations by identifying, preserving, and restoring movement corridors connecting 

quality habitats that increase survival and facilitate reproduction (Utah Wildlife 
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Migration Initiative Draft Strategic Plan from UDWR Aquatic Habitat/Wildlife 

Migration Initiative Coordinator Don Wiley to the author, June 29, 2020). However, to 

effectively identify and prioritize opportunities for conservation and management action, 

resource managers require accurate representations of instream habitat as a function of 

environmental factors and barriers limiting species abundance and distribution. 

 

 

FIGURE 1. Historic Bonneville Cutthroat Trout and Bluehead Sucker distribution in 
Utah. 
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METHODS 

 
 I developed geographic information system (GIS)-based Bonneville Cutthroat 

Trout and Bluehead Sucker habitat suitability models for Utah based on species-specific 

thresholds for monthly stream temperature, velocity, discharge, and gradient (Figure 2). I 

defined suitable and unsuitable thresholds for these variables for Bonneville Cutthroat 

Trout and Bluehead Sucker from the literature. I developed the models using the ArcGIS 

Pro GIS and the R statistical computing language (R Core Team, 2020). I used regional 

and national GIS and satellite datasets collected between 1971 through 2018 (Table 1) to 

estimate discharge, velocity, gradient, and stream temperature in reaches delineated by 

the National Stream Internet dataset (Nagel et al., 2017). I assessed habitat suitability at 

the reach scale based on estimated monthly average instream condition. I estimated 

instream habitat conditions at a monthly timestep because most water resources systems 

models are monthly (Harou et al., 2010; Loucks and van Beek, 2017) and to capture 

intra-annual variability that influences ecological function (Petts, 2009). I validated 

environmental variables using regressions and habitat suitability classifications using chi-

squared statistics. I analyzed tradeoffs between model accuracy and generality using 

different combinations of environmental variables to derive suitability classifications, 

then evaluating the accuracy of each habitat suitability model.  

In this section, I describe data, assumptions, and methods for each environmental 

variable used in my habitat suitability models, and conclude each sub-section with 

environmental thresholds obtained from the literature for Bonneville Cutthroat Trout and 

Bluehead Sucker. I then explain methods used to evaluate accuracy of modeled 

environmental variables. Next, I describe model design and summarize suitability 
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thresholds for my habitat suitability models. I then described the data and methods used 

to evaluate and compare habitat suitability model accuracy. Finally, I describe the data 

and methods used to identify and assign passability ratings to instream barriers, and 

methods to calculate barrier-only and habitat suitability longitudinal stream network 

connectivity using the Dendritic Connectivity Index (DCI). I then describe the 

assumptions and methods used to compare connectivity between species and season 

variations in habitat suitability.  

 

 

FIGURE 2. Conceptual diagram of data and model flow. 
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TABLE 1. Datasets, sources, and spatial scales of environmental variable data. 

Variable Dataset Source Scale 
Stream Network National Stream Internet US Forest Service National 

Barriers See Table 3 See Table 3 Varies 
Streamflow, 

Velocity 
National Hydrography 

Dataset 
US Geological Survey National 

Elevation 
National Elevation 

Dataset 
US Geological Survey National 

Stream 
Temperature 

National Water 
Information System 

US Geological Survey National 

NorWeST Stream 
Temperature 

US Forest Service Western US 

Land Surface 
Temperature 

MODIS Terra 
National Aeronautics 

and Space 
Administration 

Global 

   
 
Stream Network 

 I generated a perennial stream network for Utah from the National Stream Internet 

(NSI) hydrography dataset (Nagel et al., 2017). The NSI is derived from the National 

Hydrography Dataset Plus Version 2 (NHD) flowlines, but reconditioned to meet the 

standards required for spatial statistical models by removing braided channels, large 

reservoirs, diversions, and disconnected streams, and re-fitting stream confluences to 

create unambiguous stream order and downstream directionality (Nagel et al., 2016). I 

chose the NSI because its reconditioned topology facilitates stream connectivity analysis, 

while its underlying spatial and tabular structure supports NHD streamflow and velocity 

estimates. In both NHD and NSI, a stream network is composed of flowlines extending 

between tributary confluences.  I defined perennial flowlines as having NHD-modeled 

mean monthly discharges (discussed further in the Discharge subsection) greater than 0 in 

all months, and removed all flowlines that failed to meet the criteria. I divided the 

perennial network into sub-basin hydrologic units (HUC8), then divided the sub-basin 
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networks into reaches defined as stream lengths between barriers and confluences. Reach 

lengths ranged between 0.000017 to 200.43 km, median reach length was 0.96 km, and 

average reach length was 2.19 km. 

 
Habitat Suitability Models 

 I created 15 different habitat suitability models by intersecting all unique 

combinations of four environmental variables including discharge, velocity, gradient, and 

stream temperature for each month and stream reach. Each model used environmental 

variable thresholds to classify reaches as suitable or unsuitable habitat (Table 2). A reach 

was classified suitable if all variables met the suitable condition requirements. Similar 

instream condition estimates and habitat suitability classifications have quantified 

salmonid habitat in Oregon’s Nestucca River basin (Burnett et al., 2003), Utah’s Weber 

River basin (Kraft et al., 2019), and regionally in the Central Valley of California 

(Lindley et al., 2006; Null et al., 2014).  

 
TABLE 2. Habitat suitability thresholds for Bonneville Cutthroat Trout and Bluehead 
Sucker. 

Environmental Variable Measurement Unit 
Suitable 

BCT BHS 
Streamflow Oct-Mar (Oct-Mar) Percent MAD > 5 > 5 
Streamflow Apr-Sept (Apr-Sep) Percent MAD > 10 > 10 
Velocity cm/s 0-70 0-100 
Stream temperature °C 0-22 20-29 
Gradient Percent 0-15 0-6 

 
 
Discharge 

 I extracted mean monthly and annual discharge from NHD Plus Versions 2 

(USEPA and USGS, 2012). NHD estimates discharge using a flow balance Enhanced 

Unit Runoff Method (EROM) model, then adjusts estimates using gage measurements 
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collected between 1971 and 2000 (McKay et al., 2012). The gage-adjusted discharge 

values provide the best estimate of actual streamflow conditions, while the flow balance 

model results are the best estimation of natural flows (McKay et al., 2012). 

 The Tennant environmental flow method classifies instream flow as a proportion 

of mean annual discharge (MAD), and is used worldwide to recommend flow regimes for 

healthy ecosystems (Gopal, 2013; Li and Kang, 2014). Tennant’s flow recommendations 

consider streamflow greater than 10% of MAD necessary to sustain functioning 

ecosystems, and streamflow less than 10% of MAD is considered unsuitable fish habitat 

(Orth and Maughan, 1981). Mann (2006) applied the Tennant method in Utah and found 

it to be suitable for general recommendations of environmentally-limiting flows, though 

less representative of streams with gradients greater than one percent. The Tennant 

Method has been widely adapted to systems with different hydrological and biological 

cycles by modifying monthly streamflow requirements (Gopal, 2013).  

 I modified a version of the Tennant environmental flow method developed for 

Utah’s Weber River (Kraft et al., 2019) to classify monthly discharge suitability for 

Bonneville Cutthroat Trout and Bluehead Sucker. I calculated monthly discharge 

suitability based on the percentage of NHD average monthly gage-adjusted discharge to 

NHD flow-balance model MAD. Discharges greater than 5% of MAD for months 

between October and March, or greater than 10% for months between April and 

September were considered suitable. Discharges less than 5% of MAD for months 

between October and March or less than 10% for months between April and September 

were considered unsuitable. Discharge classifications were the same for both species. 
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Velocity 

Mean monthly velocity was extracted from the NHD (USEPA and USGS, 2012). 

NHD velocity is estimated at a monthly timestep using regression analysis between 980 

time-of-travel studies and four NHD flowline feature variables: drainage area, slope, 

mean annual flow, and mean monthly flow (Jobson, 1997; McKay et al., 2012). The 

gage-adjusted streamflow provides the best estimate of current velocities (McKay et al., 

2012) and was used to characterize mean monthly reach velocity. 

Suitable velocities for Bonneville Cutthroat Trout vary between 0 and 70 cm/s, 

and unsuitable velocities are greater than 70 cm/s (Hickman and Raleigh, 1982; Bisson et 

al., 1988). Quantitative Bluehead Sucker velocity thresholds were unavailable, though 

this species is described as preferring habitat with moderate to swift velocity (Sublette et 

al., 1990; Minckley and Marsh, 2009). Using river velocity classifications developed by 

Extence et al. (2002), velocities for Bluehead Sucker between 0-100 cm/s were 

considered suitable, and velocities greater than 100 cm/s were unsuitable. Classifications 

were consistent with previous Bluehead Sucker habitat observations (Beyers et al., 2001). 

  
Gradient 

 I calculated gradient for each reach using a 10-meter resolution digital elevation 

model (DEM) in ArcGIS (USGS, 2015). Reaches were attributed with starting and 

ending elevations from the DEM, and linear stream length was calculated using ArcGIS’s 

Calculate Geometry tool. Gradient is expressed as:  

 
 

𝐺௜,௝ =  
𝐸௜ − 𝐸௝

𝐿௜,௝
 (1) 
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where 𝐺௜,௝ represents the gradient between elevation (𝐸) at upstream (i) and downstream 

(j) extents of a reach, and 𝐿 is the topographic length between 𝑖 and 𝑗.  

Gradients between 0 and 15% were considered suitable, and greater than 15% 

unsuitable for Bonneville Cutthroat Trout (Behnke, 1992; Sigler and Sigler, 1996; Kruse 

et al., 1997). Adult Bonneville Cutthroat Trout reside most of the year in low gradient 

systems, but utilize higher gradients for spawning and rearing (Kershner, 1995; Carlson 

and Rahel, 2010). Cutthroat trout typically prefer gradients less than 6%, but commonly 

occupy habitat with gradients up to 15% (McIntyre and Rieman, 1995; Kruse et al., 1997; 

Dunham et al., 1999; Isaak et al., 2018). Other studies observed Cutthroat Trout where 

gradients exceed 15%, but often as outliers inconsistent with study population 

preferences (Hartman and Gill, 1968; USFS, 1995; Kruse et al., 1997; Dunham et al., 

2003). Cutthroat trout are commonly associated with remote high-gradient headwater 

reaches, but are widely excluded from low-gradient streams with preferable food, 

temperature, and streamflow by instream barriers, habitat degradation, and presence of 

nonnative species (Bozek and Hubert, 1992; USFWS, 2001; Hilderbrand and Kershner, 

2004). While no gradient thresholds are described for Bluehead Suckers, they are 

strongly associated with lower gradients that produce their preferred riffle and pool 

habitats (Bezzerides and Bestgen, 2002; Stewart et al., 2005; Bower et al., 2008). I 

applied generalized guidelines that relate preferred Bluehead Sucker habitat type to 

gradient (Johnston and Slaney, 1996; Moore et al., 2010) to classify gradients of 0 to 6% 

as suitable, and greater than 6% as unsuitable. 
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Stream Temperature 

 I calculated mean monthly stream temperature using a non-linear regression 

between remotely-sensed monthly mean land surface temperature (LST) and observed 

monthly mean stream temperature. Many models predict stream temperature using 

relationships with different environmental variables, though numerous or continuous data 

input requirements limit application to small spatial scales (Benyahya et al., 2007; 

Gallice et al., 2015). McNyset et al. (2015) developed a linear regression model that 

estimates stream temperature throughout a stream network using remotely-sensed LST 

collected by the US National Aeronautics and Space Administration’s (NASA) Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellites. LST is influenced by air 

temperature, climate, surface geology, vegetation, topography, latitude, and elevation, 

which exert similar control over spatial and temporal variation in stream temperature 

(Wheaton et al., 2017). MODIS collects daily, 8-day, and monthly 5km² land surface 

temperature grids, and data collection began in February 2000 (Wan, 2013). MODIS 

provides a temporally and spatially continuous dataset for network-scale temperature 

estimations. Observed monthly stream temperatures were obtained from NorWeST and 

USGS stream temperature databases (Chandler et al., 2016; USGS, 2020b). 

 At high and low air temperatures, snowmelt, groundwater inflows, and 

evaporative cooling cause the linear relationship between air temperature and stream 

temperature to asymptotically flatten (Mohseni and Stefan, 1999). A similar flattening 

relationship also occurs between LST and stream temperature (Figure 3). Mohseni et al. 

(1998) developed a four-parameter nonlinear function to capture this distribution, which I 
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adapted by replacing the air temperature variable with land surface temperature. Stream 

temperature (𝑇ௌ) is expressed as: 

 

 
𝑇ௌ =  𝜇 +  

𝛼 +  𝜇

1 + 𝑒ఊ(ఉି்ಽೄ)
 (2) 

 

where 𝑇௅ௌ is the measured land surface temperature, 𝜇 is the estimated minimum stream 

temperature, 𝛼 is the estimated maximum stream temperature, 𝛽 is the land surface 

temperature at the function’s inflection point, and 𝛾 is a measure of the steepest slope of 

the function. The nonlinear least squares model was fitted to 5,046 monthly stream 

temperature observations from 395 sites in Utah and corresponding monthly MODIS land 

surface temperature (Wan et al., 2015). I calculated monthly stream temperatures for all 

reaches in all months between February 2000 and December 2018 using the fitted model. 

I averaged monthly stream temperatures across all years to estimate mean monthly stream 

temperature.  

Monthly average stream temperatures for Bonneville Cutthroat Trout of 0-22°C 

were considered suitable, and temperatures greater than 22°C were considered unsuitable 

(Hickman and Raleigh, 1982; Schrank et al., 2004; Williams et al., 2009). For Bluehead 

Sucker, mean monthly stream temperatures less than 29°C were considered suitable, and 

temperatures greater than 29°C were considered unsuitable (Bezzerides and Bestgen, 

2002). 

 
Environmental Data Validation 

 Validation of large-scale environmental variables is critical to understand how 

accurate and useful these datasets are for environmental modeling. Large spatial scales 
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limit environmental variable choices and aggregate spatial, seasonal, and inter-annual 

variability, which influence aquatic habitat and species distribution (Budy et al., 2007). 

Validation identifies spatial and temporal variability among environmental variables and 

assesses error introduced through spatial and temporal aggregation (Ottaviani et al., 

2004).  

 

 

FIGURE 3. Relationship between mean monthly stream temperature and mean monthly 
land surface temperature for 395 monitoring locations in Utah, 2000-2018. Solid black 
line shows the fitted nonlinear regression according to Equation 2. 
 
 
 I assessed overall goodness of model fit between observed and predicted stream 

temperature and discharge using coefficient of determination (R²), Nash-Sutcliffe 

efficiency index (NSE), percent bias (PBIAS), ratio of the root mean square error to the 

standard deviation of measured data (RSR), root mean square error (RMSE), and 

standard deviation of observed measurements (SD) statistics (Moriasi et al., 2007). R² 

and NSE describe how well observed versus predicted data fit a 1:1 line with values of 1 

indicating a perfect fit and values <0 indicating no relationship. PBIAS describes the 

tendency of the predicted data to overestimate (positive values) or underestimate 
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(negative values) observed data. RMSE describes error in units of the modeled data and 

SD describes the variance in observed data. RSR is a standardized ratio of the RMSE to 

the SD of observed data where 0 indicates a perfect simulation with no residual error and 

values >1 indicate more residual error in the model than occurs in the data. I calculated 

all model performance metrics in R using the stats (R Core Team, 2020), hydroGOF 

(Zambrano-Bigiarini, 2017), and Metrics (Hamner and Frasco, 2018) packages.  

Standardized model evaluation guidelines provide a reproducible system for 

assessing model performance, enable model performance comparison, and improve 

accountability and public acceptance of model-based findings (ASCE, 1993), even 

though results are often variable, or model- or project-specific. According to Moriasi et 

al. (2007), model performance is considered acceptable when R² exceeds 0.5, NSE 

exceeds 0.5, PBIAS is within +25, RMSE is less than half the standard deviation, and 

RSR is less than or equal to 0.6. Performance is considered to be very good when R² 

exceeds 0.6, NSE exceeds 0.75, PBIAS is within +10, and RSR is less than or equal to 

0.5 (Moriasi et al., 2007). 

I validated modeled mean monthly stream temperature using an independent, 

unpublished monthly stream temperature dataset of 2,220 NorWeST observations from 

79 sites (Dan Isaak, USFS, 2019, unpublished data). I evaluated model performance 

using all observations, then validated summer (April to September) and winter (October 

to March) data subsets to evaluate whether model accuracy differs between seasons. 

I validated NHD discharge accuracy using independent USGS stream gage mean 

monthly discharge data (USGS, 2020b). I used 52,696 monthly discharge observations 

from 316 sites in Utah collected between 1971 and 2000 to validate NHD mean monthly 
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discharge during the period represented by the NHD estimates, as well as 25,473 

observations at 158 sites in Utah collected between 2001 and 2018 to validate NHD mean 

monthly discharge estimates to post-gage-regression conditions. I log base 10-

transformed observed and modeled discharge measurements, consistent with validation 

procedures used by NHD quality assurance and other studies (Wenger et al., 2010; 

McKay et al., 2012). Error is often multiplicative in hydrologic data (Götzinger and 

Bárdossy, 2008), and log-transformed linear regression is recommended for analysis 

(Xiao et al., 2011).  

 Data were unavailable for validating mean monthly stream velocity and gradient. 

NHD EROM quality assurance documentation did not assess velocity estimates (McKay 

et al., 2012) and USGS does not collect sufficient mean monthly stream velocity 

observations in Utah for validation. 

 
Evaluation of Habitat Suitability Models  

 Evaluating habitat suitability model accuracy typically relies on presence/absence 

data (Hirzel et al., 2006). However, absence data is often unreliable or difficult to obtain 

due to elusive behavior, limited access to habitat, and varied activity patterns, which 

often result in presence-only observation datasets (Ottaviani et al., 2004). Evaluating 

habitat suitability models with presence-only datasets is challenging as absence 

predictions cannot be validated with independent observational data.  

A common solution is to compare the observed frequency of species presence in 

habitat suitability classes to the frequency expected by chance (Brotons et al., 2004; 

Hirzel et al., 2006). In this approach, habitat suitability is portioned into 𝑛 classes, in this 

case two. Each habitat suitability class is described by two frequencies, the observed 
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frequency of species presences (𝑂௜), and the expected frequency (𝐸௜) based on the 

distribution of each habitat suitability class across the study area: 

 

 
𝑂௜ =

𝑑௜

𝐷
  (1) 

 

where 𝑑௜  is the number of presence detections located in habitat with suitability class 𝑖 

and 𝐷 is the total number of presence detections across all suitability classes; and: 

 
 

𝐸௜ =
𝑙௜

𝐿
  (4) 

 

where 𝑙௜ is the sum length of reaches classified as suitability class 𝑖 and 𝐿 is the total 

stream length of the study area.  

For each habitat suitability class 𝑖, the observed-to-expected (O/E) ratio 

summarizes the relationship between observed presence and presence expected by chance 

as a value between 0 and positive infinity where an O/E ratio of 1 indicates observed 

presence in a given suitability class occurring at the same frequency as that expected by 

chance. If the model accurately classifies suitability, suitable habitat classes have more 

presence observations than expected by chance (O/E ratio > 1) and unsuitable habitat 

classes should have less (O/E ratio < 1). Inversely, if the model inaccurately classifies 

suitability, suitable classes will have fewer presence observations than expected by 

chance (O/E ratio < 1) and unsuitable classes will have more (O/E ratio > 1). In binary 

classification structures with only two (suitable and unsuitable) habitat classes, the 

difference between the suitable and unsuitable O/E ratios describes habitat suitability 



24 
model classification accuracy. I evaluated habitat suitability model accuracy using the 

observed-to-expected ratio difference (O/EDiff) given by  

 
 

𝑂/𝐸஽௜௙௙ = 𝑂/𝐸ௌ௨௜௧௔௕௟௘ −  𝑂/𝐸௎௡௦௨௜௧௔௕௟௘   (5) 

 

Positive O/EDiff values indicate accurate suitability classification where presence 

observations occur in suitable habitat, and values greater than 1 indicate better 

classification accuracy than considering all habitat suitable. An O/EDiff of 0 indicates 

presence observations occur in habitat misclassified as unsuitable as often as they occur 

in correctly classified suitable habitat. Negative O/EDiff values indicate inaccurate 

suitability classification where presence observations occur primarily in unsuitable 

habitat.  

 I calculated O/EDiff values for each species in all months using 1485 Bonneville 

Cutthroat Trout and 202 Bluehead Sucker presence observations provided by UDWR 

(Figure 4). I restricted accuracy evaluation to sub-basins within the historical range of 

each species. Bonneville Cutthroat Trout and Bluehead Sucker presence observations 

came from different sampling efforts, and some presence observations lacked date and 

time data. If fish presence was observed in any month, I considered fish potentially 

present in all months of the year, which is consistent with both species’ life history 

patterns that include sedentary habitat occupation for much of the year (Hilderbrand and 

Kershner, 2000; Sweet and Hubert, 2010).  

 I evaluated habitat suitability model performance by comparing O/EDiff values for 

each model averaged across all months and between different months. I identified best 

overall models at predicting species presence as those with the largest positive O/EDiff 
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value. I identified best models as those including the fewest environmental variables that 

predict presence better than assuming suitable habitat range wide (O/EDiff greater than 1). 

Best models are important as they represent a balance between model accuracy and 

complexity ideal for application in water resources systems models. I assessed the impact 

of additional environmental variables on habitat suitability model accuracy by examining 

how O/EDiff values and number of included variables change between best models and 

best overall models. In cases where multiple models have equal O/EDiff values, the model 

with the fewest environmental variables was considered best. 

 

 

FIGURE 4. Presence observations collected by UDWR of A) Bonneville Cutthroat Trout 
and B) Bluehead Sucker in Utah. 
 
 
Barriers and Passage 

Stream network connectivity relies on identifying all potential barriers in a stream 

network, including dams, waterfalls, and transportation structures that inhibit organism 
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movement (Dynesius and Nilsson, 1994; Warren and Pardew, 2004; Kemp and 

O’Hanley, 2010; Faulks et al., 2011). I developed a database of instream barrier locations 

from publicly-available federal and state datasets (Table 3). I identified dam locations 

from the US Army Corps of Engineers (USACE) National Inventory of Dams (USACE, 

2020) and state water resources agencies (UDWR, 2020; IDWR, 2020; CDWR, 2020a, 

2020b). I identified waterfalls locations using the USGS Geographic Name Information 

System (USGS, 2020a). I identified locations for three types of road crossing barriers 

from the Federal Highway Administration (FHA) National Bridge Inventory including 

bridges, culverts, and slabs (FHA, 2018). Road crossings in particular are often under-

described in in physical structure datasets, but are the most common cause of stream 

fragmentation and pose significant barriers to fish movement (Januchowski-Hartley et al., 

2013). To identify potential road crossing barriers not included in the National Bridge 

Inventory, I intersected the stream network with road networks (Januchowski-Hartley et 

al., 2013; Mahlum et al., 2014) available through UDWR (Don Wiley, UDWR, 2019, 

unpublished data) and state transportation agencies (NDOT, 2019; ADOT, 2020; CDOT, 

2020; ITD, 2020; UDOT, 2020; WYDOT, 2020). I cross-checked all barrier locations for 

duplicates to remove multiple occurrences for the same barrier.   

Estimating barrier passability is essential to calculate stream network 

connectivity, but is often unavailable (Mahlum et al., 2014). Numerous species-specific, 

survey-based, rule-based, and statistical approaches for calculating barrier passability 

have been developed (Meixler et al., 2009; Anderson et al., 2012; Mahlum et al., 2014; 

Diebel et al., 2015; Kraft et al., 2019), but require physical structure dimensions or 

species passability assessments that are infeasible for large spatial scales with multiple 
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stream networks and many barriers. Barrier passability is a value between 0 (completely 

impassable) and 1 (completely passable). I assigned a passability rating of 0 to dams 

(Kemp and O’Hanley, 2010; Neeson et al., 2015), slab road crossings (Warren and 

Pardew, 2004), and waterfalls and other natural barriers (Cote et al., 2009; Bourne et al., 

2011). Bridges are largely passable and were assigned a rating of 0.9 (Kemp and 

O’Hanley, 2010; Diebel et al., 2015). Most culverts present a significant barrier to fish 

movement and at higher gradients and flows become impassable (Warren and Pardew, 

2004; Poplar-Jeffers et al., 2009). I assigned culverts on stream reaches with gradients 

greater than 5% a passability rating of 0, and all other culverts a passability rating of 0.3 

(Poplar-Jeffers et al., 2009). All other undescribed road crossing barriers were assigned a 

passability rating of 0.5 (Warren and Pardew, 2004; Cote et al., 2009). Barrier passability 

was uniform for both target species and for upstream and downstream movement.  

 
Physical Barrier Longitudinal Connectivity  

 I calculated monthly DCI connectivity in Utah HUC8 sub-basins, where 

fish passage was limited by physical instream barriers. The physical barrier approach 

provides a maximum estimation of connectivity as it assumes all reaches have suitable 

habitat. I calculated longitudinal stream connectivity using the DCI (Cote et al., 2009). 

Connectivity describes the probability that an organism can move freely between two 

stream reaches. DCI is a scalar index that quantifies longitudinal connectivity based on 

the probability of an organism moving freely between random points in a stream network 

determined by the number, passability, and placement of barriers (Cote et al., 2009). DCI 

is a generalized model that incorporates diadromous and potadromous life histories 

(Kemp and O’Hanley, 2010). I applied a potadromous formulation, meaning fish make 
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TABLE 3. Barrier type, passability rating, number, and data source. 

Barrier Type Passability  Count Data Source 

Bridge 0.9 1346 FHA National Bridge Inventory 

Culvert 0-0.3 298 
FHA National Bridge Inventory 

Utah Division of Wildlife Resources 

Dam 0.0 856 

USACE National Inventory of Dams 
Utah Division of Water Rights 

Idaho Department of Water 
Resources 

Colorado Division of Water 
Resources 

Road Crossing 0.5 17610 
Utah, Idaho, Wyoming, Colorado, 
New Mexico, Arizona, and Nevada 

Departments of Transportation 

Slab 0.0 79 FHA National Bridge Inventory 

Natural Barriers 0.0 57 
USGS Geographic Names 

Information System 

 
 
up- and downstream freshwater migrations, consistent with the life histories of 

Bonneville Cutthroat Trout and Bluehead Sucker: 
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(6) 
 

where 𝑛 is the number of reaches, 𝑐௜௝ is the connectivity between reaches i and 𝑗, 𝑙 is the 

length of reaches i and 𝑗, 𝐿 is the total length of all reaches. The DCI assesses 

connectivity (𝑐௜௝) between two reaches depending on the number of barriers (𝑀) between 

reaches i and 𝑗, and the upstream (𝑝௠
௨ ) and downstream (𝑝௠

ௗ ) passabilities of the 𝑚th 

barrier: 
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(7) 

 

This approach assumes that potadromous fish are equally likely to move upstream as 

downstream, and independent passability between multiple barriers (Cote et al., 2009). 

Upstream and downstream passability are the same for all barriers in this study.  

 
Physical Barrier and Habitat Suitability Longitudinal Connectivity  

 DCI is commonly applied using physical barriers, but habitat quality can be 

included to capture additional fragmentation from poor quality habitat. Seasonal low 

flows, high temperatures, and steep gradient can also create barriers to fish movement 

and further fragment stream networks (Mahlum et al., 2014; Dzara et al., 2019). I 

captured this additional fragmentation by multiplying DCI variables 𝑙௜ and 𝑙௝ by 1 if 

classified as suitable habitat and 0 if classified as unsuitable habitat. I calculated 

statistical comparisons between physical barrier and habitat suitability DCI for Utah 

HUC8 sub-basins that overlap each species’ historical range. I evaluated statistical 

similarity between DCI with physical barriers and DCI with habitat suitability and 

physical barriers for each species using Dunn’s multiple comparison test (Dunn, 1961). 

Dunn’s test is appropriate when comparing nominal variables to uniformly, but not 

normally, distributed measurement variables.  
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RESULTS 

 
Environmental Data Validation 

 Modeling results described here compare monthly NHD gage-adjusted discharge 

and monthly LST-predicted stream temperature to observed values. I focus on R² and 

NSE to describe overall goodness of fit, RSR to describe standardized error, and PBIAS 

to describe over- and underestimation (Moriasi et al., 2007; Wenger et al., 2010). 

Modeled discharge and stream temperature met acceptable criteria for all model 

performance metrics, and overall, were considered a good representation of observed 

instream conditions (Table 4). For all environmental variables and time periods, R² and 

NSE were > 0.65, which are considered a good model fit, and all but discharge in the 

2001-2018 period were > 0.75, indicating very good model fit (Moriasi et al., 2007). RSR 

values ranged from 0.27 to 0.53, indicating limited standardized error in all variables 

(Moriasi et al., 2007). PBIAS was < 25 for all environmental variables, indicating 

acceptable bias in model results, and all variables but stream temperature in winter 

months were < 15, indicating good limitation of bias (Moriasi et al., 2007).  

 Predicted mean monthly discharge matched observed values well with a slight 

overestimation bias (Table 4). The relationship between predicted and observed discharge 

was consistent between the 1971-2000 period represented by the NHD estimates and the 

2001-2018 period (Figure 5). In both periods small, low flow streams showed higher 

variability between observed and predicted discharge than larger streams, indicating 

NHD discharge precision declines in smaller, low flow streams. R², NSE, PBIAS, and 

RSR had slightly poorer accuracy during the 2000-2018 period compared to the 1971-

2000 NHD period, indicating NHD discharge estimates become less accurate when
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TABLE 4. Performance metrics for predicted versus observed mean monthly discharge and stream temperature. Dark green indicates 
very good, light green indicates good, and yellow indicates satisfactory model performance (Moriasi et al., 2007). White indicates no 
guidelines exist for model performance. 

Environmental Variable Period R² NSE PBIAS RSR RMSE SD 

Discharge* 
1971-2000 0.81 0.78 +7.7 0.27 0.36 log10(cfs) 0.78 log10(cfs)  

2001-2018 0.78 0.72 +12.1 0.53 0.43 log10(cfs)  0.82 log10(cfs)  

Stream Temperature 

2000-2018 0.89 0.87 -4.2 0.35 2.4°C 7.1°C 

Summer 0.81 0.81 0.5 0.44 2.6°C 5.8°C 

Winter 0.82 0.72 -15.3 0.53 2.4°C 4.5°C 

* Log base 10-transformed. 
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characterizing discharge outside of the gage-regression period.  

 

 

FIGURE 5. Linear regression between observed and predicted mean monthly discharge 
in Utah for A) 316 gages in the 1971-2000 NHD period and B) 158 gages in the 2001-
2018 period. Blue dots show time period-averaged mean monthly discharge 
measurements. Axes are plotted on log10 scale. Solid lines are the log10 linear 
regression. Dashed lines are a one-to-one relationship. 
 

 Estimated mean monthly stream temperatures matched observed mean monthly 

stream temperatures with good accuracy across all years, months, and locations, despite 

slight underestimation bias (Table 4, Figure 6). Model performance was similar across 

summer (April-September) and winter (October-March), with R² and RMSE showing 

little seasonal change. Stream temperatures were underestimated by about 15% in winter, 

when there was less variability in observed stream temperatures. Winter NSE and RSR 

had slightly poorer model performance compared to summer months resulting from 

decreased variability (SD) in the observed data while error between observed and 

predicted values (RMSE) remained consistent.  
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FIGURE 6. Linear regression between observed and predicted mean monthly stream 
temperature for 79 sites in Utah from 2000-2018. Orange dots indicate summer months 
(April-September) and blue dots indicate winter months (October-March). The solid line 
is the linear regression between predicted and observed temperatures. The dashed line is a 
one-to-one relationship. 
 

Evaluation of Habitat Suitability Models 

 All combinations of environmental variables were combined for 15 alternative 

average monthly habitat suitability models to evaluate the best predictor of species 

presence and whether there are tradeoffs between model accuracy and simplicity. O/EDiff 

values that were greater than 0 indicate that habitat suitability models predicted fish 

presence better than a random distribution, and O/EDiff values that exceeded 1 

demonstrate that habitat suitability models predicted fish presence better than assuming 

all habitat was suitable (Tables 5,6). The best predictor of Bonneville Cutthroat Trout 

presence averaged over all months was stream temperature (mean annual O/EDiff = 1.02), 

while the best predictors of Bluehead Sucker presence were percent MAD and gradient 

(mean annual O/EDiff = 1.34). On average over all months, velocity was a poor predictor 
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for presence of either fish species, and predicted species presence less accurately than a 

random distribution. 

 The best models were those with the fewest environmental variables and with 

O/EDiff scores greater than 1 averaged across all months. Accurately representing habitat 

as simply as possible was a goal for inclusion in water resources systems models. For 

both species, best models were able to accurately differentiate suitable and unsuitable 

habitat using a single variable. Temperature was the best predictor of Bonneville 

Cutthroat Trout presence (mean annual O/EDiff = 1.02), and was the only model with a 

mean annual O/EDiff greater than 1. Gradient and temperature were the best predictors of 

Bluehead Sucker presence (mean annual O/EDiff = 1.34), although gradient performed 

nearly as well using a single predictor variable (mean annual O/EDiff = 1.32). Adding 

gradient improved Bonneville Cutthroat Trout presence prediction from June to August, 

and adding velocity improved Bluehead Sucker presence prediction from December to 

March, but O/EDiff scores remained similar to those of simpler models. In all cases, 

simple models using a subset of the available environmental variables best predicted 

species presence. 

Detailed models using more environmental variables to classify suitable habitat 

did not translate to more accurate results.  Some predictor variables like velocity may be 

inaccurate or not meaningful at the reach lengths (median reach length = 0.96 km, 

average reach length = 2.19 km) represented here. Velocity predicted habitat suitability 

poorly in summer months for both species, and percent MAD predicted Bonneville 

Cutthroat Trout habitat suitability poorly in winter months. When these variables were 

included, they misclassified habitat suitability despite increasing model complexity. Also,
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TABLE 5. Bonneville Cutthroat Trout habitat suitability model O/EDiff ratios. Model runs include combinations of environmental 
variables: percent MAD (Q), velocity (V), stream temperature (T), and gradient (G). Green shading indicates good model performance 
(O/EDiff > 1), and red indicates poor model performance (O/EDiff < 0). Highest O/EDiff for each month is emphasized in bold. 

Bonneville Cutthroat Trout 

Environmental 
Variables 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

T 1.00 1.00 1.00 1.00 1.00 1.05 1.11 1.03 1.00 1.00 1.00 1.00 1.02 
T + G 0.78 0.78 0.78 0.78 0.78 0.96 1.06 0.90 0.78 0.78 0.78 0.78 0.83 

T + G + Q 0.67 0.61 0.78 0.44 0.78 0.99 1.11 0.90 0.81 0.78 0.78 0.69 0.78 
G 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 

G + Q 0.67 0.61 0.78 0.44 0.78 0.87 0.89 0.79 0.81 0.78 0.78 0.69 0.74 
T + G + V 1.02 0.99 0.96 0.39 -1.22 -0.74 0.75 0.53 0.73 0.79 0.79 0.94 0.50 

T + G + Q + V 0.96 0.91 0.96 0.17 -1.22 -0.64 0.82 0.54 0.76 0.79 0.79 0.90 0.48 
G + Q + V 0.96 0.91 0.96 0.17 -1.22 -0.96 0.41 0.31 0.76 0.79 0.79 0.90 0.40 

G + V 1.02 0.99 0.96 0.39 -1.22 -1.18 0.16 0.29 0.73 0.79 0.79 0.94 0.39 
T + Q + V 0.97 0.91 1.02 -0.89 -1.74 -1.09 0.74 0.13 0.49 1.00 1.00 0.86 0.28 

T + V 1.07 1.05 1.02 -0.44 -1.74 -1.26 0.64 0.10 -1.04 1.00 1.00 0.94 0.19 
Q + V 0.97 0.91 1.02 -0.89 -1.74 -1.62 -0.10 -2.07 0.49 1.00 1.00 0.86 -0.01 
T + Q -0.17 -4.75 1.00 -3.14 1.00 1.06 1.13 1.03 1.00 1.00 1.00 -2.85 -0.22 

Q -0.17 -4.75 1.00 -3.14 1.00 1.02 1.03 1.00 1.00 1.00 1.00 -2.85 -0.24 
V 1.07 1.05 1.02 -0.44 -1.74 -2.07 -1.72 -2.49 -1.04 1.00 1.00 0.94 -0.29 
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TABLE 6. Bluehead Sucker habitat suitability model O/EDiff ratios. Model runs include combinations of environmental variables: 
percent MAD (Q), velocity (V), stream temperature (T), and gradient (G). Green shading indicates good model performance (O/EDiff > 
1), and red indicates poor model performance (O/EDiff < 0). Highest O/EDiff for each month is emphasized in bold. 

Bluehead Sucker 

Environmental 
Variables 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

G + Q 1.34 1.34 1.33 1.33 1.32 1.35 1.34 1.33 1.33 1.32 1.32 1.37 1.34 
G + T + Q 1.34 1.34 1.33 1.33 1.32 1.35 1.34 1.33 1.33 1.32 1.32 1.37 1.34 

G  1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 
G + T 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 

T 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Q 0.77 0.80 1.00 1.00 1.00 1.02 1.02 1.00 1.01 1.00 1.00 1.03 0.97 

Q + T 0.77 0.80 1.00 1.00 1.00 1.02 1.02 1.00 1.01 1.00 1.00 1.03 0.97 
G + T + Q + V 1.36 1.34 1.35 0.87 0.05 -1.71 1.08 1.33 1.33 1.32 1.32 1.42 0.92 

G + Q + V 1.36 1.34 1.35 0.87 0.05 -1.71 1.08 1.33 1.33 1.32 1.32 1.42 0.92 
G + V 1.34 1.33 1.34 0.86 0.04 -1.80 1.05 1.32 1.32 1.32 1.32 1.37 0.90 

G + T + V 1.34 1.33 1.34 0.86 0.04 -1.80 1.05 1.32 1.32 1.32 1.32 1.37 0.90 
T + Q + V 0.91 0.82 1.02 -1.58 -4.14 -6.05 -0.71 1.00 1.01 1.00 1.00 1.07 -0.39 

Q + V 0.91 0.82 1.02 -1.58 -4.14 -6.05 -0.71 1.00 1.01 1.00 1.00 1.07 -0.39 
T + V 1.02 1.00 1.02 -1.89 -4.18 -7.22 -2.87 1.00 1.00 1.00 1.00 1.04 -0.67 

V 1.02 1.00 1.02 -1.89 -4.18 -7.22 -2.87 1.00 1.00 1.00 1.00 1.04 -0.67 
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some predictor variables may have been redundant. While stream temperature was an 

overall good predictor of habitat suitability for Bluehead Sucker, including temperature in 

models containing gradient and percent MAD did not change habitat suitability 

classification accuracy.  

 
Evaluation of Stream Network Connectivity 

 DCI scores that included only physical barriers varied considerably among Utah 

sub-basins (Figure 7), ranging from 95.7 in the Green River through Desolation Canyon 

(HUC 14060008) to 0.7 in the Escalante Desert (HUC 16030006). DCI does not include 

qualitative definitions of ‘good’ or ‘poor’ connectivity (Cote et al., 2009), but DCI values 

less than 50 are typically considered fragmented, and values less than 20 are highly 

fragmented (Bourne et al., 2011; Mahlum et al., 2014). Median DCI was 9, and DCI was 

less than 24 in 75% of sub-basins, indicating substantial stream network fragmentation 

throughout Utah. Low DCI values were concentrated along Utah’s Wasatch Front, 

Wasatch Plateau, and Great Basin deserts, while higher DCI connectivity occurred on the 

Colorado Plateau and along the Green River. Barbarossa et al. (2020) calculated DCI 

connectivity in occurrence ranges for ~10,000 non-diadromous lotic fish species 

worldwide, and found similarly low DCI connectivity (DCI < 30) across the western 

United States including Utah.   

Connectivity varied between the historical ranges of each species. Connectivity in 

Bluehead Sucker native range showed no significant difference from connectivity across 

all sub-basins (p-value = 0.35), and was generally less fragmented than sub-basins 

statewide. Bonneville Cutthroat Trout native range sub-basins showed significantly less 

connectivity than either Bluehead Sucker (p-value = 2.99e-05) or sub-basins statewide (p- 
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FIGURE 7. Physical barrier DCI connectivity for A) Utah HUC8 sub-basins, B) HUC8 
sub-basins where Bonneville Cutthroat Trout were historically present, C) HUC8 sub-
basins where Bluehead Sucker were historically present, and D) the distribution of sub-
basin connectivity for each group. Yellow denotes significant difference (p-value > 0.05) 
from statewide connectivity. 
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value = 1.52e-04), indicating that Bonneville Cutthroat Trout face considerably more 

habitat fragmentation within their native range than Bluehead Sucker. 

 Habitat suitability sub-basin connectivity varied by month and species when using 

a four-variable habitat suitability model including gradient, percent MAD, velocity, and 

stream temperature (Figure 8). January to April and July to December showed slight, but 

insignificant (p-value > 0.05) differences from connectivity using only instream barriers, 

indicating that in cooler and low-flow winter months, habitat limitations do not 

significantly alter connectivity for either Bonneville Cutthroat Trout or Bluehead Sucker. 

May and June habitat suitability DCI declined significantly (p-value < 0.05) from barrier-

only DCI and other months for both Bonneville Cutthroat Trout and Bluehead Sucker, 

indicating that monthly changes in instream conditions can significantly reduce habitat 

connectivity. More broadly, habitat suitability sub-basin connectivity declined range-

wide between April and July for both species, and remained higher throughout the 

remainder of the year. Timing of seasonal declines in habitat suitability DCI did not 

differ between species, with both species experiencing the highest levels stream network 

fragmentation in May and June. 
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FIGURE 8. Distribution of habitat suitability sub-basin connectivity by month for A) 
Bonneville Cutthroat Trout and B) Bluehead Sucker. Whiskers show the 10th and 90th 
percentiles, boxes show quartiles, and bars show the median. Red indicates significant 
difference (p-value < 0.05) from barrier-only connectivity (B-O) based on Dunn’s 
multiple comparison test. 
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DISCUSSION 

 
My results demonstrated that habitat suitability models can accurately predict 

Bonneville Cutthroat Trout and Bluehead Sucker presence at large spatial scales. NHD 

mean monthly discharge and land surface temperature-derived stream temperatures 

matched observed data well, with R² and NSE always exceeding 0.65. NHD mean 

monthly discharge R² values were consistent with NHD quality assurance reporting 

(McKay et al., 2012). My temperature model assessments were consistent with models 

developed at much smaller scales. For example, monthly mean stream temperature R² 

and RMSE were consistent with similar basin-wide mean daily stream temperature in 

Oregon’s John Day River (McNyset et al., 2015). The four-parameter nonlinear model 

(Mohseni et al., 1998) accurately captured the asymptotical flattening of the stream 

temperature-land surface temperature relationship, improved stream temperature 

predictions in winter months with low land surface temperature, and facilitated monthly 

predictions of stream temperature across all months with a single model.  

My generalized habitat suitability models correctly predicted Bonneville 

Cutthroat Trout and Bluehead Sucker presence across watersheds throughout Utah. Mäki-

petäys et al. (2002) successfully identified juvenile Atlantic Salmon (Salmo salar) habitat 

suitability across four river systems in Finland using generalized habitat suitability 

models based on depth, water velocity, and substrate. My results build on these findings 

by similarly identifying habitat suitability across multiple systems, but further 

generalizing the approach by using environmental variables available publicly through 

large spatial scale environmental datasets, thus minimizing the need for time consuming 

and costly field surveys. Environmental variables which best predicted Bonneville 
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Cutthroat Trout and Bluehead Sucker presence varied between species and months, and 

reducing model complexity improved presence predictions for both species. Utah stream 

networks were generally fragmented, and Bonneville Cutthroat Trout habitat was 

significantly more fragmented within their native range than Bluehead Sucker. Monthly 

connectivity calculated with habitat suitability was significantly different than 

connectivity that included only instream barriers in May and June, indicating that poor 

habitat creates significant additional fragmentation in stream networks. 

Habitat suitability models are often criticized for unreliable model performance 

and simplistic designs that ignore complex species-habitat relationships (Roloff and 

Kernohan, 1999; Loukmas and Halbrook 2001). However, studies have found habitat 

suitability models predict species presence with accuracy comparable to more detailed, 

site-specific models (Mäki-petäys et al., 2002; McHugh and Budy, 2004). Roloff and 

Kernohan (1999) reviewed 58 habitat suitability models, and found that failure to 

examine input environmental variable accuracy commonly led to poor model 

performance. Wesche et al. (1987) and Hubert and Rahel (1989) reviewed habitat 

suitability models for freshwater fish species in Wyoming and in all cases found that 

reducing model complexity by removing environmental variables uncorrelated to species 

observations resulted in better predictions of standing stock and biomass. My approach 

included both environmental variables validation and evaluation of predictor variables 

and demonstrates that thorough evaluation of input variables and model design can yield 

accurate habitat suitability classifications using simple model designs, even when applied 

at large spatial scales. 
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McHugh and Budy (2004) noted that habitat suitability model performance is 

largely determined by which variables best characterize suitability. Bonneville Cutthroat 

Trout (Budy et al., 2012; Isaak et al., 2014) and Bluehead Sucker (Budy et al., 2015; 

Fraser et al., 2019) are sensitive to high stream temperatures at any location and time. 

Stream temperature and gradient can vary within reaches (Tate et al., 2007; Nagel et al., 

2010), but consistent accuracy for both variables predicting Bonneville Cutthroat Trout 

and Bluehead Sucker presence indicated that landscape-scale suitability classifications 

are largely insensitive to this intra-reach variability. Unsurprisingly, stream temperature 

predicted habitat suitability well in all months and best in summer months when peak 

stream temperatures pose the greatest threat to coldwater aquatic species (Isaak et al., 

2016). Percent MAD predicted habitat suitability for both species well in summer months 

when diversions and seasonally declining streamflow are most common. Poor predictions 

of Bonneville Cutthroat Trout presence from December to February indicated that 

literature thresholds poorly describe habitat quality in winter months and that low flows 

don’t restrict habitat use throughout much of the year. Focal point velocity thresholds 

translated poorly to reach-scale estimations, with mean O/EDiff scores always < 1 

indicating poor prediction accuracy. Velocity thresholds likely failed to capture velocity 

refugia created by boulders, logs, and other instream cover that allow fish to occupy 

otherwise unsuitably swift habitat. 

Barrier-only sub-basin DCI scores were consistent with similar estimations by 

Mahlum et al. (2014) in southern Ontario and lower than estimations by Perkin and Gido 

(2012) in Kansas, although both studies assessed connectivity at smaller, watershed 

scales. Differences between Bonneville Cutthroat Trout and Bluehead Sucker sub-basin 
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connectivity were likely due to Bonneville Cutthroat Trout occupying urbanized sub-

basins of Utah’s Wasatch Front and naturally fragmented sub-basins of Great Basin 

deserts. DCI accuracy is dependent upon correct identification of barrier locations and 

passability ratings (Bourne et al., 2011; Mahlum et al., 2014), and differences between 

rule-based, survey-based, and type-based passability ratings may cause variability in 

connectivity estimations. Specific descriptions of barrier passability are often lacking and 

require user assumptions of barrier passability that introduce further variability. However, 

connectivity indices like the DCI are intended as flexible options to accommodate a wide 

variety of stream network scenarios, and provide a useful measure to assess stream 

network connectivity (Cote et al., 2009). 

Once habitat suitability models have identified reaches consistent with 

management objectives, they can be combined with more complex models to provide a 

clearer picture of instream habitat conditions. Spawning habitat (Behnke, 1992; Minckley 

and Marsh, 2009), dissolved oxygen (Hickman and Raleigh, 1982; Null et al., 2017), 

stream temperature (Isaak et al., 2014; Elmore et al., 2016), food availability (Wheaton et 

al., 2017; Saunders et al., 2018), and non-native species presence (Hilderbrand and 

Kershner, 2000; Bezzerides and Bestgen, 2002; Budy et al., 2007; Webber et al., 2012) 

all restrict habitat suitability, but are challenging to estimate at large spatial scales and 

often poorly linked to species presence in the literature. Targeted applications to reaches 

identified by simpler approaches provide managers with detailed habitat conditions 

relevant to species life history requirements, while reducing time and cost required for 

large scale estimations. These results can help managers identify optimal restoration 

actions while minimizing modeling complexity and data requirements. 
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As with all models, my approach simplified real-world conditions. My approach 

considered all connected water bodies to be fluvial stream environments, which 

facilitated connectivity analysis but ignored habitat complexity created by lakes, 

reservoirs, and other water bodies that occur within stream networks. I assumed uniform 

barrier passability for all months and for upstream and downstream movement (King et 

al., 2017). I calculated instream habitat from statistical relationships with other 

continuous environmental variables, which provides for landscape scale estimations but 

ignores the influence of water management activities such as reservoir operations and 

water treatment on streamflow and temperature. I validated habitat suitability models 

with presence-only data, which limit assessment absence predictions and cannot 

differentiate whether species were absent due to environmental conditions, nonnative 

species, or weren’t sampled. Assessing absence predictions is important in evaluating 

habitat suitability models (Brotons et al., 2004). However, animal species absence 

detections are often unreliable and difficult to verify through field surveys (Ottaviani et 

al., 2004), and presence-only approaches are recommended when absence data is 

ambiguous (Hirzel et al., 2006). My approach relied on literature-based environmental 

thresholds that are often limited by incomplete understanding of life history requirements, 

lack of relevance when derived from laboratory experiments, and reliance on user 

expertise to establish threshold boundaries (Hubert and Rahel, 1989). Despite these flaws, 

literature-based environmental thresholds provide the best or only option for determining 

suitable habitat at large spatial scales and when species presence data are not readily 

available. 
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Future climate change poses a significant threat to aquatic ecosystems, 

particularly coldwater species sensitive to declining streamflow and increasing stream 

temperature (Isaak and Rieman, 2013; Jaeger et al., 2014). Numerous studies have 

examined how climate change could affect instream habitat quality for fish species using 

climate change scenarios to simulate reasonable future conditions (Xenopoulos et al., 

2005; van Vliet et al., 2013;  Isaak et al., 2010, 2017, 2018). The model I present here 

focuses on recent instream conditions to inform management decisions, and does not 

explicitly address future climate change scenarios. However, the model is compatible 

with different approaches for simulating the effects of climate change. Conducting model 

runs with different estimations of instream conditions and comparing the results to recent 

conditions could demonstrate how quality habitat distribution and connectivity change 

under different climate scenarios. Sensitivity analysis among different environmental 

variables could identify which variables are most sensitive under different climate change 

scenarios, and indicate how best-prediction model designs might change with shifting 

climatic conditions. Such information provides valuable information to resource 

managers tasked with evaluating long-term restoration and mitigation actions influenced 

by knowledge of current and future threats to species persistence. 

 
Implications for Aquatic Habitat and Water Resources Management  

 One of the most pressing challenges facing aquatic habitat managers is the long-

term protection of aquatic organisms and ecosystems. Like many states in the 

Intermountain West, Utah’s population is projected to nearly double in the next 50 years 

(Utah Foundation, 2014; Kem C. Gardner Policy Institute, 2016), which will increase 

water demand. Resource managers must participate in water management decisions and 
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define conservation objectives before water needed for aquatic organisms is allocated 

elsewhere. Methods that rapidly and affordably identify habitat conditions provide 

resource managers information to guide conservation and water management objectives 

to protect aquatic ecosystems. 

 The habitat suitability models I presented here provide a repeatable, validated, 

and cost-effective method for projecting aquatic habitat conditions and barriers to fish 

movement throughout Utah. This information can help managers prioritize funding for 

instream restoration, habitat protection, and barrier removal to enhance habitat quality 

and passage for aquatic species. To elucidate results and implications for fisheries 

management, I compare habitat suitability and connectivity of Utah’s Weber and Virgin 

Rivers. The Weber River has unique populations of Bonneville Cutthroat Trout and 

Bluehead Sucker which make extensive use of mainstem and tributary systems (Webber 

et al., 2012; Budy et al., 2014). Weber River mainstem and tributaries largely contain 

suitable habitat for both species (Figure 9A), but are highly fragmented by instream 

barriers (Figure 7A) which isolate populations and increase the risk of extirpation (Budy 

et al., 2014). Identifying and removing barriers allows managers to improve access to 

suitable habitat and facilitate genetic exchange for both species, providing a cost-

effective solution to achieve management objective. Likewise, Utah’s Virgin River 

contains remnant populations of Bonneville Cutthroat Trout and Bluehead Sucker, which 

are isolated in upper tributary systems (Brienholt and Heckmann, 1980; Hepworth et al., 

1997). While the Virgin River’s upper tributaries contain suitable habitat for both species, 

the lower tributaries and mainstem Virgin River are seasonally unsuitable for Bonneville 

Cutthroat Trout (Figure 9B), and the sub-basin is highly fragmented by instream barriers 
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(Figure 7A). In the Virgin River, barrier removal could be targeted in upstream tributaries 

to improve access to suitable habitat for both species while minimizing costs. More 

expansive, but increasingly expensive, restoration including habitat improvements and 

barrier removal along the lower Virgin River, Santa Clara River, and Ash and La Verkin 

Creeks could provide additional suitable habitat, facilitate movement between mainstem 

and tributary systems, and connect small, isolated populations. This information can be 

incorporated into optimization models that identify specific restoration actions and barrier 

removals which maximize habitat improvements while minimizing costs to other water 

users (Kraft et al., 2019).   

My habitat suitability models also offer flexibility to incorporate other species. By 

focusing on key physical drivers of habitat quality such as streamflow and temperature 

(Mohseni et al., 2003), my approach could be modified to represent the habitat 

requirements of different species. This is especially advantageous for nonnative species 

that limit native species, alter food webs, and spread rapidly (Adams et al., 2001; 

Leprieur et al., 2008). Future modeling could identify potential nonnative species 

distributions by identifying their environmental thresholds from the literature and 

modeling suitable habitat. Then, critical barriers that prevent further spread of nonnatives 

could be identified (Britton et al., 2011). This information could help managers 

incorporate nonnative species presence into habitat restoration, species reintroduction, 

and barrier removal decisions without costly and time-consuming field surveys. 

 The generalized design of my habitat suitability models also offers advantages for 

water resource systems management. Water resource managers use systems models to 

quantify tradeoffs among competing water uses and management objectives to identify 
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FIGURE 9. August habitat suitability in A) Weber River and B) Virgin River HUC8 sub-
basin stream reaches. Suitable habitat meets temperature, gradient, and percent MAD 
thresholds for both Bonneville Cutthroat Trout and Bluehead Sucker. 
 

promising regional management solutions and improve system-wide decision-making 

(Loucks and van Beek, 2017; Null, 2016) . While hydroeconomic objectives such as 

water supply, hydropower, and flood control are well represented in systems models, the 

complex and diverse nature of environmental objectives make them difficult to study and 

represent (Juracek and Fitzpatrick, 2003; Génova et al., 2019). Habitat suitability models 

and connectivity indices provide a simple method for quantifying habitat quality 

appropriate for the large spatial scales, and are already being incorporated in water 
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resources systems models (Null et al., 2014; O’Hanley et al., 2013; Kraft et al., 2019). 

The models I present here build on this work by providing a framework that validates 

ecological relevance of habitat suitability estimations, identifies inaccurate and collinear 

environmental variables, and provides a reproducible method based on publicly-available 

large spatial scale datasets. My work lays the groundwork for easily incorporating 

environmental objectives into water resources systems models, and improving tradeoff 

analysis between human water use and the needs of aquatic ecosystems. 

 My work directly advances the goals of the Utah WMI for Bonneville Cutthroat 

Trout and Bluehead Sucker (Utah Wildlife Migration Initiative Draft Strategic Plan from 

UDWR Aquatic Habitat/Wildlife Migration Initiative Coordinator Don Wiley to the 

author, June 29, 2020). The monthly habitat suitability maps I developed help meet 

project objectives of mapping seasonal ranges. The statewide instream barriers dataset I 

compiled provides an inventory of barriers along movement corridors for aquatic species. 

My temperature model provides previously unavailable year-round water temperature 

information for Utah streams. This information and modeling approach allow UDWR and 

other resource managers to adapt statewide conservation strategies to fit current water 

conditions. My habitat models provide a basis for understanding how changing water use 

now and with anticipated population growth will impact habitat quality and fish 

movement. Such information aids UDWR proactively participating in future water 

management discussions by defining environmental objectives such as flow, fish passage, 

or temperature requirements before water resources are allocated elsewhere. This 

proactive and collaborative planning helps ensure sustainable water supplies for human 
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and environmental water uses, and prevents deleterious impacts to fish and other aquatic 

organisms. 
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CONCLUSIONS 

 
 This study evaluated accuracy and complexity tradeoffs for threshold-

based habitat suitability models in aquatic systems using four environmental variables: 

stream temperature, discharge, gradient, and velocity. Estimated instream conditions for 

each environmental variable were developed using generalizable modeling approaches 

suitable for large spatial scales, and were calculated as monthly averages. Monthly 

modeled environmental variable estimations were validated using observed data and 

standard model performance guidelines. All unique combinations of environmental 

variables were used to classify habitat as either suitable or unsuitable, and each individual 

environmental variable was evaluated independently. Classification accuracy was 

described using the difference between the observed-to-expected ratio of presence 

observations classified as suitable or unsuitable compared to a random distribution. 

Longitudinal connectivity was estimated using the dendritic index of connectivity, and 

barrier passability assigned with a generic rule-based approach. Stream network 

connectivity was quantified with only instream barriers and with habitat suitability added. 

Differences were calculated using Dunn’s multiple comparison test. Comparisons of 

habitat suitability classification accuracy help to identify inaccurate classification, 

redundancy, and optimal combinations of different environmental variables to produce 

accurate habitat suitability classifications. 

My analysis produced five main conclusions that illustrate the importance of 

validation when applying generic threshold-based habitat suitability models. First, 

generalized modeling techniques are appropriate for estimating instream environmental 

variables at large spatial scales. Modeled stream temperature and discharge estimates 
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calculated for all perennial stream systems in Utah matched observed conditions well and 

met generally accepted benchmarks of good model performance. Validating modeled 

input data is critical to assessing habitat suitability classification accuracy as it reduces 

uncertainty about the source of classification errors.  

Second, not all habitat suitability thresholds accurately reflect probable species 

distributions. Temperature, gradient, and percent mean annual discharge consistently 

identified species-occupied habitat as suitable with few misclassifications. However, 

velocity regularly misclassified species-occupied habitat as unsuitable more frequently 

than a randomized distribution, indicating that reach-average velocity isn’t an appropriate 

predictor of habitat suitability or that NHD reach-average velocity estimates are 

inaccurate. 

Third, habitat suitability was best predicted by reduced-complexity models. Both 

Bonneville Cutthroat Trout and Bluehead Sucker habitat suitability was best predicted by 

models using fewer variables than were considered in the study. This highlights the 

importance of validating habitat suitability models to identify environmental variables 

that are either redundant, complicating the models without adding additional information, 

or reducing the accuracy of habitat suitability classifications.  

Fourth, models which best predict habitat suitability are sensitive to monthly 

variation in instream conditions. When modeling Bonneville Cutthroat Trout habitat 

suitability, addition of the percent MAD variable did not improve model accuracy in most 

months. However, percent MAD became an important and accurate suitability predictor 

in June, July, and August, demonstrating the importance of considering temporal 

variability in model design.  
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Fifth, connectivity indices are sensitive to monthly variability in suitable habitat. 

Monthly habitat suitability DCI connectivity declined from unweighted connectivity in 

specific months for both species. This demonstrates that index-based connectivity 

evaluators likely underestimate the full extent of network fragmentation when they ignore 

fragmentation caused by seasonal reductions in suitable species habitat. 

 I demonstrated this modeling approach as a case study of Bonneville Cutthroat 

Trout and Bluehead Sucker habitat suitability in Utah, though this approach is designed 

to apply to other systems and species. Assessing habitat suitability at landscape scale 

required by environmental and water resource managers is complicated by data 

availability, accurate descriptions of species habitat requirements, and appropriate 

modeling techniques to predict instream habitat conditions. This work illustrates the 

importance of assessing model performance when applying habitat suitability models, 

identifies inaccurate environmental variables, and quantifies tradeoffs between model 

accuracy and complexity. 
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