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ABSTRACT

Embedded-Atom-Method Modeling of Alkali-Metal/Transition-Metal

Interfaces

by

Jake D Christensen, Master of Science

Utah State University, 2020

Major Professor: D. Mark Riffe, Ph.D.
Department: Physics

Bimetallic interfaces become increasingly important as technological devices shrink down to the

nanoscale. The smaller a device is, the larger the ratio of surface area to volume, making

surface effects more prevalent. It is important to study surface influenced properties (such as

heat transport) to understand these systems. This thesis applies the Embedded Atom Method

(EAM) model to several bimetallic systems, which include slabs of tungsten and molybdenum

oriented to the (110), (100), and (111) surfaces, with adsorbate layers of alkali metals.

In this project, we develop a computer program called Alkali Lattice Explorer (ALE) to

perform the calculations to characterize the vibrational properties of bimetallic surface systems.

We then develop models of the potential energy interaction of homogeneous tungsten, molybde-

num and the alkali metals. We use these potential energy models to construct a heterogeneous

potential, using the Johnson prescription. Our work shows that this prescription fails to accu-

rately describe the interaction between atoms of very different sizes. We develop a new model

of the interaction between the alkali and transition metals. This potential energy model is used

to calculate dispersion curves, densities of states, and Debye temperatures of several systems of

interest.

(162 pages)
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PUBLIC ABSTRACT

Embedded-Atom-Method Modeling of Alkali-Metal/Transition-Metal

Interfaces

Jake D Christensen

Understanding the thermal properties of materials is essential to using those materials for tech-

nological advancement which can benefit civilization. For example, it has been proposed that

essential components of tokamaks, devices which perform fusion, be made out of tungsten with

a thin layer of lithium on the surface. To that end, this thesis seeks to calculate the thermal

properties of a layer of alkali atoms, like lithium and sodium, on tungsten and molybdenum

substrates. We use an Embedded Atom Method (EAM) model to perform our calculations.

This type of model has been widely used to describe the interaction between atoms of the same

type (i.e., how two lithium atoms interact). There is also a standard prescription for building

the interaction between two atoms of different types (i.e., how a lithium atom and a tungsten

atom interact). However, we have discovered that the prescription fails when trying to describe

the interaction of atoms with much different sizes. To remedy this, we explore several different

types of models and compare their results.
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CHAPTER 1

INTRODUCTION

Bimetallic interfaces are important for several technological reasons, especially at the

nanoscale. In this size regime the fraction of material close to an interface can be quite large,

often resulting in the dominance of interfaces on key physical properties of devices. A most

important property is heat transport.

One of the main theoretical approaches to modeling interfacial heat transport utilizes

embedded-atom-method (EAM) modeling of the interactions between atoms. EAM models

have been extensively used in molecular dynamics simulations to study the transmission and

reflection of thermal energy at interfaces between dissimilar metals [1–3].

As a practical example, there has been recent work done on studying the effectiveness of

using tungsten (W) and molybdenum (Mo) as first wall divertors for tokamak reactors. These

materials boast important properties for fusion, such as a high melting point, high thermal

conductivity, high physical sputtering threshold energy, and low tritium retention [4–6]. However,

when subject to the high-energy neutron irradiation environment of a tokamak, W and Mo tend

to suffer defects such as voids and dislocations [7]. It has been proposed that adding a layer

of liquid lithium to the wall can help overcome these challenges [8]. Our investigation into the

interaction of Li on Mo and W will add to the understanding of this important sytem.

In order to begin to investigate inter-facial physics, we propose to study single-layer alkali

metal (AM) atoms adsorbed onto transition-metal (TM) substrates. Our study shall reveal key

vibrational properties associated with the AM/TM interface, including dispersion relations and

densities of states, from which thermal properties such as specific heat, entropy, and mean-

squared vibrational amplitudes can be calculated. These calculations will also be useful in the

interpretation of experimental core-level photoemission spectra, which are influenced by inter-

facial vibrational dynamics [9].
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1.1. Overview of Thesis

This thesis will examine W and Mo substrates, with a layer of alkali metals adsorbed on

the surfaces. To probe the importance of the density of substrate atoms three surfaces will be

examined. In order of least to most dense the surfaces are (111), (100) and the (110). To

examine the importance of the adsorbate atom density the adsorbate atoms will be arranged in

increasingly higher coverages. Here coverage refers to the ratio of the number of atoms in the

adsorbate layer to the number of atoms in the first substrate layer.

On the (110) surface of W and Mo, we study an adsorbed layer of lithium (Li) in coverages

of a sixth, quarter, third, and full monolayer. Each of these structures have been observed

experimentally [10, 11]. Since higher coverages involve packing absorbate atoms more densely,

looking at multiple coverages give insight into the inter-adsorbate atom effects.

For the (100) surface of W, adsorbed layers of K at a half and quarter monolayer will be

studied. Each of these systems has been observed experimentally [12–14].

Finally, for the (111) surface of W, Li, Na, K and Cs will be examined using a full monolayer,

once again because each has been experimentally observed [15].

The analysis will include generating dispersion curves, calculating (i) layer resolved den-

sities of states, (ii) near-surface atomic layer relaxation values, and (iii) layer resolved Debye

temperatures. These results are sufficient to describe the vibrational thermal properties of these

systems.

The remaining chapters of the thesis will cover the material necessary to understand the

research that has been done. Chapter 2 will discuss in detail the inner workings of Alkali Lattice

Explorer (ALE), the program used to perform the calculations. This section is intended as

a “how to” guide for future students who will continue work on the project. It will explain

the key features and design paradigms of the program, as well as explaining how the program

is run. This chapter will conclude with instructions on making changes to ALE’s code base.

Chapter 3 will focus on work that has been done to build EAM models for the alkalis, tungsten,

and molybdenum. This chapter will include comparisons of different models for all the studied

materials with experimental data, as well as comparisons to other high-quality EAM and density
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functional theory calculations. Chapter 4 will focus on building an appropriate heterogeneous

pair-potential model. Finally, Chapter 5 will show the results from the models constructed in

Chapter 4. These results will include dispersion curves, densities of states, and near-surface

atomic-layer relaxation values.

1.2. Theory

1.2.1. The EAM Model

The EAM model is a semiempirical approach to modeling the potential energy of a crystal.

It treats the energy as coming from two sources. The main contribution comes from pair-wise

interactions of atoms in the lattice through some potential function φ(r). The second piece of

the EAM model is known as the embedding energy, usually written as F (ρ). The idea is that

each atom in the lattice is embedded in some charge density ρ, and the interaction of the atom

with charge that it sees contributes to the potential energy of the crystal.

Up until the early 1980’s, models using only pair potentials were widely used [16]. However,

certain important features of a metal are incorrectly described by purely pair potential models.

For example, a pair potential model predicts that the Cauchy pressure – a quantity related to

linear elastic constants of a material – is zero [17]. It is experimentally well known that the

Cauchy pressure is nonzero. This failure of a pair potential model is often referred to as the

Cauchy discrepancy [18].

The EAM approach to resolving the Cauchy discrepancy is to introduce the embedding

term F (ρ) to the potential energy. This term accounts for the many-body interactions in a

crystal lattice through the charge density ρ(rnα). The charge density should be thought of as a

function of position, and arises due to individual charge density contributions from each atom

in the lattice, usually written as f(r).

Thus we arrive at the complete EAM model, where the energy of a crystal is written as

E =
1

2

∑
nα

∑
mβ

φβα(rmβnα ) +
∑
nα

Fα (ρ (rnα)) . (1.1)

Throughout this thesis, n and m will label unit cells. The letters α and β are used to label
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atoms in a unit cell. Thus, rnα is the location of atom α in unit cell n. To label vectors between

atoms, the shorthand

rmβnα ≡ rmβ − rnα (1.2)

is used. The sums in (1.1) are therefore sums over each unit cell and each atom in a unit cell

in the crystal. These are sometimes referred to as lattice sums.

The labels α and β on φβα and Fα refer to the models for atoms α and β. For example,

the pair potential interaction between two lithium atoms looks different than the pair potential

between a lithium atom and a tungsten atom. Thus, it is necessary to have a model for both

φWLi and φLiLi.

As noted earlier, the charge density ρ(rnα) comes from a lattice sum,

ρ(rnα) =
∑
mβ

fβ(rmβnα ), (1.3)

where

rmβnα = |rmβnα |. (1.4)

Thus, in order to specify a particular EAM model, it is sufficient to specify the functions

φ(r), F (ρ), and f(r).

1.2.2. Dynamical Matrix

To understand the vibrational properties of metallic systems, we will be working under the

harmonic approximation. This means that we will only be looking at dynamics in which the

atoms in the lattice move very close to equilibrium. In this regime, the energy of the crystal

can be expanded in a Taylor series with displacements from equilibrium labeled by snαi, with

the Cartesian direction indicated by i and j,

E ≈ E0 +
1

2

∂2E

∂rnαi∂rmβj
snαismβj . (1.5)

Here, snαi is the displacement from equilibrium of atom α in unit cell n in the i direction. This

view of the crystal is very suggestive of a set of coupled harmonic oscillators. To that end, it is
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useful to talk about force constants associated with the second derivatives of the energy, which

we define as

Kmβj
mαi ≡

∂2E

∂rnαi∂rmβj
. (1.6)

We take the following approach to work out the available normal modes of oscillation.

Because each unit cell of the lattice is identical, analyzing the dynamics of a single unit cell

is sufficient to understand the dynamics of the entire system. Consider then the equation

of motion for the displacement from equilibrium in the i direction snαi obtained by applying

Newton’s second law to atom α in unit cell n. Using (1.5) and (1.6), we have that

Mαs̈nαi = −
∑
mβj

Kmβj
mαi smβj , (1.7)

where Mα is the mass of atom α. Here we see the advantage of using (1.6). This equation of

motion looks just like that of a mass attached to several springs.

We assume normal mode solutions that take the form of plane waves with wavevector k

and frequency ω, so that

snαi =
1√
Mα

uαie
i(k·rn−ωt). (1.8)

Here, uαi is the i component of the polarization of atom α. Note that rn is a vector that points

to a fixed location in unit cell n, not the atom α in that unit cell. As it turns out, this choice

makes excellent use of the symmetry of the lattice. Inserting (1.8) into (1.7) and applying some

simplifications, we get

1√
MαMβ

∑
m

Kmβj
mαi e

ik·(rm−rn)uβj = ω2uαi. (1.9)

The left hand side of (1.9) contains an element of one of the most important objects to the

computational approach we are taking, namely the dynamical matrix. We define it as

Dβjαi(k) ≡ 1√
MαMβ

∑
m

Kmβj
mαi . (1.10)
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This allows us to write (1.9) as

∑
βj

Dβjαi(k)uβj = ω2uαi. (1.11)

Equation (1.11) is crucial to our study of crystal dynamics. It allows us to find all of the normal

modes associated with a wave vector k. This is done by calculating the dynamical matrix and

finding its eigenvalues ω2 and eigenvectors uαi. We interpret each eigenvalue and eigenvector

pair as describing a normal mode with frequency ω and polarization uαi. Thus, in order to

computationally work out all possible normal modes, we could simply compute the dynamical

matrix for all meaningful wave vectors. Luckily, the symmetry of the crystal sheds some light

on what it means for a wave vector to be physically meaningful.

1.2.3. Wave Vectors

The normal modes snα from (1.8) are characterized by a wave vector k. It is the wave

vector that determines the dynamical matrix, and thus the frequencies of a mode. Because the

wave vectors are so important to the analysis, it is useful to describe the space in which they

live.

We call the space of wave vectors reciprocal space. For any lattice characterized by the

primitive vectors a1, a2, and a3, a reciprocal lattice can be constructed using the reciprocal

lattice vectors b1, b2, and b3. These reciprocal lattice vectors are related to the primitive

vectors by

b1 = 2π
a2 × a3

a1 · a2 × a3

b2 = 2π
a3 × a1

a1 · a2 × a3

b3 = 2π
a1 × a2

a1 · a2 × a3
.

(1.12)

Due to the discrete translational symmetry of the lattice, a normal mode with wave vector

k is identical to a mode whose wave vector has been shifted from k by an integer multiple of a

reciprocal lattice vector.

This translational symmetry of the wave vectors means that all normal modes of a crystal
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can be characterized by wave vectors which lie in a single unit cell of the reciprocal lattice.

Generally, a region known as the first Brillouin zone is used. This zone is a Wigner-Seitz cell in

reciprocal space, and can be constructed from the reciprocal lattice vectors. Thus, every crystal

lattice will have an associated first Brillouin zone. For example, a body centered cubic (BCC)

lattice has the first Brillouin shown in Figure 1.1.

ky
k

X

kz

H

P

G N

Figure 1.1. The first Brillouin zone of the BCC structure. The high symmetry directions run
from Γ- H, H-P -Γ, and Γ-N .

The first Brillouin zone has additional symmetry that can simplify vibrational calculations.

The region indicated in red within the zone in Figure 1.1 is known as the irreducible part of the

Brillouin zone (IBZ). The IBZ is the smallest portion of the first Brillouin zone that can, through

rotations and inversions, recreate the entire first Brillouin zone. The significance of the IBZ is

that the frequencies of a mode whose wave vector lies outside the IBZ are identical to a mode

whose wave vector is within the IBZ. Thus, in order to characterize all possible frequencies of a

crystal, it is sufficient to probe only wave vectors which lie in the IBZ.

There are three more three dimensional lattices that are of interest. These are the face

centered cubic (FCC) lattice, the hexagonal close packed (HCP) lattice, and the 9R lattice. The
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corresponding first Brillouin zones are shown in Figure 1.2, Figure 1.3, and Figure 1.4.

Most of the analysis in this study will be on the two dimensional lattices used to describe

crystal surfaces. We will be focusing on the (100), (110), and (111) surfaces of the BCC

structure. Figures 1.5, 1.6, and 1.7 show the first Brillouin zones and IBZs of these surfaces.
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ky k
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X
W
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L

K

G X

Figure 1.2. The first Brillouin zone of the FCC structure. The high symmetry directions run
from Γ- X, X-W -X, X-Γ and Γ-L.

-ky
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G

H

L
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K

Figure 1.3. The first Brillouin zone of the HCP structure. The high symmetry directions run
from Γ- K, K-M , M -Γ, Γ-A, A-H, H-L, and L-A.
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k
X

kz

T

H
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L

M

JG

X

V

Figure 1.4. The first Brillouin zone of the 9R structure. The high symmetry directions run from
M -L, L-Γ, Γ-T , T -U , U -X, X-Γ, Γ-H, H-V , V -W , and W -T .

Figure 1.5. The first Brillouin zone of the 100 surface of the BCC structure. The high symmetry
directions run from Γ- X, X-M , and M -Γ.
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Figure 1.6. The first Brillouin zone of the 110 surface of the BCC structure. The high symmetry
directions run from Γ- N , N -P , P -H, and H-Γ.

Figure 1.7. The first Brillouin zone of the 111 surface of the BCC structure. The high symmetry
directions run from Γ- M , M -K, and K-Γ.
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1.2.4. Force Constants

In order to calculate the dynamical matrix it is necessary to calculate the force constants

Kmβj
mαi . Because the EAM model of the potential energy of a crystal is a somewhat complicated

function of position, taking two derivatives to find the force constants is somewhat nontrivial.

Fortunately, Riffe et al. [19] have worked out the details. The results will be quoted here.

A few labeling conventions will be used to make the equations less bulky. The symbol r̂mβnα

is a unit vector, so that r̂mβnα = rmβnα /r
mβ
nα . Functions have been shortened so that

φmβnα = φβα(rmβnα ), (1.13)

Fnα = Fα(ρ(rnα)), (1.14)

and

fmβnα = fα(rmβnα ). (1.15)

It is useful to split the force constants into contributions from the pair potential pKmβj
mαi

and contributions from the embedding energy eKmβj
mαi . The pair potential piece is given by

pKmβj
mαi =

∑
m′β′

[
Dφmβm′β′

rmβm′β′

(
δij − r̂mβm′β′ir̂

mβ
m′β′j

)
+D2φmβm′β′ r̂

mβ
m′β′ir̂

mβ
m′β′j

]
δnmδαβ

−

[
Dφmβnα

rmβnα

(
δij − r̂mβnαir̂

mβ
nαj

)
+D2φmβnα r̂

mβ
nαir̂

mβ
nαj

]
(1− δnmδαβ) .

(1.16)

Here we use a somewhat more compact notation for derivatives of a function with a single

variable. For any function f(x),

Df ≡ d

dx
f(x) (1.17)

and

D2f ≡ d2

dx2
f(x). (1.18)

We split the contribution from the embedding piece into three sections.

eKmβj
mαi =e1 Kmβj

mαi +e2 Kmβj
mαi +e3 Kmβj

mαi , (1.19)
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where

e1Kmβj
mαi =

∑
m′β′

(
DFmβDf

mβ
m′β′ +DFm′β′Df

m′β′

mβ

) δij − r̂mβm′β′ir̂
mβ
m′β′j

rmβm′β′
δnmδαβ

−
(
DFmβDf

mβ
nα +DFnαDf

nα
mβ

) δij − r̂mβnαir̂
mβ
nαj

rmβnα
(1− δnmδαβ) ,

(1.20)

e2Kmβj
mαi =

∑
m′β′

(
DFmβD

2fmβm′β′ +DFm′β′D
2fm

′β′

mβ

)
r̂mβm′β′ir̂

mβ
m′β′jδnmδαβ

−
(
DFmβD

2fmβnα +DFnαD
2fnαmβ

)
r̂mβnαir̂

mβ
nαj (1− δnmδαβ) ,

(1.21)

and
e3Kmβj

mαi =
∑
m′β′

∑
m′′β′′

D2FmβDf
mβ
m′′β′′Df

mβ
m′β′ r̂

mβ
m′′β′′ir̂

mβ
m′β′jδnmδαβ

−
∑
m′β′

D2FmβDf
mβ
nα Df

mβ
m′β′ r̂

mβ
nαir̂

mβ
m′β′j (1− δnmδαβ)

−
∑
m′β′

D2FnαDf
nα
m′β′Df

nα
mβ r̂

nα
m′β′ir̂

nα
mβj (1− δnmδαβ)

+
∑
m′β′

D2Fm′β′Df
m′β′
nα Dfm

′β′

mβ r̂m
′β′

nαi r̂
m′β′

mβj .

(1.22)

Because the force constants are being identified as the coefficients of a Taylor expansion,

equations (1.16), (1.20), (1.21), and (1.22) are all evaluated at the equilibrium position of the

lattice.

This fact leads to an interesting note about (1.20) and (1.21). Both of these expressions

have an overall factor of the first derivative of the embedding energy DFnα. Therefore, if the

model for the embedding energy has a derivative of zero at equilibrium, then (1.20) and (1.21)

are also zero, making computation much simpler. Models which have this property are called

normalized.

As it turns out, if a model is not normalized, a transformation may be performed to

normalize it. The pair potential is transformed as

ψmβnα = φmβnα +DFmβf
mβ
nα +DFnαf

nα
mβ, (1.23)
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and the embedding energy transforms as

F̄nα = Fnα −DFnα ρ(rnα). (1.24)

With this transformed potential, it is clear that DF̄nα = 0. It is also interesting to note

that (1.23) now contains all pair like interactions. It is therefore possible to redefine the force

constants so that

Kmβj
mαi =ep Kmβj

mαi +e3 Kmβj
mαi , (1.25)

where

epKmβj
mαi =

∑
m′β′

[
Dψmβm′β′

rmβm′β′

(
δij − r̂mβm′β′ir̂

mβ
m′β′j

)
+D2ψmβm′β′ r̂

mβ
m′β′ir̂

mβ
m′β′j

]
δnmδαβ

−

[
Dψmβnα

rmβnα

(
δij − r̂mβnαir̂

mβ
nαj

)
+D2ψmβnα r̂mβnαir̂

mβ
nαj

]
(1− δnmδαβ) .

(1.26)

For this reason, ψmβnα is often referred to as the effective potential.

1.2.5. Born-von-Kármán Force Constants

A small note should be made about Born-von-Kármán (BvK) force constants. Due to

lattice symmetry, there are only a handful of parameters which are needed to describe the force

constants from an atom in a particular shell. The precise number of unique parameters depends

on the lattice. For the BCC lattice, Riffe et al. have worked out the number of unique parameters

for the first five shells [19].

These parameters can be directly fit to experimental phonon frequencies. The dispersion

curves obtained from these BvK force constants can be thought of as the best possible fits that

any model could obtain. Although this seems to suggest that the BvK approach is superior

to modeling the potential energy of a lattice, there are disqualifying drawbacks to only using

BvK force constants. Namely, since the BvK approach has no underlying potential energy, it is

impossible to use the BvK force constants to model the more complex bimetallic systems that

are the eventual goal of this study.
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In chapter 3, we will compare our model results in bulk W and Mo to results obtained directly

from BvK force constants. Doing so will give an idea of how well our model is performing in

the bulk.
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CHAPTER 2

METHODS OF USE

2.1. ALE

Alkali Lattice Explorer (ALE) is a program which began development in December of

2017. Its original purpose was to recreate the computational capabilities of a Matlab program

developed by Richard Wilson, but with vastly improved performance and generality of use. It has

since expanded into a large code-base comprising Fortran and Python code, and it can perform

important calculations for bulk materials, clean surfaces, and surfaces with adsorbed layers of

atoms.

ALE makes very few assumptions about the types of materials and structures analyzed.

This gives it the advantage of being able to deal with many different types of systems. ALE

can be easily adjusted to handle any type of unit cell or set of basis vectors, and allows the

user to specify what EAM model to use. This allows for easy comparison of different models

of a material, and allows one to arrange that material in any lattice imaginable. Although ALE

has primarily been used to study alkali metals, there is no restriction to the type of material it

examines, as long as it is supplied with the appropriate model.

2.2. How ALE Works

2.2.1. Atomic Interaction Data Type

ALE centers around the derived data type called interaction. The general idea is that

this type holds all pertinent information about the interaction between two atoms.

In practice, we need to know the information about atoms in a single unit cell, which we

assume has an atom located at the origin. ALE keeps a three dimensional list of interactions

called atomic_interactions(α, β, m). The list is indexed as follows. The index α refers to

which atom in the unit cell at the origin we are considering, m is the index of the unit cell which
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holds the atom with which atom α is interacting, and β refers to the atom within unit cell m

with which atom α is interacting.

Each element of this list contains the following information.

• The three-component vector between atom α in the unit cell at the origin and atom β in

the m unit cell, expressed in cartesian coordinates, called vecToAtom.

• The distance between the two atoms, called norm.

• A 3 × 3 array called force_constants(i,j), which describes the components of force

on atom α when atom β is displaced in different directions. This array is indexed so

that force_constants(1,2) is the x component of force on atom α when atom β is

displaced in the y direction, with x, y, and z being indexed as 1, 2, and 3, respectively.

This paradigm allows for straight forward iteration over atoms in the lattice, which is used

throughout the code. Importantly, since the force constants are computationally expensive to

calculate, ALE will only calculate them once, when the program is first started. Those force

constants are then stored in a seperate file called force_constants.txt, so that if the same

material is being analyzed multiple times, there is no need to recalculate the force constants,

unless there has been a change to the lattice vectors or potential functions.

Keeping a list of precalculated force constants is essential to ALE’s performance. This is

due to the complexity of the embedding piece of the force constants. Since each embedding

force constant requires a sum over all atoms in the lattice, and each element of the dynamical

matrix requires a sum over all atoms in the lattice, the complexity of calculating the dynamical

matrix would be O(n2), where n is the number of atoms in the lattice. This would lead to

prohibitively large run-times.

Though simplifications to the expression for eKmβj
nαi exist for certain structures, such as

BCC and FCC lattices with inversion symmetry [19], the slab calculations must use the full

equation from (1.22). Thus, by precalculating eKmβj
nαi , we are able to reduce the complexity of

the dynamical matrix calculation to O(n). This is far more managable for modern computer

hardware, and allows for a more efficient workflow.
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2.2.2. The Dynamical Matrix

With a list of force constants stored in memory, it becomes straight forward to calculate the

dynamical matrix. ALE simply creates a 3N × 3N matrix, where N is the number of atoms per

unit cell. The only trick is in indexing the elements of the matrix. Ideally, we’d like to directly

apply (1.11). However, this equation uses four indices (α, i, β, and j) for each element of the

matrix, when only two are required.

This set of labels makes it clear which atoms and Cartesian directions each element refer-

ences; e.g. if we look at D3,y
1,x, we are looking at the effect on the x component of the motion

of the first atom in the basis when the third atom in the basis is displaced in the y direction.

However, to code this, we need to index each element by using only two integers, which refer

to the element’s location in the matrix.

To solve this probelm, it is helpful to see where a particular choice of α, β, i and j put

us in the matrix. Consider a lattice with three atoms per unit cell. Then the dynamical matrix

is 9 × 9. If we let α = 1 and β = 3, then we are referring to the highlighted 3 × 3 submatrix

shown below.

Dβjαi =

D1,x
1,x D1,y

1,x D1,z
1,x D2,x

1,x D2,y
1,x D2,z

1,x D3,x
1,x D3,y

1,x D3,z
1,x

D1,x
1,y D1,y

1,y D1,z
1,y D2,x

1,y D2,y
1,y D2,z

1,y D3,x
1,y D3,y

1,y D3,z
1,y

D1,x
1,z D1,y

1,z D1,z
1,z D2,x

1,z D2,y
1,z D2,z

1,z D3,x
1,z D3,y

1,z D3,z
1,z

D1,x
2,x D1,y

2,x D1,z
2,x D2,x

2,x D2,y
2,x D2,z

2,x D3,x
2,x D3,y

2,x D3,z
2,x

D1,x
2,y D1,y

2,y D1,z
2,y D2,x

2,y D2,y
2,y D2,z

2,y D3,x
2,y D3,y

2,y D3,z
2,y

D1,x
2,z D1,y

2,z D1,z
2,z D2,x

2,z D2,y
2,z D2,z

2,z D3,x
2,z D3,y

2,z D3,z
2,z

D1,x
3,x D1,y

3,x D1,z
3,x D2,x

3,x D2,y
3,x D2,z

3,x D3,x
3,x D3,y

3,x D3,z
3,x

D1,x
3,y D1,y

3,y D1,z
3,y D2,x

3,y D2,y
3,y D2,z

3,y D3,x
3,y D3,y

3,y D3,z
3,y

D1,x
3,z D1,y

3,z D1,z
3,z D2,x

3,z D2,y
3,z D2,z

3,z D3,x
3,z D3,y

3,z D3,z
3,z





(2.1)

This submatrix tells us about all of the effects that atom 1 in the basis has on atom 3 in the

basis. The indicies i and j pick out a particular element of this submatrix. For example, if i = 1

and j = 2, we would be looking at the x component of force exerted on atom 1 when atom 3
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is displaced in the y direction. This would pick out the highlighted element shown below.

Dβjαi =

D1,x
1,x D1,y

1,x D1,z
1,x D2,x

1,x D2,y
1,x D2,z

1,x D3,x
1,x D3,y

1,x D3,z
1,x

D1,x
1,y D1,y

1,y D1,z
1,y D2,x

1,y D2,y
1,y D2,z

1,y D3,x
1,y D3,y

1,y D3,z
1,y

D1,x
1,z D1,y

1,z D1,z
1,z D2,x

1,z D2,y
1,z D2,z

1,z D3,x
1,z D3,y

1,z D3,z
1,z

D1,x
2,x D1,y

2,x D1,z
2,x D2,x

2,x D2,y
2,x D2,z

2,x D3,x
2,x D3,y

2,x D3,z
2,x

D1,x
2,y D1,y

2,y D1,z
2,y D2,x

2,y D2,y
2,y D2,z

2,y D3,x
2,y D3,y

2,y D3,z
2,y

D1,x
2,z D1,y

2,z D1,z
2,z D2,x

2,z D2,y
2,z D2,z

2,z D3,x
2,z D3,y

2,z D3,z
2,z

D1,x
3,x D1,y

3,x D1,z
3,x D2,x

3,x D2,y
3,x D2,z

3,x D3,x
3,x D3,y

3,x D3,z
3,x

D1,x
3,y D1,y

3,y D1,z
3,y D2,x

3,y D2,y
3,y D2,z

3,y D3,x
3,y D3,y

3,y D3,z
3,y

D1,x
3,z D1,y

3,z D1,z
3,z D2,x

3,z D2,y
3,z D2,z

3,z D3,x
3,z D3,y

3,z D3,z
3,z





(2.2)

With this picture, one can see that the proper functions to translate between indexing the

matrix using Dβjαi and using Dk,l are

k(α, i) = i+ 3(α− 1) (2.3)

and

l(β, j) = j + 3(β − 1). (2.4)

Once the dynamical matrix has been calculated, ALE finds the eigenvalues and eigenvectors,

and converts the eigenvalues to frequencies, using (1.11). The algorithm used to calculate the

eigenvalues comes from the LAPACK library of linear algebra functions [20]. Specifically, the

zheev subroutine is used. This routine is optimized to find the eigenvalues and eigenvectors of

a hermitian complex-valued matrix.

Because the zheev routine has a somewhat complicated set of arguments to call, ALE uses

a custom function called eig(A,n) which hard-codes all the required arguments for zheev. This

custom function takes an n×n complex Hermitian matrix A, and returns an n-dimensional array

containing the eigenvalues of A, sorted in ascending order.
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2.2.3. Calculating Dispersion Curves

Dispersion curves show the relationship between wave vector and the associated frequencies.

Using the dynamical matrix, ALE can calculate the frequencies associated with any wave vector.

Typically, it is useful to examine how frequencies change as the wave vector increases along

high symmetry directions. This is because experimentally observed vibrational frequencies are

typically associated with wave vectors in the high symmetry directions, thus allowing the user

to compare predicted frequency values with experimental values.

The high symmetry directions are dependent on the structure of the crystal. If we are

examining surface vibrations, then the high symmetry directions will also depend on which

surface is being examined. Typically, the high symmetry directions trace out the border of the

IBZ, although sometimes additional directions are considered high symmetry.

In order to create dispersion data, ALE uses a subroutine called

generate_dispersion_curve(slab,start_point,end_point,direction).

This subroutine calculates frequencies in the direction of the wave vector pointing from

start_point

to

end_point.

1,000 points along this line are sampled. Once the calculation is complete, ALE stores the data

in a file labeled by the

direction

argument in the directory of whatever material is being analyzed.

For surface dispersion curves, it is useful to look at the localization of modes in particular

layers and directions. ALE accomplishes this by creating an additional data file for each layer

and localization the user wishes to examine. These files contain the magnitude squared of the

projection of the frequency’s eigenvector onto the layer and direction on interest. For example,

if ALE were calculating the projection of a mode with frequency ω and associated eigenvector
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v onto the first layer shear vertical direction, then the quantity α stored in the data file for

whatever wave vector was being analyzed would be

α =
(
|v · u1|2 + |v · u2|2

)
, (2.5)

where

u1 =



0

0

1

0

...


and

u2 =



...

0

0

1


are the polarizations corresponding to being completely polarized in the shear vertical direction

on the top and bottom layers of the slab, respectively.

Longitudinal and shear horizontal projections are obtained similarly. To calculate the pro-

jection of a mode onto the longitudinal (shear horizontal) direction in the first layer, the first

three components of u1 are chosen to be a normalized three-component vector pointing parallel

(perpendicular) to the wave vector k. The same is done for the last three components of u2.

Equation (2.5) is then used.

2.2.4. Plotting Dispersion Curves

Once the data have been created, ALE uses a collection of python scripts to create the

actual plots. For bulk dispersion curves, the plotting routines are straightforward. A number

of axes are created, corresponding to the number of high-symmetry directions that dispersion

curves were calculated for. On these axes, the data are plotted. If the script is plotting dispersion

curves for which experimental data are available, then these data points will be read in from
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Figure 2.1. Li bulk dispersion curves. Blue (black) markers indicate experimental frequencies
with longitudinal (transverse) polarizations [31].

a file and plotted as points at the appropriate wavevector For an example of a bulk dispersion

curve plot, see Figure 2.1.

Plotting surface dispersion curves is much more complicated. In order to handle the large

amount of data that needs to be plotted, ALE splits the procedure into two seperate scripts.

The main script is called plot_layer_dispersion.py. This script creates a single dispersion

curve image for a particular layer and polarization direction. The curves are color coded to

reflect each mode’s projection onto that layer and polarization direction (the α in (2.5)). Figure

2.2 shows the colors used.
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The second script is called plot_surf_dispersion.py. This script acts as a wrapper for

the plotting script. It simply calls

plot_layer_dispersion.py

with a variety of arguments to generate dispersion curve plots for the first 4 layers of a material,

with polarizations localized in the shear vertical, shear horizontal, and longitudinal directions.

Figure 2.3 shows an example of a set of dispersion curves for the (110) surface of Na.

Figure 2.2. Colorbar used for all surface dispersion curve plots. Colors indicate α for a mode.

2.2.5. Calculating the Density of States

ALE calculates the Density of States by sampling wave vectors within the IBZ of the

structure being analyzed. Due to the symmetry of each structure, every point outside the IBZ

has a mode equivalent to a point inside the IBZ. Therefore, in order to find all possible modes

of vibration, it is sufficient to only look at points in the IBZ.

A helper program called Irreducible Point Affixer (IPA) is used to create a list of points in

the irreducible Brillouin zone, as well as those points’ effective weights. The effective weight

of a point is a measure of how much of the volume of that point lies within the IBZ. For a

concrete example, consider the IBZ shown in Figure 1.5. Any point on the interior of the zone

has its entire volume in the zone. Since the IBZ is 1
8 of the entire Brillouin zone, we will assign

a weight of 8 to that point. Now consider applying rotations and reflections to the IBZ, such

that all of space is filled with different IBZ shapes. In this picture, the point Γ is shared between

8 different zones. Thus only 1
8 of that point is in the original IBZ. We would therefore assign Γ

a weight that is 1
8 the weight of a point in the interior, or a weight of 1. By this same process,
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Figure 2.3. Dispersion curves for the (110) surface of Na. Colors indicate localization of modes
in the first layer and z direction.

it can be shown that X also has a weight of 1, M has a weight of 2, and any other point along

the zone boundaries has a weight of 4.

Once the list is created, it is a simple matter of calculating a dynamical matrix and finding

the associated frequencies for each point in the list. Since each of these dynamical matrices

are independent, it is natural to do this calculation using parallel processing. A library called

OpenMP [21] is used to parallelize the loop in which the frequencies are found.

Once all frequency calculations are complete, ALE creates a histogram of the frequencies.

The histogram is created by iterating through each frequency and adding its weight to the

appropriate bin.

To remove some artifacts of the creation of the histogram, a few processes are applied.

First, because the raw histogram often has high frequency noise, a low pass filter is applied. The

filter used is known as a Gaussian blur, and works as follows. Let g(ω) be the raw histogram.
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The transformed histogram g′(ω) is the discrete convolution of g(ω) with a Gaussian, such that

g′(ω) =

ωmax∑
ω′=0

g(ω)e−
(ω−ω′)2

2σ2 , (2.6)

where σ is chosen to give the most realistic density of states. Through trial and error, we have

found that using 1800 bins with a σ of 2 Hz gives acceptable results.

Finally, the density of states is normalized to have an area under the curve of three. This is

because the density represents the available modes of a single atom, and each atom contributes

three modes to the the system.

For surface calculations, it is useful to look at the layer resolved x, y, and z densities

of states. This is done in much the same way as the layer and direction resolved dispersion

curves. However, since the IBZ contains wave vectors pointing in many different directions, it

is no longer useful to calculate the localization of modes in shear vertical, shear horizontal, and

longitudinal directions. Instead, the weight of each mode is modified by the localization of that

mode into the x, y, or z Cartesian directions. For example, in order to calculate the first layer,

x direction density states of a slab of material, a frequency with eigenvector v would be scaled

by a weight α given by

α =
(
|v · u1|2 + |v · u2|2

)
, (2.7)

where

u1 =



1

0

0

...


and

u2 =



...

1

0

0
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are the polarizations corresponding to being completely polarized in the x direction on the top

and bottom layers of the slab, respectively.

The output of all this machinery is a text file containing two columns of data. The first

column contains frequencies in units of Hertz. The second column contains the number of

available modes of the corresponding frequency, in units of modes per atom per Hertz. This file

is used by a python script called plot_DOS.py to create a plot of the density of states.

2.2.6. Calculating Debye Temperatures

Debye temperatures are closely related to moments of the density of states. Specifically, if

one has the density of states g(ω) of a system, then the Debye temperatures ΘD(n) are given

by

ΘD(n) =
~
kB

(
n+ 3

3

�
ωng(ω)dω�
g(ω)dω

) 1
n

,

(n > −3, n 6= 0).

(2.8)

Special care must be taken for the n = 0 Debye tempurature, since (2.8) is undefined in this

case. This is remedied by taking the limit as n approaches zero, which yields

ΘD(0) =
~
kB

(
1

3
+

�
ln (ω)g(ω)dω�
g(ω)dω

)
. (2.9)

Since we have the density of states function g(ω), ALE could simply implement (2.8) and

(2.9) directly. However, because g(ω) has been modified to remove artifacts from the creation

of the histogram, it is actually more accurate to use the original list of frequencies that was

used to create g(ω) in the first place. This is done by applying a standard trick to convert an

integral over g(ω) to a sum over mdoes. If ωi is a vector containing all available frequencies

and f(ω) is an arbitrary function of ω, then the following relation holds;

�
f(ω)g(ω)dω =

∑
i

f(ωi). (2.10)
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This means that we can rewrite (2.8) and (2.9) as

ΘD(n) =
~
kB

(
n+ 3

3

∑
i ω

n
i g(ω)∑
i 1

) 1
n

,

(n > −3, n 6= 0).

(2.11)

and

ΘD(0) =
~
kB

(
1

3
+

∑
i ln (ωi)∑

i 1

)
. (2.12)

2.2.7. Relaxation

Allowing a slab to relax to equilibrium is essential to get accurate vibrational results. This

is obvious from (1.5). All of the mathematics developed so far work under the assumption that

the lattice is displaced from near equilibrium.

The fundamental idea behind ALE’s relaxation algorithm is simple. Distances between layers

are adjusted until an energy minimum has been found. Because ALE allows for multiple layers

to be relaxed, it requires a multi-variable minimization algorithm. ALE uses a local, derivative

free constrained optimization by linear approximations (LN COBYLA) from the NLopt library

of non-linear optimization routines [22].

The NLopt routine requires a function to minimize, and set of inputs to that function to

adjust in order to find the minimum. The function ALE minimizes is called

get_slab_energy(energy, n, relaxation, grad, need_grad, slab).

The arguments of this function are important, as NLopt expects them to be in this particular

order. Each argument fulfills the following purpose;

• energy will hold the return value of the function.

• n is an integer representing the number of parameters upon which the value of the function

depends. In this case, n will be the number of layers relaxed

• relaxation is a vector holding the distance, in units of angstroms, that each layer moves

in the z direction from the unrelaxed position. This vector is the set of parameters that

NLopt adjusts to minimize the function. The relaxation vector has n entries, one for
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each layer to be relaxed. Because the top and bottom of the slab must relax symmetrically,

the vector only needs to hold the distance moved for the bottom layer. The top layer is then

moved in the opposite direction. An example should make this clear. Let relaxation(1)

be 0.1. Then the first layer on the bottom of the slab will be moved up 0.1 angstroms,

and the first layer on the top of the slab will be moved down 0.1 angstroms.

• The arguments grad and need_grad nominally hold the gradient of the function. NLopt

requires these arguments to be in the function declaration, but because a derivative free

algorithm is being used, no gradient is required. Thus, in ALE, dummy variables are

passed for these arguments.

• slab is the variable holding all of the information of the slab being studied, consistent

with its use througout all of the code.

After ALE has used NLopt to find the relaxation vector which minimizes the energy, it

stores the result in a file called relaxation.dat. This file will be used the next time ALE is

run and the user wishes to study a relaxed slab, so that the relaxation calculation will not need

to be repeated.

2.3. Using ALE

2.3.1. Calculation

ALE is a command line utility. It is run through the Linux terminal. The ALE executable

sits in the main directory, with all necessary files and folders as sub-directories. In order to

run the program, the user simply opens a terminal in the main directory and uses the following

command.

./ALE

ALE is run in 2 stages. First, the user is asked a series of questions to specify the system

to be analyzed. This will set up the working directory of the program, and create the list of

atomic_interaction data.
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There are a few things to be aware of. If there is a force_constants.txt file in the

directory of the system being analyzed, ALE will simply use that file and not perform the

calculation of the force constants. If the user wishes to recalculate the force constants (for

example, if changes were made to the model), then the old force_constants.txt needs to

be deleted. If the user is analyzing a slab that has a previously created force_constants.txt

file, it is essential that the same number of layers are used as were used to create the original

file.

When analyzing a slab, ALE will ask the user whether or not the slab should be relaxed. If

the slab is to be relaxed and there is a file called relaxation.dat, the program will use the

data stored in that file to perform the relaxation. If the user wishes to use a different set of

data to relax (for example, if the user wishes to relax a different number of layers), then the

relaxation.dat file must be deleted.

The second stage is to specify the calculation that the user would like to perform. A list

of options is presented, and the user makes the choice by entering the number corresponding to

the desired calculation.

Most options are self explanatory, although a few deserve special note. The

Find Model Parameters

option is used to output lattice constant which minimizes the total energy of the lattice. This

option will also print out the charge density at the location of whichever atom is at the center

of the basis. This is useful as a sanity check when analyzing slabs of material, since the center

of the basis will generally have the same charge density as the material in bulk.

The Debug option serves as a way to check anything the user wishes. The user can adjust

this section of the code in any way they like. For example, if you were implementing a new

lattice structure and wanted to ensure that the correct lattice was being set up in the code, you

could place the following code snippet in the Debug section of ALE.f90.

do i=1,10

print *, slab%atomic_interactions(1,1,i)%vecToAtom

end do
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This would print out vectors that point from the unit cell at the origin to the 10 nearest unit

cells.

2.3.2. Plotting

Plotting in ALE, like performing calculations, is done through the terminal. All plotting is

done through Python scripts, contained in the Plots sub-directory. These scripts are set up to

be fairly generic, so that a single script can handle multiple types of plots.

For example, all plots of surface dispersion curves use the same script called

plot_surf_dispersion.py.

In order to specify the particular type of plot to make, the scripts take arguments from the

command line. For this example, if one wanted to create dispersion curves for the 110 surface

of tungsten with a half monolayer of lithium, after calculating the data, one would run the

program with the material name, surface, and coverage in that order as arguments as follows.

python plot_surf_dispersion.py Li-W 110 half

Other commonly used plotting scripts include plot_bulk_dispersion_curves.py, which

creates a plot of dispersion curves for the material passed as an argument, and plot_DOS.py,

which will create a plot of the density of states for the material passed as an argument.

2.4. Changing ALE

ALE uses a makefile to compile. In short, the makefile is a file containing all of the

instructions necessary to compile a program. It is used by the make program which is included

in most linux distributions. The makefile used by ALE has all of the module dependencies built

into it, so if the user wishes to add or remove modules, the makefile will need to be updated.

Using makefiles give the advantage of only recompiling modules which have been changed,

saving compilation time.

If the user makes any changes to the source code, ALE will need to be recompiled. This

is done by simply running the make program in the directory of the makefile. ALE’s makefile is

stored in the Source subdirectory.
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CHAPTER 3

MODEL BUILDING

The purpose of this chapter is to create models which describe interactions between atoms

of the same element. This advances our goal of modeling the alkali-metal/transition-metal

interface because, as we will see in Chapter 4, the pair-potential interaction between two atoms

of different elements can be built from the individual pair-potentials.

The predicted vibrational properties of a lattice will depend on the precise form of the

embedding energy F (ρ), the electronic charge density contribution f(r), and the pair-potential

interaction φ(r) between atoms in the lattice. Each of these functions are constructed from

experimental inputs.

3.1. Embedding Models

3.1.1. Embedding Energy

We will use an embedding energy model created by Johnson and Oh in 1988 [23]. This

model has been successful in describing the alkali metals [24] and tungsten [25], and it takes

the form

F (ρ) = −
(
Ecoh − EUF1ν

) [
1− λ ln(

ρ

ρe
)

](
ρ

ρe

)λ
. (3.1)

Here Ecoh is the cohesive energy of the material, EUF1ν is the energy required to remove a single

atom from the crystal, ρe is the equilibrium electron density of an atomic location in the material,

and λ is a free parameter which is adjusted to obtain the best fit to experimental vibrational

data.

3.1.2. Electron Charge Density Contributions

The model we will use for the electron density contribution function f(r) takes inspiration

from Hartree Fock calculations of the wave function of electrons surrounding atomic nuclei [26].
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These calculations suggest that, outside of the atom, electron density falls off exponentially.

Accordingly, our function takes the form

f(r) = fee
−β( r

r1
−1)

. (3.2)

Here, r1 refers to the nearest neighbor distance of the bulk material. For each material

we model, we choose β to match the decay rate from the Hartree Fock calculations for that

material.

Since f(r) only appears in ratios with itself, the term fe will disappear when performing

calculations of a system with a single type of material. When analyzing a bimetallic system,

such as Li on W, only ratios of the electron density contribution functions will appear. Thus,

the ratio fe,Li/fe,W is chosen to reflect the relative electron contributions from Li and W, once

again according to Hartree Fock calculations.

3.2. Alkali Potentials

The inter-atomic potential φ(r) is the most influential ingredient to the predicted vibrational

properties of a metal. As such, it will receive the most thorough treatment of the three defining

functions.

A good inter-atomic potential needs to have a few key features. We know that atoms in a

lattice tend to be a few angstroms away from each other, so a physically reasonable model of

the inter-atomic interaction potential should have a well around r = r1, where r1 is the nearest

neighbor distance of the lattice. In order to enforce that atoms be no closer than the nearest

neighbor distance, a good model of the potential should also have a steep wall as r goes to zero.

Finally, we know that atoms only significantly interact with their close neighbors, so φ(r) should

flatten out to zero at distances a few times greater than r1. We will examine two potential

models for the alkali metals; a long-range five-shell model and a short-range two-shell model.
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3.2.1. Alkali Model Inputs

There are a number of physical inputs which go in to the vibrational calculations. Quantities

such as G and C ′, which are related to the linear elastic constants Cij through

G =
1

5
(C11 − C12 + 3C44) (3.3)

C ′ =
1

2
(C11 − C12) (3.4)

are used as constraints on the fits to the five-shell models, as these can be calculated from the

slope of the predicted dispersion curves of a model. The parameters Ecoh and EUF1ν are also

used as constraints, in addition to appearing in (3.1). Table 3.1 lists all of the physical inputs

which go in to the alkali models we will discuss.

Table 3.1. Physical inputs for the alkali metals.

Li Na K Rb Cs Source

M (amu) 6.94 23.0 39.1 85.5 132.9 [27]
Ecoh (eV) 1.63 1.11 0.93 0.85 0.80 [27]
EUF1ν (eV) 0.40 0.36 0.35 0.30 0.28 [27]
a0 (ang) 3.48 4.24 5.24 5.59 6.05 [27]
G (Mbar) 0.069 0.038 0.019 0.014 0.010 [27]
C ′ (Mbar) 0.011 0.008 0.004 0.003 0.002 [27]
β 6.17 7.31 8.02 8.09 8.15 [26]
fe (arb. units) 0.533 0.204 0.111 0.088 0.076 [26]

3.2.2. The Wang-Boercker Potential

Our first approach is the Wang Boercker (WB) potential, which was developed to describe

BCC transition metals [28]. We will use a slightly modified version that takes the form

φ(r) =

7∑
n=0

Kn

(
r

r1
− 1

)n
e
−nα

(
r
r1
−1

)2

. (3.5)
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Here, Kn and α are free parameters that we fit to experimental phonon frequencies. The

only difference between (3.5) and the original formulation is that we have added an extra Kn,

so that the sum goes to n = 7 instead of n = 6. The parameters for all WB models of the

alkalis are shown in Table 3.2.

Table 3.2. Parameters for the WB model of the alkali metals and W. Kn is reported units of
eV. The nearest neighbor distance r1 is expressed in angstroms. The parameter α is unitless.

Li Na K Rb Cs

K0 −0.0604 −0.0532 −0.0511 −0.0491 −0.0355
K1 −0.1222 −0.0813 −0.1029 −0.1179 −0.1414
K2 2.0047 1.5904 1.6053 1.6010 1.4498
K3 −6.5477 −3.9838 −4.6151 −4.2471 −5.7870
K4 12.4561 3.1373 6.9063 5.1463 17.6172
K5 −16.0839 0.9927 −6.9093 −3.1482 −34.2555
K6 12.3512 −2.5894 4.5956 0.9029 34.3281
K7 −4.0182 0.9831 −1.4398 −0.0873 −13.3849
α 0.170 0.22 0.2 0.04 0.370
r1 3.016 3.668 4.534 4.841 5.242

The WB potential has been used extensively in EAM modeling [29], and has been very

successful. However, since it is a five-shell potential, it could be considered somewhat compli-

cated. Our eventual goal is to model bimetallic interactions, and since little is known about

the specifics of the interaction between the alkalis and tungsten and molybdenum, we should

consider using a model that assumes less than the WB potential.

3.2.3. The Modified Finnis Sinclair Potential

The second approach to modeling alkali metals will be a modified Finnis Sinclair (MFS)

model [30]. This model only extends out to the second shell, and is thus much simpler than the

WB model. It takes the form

φ(r) =

(
r

rc
− 1

)3 3∑
n=0

Kn

(
r

r1
− 1

)n
. (3.6)
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As with (3.5), Kn are parameters which are fit to experimental frequencies. The MFS model

has only four Kn parameters, compared to the eight Kn parameters of the WB model, making

the MFS even simpler. This model has the advantage of having a cutoff distance rc built in, so

that the function and its first two derivatives smoothly go to zero at rc. We choose rc to be

somewhere between the second and third shell, and choose the exact location so that the first

derivative of φ(r) is zero at rc. Table 3.3 shows the MFS parameters for the alkalis.

Table 3.3. Parameters for the MFS model of the alkali metals. Kn is reported units of eV. The
cutoff distance rc is expressed in angstroms.

Metal K0 K1 K2 K3 rc

Li 1.0532 6.8813 −7.9559 57.8868 4.9127
Na 0.9432 6.1662 −5.0660 44.9158 5.9731
K 0.9181 5.9587 −5.6169 48.4210 7.3817
Rb 0.7932 5.4395 −6.2800 30.1120 7.8780
Cs 0.7382 4.9395 −5.4595 33.6514 8.5338

3.2.4. Alkali Vibrational Comparison

As discussed in Chapter 1, we can calculate dispersion curves directly from BvK force con-

stants. Dispersion curves calculated in this manner show the closest possible fit to experimental

data when working under the harmonic approximation. Because of this optimization, we can use

the dispersion curves predicted by BvK force constants as a standard against which we measure

the effectiveness of our two models. We can also use the BvK force constants to calculate

densities of states and moment Debye temperatures. Figures 3.1, 3.2, 3.3, 3.4, and 3.5 show

the pair-potentials, dispersion curves, densities of states, and moment Debye temperatures for

Li, Na, K, Rb, and Cs, respectively.
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(a) The MFS and WB potentials for Li. (b) Disperion curves for bulk Li. Blue (black) mark-
ers indicate experimental frequencies with longitu-
dinal (transverse) polarizations [31].

(c) Density of States for bulk Li. (d) Moment Debye temperatures for bulk Li.

Figure 3.1. Bulk vibrational results for Li using the MFS and WB potentials.
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(a) The MFS and WB potentials for Na. (b) Disperion curves for bulk Na. Blue (black)
markers indicate experimental frequencies with lon-
gitudinal (transverse) polarizations [32].

(c) Density of States for bulk Na. (d) Moment Debye temperatures for bulk Na.

Figure 3.2. Bulk vibrational results for Na using the MFS and WB potentials.
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(a) The MFS and WB potentials for K. (b) Disperion curves for bulk K. Blue (black) mark-
ers indicate experimental frequencies with longitu-
dinal (transverse) polarizations [33].

(c) Density of States for bulk K. (d) Moment Debye temperatures for bulk K.

Figure 3.3. Bulk vibrational results for K using the MFS and WB potentials.
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(a) The MFS and WB potentials for Rb. (b) Disperion curves for bulk Rb. Blue (black)
markers indicate experimental frequencies with lon-
gitudinal (transverse) polarizations [34].

(c) Density of States for bulk Rb. (d) Moment Debye temperatures for bulk Rb.

Figure 3.4. Bulk vibrational results for Rb using the MFS and WB potentials.
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(a) The MFS and WB potentials for Cs. (b) Disperion curves for bulk Cs. Blue (black)
markers indicate experimental frequencies with lon-
gitudinal (transverse) polarizations [35].

(c) Density of States for bulk Cs. (d) Moment Debye temperatures for bulk Cs.

Figure 3.5. Bulk vibrational results for Cs using the MFS and WB potentials.

Examining these curves, we see that the WB potentials consistently give results much closer

to the BvK frequencies. This makes sense, given that the WB model uses eight free parameters

which are fit to experimental frequencies, compared to the four free parameters of the MFS

model. We also see that the MFS model tends to slightly underestimate the higher frequencies

for all alkali’s, while overestimating the mid-range frequencies.

3.2.5. Alkali Surface Comparison

As discussed in Chapter 2, surface relaxations can be easily calculated from a given potential

by adjusting the distance between layers to minimize the total potential energy of the slab. A
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model which predicts good relaxation values is likely to have its potential well in the correct

position, since the position and shape of the well are what determine the relaxation.

Though there have not been any experimental investigations into the relaxations of Na

and Li, there have been a number of high quality theoretical calculations done. Some of these

calculations were done using EAM models similar to what we are using, and some use the

more sophisticated density functional theory (DFT). Comparing our model to these theoretical

calculations will show that our results are in line with similar investigations. Table 3.4 summarizes

these results.

Our results are in good qualitative agreement with both experimental and other theoretical

results. Most models give a contraction of the first layer of the 110 surface of Li and Na, in the

same range of our results. On the (110) surface, our models show a contraction of the first layer,

which matches most of the EAM calcualtions in our table. Our model suggests that the second

layer expands very slightly, while most other models predict a slight contraction. However, since

the second layer changes are so small, this difference is negligible.

3.3. Transition Metal Potentials

Using an EAM model to describe W and Mo presents a unique challenge. Compared to the

alkalis, W and Mo have a complicated electronic structure. Their valence electrons are in d-type

orbitals, whose wavefunctions are not spherically symmetric. The alkalis, on the other hand,

have spherically symmetric s-type valence electrons. This means that the bonding seen in W and

Mo must have some angular dependence. However, the EAM model assumes a potential which

depends only on radial distance, and thus cannot realize all of the features of the transition

metals.

Because of this complexity, EAM models tend to do less well when describing transition

metals. There are models similar to the EAM, like the Modified EAM (MEAM), which do

include explicit angular dependence. However, these more complicated models tend to not do

much better than a simpler EAM model when used to calculate vibrational data [42]. For this

study, we will use a simple two-shell EAM model to describe W and Mo.
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Table 3.4. Surface relaxations of the (100) and (110) surfaces of Li and Na. Negative (positive)
values signify inward (outward) relaxation. Values are the percentage of the interlayer spacing
for a given surface. ∆ij represents the change in distance (compared to the bulk) between
layers i and j. Our results from the WB and MFS models are shown with WB and MFS as the
technique.

Surface ∆12 (%) ∆23 (%) Technique Reference

Li(110) −0.5 DFT (Bohnen 1984) [36]
−2.1 −0.08 EAM (Guellil 1992) [25]
1.3 0.0 EAM (Sklyadneva 1996) [37]
−1.9 −0.06 EAM (Wilson 2012) [29]
−1.34 −0.1 WB
−1.18 0.12 MFS

Li(100) −3.0 DFT (Bohnen 1984) [36]
6.8 −0.6 DFT (Kokko 1995) [38]
−2.6 −0.88 EAM (Guellil 1992) [25]
5.3 0 EAM (Sklyadneva 1996) [37]
−3.2 −0.8 EAM (Wilson 2012) [29]
0.89 −1.35 WB
0.35 −0.6 MFS

Na(110) 0 DFT (Bohnen 1982) [36]
0 DFT (Bohnen 1984) [36]

−1.6± 0.5 0.0± 0.5 DFT (Rodach 1989) [39]
−1.5 −0.07 EAM (Guellil 1992) [25]
2.4 0.1 EAM (Sklyadneva 1996) [37]
−1.6 −0.0 EAM (Wilson 2012) [29]
−2.53 0.04 WB
−1.17 0.18 MFS

Na(100) −2.0 DFT (Bohnen 1982) [40]
−0.7 DFT (Bohnen 1984) [36]

0 DFT (Quong 1991) [41]
−0.34 −0.91 EAM (Guellil 1992) [25]

8.6 0.7 EAM (Sklyadneva 1996) [37]
−0.36 −1.1 EAM (Wilson 2012) [29]
−2.37 −1.9 WB
1.29 −0.56 MFS

3.3.1. Transition Metal Model Inputs

As we will see, the models for W and Mo depend on fewer parameters than the WB model.

Because of this, we cannot use as many constraints as we did when fitting the Kn values in
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the WB model. Therefore, we drop the constraints G and C ′, and no longer think of them as

inputs for the transition metal models. There are, of course, still other physical inputs we will

use for the calculations, which we detail in Table 3.5.

Table 3.5. Physical inputs for W and Mo models.

W Mo Source

M (amu) 183.84 95.95 [27]
Ecoh (eV) 8.9 6.82 [27]
EUF1ν (eV) 3.95 3.2 [27]
a0 (ang) 3.165 3.147 [27]
β 6.39 5.78 [26]
fe (arb. units) 1.0 1.284 [26]

3.3.2. The Zhou Wadley Johnson Potential

The first transition metal model is a potential first proposed by Zhou et al. [43], which will

be called the ZWJ potential. It takes the form

φ(r) =
K0e

−α
(
r
r1
−1

)
1 +

(
r
r1
− κ
)20 − K1e

−δ
(
r
r1
−1

)
1 +

(
r
r1
− 2κ

)20 . (3.7)

This potential is fairly simple. It has four parameters, K0, K1, α, and δ, which are fit to

vibrational data. The parameter κ is taken directly from the paper by Zhou et al.. Table 3.6

shows the ZWJ parameters for W and Mo.

Table 3.6. Parameters for the ZWJ model of W and Mo. Kn is reported units of eV. The
parameters α, δ, and κ are unitless.

Metal K0 K1 α δ κ

W 0.8495 1.3862 8.9393 4.5470 0.1392
Mo 0.6292 1.0577 8.1739 3.9876 0.1376
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3.3.3. The Johnson and Oh Potential

The second potential we examine for W and Mo is a model created by Johnson and Oh [44],

which we will call the JO model. This is yet another two-shell model which takes the form

φ(r) =

3∑
n=0

Kn

(
r

r1
− 1

)n
. (3.8)

As with the previous models, the parameters Kn are chosen to fit vibrational data. Table

3.7 show the JO parameters for W and Mo.

Table 3.7. Parameters for the JO model of the W and Mo. Kn is reported units of eV. The
nearest neighbor distance r1 is in units of angstroms.

Metal K0 K1 K2 K3 r1

W −0.5838 −2.2010 17.7476 −10.4279 2.741
Mo −0.4647 −1.6132 11.0237 0.8937 2.725

It is important to note that in all of the interatomic potentials we will be using, the potential

is set to zero after a certain distance. For example, the WB potential is a five-shell model, which

means it allows for interactions between atoms up to a distance of r5, which is the fifth nearest

neighbor distance. For any r > r5, φ(r) = 0. A hard cutoff in the potential might seem to

violate the requirement of being physically reasonable, but since the potential is only evaluated

at discrete locations in the analysis, such hard corners do not usually have any effect on the

calculations.

For relaxation, however, a hard cutoff can introduce difficulties. When calculating the

relaxation of a slab, atomic layers are smoothly adjusted, so there is the possibility of a one layer

sliding into or out of the cutoff range of another layer. In this regime, rather than cutting off

the potential, a simple polynomial is used to smoothly bring the potential to zero. For example,

if we were using a five-shell model, a starting position rs would be chosen so that rs > r5, and

a cutoff position rc would be chosen, such that rs < rc < r6. Then in the region rs < r < rc,
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the potential would take the form

φ(r) =
5∑

n=0

anr
n. (3.9)

When r > rc, we set φ(r) = 0. We choose the coefficients an to make the potential and its

first and second derivatives continuous at rs and rc

3.3.4. Transition Metal Vibrational Comparison

Like the alkali vibrational comparison, we will compare each transition metal model’s dis-

persion curves, density of states, and moment Debye temperatures to results calculated from

BvK force constants. These are shown for W and Mo in Figures 3.6 and 3.7, respectively.

To show that a simple two-shell model is sufficient to describe the transition metals, we also

calculate results derived from the WB model for W. As shown in Figure 3.6, the five-shell model

performs only marginally better than the two-shell models.
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(a) The JO, ZWJ, and WB potentials for W. (b) Disperion curves for bulk W. Blue (black) mark-
ers indicate experimental frequencies with longitu-
dinal (transverse) polarizations [45].

(c) Density of States for bulk W. (d) Moment Debye temperatures for bulk W.

Figure 3.6. Bulk vibrational results for W using the JO, ZWJ, and WB potentials.
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(a) The JO and ZWJ potentials for Mo. (b) Disperion curves for bulk Mo. Blue (black)
markers indicate experimental frequencies with lon-
gitudinal (transverse) polarizations [46].

(c) Density of States for bulk Mo. (d) Moment Debye temperatures for bulk Mo.

Figure 3.7. Bulk vibrational results for Mo using the JO and ZWJ potentials.

There is good reason to choose a simple but less accurate two-shell model over a compli-

cated but more accurate five-shell model for W and Mo. Because the WB model uses more

free parameters than the JO and ZWJ, it has more structure in the potential. This is evident

in Figure 3.6a.

However, this structure is very likely an artifact of our spherically symmetric model being fit

to vibrational data from the BCC structure of bulk W. As a rule of thumb, it is wise to assume

as little as is needed to describe a system. Thus, using a simpler two-shell model that still does

a good job of describing vibrations is preferable to the seemingly more accurate five-shell model.
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This simplicity preference is especially important when we model the bimetallic interaction.

Even less is know about the interaction between alkali and transition metals, so using the simplest

building blocks possible keeps with the spirit of making as few assumptions as needed.

3.3.5. Transition Metal Surface Comparison

The 100, 110, and 111 surfaces of W and Mo have received many theoretical and experi-

mental investigations. This allows us to compare our model to real world data, as opposed to the

purely theoretical comparison we did for Li and Na. Tables 3.8 and 3.9 compare experimental

and theoretical relaxations to our models predicted relaxations for the 110 and 100 surfaces of

W and Mo, respectively.

Table 3.8. Surface relaxations of the (100) and (110) surface of W. Negative (positive) values
signify inward (outward) relaxation. Values are the percentage of the interlayer spacing for a
given surface. ∆ij represents the change in distance (compared to the bulk) between layers i
and j. Our results from the JO and ZWJ models are shown with JO and ZWJ as the technique.

Surface ∆12 (%) ∆23 (%) ∆34 (%) Technique Ref.

110 0.0± 0.3 LEED (Buchholz 1975) [47]
0 LEED (Van Hove 1976) [48]
0.± 2 HEIS (Smith 1987) [49]

−3.1± 0.6 0.0± 0.9 LEED (Arnold 1997) [50]
−3.0± 1.3 0.2± 1.3 0.0± 1.0 LEED (Teeter 1999) [51]
−2.7± 0.5 0.0± 0.3 XRD (Meyerheim 2001) [52]

−0.64 −0.05 JO
−0.57 0.01 ZWJ

100 −6.3± 6.3 LEED (Van Hove 1976) [48]
−11.4± 1.9 LEED (Lee 1977) [53]
−4.4± 3.2 LEED (Debe 1977) [54]
−5.5± 1.5 LEED (Kirschner 1979) [55]
−7.0± 1.5 SPLEED (Feder 1981) [56]
−3.8± 10.1 XRD (Altman 1988) [57]

4.36 −1.51 JO
3.12 −1.18 ZWJ
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Although there is considerable variation in the available data, our results follow the same

trends as both theoretical and experimental results.

There have been some experimental measurements done on the vibrational frequencies of

the (110) surface of W and Mo. Balden et al. [69] and Kröger et al. [70] have used electron

energy loss (EELS) techniques to measure the phonons localized in the first few layers of W and

Mo, respectively. In Figs. 3.8, 3.9, 3.10, and 3.11, we compare their results with the JO model

and the ZWJ model predictions for W and Mo.

(a) Dispersion curves localized in the first layer
longitudinal direction of the 110 surface of W,
using the JO model. Black dots represent ex-
perimental frequencies.

(b) Dispersion curves localized in the first layer
shear vertical direction of the 110 surface of
W, using the JO model. Black dots represent
experimental frequencies.

(c) Dispersion curves localized in the second
layer longitudinal direction of the 110 surface of
W, using the JO model. Black dots represent
experimental frequencies.

(d) Dispersion curves localized in the second
layer shear vertical direction of the 110 surface
of W, using the JO model. Black dots represent
experimental frequencies.

Figure 3.8. W 110 surface dispersion curves using the JO model.
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Table 3.9. Surface relaxations of the (100), (110), and (111) surface of Mo. Negative (positive)
values signify inward (outward) relaxation. Values are the percentage of the interlayer spacing
for a given surface. ∆ij represents the change in distance (compared to the bulk) between
layers i and j. Our results from the JO and ZWJ models are shown with JO and ZWJ as the
technique.

Surface ∆12 ∆23 ∆34 ∆45 ∆56 ∆67 Technique Ref.

110 −1.6± 2.5 LEED [58]
−3.9 DFT [59]
−3.1 1.9 −0.7 0.4 TB [60]
−5.2 1.8 PP [61]
−3.3 1.2 LOM [62]
−3.3 0.6 MEAM [63]

−1.5 EAM [64]
−0.8 0.0 EAM [62]

−1.7 −0.1 −0.1 −0.1 JO
−1.4 0.0 −0.0 −0.0 ZWJ

100 −11.5 LEED [65]

−9.0 DFT [59]
−8.5 7.5 −3.8 3.2 TB [60]
−10.2 1.3 PP [61]
−6.6 2.7 −1.0 LOM [62]
−3.3 0.3 MEAM [63]

−2.8 −0.2 0.1 EAM [64]
1.3 −1.5 0.5 EAM [62]

0.1 −1.1 0.3 −0.3 JO
0.1 −0.9 0.3 −0.1 ZWJ

111 −18.± 2 4.± 4 LEIS [66]
−18.8± 1.6 −18.9 6.4 2.2 2.1 0.9 LEED [67]

−18.7 −20.3 13.7 −3.0 1.6 DFT [68]
−20.5 12.4 −8.0 −1.8 TB [60]
−18.3 −7.8 4.1 −1.5 −0.7 LOM [62]
−14.0 −16.4 5.5 3.5 −4.3 MEAM [63]

−3.2 −13.6 7.6 −1.5 1.4 EAM [62]

−4.4 −13.1 5.7 −1.3 −0.9 0.5 JO
−4.3 −10.5 5.2 −1.3 −0.6 0.6 ZWJ
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(a) Dispersion curves localized in the first layer
longitudinal direction of the 110 surface of W,
using the ZWJ model. Black dots represent
experimental frequencies.

(b) Dispersion curves localized in the first layer
shear vertical direction of the 110 surface of
W, using the ZWJ model. Black dots represent
experimental frequencies.

(c) Dispersion curves localized in the second
layer longitudinal direction of the 110 surface of
W, using the ZWJ model. Black dots represent
experimental frequencies.

(d) Dispersion curves localized in the second
layer shear vertical direction of the 110 surface
of W, using the ZWJ model. Black dots repre-
sent experimental frequencies.

Figure 3.9. W 110 surface dispersion curves using the ZWJ model.



52

(a) Dispersion curves localized in the first layer
longitudinal direction of the 110 surface of Mo,
using the JO model. Black dots represent ex-
perimental frequencies.

(b) Dispersion curves localized in the first layer
shear vertical direction of the 110 surface of
Mo, using the JO model. Black dots represent
experimental frequencies.

(c) Dispersion curves localized in the second
layer longitudinal direction of the 110 surface of
Mo, using the JO model. Black dots represent
experimental frequencies.

(d) Dispersion curves localized in the second
layer shear vertical direction of the 110 surface
of Mo, using the JO model. Black dots repre-
sent experimental frequencies.

Figure 3.10. Mo 110 surface dispersion curves using the JO model.
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(a) Dispersion curves localized in the first layer
longitudinal direction of the 110 surface of Mo,
using the ZWJ model. Black dots represent
experimental frequencies.

(b) Dispersion curves localized in the first layer
shear vertical direction of the 110 surface of
Mo, using the ZWJ model. Black dots repre-
sent experimental frequencies.

(c) Dispersion curves localized in the second
layer longitudinal direction of the 110 surface
of Mo, using the ZWJ model. Black dots rep-
resent experimental frequencies.

(d) Dispersion curves localized in the second
layer shear vertical direction of the 110 surface
of Mo, using the ZWJ model. Black dots rep-
resent experimental frequencies.

Figure 3.11. Mo 110 surface dispersion curves using the ZWJ model.

Examining these results, it is clear that properly modeling surfaces is a bigger challenge

than modeling bulk material. The Rayleigh modes, which are waves that travel along the surface

of the slab, can be seen in the longitudinal projections in Figures 3.8a, 3.9a, 3.10a, and 3.11a.

Both models underestimate the frequencies of the Rayleigh mode in W and Mo, though the

ZWJ model does a slightly better job of this in W. The resonance modes in the shear vertical

direction of the second layer line up fairly well with experiment,
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3.4. Conclusions

At the beginning of this chapter, we said that our goal was to choose models for the alkali

and transition metals that we will use to build the heterogeneous potential. Our choice will be

made to balance the accuracy of the model with the model’s simplicity. As we have discussed,

it is preferable that our models make as few assumptions as possible, while still giving accurate

prediction.

While we might reasonably model the interaction between alkali metals with a five-shell

spherically symmetric potential, using a long range model for W should be avoided. As we saw

in Figure 3.6a, the WB model for W has too much structure in the potential to have confidence

in applying it to our heterogeneous systems. For this reason, we choose a two-shell model over

a five-shell model for the transition metals.

The ZWJ and JO models gave nearly identical results in the bulk for W and Mo, but the

surface vibrations were slightly closer to experiment using the ZWJ model. Therefore, we will

use the ZWJ model for W and Mo to build the heterogeneous potential.

For the alkali metals and W, we saw that five-shell WB model outperformed the MFS model

for the alkalis, and the JO and ZWJ for W. However, the WB model has nine free parameters we

fit to experiment, as opposed to the four free parameters in the MFS model. The WB potential

is also a relatively long-range model, with interactions reaching out to the fifth shell. Since

we are using a two-shell model for W and Mo, it is prudent to do the same with the alkalis.

Therefore, we will use the MFS potential, which still matches experiment quite well, to build

heterogeneous potential.
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CHAPTER 4

HETEROGENEOUS POTENTIAL

The aim of this chapter is to develop a model of the interaction between a layer of alkali

metals and a W or Mo substrate. There have been several approaches to heterogeneous mod-

eling in the literature, such as Fu et al. using a Morse potential to describe the interaction

between copper and nickel [71], and Johnson’s formulation of a heterogeneous potential [72].

We attempt to describe the heterogeneous potential using the Johnson prescription and a ZWJ

potential described in (3.7) in Chapter Three. We also present a new method to construct the

heterogenous potential, based on linear combinations of the two homogeneous potentials of the

system we wish to study.

The decision of which heterogeneous model to use will be based on how well each model

reproduces experimental observations, as well as how it compares to other theoretical calculations

that have been done. We examine experimentally determined heights of alkali layers, alkali layer

binding energies, and alkali vibrational frequencies.

4.1. Proposed Models

4.1.1. The Johnson Prescription

Our first approach to modeling the heterogeneous potential is the prescription given by

Johnson [72], which we refer to as JP. This approach was developed in 1989 to extend EAM

models for monatomic FCC metals to alloys. It has since been widely used to study Ag-Ti

systems [73], Al-Ni nanowires [74], and to describe Ni-Ti alloys [75].

The Johnson prescription builds the heterogeneous potential φA−B(r) for two metals, which

we call A and B, out of the individual potentials φA(r) and φB(r). The heterogeneous potential

takes the form

φA−B(r) =
1

2

[
fB(r)

fA(r)
φA(r) +

fA(r)

fB(r)
φB(r)

]
. (4.1)
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This approach has the aesthetic advantage of leaving the potential unchanged under transfor-

mations of the electron density function fα(r). This feature is also present in the embedding

energy function Fα(ρ).

4.1.2. Linear Combinations

Building off of the Johnson prescription, we attempt to describe the heterogeneous potential

as a general linear combination of the monatomic potentials. We call this approach LC, and use

the form

φA−B(r) = αAφA(r) + αBφB(r), (4.2)

where αA and αB are some constant parameters for materials A and B. This allows us to tune

the parameters αA and αB to possibly achieve a better fit to experimental data.

4.1.3. The ZWJ Potential

Our final approach is to adjust the ZWJ potential discussed in Chapter 3 to model a

heterogeneous, rather than homogeneous, interaction. This approach differs from the linear

combination and Johnson prescription approaches by not depending on the individual potentials

of the materials we wish to model. Instead, we say that the interaction between two materials

A and B, φA−B,is given by

φA−B(r) =
K0e

−α
(
r
r1
−1

)
1 +

(
r
r1
− κ
)20 − K1e

−δ
(
r
r1
−1

)
1 +

(
r
r1
− 2κ

)20 . (4.3)

In this potential, we can see which parameters control which features. The coefficients K0

and K1 will control the depth of the potential well, The unitless parameters α and δ control

the curvature, and therefore the calculated force constants. The parameter r1 will control the

position of the potential well, and will therefore largely determine the relaxed height of the alkali

layer. Finally, κ will determine how quickly the potential will go to zero.

In order to use (4.3), we need to specify each of the six parameters just discussed. When

we used the ZWJ model for W and Mo, many of these parameters were determined by physical

constraints. For example, the parameter r1 was fixed to be the nearest neighbor distance in the
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bulk, and κ was taken directly from the original paper by Zhou et. al [43]. Our approach is to

allow all six parameters to be free, and fit them to experimental and other theoretical results.

The procedure for doing this is outlined in the following section.

4.2. Mo-Li Model Comparison

4.2.1. Parameter Fitting

The parameters used for the linear combination model and the ZWJ potential model are

determined by least square fitting. We consider the outputs of the model to be the the frequen-

cies of the three modes of the alkali layer, which we will call ν1, ν2 and ν3. These modes are

obtained by holding the substrate layers fixed, and only allowing the alkali layer to be dynamic.

We also assume that the wave vector is at Γ. This reduces the dynamical matrix to a size

of 3 × 3, and is consistent with the method used by the density functional calculations. The

remaining two target values are the height of the alkali layer h, and the binding energy of the

alkali layer E.

These outputs can be thought of as functions of the parameters of the model. Thus, if we

wish to fit the model to some target outputs ν̄i, h̄, and Ē, we must minimize the least-squares

function S, where

S =

∑3
i=1wi

(
νi
ν̄i
− 1

)2

+ w4

(
h

h̄
− 1

)2

+ w5

(
E

Ē
− 1

)2

∑5
i=1wi

. (4.4)

We use the ratio of the model output to the target output because our five targets have different

units, and this method lets us calculate a unitless goodness of fit. We give ourselves the choice

of weights wi, which allow us to adjust the fit to do better job matching frequencies, the binding

energy, or the alkali height.

For the target values of the Li-Mo interaction, we use results for a coverage of θ = 0.25

on the (110) surface from Zhou et al. [76]. Equation 4.4 is minimized using NLopt’s COBYLA

routine [22]. This is the same routine used to perform surface relaxation. Table 4.1 details the

model and target outputs.
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Our choice of weights reflects our end goal. We are most interested in describing vibrational

properties, and so we give special attention to accurate frequency measurements. A choice of

wi = 1 treats all target values equally, but because there are three frequencies in the set of

target values, we can think of this choice as emphasizing a good fit to frequencies.

4.2.2. Mo-Li Results

To determine how well each model does, we compare their predicted alkali frequencies,

alkali layer heights, and alkali binding energies for a quarter monolayer of Li on the 110 surface

of W and Mo to experimental results, as well as density functional calculations that have been

performed. We choose these outputs to compare because there has been significant work done

on Li/Mo 110 surfaces. Thus, we have many quality data points to which we can compare our

models. Tables 4.1 and 4.2 show the results for Li/Mo (110) with a coverage of θ = 0.25 and

θ = 1, respectively.

Table 4.1. Quarter monolayer of Li on the 110 surface of Mo experimental and theoretical
values for the height of the alkali layer in angstroms, the binding energy (BE) of the alkali layer
in eV, and the vibrational frequencies of the alkali layer in THz. The least square error uses
result from Zhou et. al as target parameters.

Height BE ν1 ν2 ν3 Technique Reference Error

10.2 5.4 HREELS (Kröger 2000) [77]
2.33 2.30 10.2 5.8 4.1 DFT (Zhou 2009) [76]
2.08 2.06 MEAM (Vella 2017) [78]

2.27 2.14 11.48 6.35 6.25 JP 0.0616
2.31 2.04 10.93 5.8 4.08 LC 0.0039
2.47 2.36 10.12 5.82 4.12 ZWJ 0.0003

These results show a few salient features. First, the linear combinination and ZWJ poten-

tials far outperform the Johnson prescription. This is not surprising; the Johnson prescription

introduces no new parameters. The linear combination approach introduces two free parame-

ters, and the ZWJ potential introduces six. It stands to reason that a model with more degrees

of freedom can better fit target data than one with fewer degrees af freedom. Since both the
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Table 4.2. Full monolayer of Li on the 110 surface of Mo experimental and theoretical values
for the height of the alkali layer in angstroms, the binding energy (BE) of the alkali layer in eV,
and the vibrational frequencies of the alkali layer in THz. The least square error uses result from
Zhou et. al as target parameters.

Height BE ν1 ν2 ν3 Technique Reference Error

9.2 HREELS (Kröger 2000) [77]
2.13 2.30 9.9 Li-Mo clusters (Müller 2002) [79]
2.21 2.18 9.2 6.8 3.7 DFT (Zhou 2009) [76]
2.21 2.09 MEAM (Vella 2017) [78]

2.3 2.22 11.1 6.17 5.94 JP 0.0842
2.36 2.14 10.27 5.34 3.72 LC 0.0136
2.53 2.48 9.75 6.66 3.28 ZWJ 0.0114

linear combination and ZWJ potentials performed well on the full monolayer, to which they were

not fit, it seems as though these approaches are viable.

The fitted parameters for the linear combination and ZWJ models are shown in Tables 4.3

and 4.4, respectively. Figure 4.1 shows all three model potentials for Mo-Li interaction, as well

as the individual Mo and Li potentials.

Table 4.3. The parameters for the linear combination interaction of Mo and Li.

αLi αMo

1.654 0.198

4.3. Target Parameters

Our end goal is to model all of the alkali metals on W and Mo, not just Li on Mo. However,

there have been very few theoretical or experimental investigations into Na, K, Rb, or Cs on W

and Mo. We have developed a method to come up with target parameters for the remaining
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Table 4.4. The parameters for the ZWJ interaction of Mo and Li.

r1 (ang) K0 (eV) K1(eV ) α δ κ

2.808 1.444 1.659 8.137 6.561 0.216

Figure 4.1. The Johnson prescription potential, the linear combination potential, and the ZWJ
potential for the interaction of Li and Mo using the frequency set of weights. The potentials of
Li and Mo are also shown in blue and red, respectively.

alkali-metal/transition metal systems, which we outline below.

It is important to note that the following method is very much heuristic. We do not expect

the target parameters we come up with to be perfectly accurate. Rather, we use this method

to come up with values that we feel are reasonably close to what an experimental investigation

might yield, solely for the purpose of building our models.
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4.3.1. Target Binding Energies

Kawano [80] determined the binding energies of low coverages of Li, Na, K, and Cs on

W(110), and the results are shown in Table 4.5.

Table 4.5. Binding energies of alkali metals on W(110), as measured by Kawano.

Alkali Metal Binding Energy (eV)

Li 2.56± 0.10
Na 2.54± 0.05
K 2.86± 0.05
Cs 3.00± 0.05

Since we do not expect binding energies to vary greatly for different low coverages, these

results give us clear target parameters for the binding energy of a quarter monolayer of the alkali

metals on W(110), with the exception of Rb. Following the pattern in Table 4.5, we expect that

the binding energy of Rb on W(110) to be somewhere between 2.86 and 3.0 eV. Therefore, we

use a target binding energy of 2.93 eV for a quarter monolayer of Rb on W(110).

However, we still need target binding energies for the alkali metals on Mo(110). These will

be obtained by a simple scaling argument. We expect the ratio of binding energies of an alkali

on W and the same alkali on Mo to be about constant for all alkali metals. That is, for any two

alkali metals A and B, we expect that the binding energy E of A satisfies

EA,Mo(110)

EA,W (110)
=
EB,Mo110)

EB,W (110)
. (4.5)

Using the results of Kawano [80] for the binding energy of Li on W(110), and the results

of Zhou et. al [76] for the quarter monolayer coverage binding energy of Li on Mo(110),

we estimate that the scaling factor to convert between W(110) binding energies and Mo(110)

binding energies is
ELi,Mo(110)

ELi,W (110)
= 0.85 (4.6)
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4.3.2. Target Frequencies

We can get an idea of how the vibrational frequencies of an alkali layer change as we change

the alkali metal by examining the dynamical matrix. Referring back to (1.10), we note that for

a given model, and calling the alkali metal A, the calculated frequencies ωAi for the alkali layer

will be proportional to the inverse square root of the mass MA of the alkali atom. Expressed

more clearly, we say that

ωAi =
αAi√
MA

. (4.7)

where αi is some constant.

This implies that, so long as the models for the different alkali metals do not vary greatly,

and we know the frequencies for alkali A, we can estimate the frequencies for a different alkali

B via

ωBi =

√
MA

MB
. (4.8)

This method is supported by a measurement from Lopinski et. al [81], who measured

the highest frequency of a half monolayer of Li and Na on Mo(100), and found that Li has a

frequency of 9.2 THZ, and Na has a frequency of 4.6 THz. The mass of Li is 7 amu, while the

mass of Na is 23 amu. This means that (4.8) estimates a frequency of 5.08 THz for the Na

frequency, which differs by only ten percent from the experimental value.

Because we don’t expect the frequencies to differ significantly between an alkali on W and

that same alkali on Mo, we will use the same target frequencies for Li on Mo as we do for Li

on W. So, using the results from Zhou et. al [76] as our base case, we can estimate target

frequencies for all ten alkali-metal/transition-metal models we wish to construct.

4.3.3. Target Heights

We obtain our target heights through a simple geometrical argument. Often, it is useful

to think of the atoms in a lattice as a collection of hard spheres, all in contact. In this view

of things, the spheres would have a radius that is one half the nearest neighbor distance in the

bulk material. This view allows us to imagine an alkali atom sitting on top of the (110) surface

of a bcc substrate at the long-bridge site, as shown in Figure 4.2.
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Figure 4.2. A geometric view of an alkali atom sitting on a transition metal substrate. The
parameters rs1 and ra1 refer to the nearest neighbor distance in the substrate and alkali bulk,
respectively. The term as0 refers to the lattice constant of the substrate.

From this figure, we can estimate the height h of a layer of alkali atoms with nearest

neighbor distance ra1 on the (110) surface of a bcc substrate with nearest neighbor distance rs1

and lattice constant as0. This is done by simply applying the Pythagorean theorem, so that

h =
1

2

√
(rs1 + ra1)2 − (as0)

2. (4.9)

Applying (4.9) to Li on Mo(110), we get a predicted height of 2.4 angstroms, which differs

from the calculation from Zhou et. al [76] by only three percent. Therefore, we are confident

that (4.9) gives good heuristic results.
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4.3.4. Target Summary

Applying these heuristic methods, we have come up with target parameters for all ten

alkali-metal/transition-metal models we want to study. The results are organized in Table 4.6.

Table 4.6. Target parameters for Li, Na, K, Rb, and Cs on W and Mo. These results are used
to build models using the ZWJ and linear combination potentials. The DFT results from Zhou
et. al [76] have been used for the height of Li on Mo(110) and, rather than the estimated
heights.

System ν1 (THz) ν2 (THz) ν3 (THz) h (ang) E (eV)

W-Li 4.1 5.8 10.2 2.402 2.56
W-Na 2.262 3.2 5.627 2.787 2.54
W-K 1.73 2.45 4.32 3.275 2.86
W-Rb 1.173 1.66 2.919 3.444 2.93
W-Cs 0.941 1.33 2.341 3.664 3.0

Mo-Li 4.1 5.8 10.2 2.33 2.3
Mo-Na 2.262 3.2 5.627 2.782 2.282
Mo-K 1.73 2.45 4.32 3.27 2.57
Mo-Rb 1.173 1.66 2.919 3.439 2.632
Mo-Cs 0.941 1.33 2.341 3.659 2.695

4.4. Model Results

With target parameters specified, we can now apply our fitting routine to the linear com-

bination and ZWJ models for the ten alkali-metal/transition-metal systems we wish to study.

For comparison, we include the calculated least square error for the Johnson prescription, even

though no fitting is done for this potential. The results for all systems are organized in Table

4.7

Examining these results, it is clear that the ZWJ model consistently performs the best

for all systems. This is not at all surprising; as discussed earlier, the ZWJ introduces six free

parameters that are tuned to match the target outputs.

What is interesting to note is the failure of the Johnson prescription for the larger alkali

metals. Examining the data, it appears as though the error for the Johnson prescription increases
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Table 4.7. Target parameters for a quarter monolayer of Li, Na, K, Rb, and Cs on W and Mo.

System Model ν1 (THz) ν2 (THz) ν3 (THz) h (ang) E (eV) Error

W-Li JP 7.37 7.94 13.81 2.28 2.48 0.1811
LC 4.08 6.05 11.17 2.30 2.00 0.0119

ZWJ 4.16 5.78 10.18 2.47 2.33 0.0023

Mo-Li JP 6.25 6.35 11.48 2.26 2.14 0.0616
LC 4.08 5.81 10.93 2.31 2.04 0.0039

ZWJ 4.02 5.91 10.10 2.48 2.35 0.0005

W-Na JP 4.38 4.84 8.46 2.38 2.26 0.2857
LC 2.26 3.53 6.39 2.47 1.58 0.0373

ZWJ 2.22 3.13 6.02 2.66 2.35 0.0026

Mo-Na JP 3.40 3.57 6.74 2.42 1.67 0.0783
LC 2.28 3.44 6.30 2.47 1.60 0.0244

ZWJ 2.21 3.13 6.09 2.71 2.20 0.0019

W-K JP 4.40 5.62 9.08 2.41 3.69 1.0847
LC 1.77 2.75 4.88 2.49 1.39 0.0708

ZWJ 1.79 2.48 4.63 3.53 2.76 0.0027

Mo-K JP 3.60 3.89 7.12 2.45 2.31 0.4012
LC 1.79 2.57 4.65 2.48 1.39 0.0559

ZWJ 1.79 2.46 4.34 3.55 2.54 0.0018

W-Rb JP 3.03 4.17 6.48 2.41 4.13 1.3074
LC 1.21 1.86 3.25 2.49 1.30 0.0835

ZWJ 1.21 1.69 3.15 3.57 2.77 0.0023

Mo-Rb JP 2.47 2.98 5.07 2.44 2.55 0.4951
LC 1.46 1.61 2.78 2.32 1.35 0.0831

ZWJ 1.22 1.67 2.91 3.63 2.60 0.0009

W-Cs JP 2.66 3.92 5.89 2.42 5.26 2.02
LC 0.99 1.45 2.50 2.48 1.21 0.0951

ZWJ 0.99 1.37 2.53 3.70 2.75 0.0034

Mo-Cs JP 2.16 2.87 4.63 2.44 3.20 0.8262
LC 0.98 1.44 2.52 2.49 1.26 0.0800

ZWJ 0.95 1.31 2.38 3.74 2.68 0.0002
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as we increase the size of the alkali metals. Lithium is around the same size as W and Mo, and

so the Johnson prescription performs fairly well in that regime. However, making our way down

to Cs on W, the error for the Johnson prescription is three orders of magnitude greater than the

error for the ZWJ model. The reason for this increasing error is somewhat more apparent when

the potentials are directly compared, as in figs. 4.3 and 4.4.
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(a) The W-Li heterogeneous interactions. (b) The W-Na heterogeneous interactions.

(c) The W-K heterogeneous interactions. (d) The W-Rb heterogeneous interactions.

(e) The W-Cs heterogeneous interactions.

Figure 4.3. Potential energy graphs for the Johnson prescription (JP), linear combination (LC),
and ZWJ heterogeneous models for the alkali metals on W. The homogeneous potentials for W
and the alkalis are also shown, for comparison.
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(a) The Mo-Li heterogeneous interactions. (b) The Mo-Na heterogeneous interactions.

(c) The Mo-K heterogeneous interactions. (d) The Mo-Rb heterogeneous interactions.

(e) The Mo-Cs heterogeneous interactions.

Figure 4.4. Potential energy graphs for the Johnson prescription (JP), linear combination (LC),
and ZWJ heterogeneous models for the alkali metals on Mo. The homogeneous potentials for
Mo and the alkalis are also shown, for comparison.
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Examining figs. 4.3 and 4.4, the failure of the Johnson prescription becomes much more

understandable. In the JP potentials for K, Rb, and Cs on W and Mo, the well depth is far too

deep, falling below the substrate well depth. Further, the position of the well tends to stay near

the substrate well position. Taking the ZWJ as an example of what an effective model should

look like, it appears as though the position of the well for a heterogeneous potential ought to

be nearer the alkali well, rather than the substrate well.

This observation also helps explain why the JP does well for Li and Na. Since Li, and to

a lesser degree Na, are around the same size as W and Mo, their homogeneous well positions

are all around the same spot. Therefore, even if the JP tends to favor a well position closer to

W or Mo, the resulting potential still does a reasonable job, since the well position is close to

both the alkali and transition metal well potentials. In Johnson’s original formulation [72], he

was describing alloys of atoms which were roughly the same size, and thus did not run into the

problem we see above. Therefore, we can view this results as shedding light on the efficacy of

the JP.

For completeness, the parameters for each of the linear combination and ZWJ models we

have constructed are shown in Tables 4.8 and 4.9, respectively.

Table 4.8. The parameters for the linear combination interaction of Li, Na, K, Rb, and Cs on
W and Mo.

System αAlkali αSubstrate

Mo-Li 1.654 0.198
Mo-Na 0.720 0.417
Mo-K 0.185 0.510
Mo-Rb 0.034 0.349
Mo-Cs 0.131 0.545

W-Li 1.490 0.180
W-Na 0.700 0.347
W-K 0.196 0.457
W-Rb 0.185 0.465
W-Cs 0.116 0.437
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Table 4.9. The parameters for the ZWJ interaction of Li, Na, K, Rb, and Cs on W and Mo.

System r1 (ang) K0 (eV) K1(eV ) α δ κ

Mo-Li 2.808 1.444 1.659 8.137 6.561 0.216
Mo-Na 2.948 1.413 1.664 8.305 6.037 0.214
Mo-K 4.668 1.208 1.267 7.146 6.760 0.215
Mo-Rb 4.721 1.212 1.270 7.100 6.697 0.210
Mo-Cs 4.775 1.213 1.273 7.121 6.67 0.213

W-Li 2.815 1.443 1.667 8.107 6.540 0.215
W-Na 2.974 1.387 1.716 8.058 5.952 0.201
W-K 4.631 1.193 1.301 7.184 6.544 0.171
W-Rb 4.649 1.193 1.301 7.192 6.531 0.171
W-Cs 4.712 1.201 1.298 7.248 6.558 0.172

4.5. Conclusions

There are two main results from our model-construction process. First, it is clear that the

ZWJ model is the best performer for all the systems we wish to study. As discussed earlier, this

should not come as a surprise, due to the large number of free parameters in the ZWJ model.

Although the linear combination approach does a reasonably good job describing vibrational

frequencies, it systematically failed to describe the binding energy of the alkali-metal/transition-

metal systems.

Further, when analyzing the models of a full monolayer of Li on Mo, the ZWJ still did the

best job. Because the models were not fit to the full monolayer data, this suggests that the

ZWJ approach can be extended to different coverages and surfaces, and still give dependable

results. Therefore, we choose to use the ZWJ model in our examination of different interface

systems in Chapter Five.
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The second, perhaps surprising, result is the failure of the Johnson prescription. Since the

JP is widely used, it is interesting to see under what regimes it fails. Our analysis suggests that

the JP can only accurately be used to model the interaction between two different metals when

the metals are roughly the same size. This discovery should help guide future investigations of

alloy systems.
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CHAPTER 5

RESULTS

Chapters two through four of this thesis have been dedicated to building the tools necessary

to analyze the alkali-metal/transition-metal interface. In this chapter, we use those tools to

calculate the vibrational properties of a number of systems. These systems consist of substrates

of W or Mo, oriented on their (110), (100), and (111) surfaces. On each of these surfaces, we

adsorb a layer of alkali metal in increasing coverage. The intent of examining multiple coverages

is to probe the effect of increasing alkali atom density on vibrational properties.

5.1. (110) Surface

On the (110) surface of W and Mo, we examine Li at coverages of a sixth, a quarter, a

third, and a full monolayer. These coverages of Li have been observed on W (110) by [10], and

on Mo (110) by [11]. The three fractional coverages are shown in Figure 5.1, with unit cells

outlined in red. The Brillouin zones for each of these systems is shown in Figure 5.2.

We choose to place the Li atoms on the long bridge site, in line with the calculations of

Vella et. al [78]. These calculations suggest that the binding energy is minimized when the

adsorbed atoms are placed on the long bridge site.

When calculating the densities of states and Debye temperatures, we use the IBZ for each

coverage. For the full monolayer, we use 88,746 IBZ points. For a third monolayer, we use

16,512 IBZ points. For the quarter monolayer, we use 22,262 IBZ points. Finally, for the

sixth monolayer, we use 5,620 IBZ points. The exact number of points used for each IBZ is a

result of the size and shape of the IBZ. Each mesh has the same k-space density, so the IBZs

which are smaller (i.e., the sixth monolayer IBZ) end up with fewer points. Although the less

dense coverages use a smaller number of points, the total number of modes calculated for each

coverage remains similar. This is because the number of modes per IBZ points scales linearly

with the number of atoms per unit cell. The sixth monolayer has six times as many atoms per
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(a)

(b) (c)

Figure 5.1. Unit cells for a (a) third, (b) quarter, and (c) sixth monolayer on the (110) surface.

Figure 5.2. The Brillouin zones for a (a) full, (b) third, (c) quarter, and (d) sixth monolayer on
the (110) surface.

unit cell as the full monolayer, so that the total number of modes calculated for each system is

closer than it would appear.
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We use a 51 layer slab of W or Mo for the substrate of the (110) system. We have found

that this slab thickness gives vibrational results for the center layer which are nearly identical to

the bulk vibrations of W and Mo. This is important, as we expect the atoms in the center of

the slab to behave the same as bulk atoms.

5.1.1. W-Li Systems

We begin by looking at a clean slab of W. This allows us to see how vibrational properties

change as we add more and more adsorbate atoms. Figures 5.3, 5.4 and 5.5 show the layer

resolved dispersion curves and densities of states of the (110) surface of W. The sixth, quarter,

third, and full monolayer dispersion curves and densities of states are shown in Figs. 5.6, 5.7,

5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17.
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(a) First layer longitudinal polarization (b) First layer shear horizontal polarization

(c) Second layer longitudinal polarization (d) Second layer shear horizontal polarization

(e) Third layer longitudinal polarization (f) Third layer shear horizontal polarization

Figure 5.3. Dispersion curves for a clean slab of the (110) surface of W. Longitudinal (shear
horizontal) projections are shown on the left (right).
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(a) First layer shear vertical polarization

(b) Second layer shear vertical polarization

(c) Third layer shear vertical polarization

Figure 5.4. Dispersion curves for a clean slab of the (110) surface of W projected in the shear
vertical direction.
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(a) Fist layer density of states (b) Fist layer Debye tempteratures

(c) Second layer density of states (d) Second layer Debye tempteratures

(e) Third layer density of states (f) Third layer Debye tempteratures

Figure 5.5. Densities of states and Debye temperatures for a clean slab of the (110) surface of
W, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.6. Dispersion curves for a sixth monolayer of Li on the 110 surface of W. Longitudinal
(shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.7. Dispersion curves for a sixth monolayer of Li on the 110 surface of W projected in
the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.8. Densities of states and Debye temperatures for a sixth monolayer of Li on the 110
surface of W, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.9. Dispersion curves for a quarter monolayer of Li on the 110 surface of W. Longitudinal
(shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.10. Dispersion curves for a quarter monolayer of Li on the 110 surface of W projected
in the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.11. Densities of states and Debye temperatures for a quarter monolayer of Li on the
110 surface of W, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.12. Dispersion curves for a third monolayer of Li on the 110 surface of W. Longitudinal
(shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.13. Dispersion curves for a third monolayer of Li on the 110 surface of W projected
in the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.14. Densities of states and Debye temperatures for a third monolayer of Li on the 110
surface of W, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.15. Dispersion curves for a full monolayer of Li on the 110 surface of W. Longitudinal
(shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.16. Dispersion curves for a full monolayer of Li on the 110 surface of W projected in
the shear vertical direction.
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We see significant dispersion in the in-plane motion of the Li layer. This indicates that

there is strong interaction between the Li atoms, which we should expect. Because the lattice

constant of W is somewhat smaller than the bulk lattice constant of Li, a full monolayer of

Li would put the Li atoms closer to each other than they are in bulk Li, leading to the strong

dispersion we see.

Alternatively, we see little dispersion in the shear vertical projections of the Li atoms when

compared to the in-plane motion. The vertical motion of the Li atoms is dominated by the W-Li

interaction, rather than the Li-Li interaction, so this makes sense. We can get a full picture of

the allowed frequencies by examining the layer and direction resolved densities of state, shown

in Figure 5.17.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.17. Densities of states and Debye temperatures for a full monolayer of Li on the 110
surface of W, projected on to the x, y, and z directions.
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We note that by comparing the dispersion curves of a sixth, quarter, and third monolayer

(Figs. 5.6, 5.9, and 5.12), we can see a slight broadening of the modes projected on to the

alkali layer. This shows that, as we increase the coverage, the Li-Li interactions become more

and more prevalent.

5.1.2. Mo-Li Systems

We repeat the same analysis for Li absorbed on the (110) surface of Mo, once again

beginning with a clean slab of Mo with 51 layers. The layer resolved dispersion curves for the

in-plane and shear horizontal projections, and the layer resolved densities of states for the clean

surface, sixth, quarter, third, and full monolayer are shown in Figs. 5.18, 5.19, 5.20, 5.21, 5.22,

5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31, 5.32.
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(a) First layer longitudinal polarization (b) First layer shear horizontal polarization

(c) Second layer longitudinal polarization (d) Second layer shear horizontal polarization

(e) Third layer longitudinal polarization (f) Third layer shear horizontal polarization

Figure 5.18. Dispersion curves for a clean slab of the (110) surface of Mo. Longitudinal (shear
horizontal) projections are shown on the left (right).
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(a) First layer shear vertical polarization

(b) Second layer shear vertical polarization

(c) Third layer shear vertical polarization

Figure 5.19. Dispersion curves for a clean slab of the (110) surface of Mo projected in the shear
vertical direction.
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(a) Fist layer density of states (b) Fist layer Debye tempteratures

(c) Second layer density of states (d) Second layer Debye tempteratures

(e) Third layer density of states (f) Third layer Debye tempteratures

Figure 5.20. Densities of states and Debye temperatures for a clean slab of the (110) surface
of Mo, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.21. Dispersion curves for a sixth monolayer of Li on the 110 surface of Mo. Longitu-
dinal (shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.22. Dispersion curves for a sixth monolayer of Li on the 110 surface of Mo projected
in the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.23. Densities of states and Debye temperatures for a sixth monolayer of Li on the 110
surface of Mo, projected on to the x, y, and z directions.



98

(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.24. Dispersion curves for a quarter monolayer of Li on the 110 surface of Mo. Longi-
tudinal (shear horizontal) projections are shown on the left (right).



99

(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.25. Dispersion curves for a quarter monolayer of Li on the 110 surface of Mo projected
in the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.26. Densities of states and Debye temperatures for a quarter monolayer of Li on the
110 surface of Mo, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.27. Dispersion curves for a third monolayer of Li on the 110 surface of Mo. Longitu-
dinal (shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.28. Dispersion curves for a third monolayer of Li on the 110 surface of Mo projected
in the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.29. Densities of states and Debye temperatures for a third monolayer of Li on the 110
surface of Mo, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.30. Dispersion curves for a full monolayer of Li on the 110 surface of Mo. Longitudinal
(shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.31. Dispersion curves for a full monolayer of Li on the 110 surface of Mo projected in
the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.32. Densities of states and Debye temperatures for a full monolayer of Li on the 110
surface of Mo, projected on to the x, y, and z directions.
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The densities of states of Li on W and Mo suggest that the dynamics of these two bimetallic

systems are very similar. We can briefly summarize the results by examining the target outputs

discussed in chapter 4 for each coverage. These results, which include the three modes obtained

by holding the substrate fixed while allowing the alkali layer to be dynamic, the height of the

alkali layer, and binding energy of the alkali layer, are shown in Table 5.1.

Table 5.1. Calculated frequencies, binding energies, and Li layer heights for a full, third, quarter,
and sixth monolayer of Li on the 110 surface of W and Mo.

Substrate Coverage h (ang) Ecoh (eV) ν1 (THz) ν2 (Thz) ν3 (Thz)

W 1 2.53 2.48 3.27 6.74 9.68
1
3 2.47 2.34 4.01 5.88 10.09
1
4 2.46 2.33 3.99 5.76 10.01
1
6 2.47 3.33 4.07 5.82 10.13

Mo 1 2.53 2.47 3.23 6.7 9.74
1
3 2.48 2.36 3.90 5.97 10.01
1
4 2.47 2.35 3.85 5.86 9.90
1
6 2.48 2.35 3.96 5.93 10.05

This similarity is not surprising; W and Mo have lattice constants which are very close

to each other, and the ZWJ heterogeneous models we constructed in chapter 4 for the W-Li

and Mo-Li interaction have parameters which are nearly identical. We can easily compare the

vibrations of Li on W(110) and Mo(110) by comparing the alkali layer density of states of a

sixth monolayer of Li on W (Figure 5.8) to the alkali layer density of state of a sixth monolayer

of Li on Mo(110) (Figure 5.23). These figures suggest that the Li atoms behave the same on

W and on Mo. For this reason, the remaining calculations of the (100) and (111) transition

metal surfaces will only include results using a W substrate.

We also note that the three fractional coverages for the W substrates, as well as the three

fractional coverages on the Mo substrates are nearly identical. This makes sense, given the

relatively short range of the heterogeneous potential. In each of these coverages, the Li atoms

interact very weakly with each other, evidenced by the relatively flat dispersion of the projection
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on to the alkali layer when compared to the dispersion seen in the full monolayer. Therefore,

from the perspective of the Li atoms, there is virtually no difference between a third, a quarter,

and a sixth of a monolayer.

5.2. (100) Surface

On the (100) surface, we examine K at a coverage of a half and a quarter monolayer. These

systems were observed experimentally in [13]. The two coverages are shown in Figure 5.33, with

unit cells outlined in red. The Brillouin zones for each of these systems is shown in Figure 5.34.

For the half monolayer IBZ, we use a mesh of 31,375 points to calculate the densities of

states. For the quarter monolayer, we use a mesh of 7,875 points. We use a slab with 72

layers of W atoms for our calculations on the (100) surface. This number of layers give a slab

thickness of 113.9 Å, which is nearly identical to the 51 layer (110) slab thickness of 114.1 Å. As

with the (110) surface, we begin by examining a clean slab of (100) W. The dispersion curves

and densities of states for the clean surface, the quarter, and half monolayer are shown in Figs.

5.35, 5.36, 5.37, 5.38, 5.39, 5.40, 5.41, 5.42, and 5.43.

We choose the four-fold hollow site for our K atoms. This is binding site is suggested by a

LEED study performed by MacRae et. al [14], although more work can be done to verify that

this site does indeed minimize the binding energy.
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(a) (b)

Figure 5.33. Unit cells for a (a) quarter and (b) half monolayer on the (100) surface.

Figure 5.34. The Brillouin zones for a full, half, and quarter, monolayer on the (100) surface.
Subscripts on points indicate to which coverage the point corresponds.
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(a) First layer longitudinal polarization (b) First layer shear horizontal polarization

(c) Second layer longitudinal polarization (d) Second layer shear horizontal polarization

(e) Third layer longitudinal polarization (f) Third layer shear horizontal polarization

Figure 5.35. Dispersion curves for a clean slab of the (100) surface of W. Longitudinal (shear
horizontal) projections are shown on the left (right).
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(a) First layer shear vertical polarization

(b) Second layer shear vertical polarization

(c) Third layer shear vertical polarization

Figure 5.36. Dispersion curves for a clean slab of the (100) surface of W projected in the shear
vertical direction.
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(a) Fist layer density of states (b) Fist layer Debye tempteratures

(c) Second layer density of states (d) Second layer Debye tempteratures

(e) Third layer density of states (f) Third layer Debye tempteratures

Figure 5.37. Densities of states and Debye temperatures for a clean slab of the (100) surface
of W, projected on to the x, y, and z directions.



113

(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.38. Dispersion curves for a quarter monolayer of K on the 100 surface of W. Longitu-
dinal (shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.39. Dispersion curves for a quarter monolayer of K on the 100 surface of W projected
in the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.40. Densities of states and Debye temperatures for a quarter monolayer of K on the
100 surface of W, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.41. Dispersion curves for a half monolayer of K on the 100 surface of W. Longitudinal
(shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.42. Dispersion curves for a half monolayer of K on the 100 surface of W projected in
the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.43. Densities of states and Debye temperatures for a half monolayer of K on the 110
surface of W, projected on to the x, y, and z directions.

As with the (110) results, we can briefly summarize the results by looking at the charac-

teristic values of the three modes obtained when holding the substrate fixed, the height of the
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K layer, and the binding energy of the K layer. These results are shown in Table 5.2.

Table 5.2. Calculated frequencies, binding energies, and K layer heights for a half and quarter
monolayer of K on the (100) surface of W.

Coverage h (ang) Ecoh (eV) ν1 (THz) ν2 (Thz) ν3 (Thz)
1
2 3.10 2.79 3.09 3.09 5.97
1
4 3.07 2.65 3.18 3.19 6.05

We note that there is a small difference between the modes obtained with a half monolayer

and a quarter monolayer of K. This indicates that, even at these lower coverages, there is some

interaction between the K atoms.

5.3. (111) Surface

On the (111) surface, we examine Li, Na, K and Cs at a coverage of a full monolayer.

Each of these alkali layers have been seen experimentally in [15]. The full monolayer is shown

in Figure 5.44, with the unit cell outlined in red. The Brillouin zones for this system is shown

in Figure 5.45.

A first-principles calculation performed by Yi et. al [8] suggests that the three-fold hollow

FCC binding site minimizes the binding energy. Accordingly, we use this binding site for our

system.

Once again, we begin by examining a clean slab of (111) W. We use a slab of 125 layers,

once again giving us a slab thickness close to the 51 layers used for the (110) surface. For the

IBZ of the full monolayer, we use a mesh of 34,369 points. The dispersion curves and densities

of states for the clean surface and the Li, Na, K, and Cs monolayer are shown in Figs. 5.46,

5.47, 5.48, 5.49, 5.50, 5.51, 5.52, 5.53, 5.54, 5.55, 5.56, 5.57, 5.58, 5.59, and 5.60.
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Figure 5.44. Unit cell for a full monolayer on the (111) surface.

Figure 5.45. The Brillouin zones for a full and third monolayer on the (111) surface. Subscripts
on points indicate to which coverage the point corresponds.
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(a) First layer longitudinal polarization (b) First layer shear horizontal polarization

(c) Second layer longitudinal polarization (d) Second layer shear horizontal polarization

(e) Third layer longitudinal polarization (f) Third layer shear horizontal polarization

Figure 5.46. Dispersion curves for a clean slab of the (111) surface of W. Longitudinal (shear
horizontal) projections are shown on the left (right).
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(a) First layer shear vertical polarization

(b) Second layer shear vertical polarization

(c) Third layer shear vertical polarization

Figure 5.47. Dispersion curves for a clean slab of the (111) surface of W projected in the shear
vertical direction.
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(a) Fist layer density of states (b) Fist layer Debye tempteratures

(c) Second layer density of states (d) Second layer Debye tempteratures

(e) Third layer density of states (f) Third layer Debye tempteratures

Figure 5.48. Densities of states and Debye temperatures for a clean slab of the (111) surface
of W, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.49. Dispersion curves for a full monolayer of Li on the 111 surface of W. Longitudinal
(shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.50. Dispersion curves for a full monolayer of Li on the 111 surface of W projected in
the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.51. Densities of states and Debye temperatures for a full monolayer of Li on the (111)
surface of W, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.52. Dispersion curves for a full monolayer of Na on the 111 surface of W. Longitudinal
(shear horizontal) projections are shown on the left (right).



128

(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.53. Dispersion curves for a full monolayer of Na on the 111 surface of W projected in
the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.54. Densities of states and Debye temperatures for a full monolayer of Na on the (111)
surface of W, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.55. Dispersion curves for a full monolayer of K on the 111 surface of W. Longitudinal
(shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.56. Dispersion curves for a full monolayer of K on the 111 surface of W projected in
the shear vertical direction.



132

(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.57. Densities of states and Debye temperatures for a full monolayer of K on the (111)
surface of W, projected on to the x, y, and z directions.
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(a) Alkali layer longitudinal polarization (b) Alkali layer shear horizontal polarization

(c) First substrate layer longitudinal polarization (d) First substrate layer shear horizontal polariza-
tion

(e) Second substrate layer longitudinal polarization (f) Second substrate layer shear horizontal polar-
ization

Figure 5.58. Dispersion curves for a full monolayer of Cs on the 111 surface of W. Longitudinal
(shear horizontal) projections are shown on the left (right).
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(a) Alkali layer shear vertical polarization

(b) First substrate layer shear vertical polarization

(c) Second substrate layer shear vertical polariza-
tion

Figure 5.59. Dispersion curves for a full monolayer of Cs on the 111 surface of W projected in
the shear vertical direction.
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(a) Alkali layer density of states (b) Alkali layer Debye tempteratures

(c) First substrate layer density of states (d) First substrate layer Debye tempteratures

(e) Second substrate layer density of states (f) Second substrate layer Debye tempteratures

Figure 5.60. Densities of states and Debye temperatures for a full monolayer of Cs on the (111)
surface of W, projected on to the x, y, and z directions.
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Once again, we summarize the above results by examining the modes obtained when freezing

the W substrate and only allowing the K atoms to be dynamic, as well as the height of the K

layer and the binding energy of the K layer. These results are shown in Table 5.3.

Table 5.3. Calculated frequencies, binding energies, and K layer heights for a full monolayer of
Li, Na, K, and Cs on the (111) surface of W.

Alkali h (ang) Ecoh (eV) ν1 (THz) ν2 (Thz) ν3 (Thz)

Li 1.29 3.22 10.56 10.56 10.70
Na 1.56 3.58 6.31 6.31 6.92
K 2.67 2.26 2.24 2.24 4.78
Cs 2.92 1.80 0.79 0.79 1.94

We see that the height of the K layer on the (111) surface is signifigantly lower than the K

layer on the (100) surface. We also see that the Li layer height on the (111) surface is much less

than its heights on the (110) surface. This difference is due to the (111) surface being much

less dense than the other surfaces. The relative density of the (111) surface also explains the

lower in-plain modes we see in Table 5.3.

5.4. Summary

There are a few key features we can extract from the numerous results above. These

include the high dispersion of the full monolayer of Li on W and Mo (110) when compared to

the other coverages, the mixing of the vertical modes of the alkali atoms with the bulk modes,

and the new resonance modes observed in the bimetallic systems.

First, we see that the full monolayer of Li on the (110) surfaces of W and Mo show far

more dispersion in the alkali layer than any of the other systems (see Figures 5.15 and 5.16).

This indicates that, in the case of a full monolayer of Li on W and Mo (110), the Li atoms

are interacting very strongly with each other. However, all the other systems showed nearly flat

dispersion curves for the alkali layers. Therefore, we can conclude that in these systems, the

alkali metals are only weakly interacting, if at all. This suggests that the most influential part of
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our models are the heterogeneous potential energy functions, as these functions will dominate

the dynamics of the alkali atoms.

Second, we see a significant difference in the alkali layer density of states of alkali atoms

whose vertical modes coincide with the substrate. Consider the density of states of Li on

W(111) in Figure 5.51. We see a sharp spike in the z-direction density of states at 10.7 THz,

corresponding to the vertical mode. However, in the K on W(111) density of states, the z-

direction projection is much more spread out. This suggest heavy mixing of the modes between

the alkali and substrate atoms in the K-W and Cs-W systems, and to a small extent the Na-W

system.

The third key feature in these results is a subtle change in the projection of modes onto the

first substrate layer. We consistently see a significant projection of modes on this layer which

are of the same frequency as the alkali layer. This suggests that the substrate and alkali layers

are resonating together, and therefore considerably alters the vibrational properties of a clean

surface.

This resonance can most clearly be seen by examining the densities of states. Consider the

first layer clean surface density of states of W(100), shown in Figure 5.37, compared to a half

monolayer of K on W(100) shown in Figure 5.43. In the bimetallic system, we see a significant

spike in the density of states projected onto the first substrate layer at around 2.8 and 3.2 THz,

which is where the alkali layer also sees a spike. This spike is not present in the clean surface,

and therefore represents an emergent features of the bimetallic system.
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CHAPTER 6

CONCLUSIONS

The goal of this project was to model the vibrational properties of the alkali-metal/transition-

metal interface using the Embedded Atom Method (EAM) framework. Specifically, we sought

to study adsorbed layers of alkali metals on the (100), (110), and (111) surfaces of tungsten

and molybdenum substrates. The results of pursuing this goal can be split into four important

contributions. First, we have developed a computer program which is able to perform the cal-

culations necessary to describe the vibrational properties of a wide variety of crystal lattices and

materials. Second, we have developed simple two-shell potential energy models to describe the

bulk interactions of the alkali metals, as well as tungsten and molybdenum. Third, we have

developed heterogeneous potential energy models to describe the interaction between tungsten

or molybdenum atoms with alkali atoms. Finally, we have used the tools developed in this work

to calculate the vibrational properties of transition-metal substrates with adsorbate layers of

alkali metals.

When this project began, all of the calculations were done using previously developed Matlab

code. This code was only able to perform calculations for bulk BCC, FCC, and HCP lattices,

as well as BCC surfaces. Our new computer program, which we call Alkali Lattice Explorer

(ALE), has several key advantages over its predecessors. First, it has been designed to perform

calculations on an arbitrary lattice. To produce this lattice-agnostic program, we developed the

mathematics of the vibrational properties of a lattice without making any assumptions about the

symmetry of the underlying lattice. We formalized this mathematics in a previously published

paper [19]. Our new approach allows us to calculate the vibrational properties of any lattice

by only specifying the primitive vectors which describe the lattice, and the basis vectors which

describe the arrangement of the atoms in the unit cell. Importantly, our approach generalizes

to crystal surfaces, giving us the tools we need to describe the alkali-metal/transition-metal

interface.
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Second, ALE runs much more quickly than the old Matlab code. The reduction in compu-

tation time comes from two sources. First, ALE is written in Fortran, a compiled language which

easily outperforms the scripted Matlab language. Second, and most importantly, ALE runs many

of its key algorithms in parallel. This has allowed us to do far more complex calculations that

would have taken a prohibitively long time using the old Matlab code.

We used a previously developed model of the embedding energy portion of the EAM model

[29] for the alkali metals, as well as tungsten and molybdenum. We also used Hartree Fock

calculations to accurately describe the electron charge density contribution of the alkali and

transition metals [26]. Both of these functions are required for a full EAM model.

Our original approach to modeling the potential interaction between alkali and transition

metals was the Johnson prescription [72], which has been widely used to describe alloy systems.

This prescription builds the heterogeneous potential out of the homogeneous potentials describ-

ing the bulk interactions. Accordingly, we developed simple two-shell potential models for all of

the alkali metals, as well as tungsten and molybdenum. We chose simple short range models

over more accurate long range five-shell models in order to avoid over-fitting. Since little is

known about the precise form of the potential interaction between alkali metals and tungsten

and molybdenum, we decided that using the simplest possible potential energy model would

introduce the least chance of imposing false structure on the interaction.

From our homogeneous potentials, we then constructed the heterogeneous potential. How-

ever, our attempt at the Johnson prescription showed that, although the prescription worked

well for lithium on tungsten and molybdenum, the larger alkali metals performed poorly, with the

performance getting worse as the alkali atoms got larger. Specifically, the Johnson prescription

predicted frequencies much higher than was expected, as well as predicting unreasonable binding

energies and alkali layer heights.

To remedy this problem, we attempted a slight variation of the Johnson prescription. We

attempted to describe the heterogeneous potential interaction between an alkali metal and

tungsten or molybdenum as a simple linear combination of the homogeneous potentials of the

substrate and adsorbate layer. We fit the coefficients of the linear combination to heuristically
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derived target model outputs of the frequencies obtained when holding the substrate fixed and

only allowing the alkali layer be dynamic, as well as target alkali binding energies and alkali layer

heights. However, we found that the same problems that plagued the Johnson prescription per-

sisted in the linear combination approach. Our analysis suggests that the cause of this problem is

the large difference in potential well positions of the homogeneous potentials. This also explains

why the lithium/transition metal systems performed well with both the Johnson prescription

and linear combination approach; since lithium atoms are around the same size as tungsten and

molybdenum atoms, their homogeneous potential energies have wells in approximately the same

locations, thus avoiding the problem we discovered.

In order to accurately model the interaction between the alkali metals and tungsten and

molybdenum, we decided to use a simple short range model developed by Zhou et. al [43],

which we call the ZWJ potential. This model was fit to the target outputs we used to test the

Johnson prescription and linear combination approach. The ZWJ potential model outperformed

the Johnson prescription and linear combination approach in all tested cases, and was therefore

chosen to model our chosen systems.

Finally, we have used the ZWJ heterogeneous potential to calculate dispersion curves,

densities of states, Debye temperatures, adsorbate layer heights and binding energies of a variety

of systems. These systems include lithium on the (110) surface of tungsten in coverages of a full,

third, quarter, and sixth monolayer, potassium on the (100) surface of tungsten in coverages of

a half and quarter monolayer, and lithium sodium, potassium, and cesium on the (111) surface

of tungsten using a full monolayer. These results are tabulated in chapter five of this thesis. We

found that, with the exception of the full monolayer of Li on W (110), the alkali atoms forming

the adsorbate layer interacted very weakly with each other, which indicates that the dynamics of

the alkali layer are mostly driven by the alkali/transition metal interaction. We also consistently

saw resonance modes appear in the first substrate layer of the bimetallic systems which were

not present in the clean surface calculations.

Moving forward, we hope to use the tools developed throughout this research project to

model more bimetallic systems. Understanding the vibrational properties of alkali-metal/transition-
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metal interfaces gives deep insight into the thermal properties of these systems. Our work here

contributes to the understanding of effective modeling of these systems.
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