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ABSTRACT 

Ecoacoustic Methods for Multi-taxa Animal Surveys in the Amazon 

by 

 
Leandro A. Do Nascimento, Doctor of Philosophy 

Utah State University, 2020 

 
Major Professor: Dr. Karen H. Beard 
Department: Wildland Resources 

Ecoacoustics is a new discipline that investigates the ecological role of sounds in 

landscapes. The methods becoming available in this field have great potential for multi-

taxa animal surveys and routine biodiversity assessments, a topic of great interest among 

the scientific community, general public, and governments around the world. Despite this 

potential, foundational assumptions of the field still need to be tested empirically, 

especially in tropical regions, where most of the world’s animal diversity is located but 

where ecoacoustic studies rarely have been implemented. In this dissertation, I used 

ecoacoustic data collected over two years in the Brazilian Amazon to test the 

applicability of three different but complementary approaches to analyze large, audio 

files data sets (over 3000 hours of sound recordings). In Chapter 1, I provide a brief 

review of the ecoacoustic field and soundscapes. In Chapter 2, I confirm two central 

assumptions from the field of ecoacoustics, that habitats have unique and predictable 

acoustic signatures, and that soundscapes are intrinsically linked to changes in vegetation 

structure. In Chapter 3, I found that ecoacoustic surveys can be used to study the 24-h 
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calling behavior of howler monkeys, an animal producing a loud call that is a key 

component of Neotropical soundscapes, and identify key differences in their calls 

between day and night. In Chapter 4, I used ecoacoustic surveys and successfully 

employed automatic classifiers to retrieve information about two threatened bird species 

in the Amazon. In Chapter 5, I summarize my findings and discuss future research 

directions in the ecoacoustics field. The results from Chapters 2 to 4 confirm the great 

potential to establish ecoacoustic surveys and associated methods as a complementary 

strategy for muti-taxa animal surveys in the tropical region. 

(136 pages) 
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PUBLIC ABSTRACT 

Ecoacoustic Methods for Multi-taxa Animal Surveys in the Amazon 

Leandro A. Do Nascimento 

Tropical regions host most of the biodiversity found on Earth, but these species-

rich areas are constantly threatened by human development and other disturbances that 

put this diversity of life forms at risk. To avoid extirpations of animal and plant species, 

scientists and managers rely on accurate monitoring techniques to retrieve information 

about population trends. This task is not easy, especially in the tropics, where there is 

often a lack of personnel to conduct surveys, a lack of funding, and the areas are so 

extensive that many countries need to be involved in monitoring (e.g., Amazon biome). 

For this reason, scientists are trying to take advantage of technological advancements to 

develop more cost-effective alternatives for multi-taxa surveys. While satellite imagery 

provides a richness of information about vegetation, it fails to provide direct 

measurement of the fauna. In this dissertation conducted in the Brazilian Amazon, I used 

passive acoustic recorders as a technique to collect reliable and verifiable information 

about the fauna. I show that the data collected with passive acoustic sensors is able to 

provide information about how the biodiversity of the Amazon changes with human 

disturbances, time of the day, and in different environments. 
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CHAPTER 1 

INTRODUCTION 

Ecoacoustics and the origin of sounds 

The emerging field of ecoacoustics focuses on studying relationships between 

sounds and the environment over multiple spatial and temporal scales (Farina and Gage, 

2017). Natural sounds may have a biological source, such as animal calls (biophony), or 

non-biological sources, such as rain and wind (geophony); while anthropogenic sounds 

are related to human-made machines (anthrophony) (Pijanowski et al., 2011). Together, 

these three sources of sound constitute the soundscape of a given region and at a given 

time (Pijanowski et al., 2011; Southworth, 1967). Soundscapes have been successfully 

used to investigate multiple ecological questions, ranging from evaluating restoration 

outcomes on islands (Borker et al., 2020) to the assessment of key ecosystem functions of 

coral reefs (Elise et al., 2019). Despite the large interest in soundscapes for biodiversity 

investigation, foundational assumptions of this new field still wait to be tested, and 

speciose locations in the tropical region, which would likely benefit the most from the 

methods and tools being developed, are rarely studied (Scarpelli et al., 2020). This 

dissertation advances this new ecological discipline by fulfilling some of these 

knowledge gaps in the Brazilian Amazon, the most biodiverse-rich region in the world. 

Sounds are ubiquitous on Earth. From the deep-sea to rainforests, from deserts to 

urban centers, soundscapes are filled with a richness of euphonies and cacophonies. 

Apparently, it has been like this since the dawn of times. The first sound to likely ever 

exist was the sound of the Big Bang 13.8 billion years ago (Whittle, 2004). The Big Bang
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 likely produced such a low frequency sound that it was way out of the human and other 

animals’ audible spectrum (Whittle, 2004). The ability to hear actually appeared on Earth 

only 400 million years ago in bony fishes that used a modified labyrinth organ to sense 

vibrations in the water (Christensen et al., 2015). When animals start migrating from 

water to land, these sensory organs were not as effective on air, and only millions of 

years later did eardrum organs evolve that allowed effective hearing in the air medium 

(Allin, 1975). Since then sounds became essential in animal communication and the 

established field of bioacoustics has been central to understanding how animals perceive 

and respond to acoustic signals that are omnipresent in soundscapes across the Earth 

(Bradbury and Vehrencamp, 1998). However, the study of sounds in bioacoustics is often 

restricted to single organisms and low level of organizations (Pijanowski et al., 2011). 

 
The untapped potential of environmental sounds  

Recently, researchers have realized the large and untapped potential of sounds 

emanating from landscapes and its potential to advance ecological and biological 

sciences (Pijanowski et al., 2011; Farina and Gage, 2017). Ecoacoustics have moved the 

study of sounds from the species level to the community-level (Pijanowski et al., 2011). 

This change in scale to higher levels of organization was only possible due to 

technological advancements in acoustic sensors, better analytical tools, and the recent 

decrease in costs to acquire audio recorders (e.g., Audio Moth recorders are as cheap as 

$50 US dollars). There is large interest in conducting more efficient multi-taxa animal 

surveys (Yong et al., 2018) and several emerging technologies are being developed to 

achieve this goal (Pimm et al., 2015). For example, camera trapping has greatly advanced 
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our understanding of animal dynamics (Steenweg et al., 2017); similarly, metabarcoding 

can deliver reliable biodiversity assessments in the tropical region and beyond (Yu et al., 

2012). I argue that all these tools are complementary to ecoacoustics surveys and together 

have great potential to advance our understanding of ecological systems and associated 

fauna (Deichman et al., 2018). 

 
Threatens to the Amazon and the ecoacoustic solution 

The Amazon biome harbors 10% of Earth’s known biodiversity but it is also one of 

the most threatened ecosystems on Earth (Betts et al., 2008; Laurance et al., 2001). The 

Amazon occupies an area of 5,500,000 km2 across nine different countries in South 

America (Soares-Filho et al., 2006). Brazil holds the largest portion of this biome and it is 

also the country that likely threatens the biome the most due a mix of urban development, 

politics, and illegal activities (Betts et al., 2008; Gerlak et al., 2020; Soares-Filho et al., 

2006). Specifically, the activities directly impacting the largest rainforest in the world are 

cattle ranching, agriculture expansion, poaching, damming of rivers, illegal lodging, and 

illegal mining (Asner et al., 2013; Betts et al., 2008; Gerlak et al., 2020; Soares-Filho et 

al., 2006). In Brazil, any new planned project, program, and legislative action must have 

their potential impact on the environment assessed (Ritter et al., 2017). This allows 

adverse effects to be mitigated and is particularly important in biodiverse-rich locations 

such as the Amazon.  

The legal mechanism allowing such assessment in Brazil is the Environmental 

Impact Assessment (EIA) and the EIA report (in Portuguese, RIMA – Relatório de 

Impacto Ambiental). The drawbacks with this important legal mechanism are the lack of 
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standards in the assessments (Ritter et al., 2017) and a cost-effective way to survey the 

fauna (Ribeiro et al., 2017). Ecoacoustic methods could fulfill this niche because they 

allow for a rapid assessment of the vocalizing fauna and has the advantage of allowing 

the associated recordings to be archived for future validation purposes. In addition, the 

recordings could be analyzed by a plethora of different methods (the main methods are 

discussed in chapters 2 to 4). Ecoacoustic surveys could be an important and 

complementary mechanism for EIAs throughout the Amazon, but to date, this has been 

not explored to its fully potential and it is an open area for future research (Ribeiro et al., 

2017) 

 
Challenges  

The main challenges for establishing ecoacoustic surveys as a method for routine 

biodiversity assessment (Gibb et al., 2019; Kissling et al., 2018) are similar to other big 

data fields (Deichman et al., 2018; Servick, 2014). Passive acoustic monitoring (PAM) is 

the main technique behind ecoacoustic surveys and has being used for a long time in 

marine ecology studies (McDonald and Fox, 1999), but only recently have we started to 

explore PAM in terrestrial ecosystems (Sugai et al., 2019). As such, we are way behind in 

establishing protocols and standards in the field for terrestrial habitats (Bradfer-Lawrence 

et al., 2019; Deichman et al., 2018; Sugai et al., 2019). PAM produces an enormous 

amount of data that should be collected in standardized ways, with associated metadata, 

and ideally be deposited online for verification and further applications (Bradfer-

Lawrence et al., 2019; Deichman et al., 2018; Sugai et al., 2019). However, no public 

soundscape database exists for terrestrial environments and the creation of one is 
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paramount to further advance this new field (Deichman et al., 2018). Despite the 

challenges, soundscapes have proven useful for studying ecological systems, and the 

study of sounds has a long tradition in different disciplines that can help establish this 

new field as important in ecological science. Although technological advancements in 

sensors and better analytical tools are still needed to analyze the increasing amount of 

environmental recordings becoming available around the Earth, researchers and 

personnel working in the field have every reason to continue to collect acoustic data 

because they may prove to be extremely useful for future generations in answering 

several ecological questions and also as bioacoustic ‘time capsules’ of biodiversity 

(Deichman et al., 2018; Sugai and Llusia, 2019). 

 
Objectives 

The overarching goal of this dissertation is to test three different but 

complementary ecoacoustic approaches for multi-taxa animal surveys in the Amazon. In 

Chapter 2, I used acoustic metrics (proxies of biodiversity) to predict habitat type and 

vegetation structure across major habitat types of the Amazon. In Chapter 3, I used aural 

identification of calls in a large audio dataset to advance our understanding of the 

nocturnal behavior of howler monkeys and the function of their remarkable loud calls. In 

Chapter 4, I used passive acoustic monitoring and an automatic classifier to identify the 

presence or absence of two threatened birds across 60 sites and three different habitat 

types. In Chapter 5, I summarized my findings and I pointed to future research directions 

in the field of ecoacoustics. 
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CHAPTER 2 

ACOUSTIC METRICS PREDICT HABITAT TYPE AND VEGETATION 

STRUCTURE IN THE AMAZON1 

 
ABSTRACT 

 The rapidly developing field of ecoacoustics offers methods that can advance 

multi-taxa animal surveys at policy-relevant extents. While the field is promising, there 

remain foundational assumptions that need to be tested across different biomes before the 

methods can be applied widely. Here we test two of these assumptions in the Amazon: 1) 

that acoustic indices can be used to predict soundscapes of different habitat types, and 2) 

that acoustic indices are related to vegetation structure. We recorded soundscapes and 

collected vegetation data in 143 sites spanning six natural and two human-modified 

habitats in Viruá National Park, Roraima, Brazil. We grouped the eight habitats into three 

categories based on vegetative characteristics and flooding regime: open habitats, 

flooded-forests, and non-flooded forests. Thirteen acoustic indices were calculated from 

92,283 one-minute recordings to describe the soundscapes of the habitats. We found that 

each habitat type had unique and predictable soundscapes. Random forest models were 

74% accurate at predicting the eight habitats types and 87% accurate at predicting the 

three broader habitats categories. The most important acoustic indices to distinguish 

habitats were the third quartile and centroid. Canopy cover significantly affected 11 of 13 

                                                             
1 Do Nascimento, L. A., Campos-Cerqueira, M., Beard, K. H. 2020. Acoustic metrics 
predict habitat type and vegetation structure in the Amazon. Ecological Indicators, 117, 
106679. doi:10.1016/j.ecolind.2020.106679 
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acoustic indices, and while other vegetation variables (e.g., shrub cover and number of 

trees) appeared in top models for some indices, their effects were not significant. The best 

indices linking soundscapes to vegetation structure were the acoustic evenness index and 

skewness, with canopy cover explaining 81% and 52% of the variance in these indices, 

respectively. These results expand our knowledge regarding which acoustic indices best 

connect changes in habitats to changes in soundscapes. These findings are particularly 

important for diverse ecosystems, like the Amazon, which are known to have complex 

soundscapes with sound-producing animals that are difficult to detect with traditional 

survey methods (e.g., visual transects). Ultimately, our results suggest that soundscapes 

are able to track changes in biodiversity levels across major habitat types of the Amazon. 

 
1. INTRODUCTION 

The rapidly developing field of ecoacoustics offers tools to extract information 

quickly from large audio datasets and serves as a cost-effective way to monitor 

biodiversity and environmental change (Krause and Farina 2016; Farina and Gage, 2017; 

Pijanowski et al., 2011a; Rappaport et al., 2020). The field focuses on the investigation of 

natural and anthropogenic sounds (i.e., soundscapes) and their relationship with the 

environment over multiple spatial and temporal scales (Farina and Gage, 2017). 

Soundscapes have been used in a variety of studies on topics ranging from describing 

biotic homogenization (Burivalova et al., 2019) to the impacts of mining and wildfire on 

ecological communities (Duarte et al., 2015; Gasc et al., 2018). While ecoacoustic 

methods are promising for ecological monitoring, several lingering knowledge gaps limit 

its widespread utility (Farina and Gage, 2017; Pijanowski et al., 2011b). For example, 
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more studies are needed to determine the ability of acoustic indices to differentiate 

habitat types in different biomes (Farina and Gage, 2017; Pijanowski et al., 2011b). 

Another point that remains largely unaddressed is how acoustic indices relate to 

vegetative habitat structure (Farina and Gage, 2017; Pijanowski et al., 2011b). The need 

to fill these gaps in knowledge is particularly pressing for tropical areas, where 

ecoacoustic monitoring holds great potential for species conservation, yet whose 

soundscapes are largely understudied (Scarpelli et al., 2020). 

An almost overwhelming 60 acoustic indices have been created to describe 

soundscapes and represent faunal richness (Buxton, et al., 2018; Sueur et al., 2014). 

Acoustic indices are calculated using different patterns of soundscapes such as pitch, 

saturation and amplitude (Buxton, et al., 2018; Sueur et al., 2014). The theoretical 

underpinning of the application of acoustic indices for ecological monitoring is that 

acoustic diversity is positively associated with faunal species richness (Farina and Gage, 

2017; Gage et al., 2001; Pijanowski et al., 2011). This positive relationship has been 

demonstrated through both empirical tests and computer simulations (Aide et al., 2017; 

Bradfer-Lawrence et al., 2020; Depraetere et al., 2012; Harris et al., 2016; Sueur et al., 

2008a; Zhao et al., 2019), but in some cases no relationship was found (Gasc et al., 2015; 

Moreno-Gómez et al., 2019). As thousands of hours of soundscape recordings continue to 

accumulate globally, new indices continue to be developed that translate these data into 

ecological monitoring information, although often without sufficient tests for their ability 

to do so (Colonna et al., 2020; Gibb et al., 2019; Tuneu-Corral et al., 2020; Santiago et 

al., 2020).  

One area which needs further investigation is the ability of acoustic indices to 
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distinguish soundscapes of different habitat types (e.g., anthropogenic versus natural). 

This area of research can improve biodiversity monitoring because if habitats have 

unique acoustic signatures we can use acoustic indices to monitor habitat change (Farina 

and Gage, 2017; Pijanowski et al., 2011b). Further, identifying the indices that 

correspond most closely with particular habitats across different ecosystems could reduce 

the computing burden of calculating several indices on large audio datasets (Bradfer-

Lawrence et al., 2019; Buxton et al., 2018; Eldridge et al., 2018). To the best of our 

knowledge, only three studies have tested multiple acoustic indices to investigate habitat-

specific soundscapes in terrestrial systems (Table 2.1). For example, Bormpoudakis et al. 

(2013) tested eight acoustic indices and found that the centroid index (CENT) performed 

best at distinguishing soundscapes of six habitat types in Greece, whereas Bradfer-

Lawrence et al. (2019) tested seven acoustic indices across six habitats in Panama and 

found the acoustic complexity index (ACI) performed best. However, differences in 

sample sizes, acoustic indices used, and study regions limit the comparative and 

application value of these results in different ecosystems (Table 2.1). 

A second area of research in ecoacoustics that requires further clarification is 

how vegetation structure influences acoustic indices (Farina and Pieretti, 2014; Farina 

and Gage, 2017; Pijanowski et al., 2011b). It is expected that habitats with greater 

vegetation structural complexity have higher species diversity leading to greater acoustic 

diversity (Farina and Pieretti, 2014; Fuller et al., 2015; Pijanowski et al., 2011b). Despite 

the centrality of this assumption, it has received limited empirical validation, likely due to 

the time-consuming task of collecting both vegetation structure and soundscape data 

(Table 2.1). This knowledge gap hinders our ability to build predictive models linking 
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changes in vegetation structure to acoustic diversity (Farina and Pieretti, 2014; Farina and 

Gage, 2017; Pijanowski et al., 2011b). In the few studies conducted on this topic, a 

relationship between vegetation structure and four acoustic indices [acoustic diversity 

index (ADI), acoustic evenness index (AEI), normalized difference soundscape index 

(NDSI), and total entropy (H)] was found across five habitats in Australia (Fuller et al., 

2015; Ng et al., 2018), and between canopy cover and the bioacoustic index (BIO) in two 

habitats in Madagascar (Rankin and Axel, 2017). However, Tucker et al. (2013) 

suggested that landscape variables (e.g., patch size) were more important than vegetation 

structure in driving differences in one acoustic index (relative soundscape power; RSP) in 

Australia. Thus, it remains largely unknown if relationships between vegetation and 

soundscapes are a widespread phenomenon and which indices best connect vegetation 

structure to soundscapes. 

Here, we investigate habitat-specific soundscapes and the relationships between 

vegetation structure and soundscapes in the Brazilian Amazon. We collected vegetation 

data and recorded soundscapes at 143 sites across eight habitat types (natural and 

anthropogenic) representing the majority of habitat types found in the Amazon. We used 

a total of 13 acoustic indices to describe the soundscapes. Our goals were to test if 

acoustic indices can predict habitat type, and to test how vegetation structure relates to 

acoustic indices. We then discuss the implications of our findings for biodiversity 

assessments. 

  



15 
 
2. METHODS 

2.1. Study sites 

We conducted this research in and around Viruá National Park (VNP), Roraima, 

Brazil, in the north of the Brazilian Amazon (Fig. S2.1). VNP was established in 1998 

and is 240,000 ha (ICMBio, 2014). The climate in VNP is warm and wet with mean 

annual temperature of 26 °C and mean annual precipitation of ~2,000 mm (ICMBio, 

2014). Rainfall is mostly concentrated from May to September (ICMBio, 2014). VNP is 

regulated by floods that create a vegetation mosaic ranging from dense forests to 

grasslands, and representing most major habitats found across the Amazon biome 

(ICMBio, 2014). These habitats share common species, but also harbor unique fauna and 

flora (Table S2.1). Based on vegetation characteristics and flooding regime, the eight 

habitats surveyed can be grouped as open habitats (burned campina, campina, and 

pastures), flooded forests (igapó, islands, and várzea), and non-flooded forests 

(campinarana and terra-firme). In summary, open habitats have lower species richness 

than forested habitats, and campiranana, igapó, and island forests are not as diverse as 

terra-firme and várzea forests (see Table S2.2 for additional information on habitats and 

Figs. S2.2 to S2.9 for photos). 

 
2.2. Passive acoustic monitoring and index extraction 

We used ARBIMON acoustic recorders (Campos-Cerqueira & Aide, 2016) to 

collect acoustic data from November 2016 to February 2017 in the eight habitat types. 

We deployed recorders at 20 replicate sites in each habitat, with the exception of 

pastures, which were limited to six replicates because they comprised a small area in the 
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VNP; and terra-firme, which had 17 replicates because of recorder malfunctions. This 

resulted in a total of 143 sites surveyed. Recorders were spaced over 500 m apart to 

minimize overlap in detections across recorders. Previous field tests conducted with 

ARBIMON recorders indicate that calls of the majority of bird and frog species can be 

detected up to ~100 m (Campos-Cerqueira et al., 2019). We attached recorders to trees or 

fixed poles at the height of 1.5 m. Acoustic devices were programmed to record 1 min of 

audio every 10 min for six days in each sampling site (sample rate = 44.1 kHz; resolution 

= 16 bit; format = WAV). After six days, the 20 recorders were moved to a different 

habitat type and the method repeated (see Table S2.2 for sampling periods). 

Acoustic data collection resulted in 96,726 one-minute recordings (1,612 hours). 

For each one-minute recording, we calculated 13 acoustic indices to summarize the 

soundscapes of the eight habitats studied (Table 2.2). Two broad types of indices were 

used: indices that rely on statistical features of recordings (as described in Bormpoudakis 

et al., 2013; Mitrović et al., 2010); and signal complexity indices specifically developed 

for biodiversity assessments and landscape investigation (Sueur et al., 2014). We selected 

indices that were previously used to describe habitats in peer-reviewed publications 

(Bormpoudakis et al., 2013; Bradfer-Lawrence et al., 2019) and that could be calculated 

through open-source software.  

Calculations were performed in the R Environment (R Core Team, 2019). The 

function “specprop” from Seewave package (Sueur et al., 2008b) was used to calculate 

the centroid (CENT), dominant frequency (DF), first quartile (FQ), kurtosis (KURT), 

skewness (SKEW), spectral flatness (FLAT), standard deviation (SD), and the third 

quartile (TQ) with default parameters of the package. The Soundecology package 
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(Villanueva-Rivera & Pijanowski, 2018) was used to calculate the acoustic complexity 

index (ACI; Pieretti et al., 2011), acoustic evenness index (AEI; Villanueva-Rivera et al., 

2011), bioacoustic index (BIO; Boelman et al., 2007), total entropy (H; Sueur et al., 

2008a), and the normalized difference soundscape index (NDSI; Kasten et al., 2012). 

Minimum frequency for ACI calculation was set to 500 Hz and maximum frequency to 

12 kHz because the package did not have default values for this index, and this range 

encompasses most of birds’, amphibians’, and non-flying-mammals’ sounds while also 

reducing possible microphone self-noise interference (Bradfer-Lawrence et al., 2019). All 

other parameters used in the indices’ calculations were set to default values provided in 

the package.  

We inspected index calculations for outliers that could be linked to file 

corruption, rain, or wind, and removed recordings containing these anomalies because 

they affected indices values disproportionally as observed in other studies (Bradfer-

Lawrence et al. 2019; Depraetere et al., 2012; Pieretti et al., 2015). This removal of 4,443 

files resulted in 92,283 one-minute recordings (1,538 hours) for subsequent analysis. Our 

sites lacked significant anthropogenic sounds due their remoteness, but studies in more 

urbanized locations should inspect recordings for this source of sound because they may 

also affect indices values disproportionally (Fairbrass et al., 2017). 

 
2.3. Vegetation structure survey 

Vegetation structure data were collected within a 20-m radius plot from each 

acoustic recorder location (143 sites) after the devices were moved to a different habitat 

type to avoid interference with the recordings (similar to Rankin and Axel, 2017). We 
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took two measurements of percent canopy cover facing north and then south with a 

densiometer at two points (5 m and 10 m from recorder’s original location) in each 

cardinal direction for a total of eight locations and 16 measurements per plot. We 

measured canopy height by visually estimating the height of the two largest trees in each 

plot. Two field assistants along one of the researchers took independent measurements of 

tree height to reduce possible bias in the field. We took two measurements (spaced 1 m 

apart) of litter depth at two points (5 m and 10 m from recorder original location) in each 

cardinal direction for a total of eight locations and 16 measurements per site. We 

measured diameter at breast height (DBH) of trees in four subplots 4 m from the recorder 

location and stretching for 10 m in length and 8 m wide in each cardinal direction. We 

counted all trees with DBH > 1 cm and divided them in small (DBH > 1 cm to < 10 cm) 

and large (DBH > 10 cm) classes for subsequent analysis. Finally, we used a 20-m tape to 

take two measurements of shrub cover per site (along north and south directions from the 

recorder location) using the line-intercept method (Floyd & Anderson, 1987). For each 

vegetation structure variable, we used the mean value per site for subsequent analysis. 

Similar methods have been used in other studies to determine vegetation structure (Hill et 

al., 2019; Rankin and Axel, 2017; Smith et al., 2018). 

 
2.4. Statistics  

All statistical tests and model diagnostics were run in the R environment (R 

Core Team, 2019). To test for the existence of habitat-specific soundscapes, we used a 

random forest (RF) modeling approach (Cutler et al., 2007) with the 13 acoustic indices 

calculated from the recordings. We used RF because this approach allowed us to 
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summarize the importance of individual indices in the classification (as in Bormpoudakis 

et al., 2013; Bradfer-Lawrence et al., 2019). We built two RF models, one classifying 

soundscapes of the eight different habitats and another classifying soundscapes of the 

three broader habitat types (open habitats, flooded forests, and non-flooded forests). In 

the first RF model, we separated the data into training (80%) and testing (20%) datasets. 

With the training dataset and the R package RandomForestSRC (Ishwaran et al., 2008), 

we built a random forest classifier with default values. We used the 13 acoustic indices 

from each one-minute recording to build the classifier to tentatively assign each one-

minute recording to one of the eight habitats. We then used the “predict” function in the 

Caret package (Kuhn, 2008) to measure the accuracy of our model to predict the testing 

dataset. In the second RF model, we used the same approach as the first RF model; the 

only difference was that recordings were assigned to the three broader habitats instead of 

the eight finer-scale habitat types.  

After visualizing the soundscapes and noticing distinct diel patterns among the 

different habitats for each index (Fig. 2.1), we decided to separate day and night data to 

better understand the RF outputs. We averaged each one-minute recording made in the 

same time across all replicates within a habitat and assigned each recording to day (0600-

1800 h) or night (1800-0600 h). We ran a permutational multivariate analysis of variance 

(PERMANOVA) with the Vegan package (Oksanen et al., 2019) to test if diurnal 

soundscapes were different from nocturnal soundscapes across habitats. 

To determine whether acoustic indices relate to vegetation structure, we first 

calculated the mean value of each acoustic index per site (143 total), averaged across the 

six days of data collection (as in Fuller et al., 2015; Ng et al., 2018). Using the package 
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nlme (Pinheiro et al., 2019), we built linear mixed models (LMMs) with each of the 13 

acoustic indices as dependent variables, six vegetation structure variables (canopy cover, 

canopy height, litter depth, number of large trees, number of small trees, and shrub cover) 

as independent fixed effects, and habitat type as a random effect. Independent fixed 

effects were scaled (“scale” function in base R) to make their parameter estimates 

comparable within models. We performed model selection using the corrected Akaike 

information criteria (AICc; Burnham and Anderson, 2004). We selected the top four 

performing models based on ∆AICc and considered models to be similar if ∆AICc < 2 

(Burnham and Anderson, 2004). With the package car (Fox and Weisberg, 2019), we 

checked for multicollinearity of predictors and removed canopy height from the analysis. 

Residuals of the models were checked for linearity, homoscedasticity, independence, and 

normality with the package SjPlot (Lüdecke, 2020). We consider a fixed effect to be 

significant at an alpha level of < 0.05. With the package R2glmm (Jaeger, 2017), we 

calculated the marginal and conditional R2 values (Nakagawa & Schielzeth, 2013) to 

estimate the proportion of variance explained by fixed and random effects. 

 
3. RESULTS 

3.1. Habitat-specific soundscape patterns 

The first RF classifier separated all 13 acoustic indices in the training dataset 

into the eight habitat classes. Internal error of the classifier was 26% and the model 

accuracy when predicting on the testing dataset was 74%. The habitat with the lowest 

internal error was igapó (18%), and the habitat with the highest internal error was the 

pasture (55%). Soundscapes from pastures were usually misclassified as the other two 
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open habitats (Table 2.3). The most important acoustic indices to distinguish habitat types 

were TQ and CENT; if these variables were removed, the accuracy of the model would 

proportionally drop 0.15 and 0.14, respectively. SD, NDSI, ACI, KURT, and SKEW also 

performed well in the classification. The least important acoustic indices were DF and 

FLAT (Fig. 2.2).  

The second RF classifier built to distinguish the soundscapes of three broader 

habitat types performed better than the first one. It had a lower internal error, 13%, than 

the first classifier and accuracy of the model to predict habitat types within the testing 

dataset increased to 87% (Table 2.3). TQ and CENT were again the most important 

acoustic indices, reflecting a proportional drop of 0.11 in the classification accuracy if 

either was removed. The least important indices were ACI and BIO (Fig. 2.2). 

The PERMANOVA revealed that diurnal and nocturnal soundscapes were 

different across all habitats (F1,3447 = 2493.7, p < 0.001; Table S2.3) and supported the 

RF classification because it showed a significant effect of habitat type on acoustic indices 

(F7,3447 = 421.6, p < 0.001). FLAT, H, SD, and TQ values were lower during the day 

and higher at night for open habitats, while forested habitats had the opposite pattern. 

BIO, DF, FQ, and NDSI were the only indices with consistent diel patterns across 

habitats; they were lower during the day and higher at night. Diel patterns of ACI, AEI, 

CENT, KURT, and SKEW were more marked for open than forested habitats; values in 

open habitats were higher during day than night, except for CENT that had the opposite 

pattern (Fig. 2.1). 
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3.2. Relationships between vegetation structure and soundscapes 

Across the top performing models (Table S2.4), 11 of 13 acoustic indices were 

significantly associated with percent canopy cover (Fig. 2.3). We found a positive 

relationship between canopy cover and BIO, CENT, DF, FQ, H, NDSI, and TQ, and a 

negative relationship between canopy cover and ACI, AEI, KURT, and SKEW (Fig. 2.3). 

Other vegetation variables appeared in some top performing models, but their effect was 

not significant (Fig. 2.3). The only exception was the significant negative association of 

ACI with the number of large trees, but this effect was smaller than canopy cover (Fig. 

2.3). A null model appeared between the two top performing models for the index FLAT, 

therefore we did not consider this index to be significantly related with vegetation 

structure (Table S2.4). Conditional R2 of models with significant vegetation effects 

ranged from 19% to 81% while marginal R2 of canopy cover ranged from 5% to 81% 

(Table S2.5). 

 
4. DISCUSSION 

Determining the ability of soundscapes to discriminate habitat types and the 

response of acoustic indices to changes in vegetation structure is critical for improving 

ecological monitoring using ecoacoustic methods. In the present study, we found that 

eight habitat types in the Amazon biome have unique and predictable soundscapes. We 

found that, in general, acoustic indices that rely on statistical features of recordings 

(Bormpoudakis et al., 2013; Mitrović et al., 2010) were better at identifying habitat-

specific soundscapes than acoustic indices based on signal complexity (Sueur et al., 

2014). We also found that canopy cover was the primary vegetation variable explaining 
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variance in acoustic indices. These results expand our knowledge regarding which 

acoustic indices best link changes in habitats to changes in soundscapes. These findings 

are particularly important for diverse ecosystems, like the Amazon, which are known to 

have complex soundscapes with sound producing animals that are difficult to detect with 

traditional survey methods (e.g., visual transects). 

 
4.1. Habitat-specific soundscape patterns 

We evaluated the ability of 13 acoustic indices to distinguish soundscapes of 

eight habitat types in the Amazon. In our study, TQ and CENT were the best indices at 

distinguishing habitat-specific soundscapes (Fig. 2.2), similar to results reported from 

Greece (Bormpoudakis et al., 2013). In both our first classification of eight habitat types 

and second classification of three habitat groups, the top indices for variable importance 

were statistical in nature and the majority of the indices based on signal complexity were 

in the bottom half of variables. Acoustic indices that rely on statistical features, like the 

TQ and CENT, indicate at which frequency the majority of species are producing sounds, 

while signal complexity indices, like the AEI and H, measure overall acoustic diversity 

over a pre-defined range (e.g., 0 – 1). While one type of index performed better than the 

other, they all contributed to the predictive power of the RF classifications, and because 

they reflect different aspects of soundscapes (Table 2.2), they can facilitate the 

interpretation of patterns when analyzed together (Bradfer-Lawrence et al., 2019; 

Bradfer-Lawrence et al., 2020). 

One of the main soundscape features that separated habitat types was the diel 

patterns of the indices (Fig. 2.1). Based on our field observations and listening to the 
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original recordings, open habitats have insect activity at nighttime but during the day 

were mostly devoid of animal sounds. In contrast, the soundscapes of forested habitats 

have a lot of animal sounds over 24-h periods, leading to the subtler differences between 

day and night. In addition, each of the habitats is known to have a unique composition of 

bird species which can further help explain the differences in soundscapes observed 

among the habitats (Laranjeiras et al., 2014). To the best of our knowledge, indices based 

on statistical features of recordings (DF, FQ, KURT, FLAT, SD, SKEW, and TQ) have 

not had their diel patterns described (with the exception of CENT; Eldridge et al., 2018), 

but they all showed differences between nocturnal and diurnal soundscapes in our study. 

This feature likely increased the ability of these indices to identify habitat-specific 

soundscapes, and could make these indices useful in identifying habitats in other regions. 

For the signal complexity indices that have had their diel patterns previously described 

(ACI, AEI, BIO, H, and NDSI), it seems that differences between the day and night are 

dependent on the region, habitat type, and components of soundscapes due to inconsistent 

reports in the literature (Bradfer-Lawrence et al., 2019; Fuller et al., 2015; Gage et al., 

2017; Ng et al., 2018; Pieretti et al., 2015). 

 
4.2. Vegetation structure and acoustic indices 

In general, we found that the amount of tree cover, represented by percent 

canopy cover and large trees, were the most important variables explaining soundscapes. 

For some acoustic indices, such as AEI and SKEW, canopy cover substantially explained 

their variances (81% and 52%, respectively), but for other indices, such as DF, even 

though there was a significant relationship with canopy cover, only a small percent of the 
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variance was explained (5%). Besides canopy cover, the other vegetation variables we 

measured did not appear important in explaining acoustic indices despite their appearance 

in some top performing models (Fig. 2.3).  

Soundscapes rich in frequencies were linked to high canopy cover, while 

soundscapes poor in frequencies were linked to low canopy cover. This is similar to the 

effects of canopy cover on species richness across different animal taxa (reviewed in 

Stein et al., 2014). In our study sites, habitats with greater layer complexity (forested 

habitats) have greater avian and insect richness than less complex habitats (open habitats) 

(Table S2.1). These differences in species richness can help explain the soundscape 

patterns observed, especially if we consider that insects are a major driver of acoustic 

diversity in the tropical region (Aide et al., 2017). The direction of the relationship 

between canopy cover and acoustic indices was positive for seven indices and negative 

for four indices (Fig. 2.3). Two indices, FLAT and SD, were not significant related to any 

vegetative structure variable (Table S5). The four indices with negative relationships 

reflect the way the indices are calculated and not lower acoustic diversity in forested 

sites. For example, AEI is expected to have lower values in sites with rich soundscapes 

(i.e., forested) because sound intensity does not vary greatly between frequency bands in 

such sites (Bradfer-Lawrence et al., 2019). 

Our findings partially agree with past research on this topic (Table 2.1). For 

example, two independent studies in Australia found that AEI, H, and NDSI were 

associated with vegetation structure (Fuller et al., 2015; Ng et al., 2018), but unlike our 

study, they found no relationship with ACI or BIO. But, in Madagascar, it was found that 

the BIO was associated with vegetation structure (Rankin and Axel 2017). Also, 
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vegetation structure seems to be an important predictor of ACI in Greece, Italy, and 

Panama, similar to our study (Bradfer-Lawrence et al., 2020; Farina and Pieretti 2014; 

Myers et al., 2019). Our results expand the number of acoustic indices linking vegetation 

to soundscapes and ultimately contribute to the body of research suggesting that 

relationships between vegetation and soundscapes may be a widespread phenomenon 

across regions and ecosystems. These results further indicate that vegetation structural 

characteristics (especially canopy cover) may be used with acoustic indices to predict 

changes in habitats across large spatial scales (see Pekin et al., 2012, for a first spatial 

forecast attempt). 

 
4.3. Limitations 

One limitation of this study was that we could not sample all habitats 

simultaneously due to logistical constraints. However, we do not think this significantly 

biased our data because we collected data within a short period of time (~2 months) 

(Table S2.2), in similar weather conditions (dry season), and with many replications in 

each habitat type that showed minimal variability. In addition, by performing the RF 

classification that grouped the eight habitats into broader classes, this temporal constraint 

was addressed because habitats were sampled randomly (Table S2.2). Similarly, by using 

habitat type as a random effect in the LMMs this issue is partially addressed. Another 

limitation is that we did not identify individual species in the recordings, which limits our 

interpretation of specific soundscape components. However, this was beyond the scope of 

this research. 
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5. IMPLICATIONS FOR BIODIVERSITY ASSESSMENTS 

Acoustic indices have been proposed as proxies to monitor biodiversity and 

environmental change (Buxton et al., 2018; Krause and Farina, 2016; Sueur et al., 2014). 

Our findings suggest that scientists and practitioners can differentiate and predict 

soundscapes of different habitats by using acoustic indices. In particular, our study 

highlights that acoustic indices (especially TQ and CENT) are able to classify habitats, 

even among those that are structurally similar or share similar fauna (Table S2.2). For 

example, soundscapes of grasslands burned nine months prior to data collection were 

different than those of intact grasslands (campina), suggesting that acoustic indices can 

be used to track the impacts of wildfire, an increasing threat to tropical ecosystems 

(Staver et al., 2020). Similarly, soundscapes of várzea forests were different than islands 

forests, and because islands have species in jeopardy due plans of dam construction 

(Naka et al., 2020), acoustic indices could serve as a cost-effective way to monitor such 

species. 

A second important implication of our findings for biodiversity assessments is 

the ability to build predictive models linking fine-scale changes in vegetation structure to 

acoustic diversity. While TQ and CENT indices worked best to differentiate habitats, the 

acoustic indices that were best linked to changes in vegetation structure (canopy cover) 

were AEI and SKEW. The reason that some indices might be better at some tasks than 

others should be explored in future studies. AEI and SKEW could be used together with 

vegetation remote sensing tools, such as LiDAR, to predict how habitat degradation (e.g., 

canopy loss due to deforestation) affects animal diversity. This synergetic approach 

between two scalable remote sensing methods, ecoacoustic and airborne surveys, may 
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offer an alternative for multi-taxa animal surveys at policy-relevant extents (Bush et al., 

2017; Pekin et al., 2012; Rappaport et al., 2020). 
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TABLES AND FIGURES 

Table 2.1. Acoustic indices used to investigate habitat-specific soundscapes and the 
effect of vegetation structure on indices at different countries in comparison to this study 
that investigated both topics. Total recording hours and the number of sites surveyed are 
indicated. Abbreviations:  ACI = Acoustic complexity index, ADI = Acoustic diversity 
index, AEI = Acoustic evenness index, BIO = Bioacoustics index, CENT = Centroid, D = 
Acoustic dissimilarity index, DF = Dominant frequency, ESM = Entropy spectral 
maxima, ESV = Entropy spectral variance, FLAT = Spectral flatness, FQ = First quartile, 
H = Total entropy, KURT = Kurtosis, M = Mean amplitude, MID = mid-band activity, 
NDSI = Normalized difference soundscape index, NP = Number of peaks, RSP = 
Relative soundscape power, SD = Standard deviation, SKEW = Skewness, TQ = Third 
quartile, ZCR = Zero-crossing Rate, 1/F = Spearman correlation to 1/f noise. 
Topic Study Acoustic indices Country Hours Sites 
 This study ACI, AEI, BIO, 

CENT, DF, 
FLAT, FQ, H, 
KURT, NDSI, 
SD, SKEW, TQ   

Brazil 1,538  143 

Habitat-specific 
soundscapes 

     

 Bormpoudakis et 
al., (2013) 

CENT, FLAT, H, 
KURT, SD, 
SKEW, ZCR, 1/F 

Greece 2 32 

 Bradfer-Lawrence 
et al., (2019) 

ACI, ADI, AEI, 
BIO, H, M, NDSI  

Panama 26,000 117 

 Gómez et al., 
(2018) 

ACI, ADI, AEI, 
BIO, ESM, ESV, 
H, M, MID, 
NDSI, NP 

Colombia 905 8 

Vegetation 
structure effects 

     

 Bradfer-Lawrence 
et al., (2020) 

ACI, ADI, AEI, 
BIO, H, M, NDSI 

Panama 84 43 

 Farina and 
Pieretti (2014) 

ACI Italy 520 20 

 Fuller et al., 
(2015) 

ACI, ADI, AEI, 
BIO, H, NDSI 

Australia 465 19 

 Myers et al., 
(2019) 

ACI, ADI, BIO Greece 132 22 

 Ng et al., (2018) ACI, ADI, AEI, 
BIO, D, H, NDSI, 
RSP 

Australia 378 9 

 Pekin et al., 
(2012) 

ADI Costa Rica 14 14 
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 Rankin and Axel 

(2017) 
BIO Madagascar 3,504 6 

 Tucker et al., 
(2014) 

RSP  Australia 272 10 
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Table 2.2. Description of the eight statistical indices and five complexity indices used in 
this study.  

Index type and name Description 
Statistical indices  
Centroid (CENT) Mean frequency of the spectrum. 
Dominant frequency (DF) The frequency with the most energy in the spectrum.  
First quartile (FQ) Median frequency of the lower half of the spectrum. 
Kurtosis (KURT) Measures tailedness of signals in the spectrum. High 

values indicate outliers. 
Skewness (SKEW) Measures symmetry of signals in the spectrum. High 

values indicate that signals are skewed towards the 
high or low end of the spectrum. 

Spectral flatness (FLAT) Ratio between geometric and arithmetic mean 
amplitudes. Noisy signals will tend towards one and 
pure tones to zero. 

Standard deviation (SD) Spectral distribution of sounds. 
Third quartile (TQ) Median frequency of the upper half of the spectrum. 
Complexity indices  
Acoustic Complexity 
Index (ACI) 

Based on differences in amplitude between one time 
step and the next within a frequency band. Filters out 
constant sounds (e.g., insect chorus), this may lead to 
low values in rich soundscapes. 

Acoustic Evenness Index 
(AEI) 

Based on applying the Gini index to a specific number 
of frequency bands with signals above an amplitude 
threshold. High values indicate sound intensity is 
restricted to few frequencies. 

Bioacoustic Index (BIO) Based on the amplitude of a signal relative to the 
quietest frequency band within the 2-8 kHz range. 
High values indicate a great difference between 
loudest and quietest bands. 

Total entropy (H) Based on applying the Shannon index to a specific 
number of frequency bands and time steps. High 
values indicate sound intensity is distributed through 
many frequencies and time steps. 

Normalized Difference 
Soundscape Index (NDSI) 

Ratio between anthropogenic (1-2 kHz) and biological 
(2-11 kHz) sounds. High values indicate more 
biological sounds in the upper frequencies. 
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Table 2.3. Confusion matrices from random forest classification of eight different 
habitats (first classification) and three broad habitat types (second classification) using 13 
acoustic indices calculated from 73,827 one-minute recordings made in the Viruá 
National Park, Roraima, Brazil. Accuracy was measured by predicting the testing dataset 
(18,456 one-minute recordings). Abbreviations:  B = burned campina, C = campina, Ca = 
campinarana, Ig = igapó, Is = island, P = pasture, T = terra-firme, V = várzea, O = open 
habitats (B + C + P), F = flooded forests (Ig + Is + V), NF = non-flooded forests (Ca + 
T), Total = total error rate across all habitats. 
 

Actual 

Pr
ed

ic
te

d 

First classification 
 B C Ca Ig Is P T V Error  

B 7724 1782 641 35 118 171 74 66 0.27 
C 2108 7341 571 135 106 251 106 168 0.31 
Ca 537 549 7408 272 297 20 194 219 0.21 
Ig 65 220 466 7813 313 27 263 423 0.18 
Is 175 265 450 498 7413 16 342 1394 0.29 
P 505 637 172 154 98 1486 153 124 0.55 
T 112 220 222 404 459 16 6790 635 0.23 
V 70 120         241 453 1230 10 530 7953 0.24 
          Total = 

0.26 
         Accuracy 

= 0.74 
Second classification 
 O F NF      Error 
O 22207 1318 1200      0.10 
F 940 28299 1510      0.07 
NF 1879 3087 13387      0.26 
         Total = 

0.13 
         Accuracy 

= 0.87 
 

 

  



43 
 

 

Fig. 2.1. Temporal trends of 13 acoustic indices across the eight habitats studied. Values 
of indices are the mean values calculated across all replicates within a habitat for each 
one-minute recording. Graph starts at 0100 h. For simplicity only three days of data are 
showed because patterns were consistent across the six-day sampling period. 
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Fig. 2.2. Importance of acoustic indices at classifying eight habitat types (1st 
classification) and three broader habitat types (2nd classification) grouping the eight 
habitats. Graph shows the mean decline in accuracy of the models if a variable is 
removed. Accuracy of the first classification was 74% while in the second classification 
increased to 87%. 
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Fig. 2.3. Results of linear mixed models for 12 acoustic indices showing the effects of 
five vegetation variables on the indices. Dots are the normalized coefficients’ values and 
lines represent the 95% confidence intervals. Coefficients were normalized by subtracting 
raw values by the mean and dividing by the standard deviation. Index FLAT is not shown 
because top performing model included a null model. 
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CHAPTER 3 

ACOUSTIC DIFFERENCES BETWEEN DIURNAL AND NOCTURNAL LOUD 

CALLS OF THE GUIANAN RED HOWLER MONKEY2 

 
ABSTRACT 

Nighttime studies are greatly underrepresented in ecological research. Even well-

known behaviors, such as the remarkably loud calls of howler monkeys, are rarely 

studied at night. Our goal was to fill this gap in knowledge by studying the 24-hour vocal 

behavior of the Guianan red howler (Alouatta macconnelli), specifically, we aimed  to 

determine if howling bouts made during the day have a different acoustic structure than 

bouts made at night. We used 12 passive recording devices deployed in the home ranges 

of three groups of howlers to collect acoustic data over three months in the Viruá 

National Park, Roraima, Brazil. Our results show that during the day howling bouts were 

longer and had lower harmonic-to-noise ratio, lower frequencies, and more symmetric 

energy distributions than bouts at night. A pilot playback experiment with four alpha 

males showed that the species responds in different ways to bouts made during the day 

versus night. For example, they fled the playback area more often in response to diurnal 

than nocturnal bouts. Taken together, these results show that howler monkeys modify the 

structure of their howling bouts over 24-hour periods. We speculate that the differences  

found between diurnal and nocturnal bouts may be related to more exaggerated vocal 

                                                             
2 Do Nascimento, L. A., Beard, K. H. In review. Acoustic differences between diurnal 
and nocturnal loud calls of the Guianan red howler monkey. Primates. 
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displays during the day because most intergroup encounters happen during daylight 

hours. This study highlights the importance of studying animals throughout their entire 

period of activity to uncover the full spectrum of their behavioral ecology. 

 
INTRODUCTION 

Howler monkeys emit the most powerful primate vocalization in the Neotropics, 

which may outperform all animals worldwide in both call duration and amplitude per 

body size (da Cunha et al. 2015). These loud calls are thought to have multiple functions 

(reviewed in Kitchen et al. 2015). For example, loud calls may reduce predation risk (Gil-

da-Costa et al. 2003), facilitate group cohesion (Steinmetz 2005), mediate sexual 

selection by male-male competition or female choice (Kitchen et al. 2015), and regulate 

intergroup use of space (Kitchen et al. 2015). Despite the large interest in their 

remarkable loud calls, several species of howler monkeys still lack an acoustic 

description of their calls (da Cunha et al. 2015; Bergman et al. 2016). Even less is known 

about loud calls made at night because most studies focus on diurnal vocal behavior (da 

Cunha et al. 2015; Kitchen et al. 2015). 

The fact that howler’s loud calls are rarely studied at night is no surprise because 

nighttime studies are underrepresented in ecological research (reviewed in Gaston 2019). 

For example, calls from birds and primates, two of the most studied animal taxa, are 

mostly studied during the day because it is easier to collect data during this time and 

researchers often assume that diurnal animals are not active during the night, despite the 

lack of empirical support for such assumption (Ankel-Simons and Rasmussen 2008; 

Parga 2011; La 2012; Tan et al. 2013; Piel 2018; Gaston 2019). For example, 
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anthropoids, except the genus Aotus, are considered diurnal. However, there are reports 

of mantled howler monkeys (Alouatta palliata), red-tailed monkeys (Cercopithecus 

ascanius), chimpanzees (Pan troglodytes), and Ugandan red colobus monkeys 

(Procolobus rufomitratus tephrosceles) all showing nocturnal activity (Ankel-Simons and 

Rasmussen 2008; Piel 2018; Tagg et al. 2018). Guianan red howler monkeys (Alouatta 

macconnelli) are another diurnal anthropoid that is active at night (Vercauteren Drubbel 

and Gautier 1993). In fact, it has been suggested that Guianan red howlers vocalize more 

at night than during the day (Vercauteren Drubbel and Gautier 1993). Emerging new 

technologies, like autonomous audio recorders, greatly facilitate studying soniferous 

animals at night and have the potential to advance both behavioral ecology and 

conservation practices (Deichman et al. 2018; Darras et al. 2019; Gaston 2019).  

Even though the loud calls of Guianan red howler monkeys were described 

almost three decades ago in French Guiana (Vercauteren Drubbel and Gautier 1993), 

constraints with software and recording equipment limited both spectrogram analysis and 

the number of calls analyzed. In addition, this species has a wide distribution in South 

America and therefore it is reasonable to expect variation in their loud calls across 

disjointed populations, although to date this was not tested (da Cunha et al. 2015). Like 

other howler species, Guianan red howler monkeys engage in howling bouts (Fig. 3.1) 

that consist of a series of continuous roars, a type of loud call described as low-pitched 

sounds with a mean duration of 3 min and 28 s and a range of 1 to 10 minutes 

(Vercauteren Drubbel and Gautier 1993). Guianan red howlers produce another type of 

loud call, referred to as a bark, that usually is not mixed with roars during howling bouts 

in South American howlers’ species (da Cunha et al. 2015), and soft calls (low-amplitude 
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vocalizations) that have not been studied in detail, but are thought to be produced in a 

variety of situations and may be a good candidate for contact calls (Kitchen et al. 2015).  

Recently, the number of acoustic features and number of howling bouts analyzed 

for black howlers (Alouatta pigra) and mantled howlers have expanded (Bergman et al. 

2016). Here we expand the number of acoustic features and howling bouts analyzed for 

the Guianan red howler monkey. Previous research on this species analyzed the acoustic 

structure of 20 howling bouts from a population in French Guiana (Vercauteren Drubbel 

and Gautier 1993). We analyze 102 howling bouts from a population disconnected to 

those in French Guiana in the northern Brazilian Amazon. Our goal was to determine if 

the acoustic structure of howling bouts made during the day were different than those 

made at night. We also performed a pilot playback experiment in which we tested this 

species response to nocturnal and diurnal howling bouts playbacks. This study is 

important because it elucidates the vocal behavior of a poorly studied Neotropical 

primate species while also providing insight about differences in nocturnal and diurnal 

loud calls, an understudied topic in primatology. 

 
METHODS 

Study area and groups 

We conducted this research in the Viruá National Park (VNP), Roraima, Brazil 

(Fig. S3.1). The park was established in 1998 and is 240,000 ha (ICMBio 2014). VNP is 

regulated by flood pulses that create a rich habitat mosaic ranging from dense forest to 

grassland (ICMBio 2014). The climate in this region is warm and wet with mean annual 

temperatures of 26° C and mean annual precipitation of ~2,000 mm (ICMBio 2014). The 
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wet season is typically from May to September and the dry season from October to April 

(ICMBio 2014). We conducted this study primarily in terra-firme forest, which is a 

habitat located at elevations higher than surrounding lands (ca. 100 m a.s.l.) and, 

therefore, not susceptible to intense flooding during the rainy season (ICMBio 2014).  

From February to April 2018, we followed four groups of Guianan red howler 

monkeys with roughly six individuals each (see Table S3.1 for specific composition). We 

followed them daily from 430 h to 1800 h (occasionally until 2200 h) so they would 

become more habituated to our presence before we conducted playback experiments. 

This totaled 300 contact hours for each group (total of 1200 hours). In the beginning, they 

displayed defensive behavior, such as hiding in the presence of the researchers, but after 

one month of following the groups, they did not do this as often. During this period, we 

also collected their position with a handheld GPS so we could estimate their home 

ranges.  

 
Passive acoustic monitoring protocol 

We used 12 ARBIMON recorders (Campos-Cerqueira and Aide 2016) to collect 

acoustic data from February to April 2018. We deployed four devices in the home range 

of three groups of howlers (Pequi, Viruá, and Calados) we followed. In each home range 

(Fig. S3.1), we placed two recorders where the animals were most often seen eating and 

resting (core area) and two ~100 m apart where they were occasionally seen moving or 

eating (periphery of home range). Preliminary data collected in 2017 along with local 

knowledge of field assistants aided in the placement of the recorders. We placed 

recorders, programed to record 24-hours per day in 20-minute segments (Sample rate 
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44.1 kHz, resolution 16 bit, WAV format), on trees 1.5 m off the forest floor. We 

synchronized all 12 recorders to make simultaneous recordings. We checked recorders 

every 1 to 2 days, retrieved the audio files with a laptop, and then re-attached them to the 

trees. During the study period, we never observed an invasion of the home range by a 

neighbor group and, by comparing the time of simultaneous recording in the different 

areas and field observations, we are confident that the recordings used belonged to the 

focal groups studied. 

 
Acoustic parameter extraction protocol 

We separated nocturnal (1800 h – 0600 h) and diurnal recordings (0600 h – 1800 

h). We randomly selected an even number of high quality diurnal and nocturnal howling 

bouts (see Fig. S3.2 for spectrogram examples). Each group contributed 34 howling bouts 

to the analysis for a total of 51 nocturnal and 51 diurnal bouts (Pequi: 20 nocturnal and 

14 diurnal; Viruá: 20 nocturnal and 14 diurnal; Calados: 11 nocturnal and 23 diurnal). 

We used a maximum of two bouts from each group each night or day (separated by more 

than one hour when in the same day) to minimize dependence among the samples (see 

Fig. S3.3 for temporal distribution of selected howling bouts).  

For consistency, we followed Bergman et al. (2016) for the extraction of nine 

acoustic features from howling bouts (Table 1). We drew spectrograms with a Fast 

Fourier Transformation (FFT), Hanning window type, and a time window of 512 points 

to measure the mean frequency, median frequency, dominant frequency, skewness, and 

kurtosis of howling bouts; this was completed in the package Seewave (Sueur et al. 2008) 

within the R environment (R Core Team 2019). We also drew spectrograms with a FFT, 
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Gaussian window type, 0.1 sec window length, a 50 dB dynamic range, a maximum 

formant of 4000 Hz, and resolutions of 1500 time steps and 250 frequency steps to 

measure the first formant, the highest frequency (sixth formant), and the harmonic-to-

noise ratio (a measure of deterministic chaos; Tokuda et al. 2002); this was done using 

Praat software (Boersma and Weenink 2013). Individual roar syllables were used in Praat 

from the middle section of the full howling bout sequence for consistency across all 

recordings. Finally, the duration of the bouts was measured manually in seconds using 

the Audacity software (Audacity Team 2019). 

 
Pilot playback experiment protocol 

From March to April 2018 (more than one month after the groups were 

followed), we tested alpha male responses to nocturnal and diurnal howling bouts in all 

four groups. Only the responses of alpha males were recorded because they always 

vocalized during howling bouts, whereas participation of other members of the group 

seemed facultative (Kitchen 2004). We followed a playback protocol similar to one used 

in past research with howler monkeys (Kitchen 2004) and best practices to conduct 

playbacks with non-human primates (Zuberbühler and Wittig 2011). We ran a total of 

eight experimental trials. To avoid habituation and stress, we tested each group only 

twice and waited a minimum of 7 days (mean=8 ± SD 1 days) between consecutive trials. 

Each of the four groups was tested once for the diurnal and nocturnal howling bout 

stimulus. Order of the playbacks (diurnal or nocturnal) was randomized across groups.  

Diurnal howling bouts were on average longer than nocturnal bouts (Table 3.2), 

therefore, a playback trial consisted of either one howling bout made during the day 
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selected for its long duration (mean duration=300 ± SD 10 seconds) or one bout made at 

night selected for its short duration (mean duration=200 ± SD 10 seconds). Post-hoc 

comparisons of the recordings used revealed that the diurnal bouts used in the trials also 

had lower frequencies and harmonic-to-noise ratio than the nocturnal bouts, similar to our 

overall description of the 102 howling bouts (Table 3.2). To simulate an intruder in the 

home range of the tested subjects, bouts from group Calado were played back to Tanque 

and Pequi; bouts from group Tanque were played back to Calado and Viruá; bouts from 

group Pequi were played back to Calado and Viruá; bouts from group Viruá were played 

back to Tanque and Pequi. We used recordings only once in the trials and the bouts we 

played back to a specific group were never from the same alpha male. 

We normalized all files used in the playbacks to similar amplitude levels using 

the Audacity software (Audacity Team 2019). The speaker (model UE ROLL 2; audio 

output = 15 Watt; frequency Range = 108 Hz – 20 kHz) was set to maximum volume 

across all trials and the output stimulus emulated natural vocalization levels (measured in 

the field with a sound level meter Extech HD600). To remove any background noise, we 

applied a low pass filter of 3000 Hz and a high pass filter of 50 Hz in the recordings 

using the Audacity software (Audacity Team 2019). We conducted the playbacks in the 

core area of the group and in the morning, around 900 h (± 15 min), and in similar 

weather conditions, sunny and not windy. 

Once a group was located, we raised a wireless speaker on an 8-m collapsible 

pole concealed in vegetation at an approximate distance of 30 m from test subjects. The 

speaker was pointed toward the alpha male. Densely vegetated hills that separated the 

home ranges of the studied groups (Figure 1) greatly attenuate their vocalizations, 
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therefore, it is unlikely that non-focal groups heard the playback stimulus (if it was heard, 

it would have been a greatly degraded signal). Observers remained concealed in 

vegetation during all trials and started the trial if the monkeys seemed unaware of our 

presence (feeding or resting) and no loud call was heard for one hour from the targeted 

group or neighbors to make sure the responses we observed were due to our playback 

stimulus. A trial lasted for 70 minutes (from the onset of the playback) and during this 

period an observer (LAN, aided by a field assistant) collected behavioral data on the 

alpha male and noted all occurrences of vocalizations and movements toward or away 

from the speaker. Specifically, we consider an approach to be when the alpha male left 

his original tree and went towards the speaker and a retreat to be when he moved in the 

opposite direction. All the responses reported occurred within less than one hour of 

playback onset and no neighboring groups were heard during this period. Alpha males 

and other individuals who approached the speaker paid no attention to the equipment and 

continued to move past or around it with clearly vigilant posture and often vocalized (soft 

or loud calls) while searching for the source of the sound (simulated intruder).  

 
Statistics 

All statistical analyses were performed in the R environment (R Core Team 

2019). We explored possible differences between diurnal and nocturnal howling bouts in 

two ways. First, we separated the data into training (80%) and testing (20%) datasets. We 

ran a linear discriminant analysis (LDA) to assign tentatively all nine acoustic parameters 

to day or night using the training dataset and the Caret package (Kuhn, 2008). We then 

used the “predict” function in the Caret package to measure the accuracy of the LDA 
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model to predict the testing dataset. Second, we used linear mixed models (LMM) to test 

for differences in diurnal and nocturnal bouts while controlling for group identity. In each 

LMM model, the dependent variable was one of nine acoustic parameters, the fixed effect 

was the period of the bout (diurnal or nocturnal) and the random effect was group 

identity. We fit nine individual models (restricted maximum likelihood) with the package 

nlme (Pinheiro et al. 2019). Residuals of the models were checked for linearity, 

homoscedasticity, independence, and normality with the package SjPlot (Lüdecke 2020). 

We considered a fixed effect to be significant at an alpha level of < 0.05. To avoid a Type 

I error due to multiple comparisons (testing the howling bouts multiple times), we 

lowered our alpha using a sequential Bonferroni correction (Holm 1979). 

We tabulated the number of the playback experiments that elicited approaches 

and retreats from the speaker area, and loud and soft calls, and used a Fisher’s exact test 

to determine if the differences in responses to diurnal and nocturnal playbacks were 

statistically significant. Four response variables extracted from the playback experiment 

(approach latency, retreat latency, loud call latency, soft call latency) were summarized 

by their means and standard deviations, and used in a survival analysis (Kaplan-Meier 

method and log-rank test) to determine if the differences in responses to diurnal and 

nocturnal playbacks were statistically significant. We used the package Survival 

(Therneau 2015) to run the analysis. We used this non-parametric approach (Kaplan-

Meier method and log-rank test) because our sample size made it difficult to test for 

normality and also because of the nature of our data, which included time to an event 

(time to focal males reaction to the playback stimulus) and censored data (data collection 

ceased by the end of a trial and events observed may or may not occur in the future). 
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When no reaction was observed during the playbacks (e.g. no loud calls from focal alpha 

males), we used the total time of the trial (70 min) as the response variable (as in Kitchen 

2004).  

 
Ethics statement 

Research complied with protocols approved by The Utah State University’s 

Animal Care and Use Committee (IACUC #2690) and all Brazilian legal requirements. 

 
RESULTS 

Differences between diurnal and nocturnal howling bouts 

The LDA revealed a separation between most of the acoustic parameters 

depending on the time of the day the howling bouts were made (Fig. 3.2). The most 

discriminant acoustic parameter between diurnal and nocturnal bouts was the harmonic-

to-noise ratio (Table S3.2) and the LDA model accuracy to predict the testing dataset was 

95%. As implied by the LDA, the LMM revealed that diurnal and nocturnal howling 

bouts differed on six of 9 acoustic parameters (Fig. 3.3). Diurnal bouts were significantly 

longer than nocturnal bouts. The harmonic-to-noise ratio, skewness, kurtosis, first 

formant, and highest frequency parameters were all significantly lower in diurnal than 

nocturnal bouts (Table 3.2).  

 
Pilot playback experiment 

Our pilot experiment revealed that when presented with nocturnal howling bout 

playbacks, alpha males always approached the source of the sound (simulated intruder) 

and gave soft calls. They also gave a loud call in response to three out of the four 
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nocturnal trials (roars and barks). This contrasts with responses to diurnal bouts, where 

the alpha males mostly fled (three trials) the speaker area by running in the opposite 

direction. An alpha male only approached the speaker and gave loud (only roars) and soft 

calls during one diurnal trial (Table 3.3; pairwise comparisons of responses were not 

statistically significant). Time to flee the playback area was higher in response to 

nocturnal than diurnal howling bouts. Time to approach the speaker and produce soft 

calls were higher in response to diurnal than nocturnal howling bouts, but differences 

were only marginally significant. Differences in the time to produce loud calls in 

response to diurnal or nocturnal bouts were not significant (Table 3.4). 

 
DISCUSSION 

Nocturnal vocalizations from diurnal primates have rarely been studied (Ankel-

Simons and Rasmussen 2008; Piel 2018; Gaston 2019). While previous research on the 

Guianan red howler monkey described different types of calls in their repertoire 

(Vercauteren Drubbel and Gautier 1993), a detailed description of their diurnal and 

nocturnal howling bouts was lacking. We found that howling bouts made during the day 

differed in structure from those made at night primarily because they were, on average, 

26% longer; had, on average, 73% lower harmonic-to-noise ratio; and had, on average, 

5% lower frequencies (first formant and highest frequency), and more symmetric energy 

distributions (skewness and kurtosis). In addition, Guianan red howlers appeared to 

respond differently to diurnal versus nocturnal howling bouts. Diurnal bouts have 

acoustic characteristics that are linked to more exaggerated vocal displays that likely 

require more energy to produce and may appear more intimidating than nocturnal bouts.  
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Duration of vocalizations is indicative of effort, with longer vocalizations 

requiring more energy to produce (Fischer et al. 2004; Vannoni and McElligott 2009). 

We propose that howlers invest more energy in longer diurnal howling bouts than 

nocturnal bouts because they experience more intergroup encounters during the day when 

they forage than at night when they typically stay at sleeping sites (Vercauteren Drubbel 

and Gautier 1993; L. Do Nascimento pers. obs.). These longer vocal displays could be 

used to settle disputes for limiting resources, such as fruit, and better defend the group 

from potential invaders (Kitchen et al. 2015; Van Belle and Estrada 2019). A similar 

behavior, longer loud calls during contests, was observed in black howlers (Kitchen 

2004) and baboons (Papio cynocephalus ursinus; Kitchen et al. 2003). 

Guianan red howlers increased the amount of deterministic chaos (as measured 

by the harmonic-to-noise ratio) during the day (Table 3.2). This acoustic characteristic 

leads to harsher calls that are more intimidating than tonal calls (Morton 1977; Bergman 

et al. 2016; Demartsev et al. 2016). Across many mammals, vocalizations with more 

chaos have been shown to either elicit a reluctance to escalate a contest with a threatening 

male (Garcia et al. 2014) or make them respond more strongly to a conspecific 

(Townsend and Manser 2011). The mechanism through which these responses may occur 

is unknown, but in chimpanzees, it is believed that the presence of non-linear phenomena, 

such as deterministic chaos in their loud calls, may be used to assess the physical 

condition of the caller (Riede et al. 2007). Harsher howling bouts of the Guianan red 

howler monkey may also serve to more efficiently intimidation in other groups, increase 

the chance of winning contests, and thus avoid the more energetic costs of chases and 

fights. 
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The lower frequency of howling bouts during the day than at night may also 

reflect a greater motivation to intimidate other groups (Morton 1977; Reby and McComb 

2003; Ordóñez-Gómez et al. 2015; Mercier et al. 2019). Because animals may modify the 

frequency of their calls to signal competitive abilities (Whitehead 1992; Fischer et al. 

2004), lower frequency calls may be better at intimidating other groups during contests 

(Morton 1977). However, it is important to note that changes in frequencies between 

diurnal and nocturnal howling bouts were of a smaller magnitude than the duration and 

harmonic-to-noise ratio, suggesting that they may play a smaller role in intergroup 

competition or that they are harder to modify due morphological constraints (Kitchen et 

al. 2019). 

Our findings provide the first report of a population of Guianan red howlers not 

studied before and expanded the number of howling bouts and acoustic parameters 

described for this species. The harmonic-to-noise ratio, kurtosis, skewness, first formant, 

mean frequency, and median frequency acoustic parameters were not described before for 

this species while the parameters previously described, such as dominant frequency, 

highest frequency, and duration were similar between this population from Brazil and 

another from French Guiana (Vercauteren Drubbel and Gautier 1993).  

While the results from the playback experiment should be taken with caution 

because of the small sample size and our inability to conduct playbacks at night without 

special equipment, they suggest that howlers respond to the differences between diurnal 

and nocturnal vocalizations. Future studies could expand the number of groups studied, 

conduct playbacks at night and day, and isolate what aspect of the bout (e.g. duration, 

harmonic-to-noise ratio, and frequency) may drive the apparent difference in responses to 
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diurnal versus nocturnal bouts. These further tests could elucidate if diurnal and nocturnal 

howling bouts have different functions or if they simply represent different levels of 

sequential and cumulative assessment, as suggested in Kitchen et al. (2015). 

In summary, in this study we provide a detailed analysis of the Guianan red 

howler vocalizations focusing on unexplored differences between diurnal and nocturnal 

howling bouts. We show that diurnal and nocturnal bouts possess significant structural 

differences that appear to elicit different behavioral responses. We speculate that the 

differences found between diurnal and nocturnal bouts may be related to more 

exaggerated vocal displays during the day because most intergroup encounters happen 

during daylight hours. This ability of howler monkeys to modify the acoustic structure of 

their howling bouts over the diel cycle is novel, and highlights the importance of studying 

animals throughout their entire period of activity. This is now facilitated through remote 

sensing methods, such as camera trapping and passive acoustic monitoring (Deichman et 

al. 2018), which hold great potential to tackle the difficulties associated with studying 

nocturnal patterns in ecology (Gaston et al. 2019). 
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TABLES AND FIGURES 

Table 3.1. Acoustic parameters measured from 102 howling bouts of Guianan red howler 
monkeys at the Viruá National Park, Roraima, Brazil. 

Acoustic parameter Description         

Mean frequency (Hz) Mean spectral frequency of call.  

Median frequency (Hz) Median spectral frequency of call.  

Dominant frequency (Hz) Frequency with highest energy in the call.  

Skewness  Spectral symmetry of call.  

Kurtosis  Spectral tailedness of call. 

First formant (Hz) First peak of energy in the call spectrum. 

Highest frequency (Hz) Upper frequency bound of the call. 

Harmonic-to-noise ratio (dB) Relative energy given to tonal versus atonal noise.  

Duration (s) Duration of continuous loud calling. 
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Table 3.2. Acoustic parameters (mean and ± SD) for nocturnal and diurnal howling bouts 
of Guianan red howlers and results for linear mixed models (t statistics and p values are 
indicated). 

Acoustic parameter Diurnal  Nocturnal  N t pa αb 

Mean frequency (Hz) 1063±126 1023±89 102 -1.77 0.070 0.630 

Median frequency (Hz) 920±125 895±89 102 -1.03 0.300 1 

Dominant frequency (Hz) 696±264 730±277 102 0.11 0.900 1 

Skewness  4.0±0.4 4.3±0.4 102 3.05 0.002 0.018 

Kurtosis  20±4.5 23±5 102 3.06 0.003 0.027 

First formant (Hz) 457±27 494±19 102 7.57 <0.001 <0.001 

Highest frequency (Hz) 2495±68 2569±37 102 6.82 <0.001 <0.001 

Harmonic-to-noise ratio (dB) 1.16±0.3 2.01±0.4 102 11.2 <0.001 <0.001 

Duration (s) 327±93 258±83 102 -3.81 <0.001 <0.001 
aStatistically significant results (p < 0.05) are in bold. 
bAlpha values adjustments using Bonferroni correction. 
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Table 3.3. Percentage of playback experiments that elicited approach responses, retreat 
responses, loud calls, and soft calls by four alpha male Guianan red howlers. P-values 
were retrieved from Fisher’s exact test for all pairwise comparisons. 

Playbac
k 

# of trials % Approach % Retreat % Loud calla % Soft call 

Diurnal 4 25 75 25 25 

Nocturna
l 

4 100 0 75 100 

  p = 0.14 p = 0.14 p = 0.48 p = 0.14 

aIncludes roars and barks in response to nocturnal playbacks 
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Table 3.4. Reponses (mean and ± SD) of four alpha male Guianan red howlers to 
nocturnal and diurnal howling bouts playbacks and results of a survival analysis testing if 
the latency to respond to diurnal and nocturnal loud call playbacks are different for each 
response variable (survival probability and associated p-values are indicated). 

Response variable Playback N mean SD survival pa 

Approach latency (min) Diurnal 4 53.12 33.75 0.75 0.07 

 Nocturnal 4 4.18 2.29 0  

Retreat latency (min) Diurnal 4 27.38 30.80 0.25 0.04 

 Nocturnal 4 70 0 1  

Loud call latency (min) Diurnal 4 61.75 16.5 0.75 0.24 

 Nocturnal 4 39.67 26.48 0.25  

Soft call latency (min) Diurnal 4 53.64 32.7 0.75 0.07 

 Nocturnal 4 5.46 1.31 0  

aStatistically significant results (p < 0.05) are in bold. 
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Fig. 3.1. Example of a howling bout of the Guianan red howler monkey recorded in the 
Viruá National Park, Roraima, Brazil. 
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Fig. 3.2. Density plot of coefficients of linear discriminants built with nine acoustic 
parameters from 41 diurnal and 41 nocturnal howling bouts of Guianan red howler 
monkeys. Accuracy of the model to predict the testing dataset (20 howling bouts) was 
95%.  
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Fig. 3.3. Results of linear mixed models showing the effect of the time howling bouts 
were made (night or day) on nine acoustic parameters. The reference level for the models 
(i.e., the intercept) was “day”. Dots are the normalized coefficients values and lines 
represent the 95% confidence intervals. Coefficients were normalized by subtracting raw 
values by the mean and dividing by the standard deviation. 
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CHAPTER 4 

MONITORING THREATENED SPECIES USING PASSIVE ACOUSTIC 

RECORDERS AND AUTOMATIC CLASSIFIERS3 

 

ABSTRACT 

As soundscape recordings are accumulating around the world, it is essential to 

develop better analytical tools to extract information from these large audio datasets. 

Presence or absence of species in the recordings is essential information that could help 

with species management and conservation, but the availability of free and open-source 

software to retrieve this information is still scarce. Here we tested a promising and free 

alternative to build automatic detectors of animal sounds. Specifically, we tested the 

potential of a cross-correlation template matching technique to identify the calls of two 

bird species of conservation concern across 60 sites in an ecological and evolutionary 

hotspot in the Brazilian Amazon. We found that despite an extremely noisy background 

(e.g., over 500 bird species), the automatic detectors performed surprisingly well and 

could potentially be extended to the detection of other species in the Amazon. The overall 

recall rate of the classifiers was 100% while the precision was 28% for the Rio Branco 

antbird and 25% for the festive parrot. Future work should focus at converting the 

detections to encounter histories to fit statistical models that can account for imperfect 

detection. 

                                                             
3 Do Nascimento, L. A., Beard, K. H. In preparation. Monitoring threatened species 
using passive acoustic recorders and automatic classifiers. Target journal: Biological 
Conservation. 
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1. INTRODUCTION 

Passive acoustic monitoring (PAM) is revolutionizing the way we understand 

natural and human modified ecosystems (Sugai et al., 2019). PAM is able to generate 

large datasets quickly that allow scientists to better understand natural dynamics that 

went mostly unnoticed for decades (Deichman et al., 2018). For example, PAM allowed 

for a better understanding of 24 hours activity cycles of species (Pérez‐Granados et al., 

2020), changes in species behavior between day and night (Piel et al., 2018), and more 

broadly, better assessment of human disturbances on ecosystems (Burivalova et al., 

2019). This revolution in the way that ecologists are collecting data to answer a multitude 

of questions is facilitated by the substantial decrease in prices of acoustic recorders (Hill 

et al., 2018) and better analytical tools to analyze large streams of data (Zhong et al., 

2020).  

One method that is receiving growing attention to analyze large audio datasets is 

the implementation of automatic classifiers of animal sounds (Aide et al., 2013). This 

method provides information about the presence or absence of target species in the 

recordings, which allows among other features (Deichman et al., 2018), allows the 

implementation of occupancy models that account for imperfect detection (Campos-

Cerqueira and Aide, 2016). However, most of the methods available require expensive 

software and considerable coding experience, which limit its usage by researchers and 

potentially by users outside of academia, which would probably benefit the most from 

this technology (Ducrettet et al., 2020). Therefore, there is an urgent need to develop and 

test alternatives that are free, open source, and user-friendly for automatic acoustic 

classification of animal sounds (Balantic and Donovan, 2020). 
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Here we test a promising alternative to build automatic detectors of animal 

sounds. Specifically, we tested the potential of a cross-correlation template matching 

technique to identify the calls of two bird species of conservation concern across 60 sites 

in an ecological and evolutionary hotspot in the Brazilian Amazon. The habitats surveyed 

are threatened by dam construction, among other infrastructure developments (Naka et al. 

2020), which makes it urgent to develop efficient, reliable, and verifiable animal 

monitoring methods (Ribeiro et al., 2017; Ritter et al., 2017). 

 
2. METHODS 

2.1. Study sites 

We conducted this research in and around Viruá National Park (VNP), Roraima, 

Brazil, in the north of the Brazilian Amazon (Figure 4.1). VNP was established in 1998 

and is 240,000 ha (ICMBio, 2014). The climate in VNP is warm and wet with mean 

annual temperature of 26 °C and mean annual precipitation of ~2,000 mm (ICMBio, 

2014). Rainfall is mostly concentrated from May to September (ICMBio, 2014). VNP is 

regulated by floods that create a vegetation mosaic ranging from dense forests to 

grasslands, and representing most major habitats found across the Amazon biome (Do 

Nascimento et al., 2020). We focused our surveys on flooded forests which are comprised 

of three riverine habitats (igapó, riverine islands, and várzea) because they will be likely 

the most impacted by dam construction in the future (Naka et al. 2020). In our study area, 

riverine islands and várzea forests are drained by the Rio Branco (white river in 

Portuguese) at the west portion of the park. This river is located entirely in the state of 

Roraima (Naka et al. 2020) and is ranked 12th in discharge volume in the Amazon basin 
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(Ferreira et al., 2017). Igapó, in the other hand, is drained by a small black water river 

named Iruá, the main river inside the limits of VNP. 

 
2.2. Study species 

We selected species from a list of 50 birds that were recommended for surveys in 

the Rio Branco basin (Naka et al., 2020). From this list, we focused on two species that 

are known to occur in the flooded forests and are of conservation concern. The Rio 

Branco anbird (Cercomacra carbonaria) is a critically endangered bird (BirdLife 

International 2018) that is range restricted and near-endemic to Rio Branco basin 

(Laranjeiras et al. 2014). The festive parrot (Amazona festiva) is a near-threatened bird 

(BirdLife International 2016) with a wide distribution throughout flooded forests in the 

Amazon basin. Both species possesses loud, highly repeated, and unique calls, which 

should facilitate their automatic classification through template matching techniques 

(Figure 4.2). 

 
2.3. Acoustic data collection 

We used ARBIMON acoustic recorders (Campos-Cerqueira and Aide, 2016) to 

collect acoustic data during the dry season from November to January 2017. We 

deployed recorders at 20 replicate sites in each habitat. Recorders were spaced over 500 

m apart to minimize overlap in detections across recorders. Previous field tests have 

demonstrated that the detection range of ARBIMON recorders for several bird species in 

the Amazon is ~100 m (Campos-Cerqueira et al. 2019). We attached recorders to trees at 

the height of 1.5 m. Acoustic devices were programmed to record 1 min of audio every 

10 min for six days in each sampling site (sample rate = 44.1 kHz; resolution = 16 bit; 
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format = WAV). Acoustic data collection resulted in 38,400 one-minute recordings (640 

hours). 

 
2.4. Manual validation dataset 

We manually annotated all calls of the two studied species from one recorder (i.e., 

site) for each habitat type. The recorder chosen was selected randomly from the 60 sites 

available for each species. This resulted in a total of 2,044 recordings where the calls of 

the Rio Branco antbird were manually classified and 2,002 the festive parrot were 

manually classified. We used the Audacity software (Audacity Team, 2019) to visualize 

spectrograms and listen to the recordings to build this dataset. We compared the calls and 

spectrograms of our manual validation dataset with the recordings and spectrograms 

available and annotated at the Xeno-Canto database to reduce possible errors in the 

manual classification. 

 
2.5. Template selection 

The most critical part in building template-based automatic detectors is the 

construction of representative templates for the automatic classification process 

(Ducrettet et al., 2020). Templates should be representative of the call of interest and also 

the soundscapes in which they are embedded (Katz et al., 2016). A good template 

maximizes detections and minimizes false positives. We selected high quality recordings 

of both species to build the templates. For the Rio Branco antbird, we chose male calls 

described as “hitch-coks” notes while for the festive parrot individual “screeches” notes 

were selected that are commonly given when this animal is perched. We built a total of 

five templates for each species (Figure 4.3). Templates were created with the R package 
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MonitoR (Hafner and Katz, 2018). 

 
2.6. Template matching 

The automatic detection consisted of a comparison of the spectral and temporal 

features of the template (Table 4.1 and 4.2) with the recording at different time lags (t) 

through a non-overlapping moving window (S). The comparison between template (k) 

and recording was achieved with a cross-correlation at each time lag where both 

templates and recordings were converted to a short-term Fourier transform with a 

Hanning window size of 512 samples. The implementation of this workflow in the 

MonitoR package is based on the following equation (Mellinger and Clark, 1997): 

 
𝑑𝑑(𝑡𝑡) =  ��𝑆𝑆(𝑡𝑡 + 𝑡𝑡1,𝑓𝑓)𝑘𝑘(𝑡𝑡1,𝑓𝑓)

𝑓𝑓𝑡𝑡1

 

 
Where d(t)is the detection score at each time t, S is the spectrogram in which signals will 

be detected through each time interval t + t1 and frequencies f, and k is the template 

kernel used for the detection. 

Detection scores may vary from -1 to 1, where 1 indicates a perfect correlation 

between templates and sound events (peaks). A threshold of 0.4 was selected to filter 

detections with low similarities with the templates (false positives). 

 
2.7. Evaluation of automatic detection system 

We evaluated the automatic detection systems by matching the ground truth 

dataset (manual classification) with the predictions (automatic classification). We 

obtained a confusion matrix with four categories of detections: true positive (TP), false 
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negative (FN), false positive (FP) and true negative (TN). We calculated two metrics to 

evaluate the detectors, the recall (TP /(TP+FN)) and precision (TP /(TP+FP)). The recall 

rate indicates how well the segmentation algorithm detects sounds of interest, and the 

precision indicates how reliable the detector is. Recall and precision are inverse related to 

each other, thus is possible to gain recall at the cost of losing precision, and vice versa 

(Priyadarshani et al., 2018). 

 
3. RESULTS 

3.1. Performance of classifiers 

The first automatic system built to detect calls of the Rio Branco antbird correctly 

classified 32 recordings with calls (TP), correctly classified 1930 recordings as sounds 

produced by other sound sources (TN), misclassified 82 recordings as containing the call 

(FP), and did not miss any calls in the validation dataset (FN). The automatic system 

therefore detected 100% of the labeled vocalizations, with a recall of 1 and overall 

precision of 28% (Table 4.1). Precision was much higher though if we consider only the 

island habitats where this species is believed to be more common. In fact, in our study 

sites, we have not detected any call of this species in the other two habitats, which 

reinforces the high degree of specialization of this species to riverine islands in the lower 

Rio Branco basin. In addition, if we consider only the diurnal recordings (the time that 

this species is expected to call), the number of false positives will be likely much smaller 

and therefore the precision of the detector would also increase. Common false positives 

were due to other species calling at the same frequency and tree branches breaking, 

which produces an acoustic signature with a wide frequency range. 
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The second automatic system built to detect calls of the festive parrot correctly 

classified 45 recordings with calls (TP), correctly classified 1827 recordings as sounds 

produced by other sound sources (TN), misclassified 130 recordings as containing the 

call (FP), and did not miss any calls in the validation dataset (FN). The automatic system 

therefore detected 100% of the labeled vocalizations, with a recall of 1 and overall 

precision of 25% (Table 4.2). Similar to the first classifier, precision was much higher if 

we consider only the island habitats where this species seems to be more common likely 

due closer river proximity. In addition, also similar to the first classifier, if we consider 

only the diurnal recordings (the time that this species is expected to call), the number of 

false positives will be likely much smaller and therefore the precision of the detector 

would also increase. Common false positives were due to other species calling at the 

same frequency range.  

 
3.2. Total number of detections 

Across the whole dataset, the classifier of the Rio Branco antbird detected a total 

of 1787 recordings with at least one call while for the festive parrot a total of 3210 

recordings with at least one call were detected. One recording could and often contained 

more than one call (detections) of the targeted species, but we only considered the most 

salient calls (highest cross-correlation score) in each recording. 

 
4. CONCLUSIONS 

The cross-correlation template matching technique to identify automatically the 

calls of two species of conservation concern performed quite well in our study sites. The 

habitats surveyed have a high diversity of species (e.g., over 500 birds species) that 



82 
 
introduces substantial background noise and makes automatic detection of calls a 

challenging task. A large effort has been made to develop automatic detectors using 

multiple approaches (LeBien et al., 2020); however, most of these approaches are not 

accessible through open source software and they require considerable coding experience 

(Ducrettet et al., 2020). In addition, most of these automatic detectors were tested in 

controlled settings and species-poor sites (Priyadarshani et al., 2018). Here, we 

demonstrated the potential of a simpler template matching technique that does not require 

as much expertise to use and is able to achieve results similar to other more complicated 

and expensive methods (Campos‐Cerqueira and Aide, 2016). These are exciting results 

because it opens more opportunities for collaboration between scientists and the 

organizations (private and public sectors) trying to implement biodiversity monitoring 

techniques in the Amazon and other tropical areas. 

We will expand this methodology for automatic detection to several other species 

of conservation concern in the Rio Branco basin. Our ultimate goal is to have high 

performing automatic detectors able to identify threatened, cryptic, and indicator species 

enabling their efficient acoustic monitoring in flooded forests habitats of Rio Branco 

basin. In addition, because more than 300 dams are planned for the Amazon basin that 

will likely disrupt many ecosystems (Gerlak et al., 2020), these methods can be 

potentially expanded to other Amazonian rivers in jeopardy. When our dataset with 

several species is finalized, we will convert false positives to true negatives and fit 

occupancy models for each of the species studied that can account for imperfect detection 

(Campos‐Cerqueira and Aide, 2016). We will use detailed site-level vegetative covariates 

collected during the acoustic surveys with the models to better understand the drivers of 
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occupancy for the studied species, which is currently unknown. For example, it is 

unknown what the habitat preferences of the two species here studied are, and this 

information is critical for species management (Vickery et al., 2001). Ultimately, our 

work hopes to enable efficient and reliable monitoring of animals in an ecological and 

evolutionary hotspot that is high danger by infra-structure development (Naka et al. 

2020). 
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TABLES AND FIGURES 

Table 4.1. Temporal and spectral characteristics of templates from Rio Branco antbird 
used in the classification. 

Template 
Lower 
frequency 

Upper 
frequency 

Lower 
amp 

Upper 
amp duration points 

1 0.947 2.584 -62.61 -8.88 0.441 780 
2 1.206 2.584 -52.28 -3.66 0.325 493 
3 1.12 2.584 -58.9 -1.24 0.186 306 
4 1.034 2.498 -52.79 -2.21 0.151 252 
5 1.034 3.445 -73.94 -0.23 0.325 841 

 

Table 4.2. Temporal and spectral characteristics of templates of festive parrot used in the 
classification. 

Template 
Lower 
frequency 

Upper 
frequency 

Lower 
amp 

Upper 
amp Duration Points 

1 1.034 4.479 -67.79 -4.55 0.267 984 
2 0.861 4.737 -72.76 -6.74 0.488 1978 
3 0.947 4.996 -74.66 -12.39 0.418 1776 
4 1.034 4.91 -52.72 -2.01 0.36 1472 
5 0.861 4.479 -69.19 -11.07 0.267 1032 

 

Table 4.3. Performance of Rio Branco antbird classifier obtained by comparing the 
manual validation dataset with the predictions from the classifier. 
Habitat TP TN FP FN Recall Precision 
Igapó 0 662 18 0 0 0 
Island 32 580 46 0 1 0.41 
Várzea 0 688 18 0 0 0 
Total 32 1930 82 0 1 0.28 

 

Table 4.4. Performance of Festive parrot classifier obtained by comparing the manual 
validation dataset with the predictions from the classifier. 
Habitat TP TN FP FN Recall Precision 
Igapó 3 639 29 0 1 0.09 
Island 41 577 46 0 1 0.47 
Várzea 1 611 55 0 1 0.01 
Total 45 1827 130 0 1 0.25 
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Fig. 4.1. Habitat types at Viruá National Park (a), expanded view to show details of 
islands and várzea sites, and expanded view on igapós sites (c). 
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Fig. 4.2. Spectrograms of Rio Branco antbird calls (a) and festive parrot calls (b). 
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Fig. 4.3. Templates used for the automatic classification of festive parrot calls (top 
spectrograms) and Rio Branco antbird calls (bottom spectrograms). Purple color shows 
the selected part of the calls used to build the templates for classification. 
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CHAPTER 5 

CONCLUSIONS 

Acoustic metrics and habitat changes 

In Chapter 2, I show that acoustic metrics can predict habitat types and are strongly 

related to changes in vegetation structure. This was the most comprehensive tests to date 

of two major assumptions of the ecoacoustics field, that habitats have unique acoustic 

signatures and that soundscapes are intrinsically linked to vegetation structure. Our 

findings help advance the field by providing unequivocal evidence that soundscapes are 

strongly connected to habitat changes. More importantly, our findings seem to follow the 

general relationship between species richness and habitat heterogeneity in ecology. In 

other words, soundscapes rich in frequencies and calling species were linked to high layer 

complexity while soundscapes poor in frequencies and calling species were linked to 

degraded and less complex habitats. These findings highlight that soundscapes and 

acoustic indices are effective methods for multi-taxa animal surveys in the Amazon and 

likely beyond. Future studies could focus at potential synergies among different remote 

sensing methods. For example, while satellite imagery provides us with a richness of 

information about vegetation cover, they are unable to survey the fauna directly. Satellite 

imagery and airborne surveys could be used to retrieve essential vegetation variables and 

ecoacoustic surveys reliable fauna estimates which then could be combined to build 

rigorous and verifiable models for more effective and routine biodiversity assessments. 

 
Passive acoustic monitoring and the nocturnal ecology 

In Chapter 3, I show that the loud calls of howler monkeys, a key component of 
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neotropical soundscapes vary in structure accordingly to the time of day. Our findings 

points for a possible different function between nocturnal and diurnal loud calls in howler 

monkeys, but more tests should be conducted. Nocturnal ecology is understudied but 

likely greatly differs from diurnal ecology; this may be simply because ecological 

conditions and pressures greatly differ between these periods. There is a need for more 

studies exploring the nocturnal ecology of all animal taxa and in this chapter we show 

that passive acoustic monitoring coupled with aural identification of calls are an efficient 

methodology to retrieve information about vocalizing fauna during 24 h periods and is 

able to advance our understanding of their behavioral ecology. Future studies could 

employ passive acoustic monitoring and aural identification to unveil the nocturnal 

ecology and 24-h cycles of activity of other animals. These methods coupled with 

innovative playback experiments, such as the one reported Chapter 3, could greatly 

advance our understanding of animal behavioral ecology. In addition, nocturnal 

soundscapes are increasingly threatened by noise, light, and other human disturbances 

(Gaston, 2019); therefore the study of the nocturnal activity of animals could also help 

with their conservation in changing environments. 

 
Automatic classification of threatened species 

In Chapter 4, I show that passive acoustic monitoring and an automatic 

classification technique is able to produce reliable information about the presence or 

absence of calling species. The method presented can be easily expanded to other sound-

producing species in the Amazon region that are poorly studied and are threatened by a 

myriad of development projects. More importantly, the output data of species presence or 
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absence can be used with statistical techniques that account for imperfect detection. This 

would potentially allow for more effective management of threatened and cryptic species 

that are difficult to detect by other traditional survey methods (Robinson et al., 2018). 

Ecoacoustic surveys, like any other animal surveys, suffer from imperfect detection. But 

only recently has a method to account for imperfect detection in environmental 

recordings been proposed (see Rappaport et al., 2020). Future work will be focused on 

expanding the automatic detector implemented in Chapter 4 to other species of 

conservation concern to model their occupancy in the Rio Branco basin. This will likely 

help guide their conservation in the face of dam construction and other human threats to 

their survival. 
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APPENDIX A 

CHAPTER 2 SUPPLEMENTAL INFORMATION 

Table S2.1. Species richness of different taxa associated with each habitat type in the 
Viruá National Park, Roraima, Brazil. Expected richness (low, medium, high) are based 
on information about each taxon found in the management plan of the park. 
Habitat Trees Birds Amphibians/Insects/Mammals 
Burned campina 0 Low Low 
Campina 0 88 Low 
Campinarana 60 130 Medium 
Igapó 69 144 Medium 
Island Medium Medium Medium 
Pasture 0 89 Low 
Terra-firme 98 240 High 
Várzea 69 276 High 

ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade (2014). Plano de Manejo do Parque 
Nacional do Viruá. ICMBio, Boa Vista, Roraima. 
Laranjeiras, T. O., Naka, L. N., Bechtoldt, C. L., da Costa, T. V. V., Andretti, C. B., Cerqueira, M. C., ... & 
Pacheco, A. M. F. (2014). The avifauna of Virua National Park, Roraima, reveals megadiversity in northern 
Amazonia. Ornithology Research, 22(2), 138-171. 
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Table S2.2. Dates that the acoustic surveys were conducted and a description of the eight 
habitats studied in the Viruá National Park, Roraima, Brazil. 
Habitat Survey 

period 
Description 

Burned 
campina 

12/08/16 – 
12/13/16 

Grassland that was first affected by wildfire outbreaks nine 
months prior we conducted this study. It was showing signs 
of recovering (re-sprout) when we surveyed it. 

Campina 12/29/16 –  
01/03/17 

Grassland located in white sand soils that are poorly 
drained. Possess low species richness but high endemism 
rates and mostly no trees or shrubs (ICMbio, 2014; 
Laranjeiras et al., 2014). 

Campinarana 01/09/17 –  
01/14/17 

Located in white sand soils that are poorly drained and with 
a thick leaf litter layer often exceeding 20 cm. Possess 
small to medium trees and moderate species richness with 
high rates of endemism (ICMbio, 2014; Laranjeiras et al., 
2014). 

Igapó 01/29/17 –  
02/03/17 

Seasonally flooded swamp forest drained by a nutrient poor 
black-water river (“Rio Iruá”) with medium to large trees 
and moderate species richness (Laranjeiras et al., 2014; 
Montero et al., 2014). 

Island 01/17/17 –  
01/22/17 

Isolated by riverways of “Rio Branco” in the west portion 
of the park, this habitat is characterized by patches of 
várzea forests along the river and with large trees present 
(ICMbio, 2014). 

Pasture 02/07/17 –  
02/12/17 

Terra-firme forests that were cleared for cattle ranching 
(ICMBio, 2014), comprises the smallest habitat within the 
park. 

Terra-firme 11/22/16 –  
11/27/16 

Moist broadleaf forest located in the north section of the 
park on higher elevations than surrounding lands with large 
trees and high species richness (De Oliveira and Mori, 
1999; ICMbio, 2014). 

Várzea 11/29/16 –  
12/04/16 

Floodplain forest drained by a nutrient rich white-water 
river (“Rio Branco”) in the west portion of the park, 
possess large trees and high species richness (ICMbio, 
2014; Wittmann et al., 2004). 

ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade (2014). Plano de Manejo do Parque 
Nacional do Viruá. ICMBio, Boa Vista, Roraima. 
De Oliveira, A. A., & Mori, S. A. (1999). A central Amazonian terra firme forest. I. High tree species 
richness on poor soils. Biodiversity & Conservation, 8(9), 1219-1244. 
Laranjeiras, T. O., Naka, L. N., Bechtoldt, C. L., da Costa, T. V. V., Andretti, C. B., Cerqueira, M. C., ... & 
Pacheco, A. M. F. (2014). The avifauna of Virua National Park, Roraima, reveals megadiversity in northern 
Amazonia. Ornithology Research, 22(2), 138-171. 
Montero, J. C., Piedade, M. T. F., & Wittmann, F. (2014). Floristic variation across 600 km of inundation 
forests (Igapó) along the Negro River, Central Amazonia. Hydrobiologia, 729(1), 229-246. 
Wittmann, F., Junk, W. J., & Piedade, M. T. (2004). The várzea forests in Amazonia: flooding and the 
highly dynamic geomorphology interact with natural forest succession. Forest ecology and Management, 
196(2-3), 199-212.  
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Table S2.3. Results of a permutational multivariate analysis of variance 
(PERMANOVA) testing if nocturnal soundscapes were different than diurnal 
soundscapes and the influence of habitat type on mean values of 13 acoustic indices. 
Effect d.f. Sum of sq. R2 F-value p-value 
Period 1   13.50 0.28 2493.7 <0.001 
Habitat 7  15.98  0.33 421.6 <0.001 
Residual 3447 18.67 0.38   
Total 3455 48.16 1.00   
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Table S2.4. Top four performing models for acoustic indices response variables 
based on AICc model selection in the Viruá National Park, Roraima, Brazil. 
Index Modela logLik AICc ∆AICc d.f. Weight 

ACI Full Model -534.1 1085.3 0.0 8 0.160 

 Canopy Cover + Litter 
Depth + Trees (large) + 
Trees (small) 

-535.4 1085.7 0.3 7 0.135 

 Canopy Cover + Shrub 
Cover + Trees (large) + 
Trees (small) 

-535.5 1085.9 0.5 7 0.122 

 Canopy Cover + Litter 
Depth + Shrub Cover + 
Trees (large) 

-535.5 1086.0 0.6 7 0.116 

AEI Canopy Cover  172.3 -336.3 0.0 4 0.918 

 Canopy Cover + Shrub Cover 170.4 -330.5 5.8 5 0.050 

 Canopy Cover + Litter Depth 169.1 -327.8 8.4 5 0.013 

 Canopy Cover + Trees (small) 168.8 -327.3 8.9 5 0.010 

BIO Canopy Cover  -184.9 378.1 0.0 4 0.513 

 Canopy Cover + Shrub Cover -185.5 381.6 3.5 5 0.088 

 Canopy Cover + Trees (small) -185.8 382.1 4.0 5 0.069 

 Null Model -188.0 382.3 4.1 3 0.064 

CENT Full Model -1051.0 2119.3 0.0 8 0.964 

 Canopy Cover + Litter Depth 
+ Shrub Cover + Trees (large) 

-1056.3 2127.5 8.2 7 0.016 

 Canopy Cover + Litter Depth 
+ Trees (large) + Trees 
(small) 

-1056.6 2128.2 8.9 7 0.011 

 Canopy Cover + Litter Depth 
+ Shrub Cover + Trees 

-1057.7 2130.3 11.0 7 0.004 
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(small) 

DF Full Model -1112.8 2242.7 0.0 8 0.962 

 Canopy Cover + Litter Depth 
+ Shrub Cover + Trees 
(small) 

-1118.2 2251.3 8.6 7 0.013 

 Canopy Cover + Litter Depth 
+ Shrub Cover + Trees (large)  

-1118.3 2251.6 8.8 7 0.011 

 Canopy Cover + Shrub Cover 
+ Trees (large) + Trees 
(small) 

-1118.9 2252.6 9.9 7 0.007 

FLAT Null Model 209.7 -413.4 0.0 3 0.592 

 Canopy Cover 210.3 -412.4 0.9 4 0.363 

 Trees (large) 206.8 -405.4 8.0 4 0.011 

 Litter Depth 206.4 -404.6 8.7 4 0.007 

FQ Full Model -1059.6 2136.4 0.0 8 0.944 

 Canopy Cover + Litter Depth 
+ Shrub Cover + Trees 
(small) 

-1064.7 2144.4 8.0 7 0.017 

 Canopy Cover + Litter Depth 
+ Trees (large) + Trees 
(small) 

-1064.8 2144.6 8.2 7 0.016 

 Canopy Cover + Litter Depth 
+ Shrub Cover + Trees (large) 

-1065.0 2144.9 8.5 7 0.013 

H Canopy Cover  284.3 -560.4 0.0 4 0.981 

 Canopy Cover + Shrub Cover 280.4 -550.5 9.9 5 0.007 

 Canopy Cover + Trees (small) 279.9 -549.5 10.9 5 0.004 

 Canopy Cover + Litter Depth 279.8 -549.3 11.1 5 0.004 

KURT Canopy Cover + Shrub -616.0 1246.9 0.0 7 0.549 
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Cover + Trees (large) + 
Trees (small) 

 Canopy Cover + Shrub Cover 
+ Trees (large)  

-618.2 1249.2 2.2 6 0.174 

 Canopy Cover + Trees (large) 
+ Trees (small) 

-618.4 1249.6 2.7 6 0.141 

 Canopy Cover + Shrub Cover 
+ Trees (small) 

-619.3 1251.2 4.3 6 0.063 

NDSI Canopy Cover  125.0 -241.9 0.0 4 0.757 

 Null Model 122.3 -238.5 3.3 3 0.142 

 Canopy Cover + Litter Depth 122.9 -235.5 6.4 5 0.031 

 Trees (small) 121.5 -234.7 7.1 4 0.021 

SD Full Model -1024.7 2066.7 0.0 8 0.933 

 Canopy Cover + Shrub Cover 
+ Trees (large) + Trees 
(small) 

-1029.8 2074.5 7.8 7 0.019 

 Canopy Cover + Litter Depth 
+ Trees (large) + Trees 
(small) 

-1029.8 2074.6 7.8 7 0.018 

 Canopy Cover + Litter Depth 
+ Shrub Cover + Trees 
(small) 

-1030.2 2075.3 8.6 7 0.012 

SKEW Canopy Cover  -233.9 476.2 0.0 4 0.435 

 Canopy Cover + Trees 
(large) 

-233.7 477.9 1.6 5 0.187 

 Canopy Cover + Trees 
(small) 

-233.8 478.1 1.8 5 0.169 

 Canopy Cover + Shrub Cover -234.4 479.3 3.1 5 0.090 
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TQ Full Model -1159.6 2336.3 0.0 8 0.980 

 Canopy Cover + Litter Depth 
+ Shrub Cover + Trees (large) 

-1165.6 2346.1 9.8 7 0.007 

 Canopy Cover + Litter Depth 
+ Trees (large) + Trees 
(small) 

-1165.7 2346.3 10.0 7 0.006 

 Canopy Cover + Shrub Cover 
+ Trees (large) + Trees 
(small) 

-1166.1 2347.1 10.8 7 0.004 

aBolding indicate top models with ∆AIC < 2. 
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Table S2.5. Fixed effects of the top-performing models with ∆AICc < 2 on acoustic 
indices. 
Model Effect Estimate SE d.f. t-

value 
p-valuea R2 

ACI Model 1  Intercept 968.53 2.32 130 415.9
4 

<0.001 0.33 

 Canopy 
Cover 

-6.17 2.36 130 -2.60 0.010 0.11 

 Litter Depth -0.79 1.36 130 -0.58 0.560 0.00 
 Shrub 

Cover 
-0.00 1.46 130 -0.00 0.998 0.00 

 Trees 
(large) 

-2.91 1.31 130 -2.21 0.028 0.03 

 Trees 
(small) 

0.54 1.60 130 0.33 0.736 0.00 

ACI Model 2 Intercept 968.53 2.27 131 426.4
0 

<0.001 0.33 

 Canopy 
Cover 

-6.23 2.31 131 -2.70 0.007 0.12 

 Litter Depth -0.80 1.35 131 -0.59 0.553 0.00 
 Trees 

(large) 
-2.91 1.30 131 -2.22 0.028 0.03 

 Trees 
(small) 

0.57 1.59 131 0.36 0.718 0.00 

ACI Model 3 Intercept 968.53 2.34 131 412.8
0 

<0.001 0.32 

 Canopy 
Cover 

-6.29 2.35 131 -2.66 0.008 0.12 

 Shrub 
Cover 

-0.04 1.46 131 -0.03 0.973 0.00 

 Trees 
(large) 

-2.99 1.30 131 -2.28 0.023 0.03 

 Trees 
(small) 

0.27 1.54 131 0.17 0.860 0.00 

ACI Model 4 Intercept 968.52 2.35 131 411.0
4 

<0.001 0.32 

 Canopy 
Cover 

-5.82 2.18 131 -2.66 0.008 0.10 

 Litter Depth -0.67 1.30 131 -0.51 0.607 0.00 
 Shrub 

Cover 
0.00 1.46 131 0.00 0.999 0.00 

 Trees 
(large) 

-3.01 1.28 131 -2.35 0.019 0.03 

AEI Model 1  Intercept 0.25 0.01 134 13.74 <0.001 0.81 
 Canopy -0.17 0.01 134 -12.17 <0.001 0.81 
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Cover 
BIO Model 1 Intercept 4.42 0.14 134 30.59 <0.001 0.19 
 Canopy 

Cover 
0.44 0.13 134 3.37 0.001 0.19 

CENT Model 1 Intercept 5489.98 236.48 130 23.21 <0.001 0.26 
 Canopy 

Cover 
366.15 144.43 130 2.53 0.012 0.09 

 Litter Depth 108.98 58.54 130 1.86 0.064 0.01 
 Shrub 

Cover 
-65.28 70.56 130 -0.92 0.356 0.00 

 Trees 
(large) 

103.76 56.29 130 1.84 0.067 0.01 

 Trees 
(small) 

-11.97 75.37 130 -0.15 0.874 0.00 

DF Model 1 Intercept 1221.14 118.67 130 10.29 <0.001 0.21 
 Canopy 

Cover 
269.75 135.39 130 1.99 0.048 0.05 

 Litter Depth 104.65 92.72 130 1.12 0.261 0.00 
 Shrub 

Cover 
140.35 92.08 130 1.52 0.129 0.02 

 Trees 
(large) 

23.68 89.03 130 0.26 0.790 0.00 

 Trees 
(small) 

-19.06 103.06 130 -0.18 0.853 0.00 

FLAT Model 1 Intercept 0.55 0.03 135 14.31 <0.001 - 
FLAT Model 2 Intercept 0.55 0.02 134 23.14 <0.001 0.24 
 Canopy 

Cover 
0.04 0.01 134 3.50 <0.001 0.24 

FQ Model 1 Intercept 1530.47 108.10 130 14.15 <0.001 0.36 
 Canopy 

Cover 
366.90 109.76 130 3.34 0.001 0.17 

 Litter Depth 81.36 63.10 130 1.28 0.199 0.01 
 Shrub 

Cover 
28.83 68.07 130 0.42 0.672 0.00 

 Trees 
(large) 

-27.19 60.96 130 -0.44 0.656 0.00 

 Trees 
(small) 

44.06 74.50 130 0.59 0.555 0.00 

H Model 1 Intercept 0.80 0.02 134 32.13 <0.001 0.28 
 Canopy 

Cover 
0.04 0.00 134 5.41 <0.001 0.28 

KURT Model 1 Intercept 49.90 1.61 131 30.98 <0.001 0.46 
 Canopy 

Cover 
-18.29 2.25 131 -8.09 <0.001 0.31 

 Shrub -2.41 1.69 131 -1.42 0.156 0.01 



105 
 

Cover 
 Trees 

(large) 
3.78 2.11 131 1.79 0.075 0.02 

 Trees 
(small) 

-2.20 1.80 131 -1.21 0.225 0.01 

NDSI Model 1 Intercept 0.54 0.02 134 23.06 <0.001 0.42 
 Canopy 

Cover 
0.09 0.01 134 5.01 <0.001 0.42 

SD Model 1 Intercept 5157.27 152.16 130 33.89 <0.001 0.07 
 Canopy 

Cover 
125.50 111.40 130 1.12 0.262 0.02 

 Litter Depth 34.07 48.66 130 0.70 0.485 0.00 
 Shrub 

Cover 
-25.94 57.58 130 -0.45 0.653 0.00 

 Trees 
(large) 

54.93 46.88 130 1.17 0.243 0.00 

 Trees 
(small) 

-65.28 61.67 130 -1.05 0.291 0.00 

SKEW Model 1 Intercept 5.95 0.11 134 52.17 <0.001 0.52 
 Canopy 

Cover 
-1.28 0.11 134 -11.28 <0.001 0.52 

SKEW Model 2 Intercept 5.95 0.12 133 48.08 <0.001 0.52 
 Canopy 

Cover 
-1.41 0.14 133 -9.44 <0.001 0.44 

 Trees 
(large) 

0.22 0.13 133 1.63 0.104 0.02 

SKEW Model 3 Intercept 5.96 0.10 133 58.46 <0.001 0.53 
 Canopy 

Cover 
-1.21 0.11 133 -10.91 <0.001 0.45 

 Trees 
(small) 

-0.19 0.11 133 -1.71 0.087 0.02 

TQ Model 1 Intercept 8056.86 367.47 130 21.92 <0.001 0.32 
 Canopy 

Cover 
769.16 287.60 130 2.67 0.008 0.13 

 Litter Depth 162.86 130.44 130 1.24 0.214 0.00 
 Shrub 

Cover 
-97.97 152.80 130 -0.64 0.522 0.00 

 Trees 
(large) 

237.66 125.78 130 1.88 0.061 0.01 

 Trees 
(small) 

-45.46 163.96 130 -0.27 0.782 0.00 

aStatistically significant effects are in bold. 
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Fig. S2.1. Location of the surveyed sites (143) across the eight habitats studied in the 
Viruá National (VNP), northern Brazilian Amazon. 
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Fig. S2.2. Burned campina habitat with scorched shrubs and a Ciconia maguari. Photo by 
Leandro A. Do Nascimento. 
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Fig. S2.3. Campina habitat. Photo by Leandro A. Do Nascimento. 
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Fig. S2.4. Campinarana habitat profile in the background. In the front, two Jabiru 
mycteria and the campina transitioning to a campinarana forest formation. Photo by 
Leandro A. Do Nascimento. 
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Fig. S2.5. Igapó habitat at “Rio Iruá”. Photo by Leandro A. Do Nascimento. 
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Fig. S2.6. Island habitat in the “Rio Branco” with an ARBIMON recorder. Photo by 
Leandro A. Do Nascimento. 
 
  



112 
 

 
Fig. S2.7. Pasture habitat with a Caracara cheriway. Photo by Leandro A. Do 
Nascimento. 
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Fig. S2.8. Terra-firme habitat. Photo by Leandro A. Do Nascimento. 
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Fig. S2.9. Várzea habitat profile in the “Rio Branco”. Photo by Leandro A. Do 
Nascimento. 
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APPENDIX B 

CHAPTER 3 SUPPLEMENTAL INFORMATION 

Table S3.1. Composition of the four studied groups of Guianan red howler monkey at 
Viruá National Park, Roraima, Brazil.  
Group name Male Female Juvenile Infant Total 
Calados 1 4 1 1 7 
Pequi 1 3 1 1 6 
Tanque 1 3 2 1 7 
Viruá 1 3 1 1 6 

 
 
 
Table S3.2. Coefficients of linear discriminants of nine acoustic parameters extracted 
from 51 diurnal and 51 nocturnal howling bouts of Guianan red howlers at Viruá 
National Park, Roraima, Brazil. 
Acoustic parameter Function 1 coefficient 
Dominant frequency -0.12 
Duration -0.38 
First formant 0.47 
Harmonic-to-noise ratio 1.20 
Highest frequency 0.82 
Kurtosis -1.15 
Mean 0.47 
Median 0.29 
Skewness 1.02 
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Fig. S3.1. Study area (a) in Brazil and (b) at Viruá National Park and (c) location of 
the Guianan red howler groups surveyed. Home range was estimated by the 
locations where the animals were observed moving during the study period. 
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Fig. S3.2. Examples of nocturnal and diurnal howling bouts from each studied group. 10 
s clips of different recordings are showed with a windows length of 4012 points. 
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Fig. S3.3. Temporal distribution of the 102 howling bouts used in our analysis. Data were 
collected from February to April in 2018. Diurnal bouts are graphed from 0600 h to 1800 
h while nocturnal bouts from 1800 h to 0600 h. The graph starts at 0100 h and ends at 
2400 h. 
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