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ABSTRACT 

A Data-driven Regional Model of Stomatal Conductance for Kruger National Park 

by 

Rebecca Tobin, Master of Science 
 

Utah State University, 2020 
 
 

Major Professor: Dr. Andrew Kulmatiski 
Program: Ecology 
 
 

The basic drivers of stomatal conductance (gs) are well understood at the leaf 

level under controlled conditions, but it has been difficult to extrapolate laboratory 

principals to plant communities. Here we estimate and model landscape-level gs from a 

dataset with over 8,000 gs measurements made over five years from four study sites in 

Kruger National Park, South Africa. Sites represented a wide range of precipitation (450-

750 mm mean annual precipitation) and soil types (sand and clay). Measurements were 

used in a machine-learning (Random Forest) model to assess the effects of plant 

functional type (grass or woody), species, vapor pressure deficit, soil moisture, shortwave 

radiation, wind speed, atmospheric [CO2], time-of-season, soil type, and precipitation on 

gs. Both plant functional type and species had large effects on gs. Among environmental 

variables, shallow soil moisture had the greatest effect on gs for both grasses and woody 

plants. Soil type had the smallest effect on gs for both plant functional types. The effect of 

environment differed between grasses and woody plants. When the models were used 

with observed environmental data from several growing seasons, mean daytime gs was 
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estimated as 67 and 158 mmol m-2 sec-1 for grasses and woody plants, respectively. While 

laboratory-based models emphasize the role of leaf-level environmental parameters, this 

dataset highlights the role of species identity and soil moisture as major drivers of gs at 

the landscape scale. Results also show a large amount of landscape-scale variability in gs 

that remains to be explained.  

(47 pages) 
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PUBLIC ABSTRACT 

A Data-driven Regional Model of Stomatal Conductance for Kruger National Park 

Rebecca Tobin 

Stomata are the gateway between the lithosphere, the biosphere, and the 

atmosphere. Because of photosynthesis, plants inevitably lose water through their 

stomata. The rate at which water moves through stomata is stomatal conductance. As 

stomatal conductance increases, the rate of CO2 assimilation increases, therefore, plants 

must reach a balance between acquiring CO2 and losing H2O.  Plants achieve this balance 

by adjusting stomatal aperture. Therefore, modeling stomatal conductance is important to 

global circulation models and land surface models, as well as for predicting how 

changing climate conditions affect water use efficiency and plant productivity, and has 

implications for agriculture and natural resource management. 

Here a large dataset of field measurements was used to describe stomatal 

conductance for Kruger National Park, South Africa and develop statistical models of 

landscape-level stomatal conductance. Then models were used to estimate stomatal 

conductance across the region over several growing seasons. Over 8,000 measurements 

of stomatal conductance were made in four sites that represented a range of precipitation 

regimes and soil types within Kruger National Park from 2007-2012. Known 

environmental drivers of stomatal conductance, such as soil moisture, temperature, and 

shortwave radiation, were also measured during this period.  

Observed mean daytime stomatal conductance for the park was 75 ± 1 and 155 ± 

2 mmol m-2 sec1 for grasses and woody plants, respectively. When statistical models were 
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used to produce three years of continuous estimates of gs from environmental data, 

average daytime stomatal conductance was estimated as 67 and 158 mmol m-2 sec-1 for 

grasses and woody plants, respectively. The Random Forest statistical models that were 

used to produce continuous estimates of gs indicated that soil moisture, particularly at 

shallow depths, and plant species identity are primary drivers of landscape-scale stomatal 

conductance for Kruger National Park. However, results indicate that there is still a large 

amount of landscape-scale variability in stomatal conductance that the environmental 

drivers investigated here were unable to explain.  

 Results provide a rare example of landscape-level estimates of stomatal 

conductance based on direct measurements. The models give insight into the relative 

importance of environmental drivers and the nature of their effect on stomatal 

conductance in savanna ecosystems.  Because the measurements were collected over a 

range of species and soil conditions, the models should provide inference for many 

deciduous, sub-tropical savannas of southern Africa.  
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INTRODUCTION 

Because stomatal conductance (gs) is a measure of gas exchange between plants 

and the atmosphere, gs is an important component of CO2 and water cycles at both local 

and global scales1–4. Therefore, understanding the factors that determine gs is important 

for predicting small-scale processes such as plant productivity1, species coexistence and 

crop water use4 as well as large-scale processes, such as global CO2 and energy 

budgets2,5.  

Models of gs are numerous, well-developed1,3,6 and fall into three general 

categories: empirical, mechanistic, and optimization3. Empirical, or data-based, models 

describe the response of gs to environmental parameters, such as irradiance1, temperature, 

vapor pressure deficit (VPD)1,7, CO2 concentration6–8, water stress1, and interactions 

among these drivers. Because many factors can affect gs, the majority of empirical 

approaches have been conducted in laboratory settings where the effect of individual 

factors can be tested. The empirical gs models developed by Jarvis9 (including subsequent 

Jarvis-type models6) and Ball, Berry, and Woodrow10 provide reasonable estimates of gs 

under laboratory conditions and some of the best estimates of gs under field 

conditions3,11.  As a result, these models are widely-used in global circulation models, 

earth system models, and models of canopy-level processes2,3. However, due to the 

difficulty of measuring gs in the field1, validation of model predictions remains 

limited3,9,10. Mechanistic approaches rely on models and tests of the role of specific 

mechanisms, but are often difficult to apply to the landscape-level3,11.  Finally, 

optimization models seek to predict gs behavior according to the premise that gs is 
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regulated to maximize photosynthesis and minimize water loss2,3,5. Although there can be 

computational difficulties in implementing optimization models3, there have been recent 

efforts to incorporate gs optimization models into earth system models2,5,12.  

Developing gs models applicable on a landscape or global scale has proven 

difficult1,2,13. Due in part to technological limitations1, gs datasets are rarely large enough 

to capture the variability in gs that occurs among species, within canopies, and over daily 

and seasonal time-scales in response to environmental drivers, such as soil moisture and 

VPD. As a result,  response curves generated from limited observations may not be 

applicable across landscapes14. Savanna ecosystems pose a particular challenge because 

they include alternative dominant life forms: grasses and trees that can vary widely in 

both gs and their gs responses to environmental drivers. There remains, therefore, a need 

for both datasets and models of landscape-scale drivers of gs across growing seasons for 

this region.  

The overarching goal of this study was to describe gs in the savanna ecosystems 

of the nearly 2 million ha Kruger National Park and surrounding ecosystems in South 

Africa.  More specifically, the objectives were: 1) to develop a dataset large enough to 

describe gs for Kruger National Park, 2) to use the dataset to build a landscape-scale 

model of gs and 3) to use the model and observed environmental data to produce 

continuous estimates of gs across Kruger Park for three growing seasons. To capture 

landscape-scale variability in gs, measurements were collected over five years in four 

sites that represent a wide range of abiotic and biotic conditions. A machine-learning 

approach (Random Forest, hereafter RF) was used to describe the effect of the following 

environmental parameters on gs: soil moisture, VPD, shortwave radiation, wind speed, 
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soil type, precipitation regime, time-of-season, time-of-day, atmospheric [CO2], and 

species identity, on gs.  RF modeling has been shown to reveal nonlinear relationships 

and complex interactions in ecological data that may be missed by other statistical 

methods15. Because different species and functional groups are influenced by and respond 

differently to environmental conditions16, separate RF models were developed and 

conducted for grasses and woody plants. The RF models that explained the greatest 

variance in the gs dataset were used with environmental data to produce continuous, 

three-year estimates of gs for each study site and the entire study area. 
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METHODS 

2.1 Study Site Information 

Research was conducted between 2007 and 2012 in four deciduous, subtropical 

savanna sites in Kruger National Park, South Africa: Letaba (-23°46'49.00" S, 

31°31'16.19" E), Phalaborwa (-23°51'25.27" S, 31°14'12.75"E), Pretoriuskop (-

25°12'21.68" S, 31°17'9.92" E), and Lower Sabie (-25°12'2.09" S, 31°54'27.25" E). The 

four sites were selected to provide broad inference to conditions on the landscape, and 

represented a two-by-two factorial combination of precipitation (“wet” or “dry”) and soil 

texture (“sand” or “clay”)(Table 1)17,18. Common grasses include Bothriochloa radicans 

(Lehm) A. Camus, Setaria incrassate (Hochst.) Hack. and Urochloa mosambicensis 

(Hack.) Dandy. Common woody plants include Terminalia sericea Burch. ex DC and the 

nitrogen-fixing Colophospermum mopane (Benth.) Leonard and Dichrostachys cinerea 

subsp. africana (Brenan & Brummitt)(Table 2).  

 

 

 

  

Site Name Soil Type Precipitation Regime 

Letaba Clay (calcareous shallow clay) Dry (450 MAP) 

Phalaborwa Sand (coarse fersiallitic sand) Dry (475 MAP) 

Lower Sabie Clay (pedocutanic clay) Wet (730 MAP) 

Pretoriuskop Sand (coarse fersiallitic sand) Wet (750 MAP) 

Table 1. Precipitation regimes and soil types corresponding to the four study sites within 
Kruger National Park, South Africa17,18.  
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2.2 Study Design 

Stomatal conductance measurements: At each site, gs measurements were made 

across a roughly 4 ha sampling area that had been established for related research19–21. gs 

was measured using steady-state porometers (Decagon Devices, SC-1)22, which take gs 

measurements in 30 seconds, allowing large sample sizes relative to null-balance 

porometers or dynamic porometers23. Measurements were made during six sampling 

campaigns that represented early, mid- and late-season sampling during each of two 

growing seasons at each site.  Each sampling campaign included 2-3 days of sampling. 

To prevent biased sampling of certain samples (i.e., plant species), measurements were 

made during either consistent cloud cover or clear skies.  Sampling was intended to be as 

representative of landscape-level gs as possible, so samples were collected between 

sunrise and sunset, and were taken throughout the plant canopy20,21,24.  For grasses, gs 

was measured from both abaxial and adaxial surfaces. For woody plants, gs was not 

detectable on adaxial surfaces and was not measured. Forbs were also sampled, although 

their relative abundance was small compared to grasses and woody plants. Each of 

roughly 10 dominant target species at a site was measured within 15-minute increments 

to control for environmental variability. The species, plant functional type, soil type (clay 

or sand) and precipitation regime (wet or dry) and time-of-season [early (November – 

December), middle (January – February) or late (March - April)] in which measurements 

were taken were recorded. Tree and shrub species were classified together as “woody” 

(Table 2).  
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Environmental parameters: Temperature, relative humidity (215L; Campbell 

Scientific, UT, USA), wind speed (014A cup anemometer; MetOne, OR, USA), total 

shortwave radiation (SP-110; Apogee Instruments, UT, USA), and precipitation (Texas 

Instruments TE-525; Texas Instruments, TX, USA) were recorded at each site on 

Campbell Scientific CR1000 dataloggers. Measurements were made at both “grass” (1 m) 

and “woody” (2 m) canopy heights, except at Pretoriuskop, where only 2 m heights were 

Species Code Plant type Sample Size by Site 

Acacia nigrescens ACAN Woody PB (33) LS (208) 

Lonchocarpus capassa APPL Woody PB (15) PK (3) LS (107) 

Bothriocloa radicans BRAR Grass LT (456) PB (12) LS (60) 

Combretum apiculatum COMA Woody LT (12) PB (102) 

Combretum imberbe COMI Woody PB (36) LS (68) 

Loudetia simplex CORU Grass PK (134) 

Dichrostachys cinerea DICH Woody PB (106) PK (749) LS (402) 

Grewia bicolour  GREW Woody PB (12) LS (109) 

Sclerocarya birrea MARU Woody LT (2) PB (24) PK (148) LS (1) 

Colophospermum mopane MOPA Woody LT (843) PB (178) 

Panicum spp.  PANI Grass LT (11) PB (71) LS (234) 

Terminalia sericea SCLE Woody PB (1) PK (797) 

Urochloa mosambicensis UROC Grass LT (25) PB (76) LS (245) 

Setaria incrassata  VLEI Grass PK (458) 

Securinega virosa WHBE Woody PB (128) LS (298) 

Ximenia caffra XIME Woody PK (106) 

Table 2. Species, plant functional type and sample sizes from each study site. LT 
= Letaba, LS = Lower Sabie, PB = Phalaborwa, PK = Pretoriuskop. Numbers in 
parentheses indicate sample size. 
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measured. Air temperature and relative humidity were used to calculate VPD using the 

following equations25: 

𝑒𝑒𝑠𝑠 =  0.611
17.27(𝑇𝑇)
𝑇𝑇+237.3 

𝑒𝑒𝑎𝑎 =
𝑅𝑅𝑅𝑅
100

𝑥𝑥 𝑒𝑒𝑒𝑒 

𝑉𝑉𝑉𝑉𝑉𝑉 =  𝑒𝑒𝑎𝑎 −  𝑒𝑒𝑠𝑠 

where es is the saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), T is 

the air temperature (oC), and RH is the relative humidity (%). Atmospheric [CO2] 

measurements were provided by a flux tower near Skukuza26. Heat dissipation sensors 

(229; Campbell Scientific, UT, USA) were used to produce a soil water potential “index” 

for 0-20 cm, 0-50 cm, 20-50 cm, and 50-150 cm depths for each site21. Each heat 

dissipation sensor was calibrated prior to installation by taking measurements from soil 

samples equilibrated to specific water potentials21. To preclude error associated with 

developing site-specific water potential curves, sensor-specific values of proportional 

temperature response were used as a soil moisture index18,21,27.  

 
2.3 Data Analyses and Statistics 

Simple means and errors of observed daytime gs by plant functional type for the 

entire dataset and by site are reported. Species with less than 100 measurements in the 

dataset were excluded (Table 2). One-way analysis of variance was used to test for 

differences in mean gs values among sites for each plant functional type28. To meet 

assumptions of normality, gs values were log-transformed. Because sample sizes differed 
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among sites, Type III sum of squares were used. Pairwise comparisons were examined 

using the Tukey test29.  

Random Forest modeling: Random Forest modeling was used to describe the 

relationship between environmental parameters and gs and to build a predictive model of 

landscape-scale gs
15. In RF, a “forest” of regression trees is fit to a training dataset 

(approximately two-thirds of the sample data). The trees are then used to predict the out-

of-bag data (i.e. the sample data not included in the training dataset) and the predictions 

from all trees are combined, giving a cross-validated measure of the accuracy of the 

model15,30. The relative importance of predictors within the RF models was compared and 

gs-predictor relationships were visualized. The RF models that explained the most 

variance were used to estimate gs using environmental data from 3-4 growing seasons. 

Model estimates were generated by plant functional type. Statistical analyses were 

performed in RStudio31. All RF models and predictions were developed using the R 

package “randomForestSRC”32 and all model visualizations were created using the 

“ggRandomForests” package33. 

For RF modeling, gs measurements were paired with meteorological and soil 

measurements from the closest recorded timestep. Missing meteorological and soil data 

were interpolated where possible by correlating and adjusting data from the nearest 

weather station using a simple linear equation (y = mx + b, where y is the adjusted 

measurement and x is the original measurement). To test for potential lag effects in the 

response of gs to environmental conditions, the three-hour (3-hour) averages of air 

temperature, relative humidity, VPD, wind speed, and shortwave radiation, the 3-hour, 
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24-hour, and seven-day (7-day) averages of each soil moisture depth, and the 24-hour 

sum of precipitation were calculated.  

Although highly-correlated predictors do not affect RF variable importance15, to 

simplify interpretation of variable relationships, correlation matrices for groups of related 

predictor variables were used to test multicollinearity15. Air temperature, relative 

humidity, VPD, shortwave radiation, wind speed, precipitation, and soil moisture depths 

were evaluated. Because data for numerical predictor variables were not all distributed 

normally, Spearman correlation was used34. Where two predictors were highly correlated 

(correlation > ± 0.7), the predictor with the greatest “adjusted squared deviance 

explained” by a generalized linear model (GLMs; linear + quadratic, family = Gaussian) 

was used in the RF model15. When highly-correlated predictors explained similar 

(difference of less than 2 %) amounts of variance in gs, separate RF models were created 

to test the amount of variance explained with different combinations of predictors. The 

“best” RF models were selected based on the amount of variance in the dataset they 

explained. Categorical predictors were plant functional type, species, time-of-season, 

precipitation regime, and soil type.  

Variable importance (VIMP) within the RF model was determined and visualized 

using the ggRandomForests package33. Each variable was randomly permutated and the 

prediction error calculated using the out-of-bag data15. The VIMP value for each variable 

is the difference between the out-of-bag prediction error of the observed and permutated 

variables. Large VIMP values indicate that specifying the variables incorrectly increases 

prediction error; therefore, variables with large VIMP values are more important. 
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Negative VIMP values indicate that the randomly permutated variable was a better 

predictor than the observed variable33. 

Relationships between gs and its environmental parameters were characterized 

with risk-adjusted partial dependence plots created using the “ggRandomForests” 

package33. Partial dependence refers to the dependence of the response variable, in this 

case gs, on one predictor variable15. The plots were created by averaging the effects of the 

other predictors and predicting how the response variable changes with the predictor of 

interest alone15. Partial dependence of categorical variables was analyzed by comparing 

the mean predicted gs of each level of the variable. To avoid confusion with model 

predictions made with new data, “estimated” was used to describe partial dependence 

predictions.   

gs sampling was designed to produce a representative sample of gs on the 

landscape. However, because sampling was difficult to perform at sunrise and sunset for 

safety reasons (dangerous animals occupy the areas) and during fluctuating cloud 

conditions and during rain, the models were used to produce continuous estimates of gs 

across three growing seasons.  This approach produced estimates that were not biased by 

a low number of samples at sunrise and sunset. Model predictions of gs were generated 

using data from three growing seasons from each study site (2009 – 2012). The data were 

collected and prepared using the same instrumentation and methods as the data used to 

build the RF models. The data were then run through the RF models using the “predict” 

function in the “randomForestSRC” package32. Model predictions were generated 

separately for each study species. The modeled gs values were averaged by plant 

functional type for each study site and for the entire park.  
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RESULTS 

3.1 Observed gs  

 Over the five years of the study, 8510 gs measurements were made. Mean 

observed daytime gs was 74 ± 1 mmol m-² s-1 for grasses, 155 ± 2 mmol m-² s-1 for woody 

plants, and 142 ± 5 mmol m-² s-1 for forbs. The total cover and sample size for forbs was 

small (580) relative to grasses and woody plants (2662 and 4962, respectively) and was 

not included in further analyses. Mean observed gs was greater in the wet/clay site than 

the other sites for both grasses (F = 28.399, p < 0.001) and woody plants (F = 77.298, p < 

0.001).  

 
3.2 Random Forest 

Across both plant functional types, the best RF model explained 58 % of variance 

and included, in descending order of importance: species, 24-hour shallow soil moisture, 

24-hour deep soil moisture, 3-hour shortwave radiation, 3-hour VPD, 3-hour wind speed, 

atmospheric [CO2], time-of-season, time-of-day, precipitation regime, and soil type. 

When species was replaced with plant functional type as a predictor, the percent variance 

explained by the model decreased to 51 %. When neither species nor plant functional 

type was included in the model, percent variance explained decreased to 43 %. However, 

because it is reasonable to expect that grasses and woody plants may respond differently 

to environmental drivers16, and because savannas show wide variations in woody plant 

cover17, separate models were created for each plant functional type group. Percent 

variance explained for the grass dataset with and without species was 21 % and 20 %, 
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respectively. Percent variance explained for the woody gs dataset with and without 

species was 54 % and 45 %, respectively.  

For both plant functional types, shallow (0-20 cm) soil moisture and soil type 

were the most and least important predictors of gs, respectively (Fig. 1). The remaining 

variables differed in importance between grasses and woody plants. For grasses, in 

descending order of importance: VPD, atmospheric [CO2], time-of-day, deep (50-150cm) 

soil moisture, time-of-season, wind speed, shortwave, radiation, species, precipitation 

regime, and soil type explained variance in gs (Fig. 1). For woody plants, in descending 

order of importance: shortwave radiation, precipitation regime, species, atmospheric 

[CO2], VPD, wind speed, deep (50-150cm) soil moisture, time-of-season, time-of-day, 

and soil type explained variance in gs (Fig. 1). 
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Estimated grass gs increased with shallow soil moisture, decreased with VPD, and 

decreased with shortwave radiation beyond 1250 µmol m-2 s-1 (Fig. 2). Estimated woody 

gs increased with soil moisture, both shallow and deep, showed a hump-shaped response 

to VPD that peaked near 1 kPa, and showed a hump-shaped response to shortwave 

radiation, peaking near 500 µmol m-2 s-1. Both grass and woody plant estimated gs 

increased with increasing atmospheric [CO2]. Wind speed did not exhibit a clear 

relationship with grass or woody plant gs. Estimated gs also differed among categorical 

Fig 1. Variable importance in random forest models of stomatal conductance for grasses 
and woody plants. Variable importance is the difference in prediction error before and 
after a predictor variable is randomly permutated. Large variable importance values 
indicate that specifying the variables incorrectly increases prediction error.  
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variable levels.  Mean estimated grass gs decreased (3 %) over the growing season. Mean 

estimated gs for woody plants peaked mid-season. Mean estimated grass gs differed by 

less than 1 % between wet sites and dry sites and clay sites and sand sites (Fig. 3). Mean 

estimated woody plant gs was 16 % greater in wet sites than dry sites and 1.5 % greater in 

clay sites than sand sites (Fig. 3).  

 

 

 

 

 

Fig 2. Partial dependence plots for VPD and shortwave radiation for grasses and woody 
plants. The top panels show estimated grass and woody plant gs as a function of VPD. 
The bottom panels show estimated grass and woody plant gs as a function of shortwave 
radiation. Partial dependence is determined by averaging the effects of the other 
predictors and predicting how the response variable changes with the predictor of interest 
alone. 
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3.3 Model Predictions of gs 

When predicted by parameterizing our model with three years of observed 

environmental data, mean daytime gs across the four study sites was 67 and 158 mmol m-

² s-1 for grasses and woody plants, respectively. The wet/sand site had the greatest 

predicted daytime gs for both grasses and woody plants (Fig. 4). Mean predicted daytime 

gs was 14 % - 24 % and 66 % - 92 % greater in the wet/sand site than other sites for 

Fig 3. Partial dependence plots for soil type and precipitation regime. The top panels 
show estimated grass and woody plant gs as a function of soil type. The bottom panels 
show estimated grass and woody plant gs as a function of precipitation regime.  Partial 
dependence is determined by averaging the effects of the other predictors and predicting 
how the response variable changes with the predictor of interest alone. 
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grasses and trees, respectively.  Mean predicted daytime gs differed by less than 10 % 

between the dry/clay and dry/sand sites for both grasses and woody plants. Mean 

predicted daytime gs differed between species (Fig. 5), although it should be noted that 

species were not evenly distributed across the abiotic conditions of the park. Predicted gs 

for grasses and woody plants decreased to a peak mid-morning before decreasing until 

sunset (Fig. 6). In general, predicted gs peaked mid-growing season for both grasses and 

woody plants. 

 

Fig 4. Mean modeled daytime gs for each study site. 

Fig 4. Mean modeled daily gs for each study site. Modeled daytime gs was greatest for the 
wet/sand site for both grasses and woody plants. gs differed by less than 10 % between the 
dry/clay and dry/sand sites for both grasses and woody plants.  
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Fig 5. Mean modeled daytime gs for each species. BRAR = Bothriochloa radicans, 
CORU = Loudetia simplex, PANI = Panicum spp., UROC = Urochloa mosambicensis, 
VLEI = Setaria incrassata, ACAN = Acacia nigrescens APPL = Lonchocarpus capassa, 
COMA = Combretum apiculatum, COMI = Combretum imberbe, DICH = Dichrostachus 
cinerea, GREW = Grewia bicolour, MARU = Sclerocarya birrea, SCLE = Terminalia 
sericea, WHBE = Securinega virosa, XIME = Ximenia caffra.  
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Fig 6. Modeled daily gs for grasses and woody plants at the dry/sand site. The shape of 
the points indicates the species. In the grass panel: circles for Bothriochloa radicans, 
triangles for Panicum spp., and squares for Urochloa mosambicensis. In the woody 
panel: circles for Acacia nigrescens, triangles for Dichrostachys cinerea, and squares for 
Securinega virosa. Model predictions were averaged for each timestep and mid-season 
values are shown.  
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DISCUSSION 

Using a large, field-based dataset, our results highlighted plant identity (functional 

type or species) and shallow soil moisture as primary drivers of gs across the sub-tropical 

savanna landscape of Kruger National Park.  These results stand in contrast to a large 

body of  laboratory-based research that has emphasized the role of environmental 

variables such as temperature3,35,36, VPD35,37,38, solar radiation3,35,37, and atmospheric 

[CO2]35,39,40 as major drivers of gs. Our analyses did detect an effect of VPD on gs, but 

found that it was of secondary importance to plant functional type or species identity and 

shallow soil moisture.  For several other meteorological variables, such as atmospheric 

[CO2] and shortwave radiation, however, the response of gs found here was less 

consistent with previous research. The data and model reported here, therefore, provide a 

perspective on landscape scale values and drivers of gs that differs from many laboratory-

based approaches.  

Gs has been shown to increase with radiation6 until a threshold of maximum gs is 

reached35. Here, both grasses and trees showed a hump-shaped pattern of gs with 

increasing shortwave radiation. For grasses, gs increased slightly with shortwave 

radiation until approximately 1100 µmol m-2 s-1 before decreasing. For woody plants, the 

threshold was lower at 500 µmol m-2 s-1. In this study, the effect of radiation on gs was 

assessed by averaging all other observed variable values across a range of radiation 

values.  This should have allowed the detection of an increasing relationship between 

radiation and gs, unless, under natural conditions, it is the case that some variables limited 

gs as radiation increased.  It is likely, for example, that plants exhausted plant available 
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water immediately around their roots by midday so that no naturally occurring gs values 

increase with radiation through the day41. This midday depression in gs has been 

documented in the field39,42. Where soils are consistently well-watered, gs may continue 

increasing as shortwave radiation increases14 but consistently well-watered soils may 

only occur during heavy rains when shortwave radiation values do not reach high values.  

This hypothesis highlights both the strengths and weaknesses of the field data approach 

used in this study.  Data from this study provide more realistic estimates of gs during the 

years and conditions of this study, but do not provide inference to conditions unlike those 

observed during the study (i.e., extreme conditions associated with climate change). 

Gs also increased with atmospheric [CO2]. This relationship is surprising, as 

previous studies have shown the opposite: gs decreased as ambient [CO2] increased, 

presumably because plants could rapidly assimilate and close stomata to reduce water 

loss7,14,41,43.  Other variables, like VPD and soil moisture, might mask the response of gs 

to atmospheric [CO2].  Atmospheric [CO2] was highest in the morning and decreased 

throughout the day (data not shown).  Thus, atmospheric [CO2] decreased as shortwave 

radiation and VPD were likely to increase and soil moisture likely to decrease. Because 

shallow soil moisture was a primary driver of gs, it is likely that gs decreased as a result of 

water stress rather than decreasing [CO2].  Regardless of the mechanism, our results 

suggest that the laboratory-based observations of [CO2] effects on gs were overwhelmed 

by the effects of other environmental conditions. 

To estimate how environmental variables affect gs on the landscape, gs was 

modeled for four sites that represented a broad range of abiotic conditions from fairly 

mesic to fairly xeric savanna44 and clay to sand soils. Gs was surprisingly similar among 
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most sites, with the exception of the wet/sand site. gs was 14 % - 24 % and 66 % - 92 % 

greater in the wet/sand site than the other sites for grasses and woody plants, respectively.  

Also surprising was that soil type did not appear to have a consistent effect on gs.  The 

lack of a consistent response of gs to soil type suggests that model results are applicable 

across edaphic gradients. Again, results emphasize the importance of understanding soil 

moisture effects, but suggest that these soil moisture effects are consistently important 

across a wide range of soil types and plant species.  This is important because it suggests 

that our models of gs may be applicable across a wide range of abiotic conditions.  

This study highlights the difficulties of modeling gs at the landscape scale. 

Despite large sample sizes, the dataset was highly variable, and our models explained 

only a modest proportion of variance (25 % for grasses and 54 % for woody plants, 

respectively). Plant-to-plant variation was anticipated to have explained a large portion of 

the variation in the dataset14; however, averaging measurements over 2-hour increments 

provided nominal improvements (i.e., <2 % of error; data not shown). This suggested that 

plant-to-plant variation explained little of the residual variance. Plant age was not 

included as a parameter in this study, but may have accounted for some of the 

unexplained variation14,41. A more likely source of variation is leaf-level environmental 

conditions. As stomatal aperture can change in response to leaf-level conditions, such as 

interstomatal [CO2], leaf water potential, and leaf temperature, including these leaf-level 

parameters may be necessary to explain much of the unexplained variance in our dataset. 

Indeed, leaf-level models of gs that incorporate these types of parameters often explain 

upwards of 80% of variation in gs
11

. 
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Results provided novel insight into grass and woody plant rooting patterns in 

savannas. For nearly a century, Walter’s two-layer hypothesis has suggested that grasses 

and trees can coexist because grasses use shallow soil moisture and trees use deep soil 

moisture24,37,45. Our results are consistent with recent findings from hydrologic tracer 

experiments in Kruger Park that indicated that both grasses and trees rely on shallow soil 

water but that trees rely slightly more on deeper water than grasses21,27. More 

specifically, shallow water was found to be about 3.7 times more important in explaining 

variance in gs than deep water for grasses (Fig. 1).  In contrast, shallow water was 2.1 

times more important than deep water for woody plants. This suggested that both grasses 

and trees rely more on shallow than deep water but that grasses rely even more on 

shallow water than trees. Further, the fact that precipitation regime was more important to 

woody plants than grasses also supports the idea that woody plants rely more on deeper 

soil water than grasses. This is because wetter sites were more likely to realize deeper soil 

water penetration, which is likely to be more important to woody plants than grasses.  

This study provides a prioritized list of variables important to landscape gs in this 

region. Results indicate that plant identity and shallow soil moisture are of greater 

importance than atmospheric conditions and several environmental drivers that are 

commonly included in models of gs. Model performance decreased markedly when 

species was replaced with plant functional type as a predictor, and decreased even more 

when neither was included in the model. While incorporating species into a global 

circulation or land surface model may not be practical, it is possible to include plant 

functional type data and species-level data may be useful for increasing accuracy in 

canopy or ecosystem-level modeling.   
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Appendix A. SUPPLEMENTARY INFORMATION 

Table A.1 Studied species and their respective common names, families, and growth 
forms. 
Species Common/Alt. Names Family  Growth 

Form 
Acacia nigrescenes Knobthorn Fabaceae Tree 
Acacia gerrardii Red thorn Fabaceae Tree 
Acacia tortilis Umbrella thorn Fabaceae Tree 
Albizia harveyi Common false thorn Fabaceae Tree 
Lonchocarpus capassa Apple-leaf Fabaceae Tree 
Aristida sp.  Poaceae Grass 
Euclea crispa Blue guarri Ebenaceae Tree 
Bothriochloa radicans Stinking grass Poaceae Grass 
Cenchrus ciliaris Buffelgrass, African 

foxtail grass 
Poaceae Grass 

Loudetia simplex Common russet grass Poaceae Grass 
Tragus berteronianus Carrot seed grass Poaceae Grass 
Combretum apiculatum Red bushwillow Combretaceae Tree 
Combretum hereroense Russet bushwillow Combretaceae Tree 
Combretum imberbe Leadwood Combretaceae Tree 
Gymnosporia buxifolia Common spike thorn Celastraceae Tree 
Dichrostachys cinerea Sickle bush Fabaceae Shrub 
Phoenix reclinata Wild date palm Arecaceae Tree 
Enneapogon 
conchroides 

Nine-awned grass Poaceae Grass 

Euclea divinorum Magic guarri Ebenaceae Shrub/tree 
Lannea schwinfurthii False marula Anacardiaceae Tree 
Digitaria erianthra Common finger grass Poaceae Grass 
Grewia bicolour White raisin Malvaceae Tree 
Hyperthelia dissolute Yellow thatching grass Poaceae Grass 
Hyparrhenia filipendula  Poaceae Grass 
Hyparrhenia hirta Common thatching grass Poaceae Grass 
Adenium multiflorum Impala lily Apocynaceae Forb 
Sclerocarya birrea Marula Anacardiaceae Tree 
Maerua angolensis Bead bean Capparaceae Tree 
Melinis repens Natal grass Poaceae Grass 
Strychnos 
madagascariensis 

Black monkey orange Loganiaceae Shrub/tree 

Colophospermum 
mopane 

Mopane Fabaceae Shrub/tree 

Panicum coloratum Small buffalo grass Poaceae Grass 
Panicum maximum Guinea grass Poaceae Grass 
Pogonarthria squarrosa Herringbone grass Poaceae Grass 
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Ehretia rigida Sand paper bush Boraginaceae Tree 
Terminalia sericea Silver cluster-leaf Combretaceae Tree 
Heteropogon contortus Spear grass Poaceae Grass 
Setaria sphacelata Creeping bristle grass Poaceae Grass 
Themeda triandra Red oat grass Poaceae Grass 
Urochloa 
mosambicensis 

Bushveld signal grass Poaceae Grass 

Vangueria infausta Wild medlar Rubiaceae Shrub/tree 
Setaria incrassate Vlei bristle grass Poaceae Grass 
Securinega virosa White berry bush Phyllanthaceae Tree 
Ximenia caffra Sour plum Olacaceae Tree 
Dalbergia melanoxylon Zebra wood Fabaceae Tree 
Ziziphus mucronata Buffalo thorn Rhamnaceae Tree  

 
 
Table A.2 Mean observed daytime grass gs and summary statistics. 
Site Mean SD SE 
Dry/Clay 66.92703 48.31501 2.178209 
Dry/Sand 65.20629 38.89313 3.084426 
Wet/Sand 62.27551 47.17955 1.939068 
Wet/Clay 95.97528 79.05191 3.408170 

 
 
Table A.3 Mean observed daytime woody plant gs and summary statistics. 
Site Mean SD SE 
Dry/Clay 123.4944 71.23182 2.433232 
Dry/Sand 128.6277 78.24701 3.105138 
Wet/Sand 150.4774 116.4686 2.742905 
Wet/Clay 197.6815 136.1406 3.939902 

 
 
Table A.4 Mean modeled daytime grass gs and summary statistics. 

Site Mean SD SE 
Dry/Clay 62.4447 17.33135 0.090633 
Dry/Sand 64.82193 17.79558 0.092633 
Wet/Sand 77.50184 15.41926 0.085978 
Wet/Clay 67.82299 18.4539 0.134779 
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Table A.5 Mean modeled daytime woody plant gs and summary statistics. 
Site Mean SD SE 
Dry/Clay 131.2803 31.64087 0.202651 
Dry/Sand 134.822 35.12521 0.111966 
Wet/Sand 252.5363 56.23957 0.313591 
Wet/Clay 152.4924 46.67333 0.241039 

 

 

 

 

 
 
Fig. A1 Mean observed daytime gs for Kruger National Park and each study site. Error 
bars represent standard error. Asterisks indicate significance (p<0.05). 

* 

* 
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Fig A.2 Partial dependence plots for deep soil moisture for grasses and woody 
plants. The panels show predicted grass and woody plant gs as a function of 
deep soil moisture. 
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Fig A.3 Partial dependence plots for shallow soil moisture for grasses and woody plants. 
The panels show predicted grass and woody plant gs as a function of shallow soil 
moisture. 
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Fig A.4 Partial dependence plots for atmospheric [CO2] for grasses and woody plants. 
The panels show predicted grass and woody plant gs as a function of atmospheric [CO2]. 
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Fig A.5 Partial dependence plots for wind speed for grasses and woody plants. The 
panels show predicted grass and woody plant gs as a function of wind speed. 
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Fig A.6 Partial dependence plots for time of season for grasses and woody plants. The 
panels show predicted grass and woody plant gs as a function of time of season. 
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Fig A.7 Modeled seasonal gs for grasses and woody plants at the dry/sand site. The shape 
of the points indicates the species. In the grass panel: circles for Bothriochloa radicans, 
triangles for Panicum spp., and squares for Urochloa mosambicensis. In the woody panel: 
circles for Acacia nigrescens, triangles for Dichrostachys cinerea, and squares for 
Securinega virosa. Model predictions were averaged for each season and midday values 
are shown. 
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Appendix B. STATISTICAL RESULTS 

Table B.1 One-way analysis of variance (Type III) of observed mean daytime grass gs 
values from each study site. See Table 1 for a description of each site. 
Source Sum of Squares Mean Square dF F p 
Site 49.8 16.602 3 28.399 <0.001 
Error 1104.3 0.585 1889   
Total 1154.1 17.187 1892   

 
 
Table B.2 One-way analysis of variance (Type III) of observed mean daytime woody 
plant gs values from each study site. See Table 1 for a description of each site. 
Source Sum of Squares Mean Square dF F p 
Site 179.6 59.87 3 77.298 <0.001 
Error 3472.8 0.77 4484   
Total 3652.4 60.64 4487   

 
 
Table B.3 Tukey test for pairwise comparisons of mean observed daytime gs values for 
grasses by site.  See Table 1 for a description of wet, dry, sand, and clay. 

 
 
Table B.4 Tukey test for pairwise comparisons of mean observed daytime gs values for 
woody plants by site.  See Table 1 for a description of wet, dry, sand, and clay. 

 

Comparison Estimate SE t-statistic p 
Dry/Sand – Dry/Clay 0.019 0.046 0.406 0.977 
Wet/Sand – Dry/Clay 0.009 0.037 0.246 0.995 
Wet/Clay – Dry/Clay 0.461 0.039 11.698 <0.001 
Wet/Sand – Dry/Sand -0.010 0.041 -0.239 0.995 
Wet/Clay – Dry/Sand 0.442 0.043 10.234 <0.001 
Wet/Clay – Wet/Sand 0.452 0.033 13.768 <0.001 

Comparison Estimate SE t-statistic p 
Dry/Sand – Dry/Clay 0.075 0.070 1.074 0.699 
Wet/Sand – Dry/Clay -0.036 0.045 -0.802 0.849 
Wet/Clay – Dry/Clay 0.344 0.048 7.209 <0.001 
Wet/Sand – Dry/Sand -0.111 0.067 -1.652 0.341 
Wet/Clay – Dry/Sand 0.269 0.069 3.894 <0.001 
Wet/Clay – Wet/Sand 0.380 0.044 8.669 <0.001 
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