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ABSTRACT

Solar irradiance prediction using xg-boost with the numerical weather forecast

by

Pratyusha Sai Kamarouthu, Master of Science

Utah State University, 2020

Major Professor: Nicholas Flann, Ph.D.
Department: Computer Science

There is a need to transition on carbon-free energy sources like solar energy and wind

energy to avoid catastrophic global climate change. However, because wind and solar en-

ergies are intermittent, its supply must be integrated with storage and load management

to satisfy the ever-growing energy demand. This thesis applies machine learning to pre-

dict solar energy production based on weather predictions and evaluates how predictions

can improve the performance of a microgrid. Solar energy production is directly propor-

tional to the solar irradiance available at the Earth’s surface. Solar irradiance depends on

many atmospheric parameters like temperature, cloud cover, and relative humidity, that are

predicted in weather forecasts. This work applied regression algorithms - support vector

regression and gradient boost algorithms like, xg-boost and cat-boost to weather forecast

dataset from GFS (Global Forecast System), to predict solar energy production anywhere

in the world up to 10 days with a resolution of three hours. Results show that prediction is

reliable for two days. The learning model r-square error varies from 0.85 to 0.94 at different

locations. Predicted solar energy is combined with predicted loads into a reinforcement

based microgrid optimizer that schedules the charge and discharge of the battery and cal-

culates the profit of an electric vehicle charging station. Results show that the profit made

for 48 hours ahead by predictions is roughly proportional to the accuracy of solar irradiance.
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PUBLIC ABSTRACT

Solar irradiance prediction using xg-boost with the numerical weather forecast

Pratyusha Sai Kamarouthu

To defeat global warming, the world expects to look at renewable energy sources. Solar

energy is one of the best renewable energy sources which causes no harm to the environment.

As solar energy changes with atmospheric parameters like temperature, relative humidity,

cloud coverage, dewpoint, sun position, day of the year, etc. It is difficult to understand its

nature by science. Predicting solar irradiance which is directly proportional to solar energy

using atmospheric parameters is the main goal of this work. Powerful artificial intelligence

algorithms that won many coding competitions have been used to predict it. Using these

methods and numerical weather forecast datasets one can predict solar irradiance up to ten

days with the resolution of three hours. Two-day prediction is more reliable as error after

that increases.

As solar energy is not available all day there is a need to pre-plan the storage and

utilization. From an electric charge station perspective, if he knows the energy generated

by solar and the amount of load he needs to supply, he can take a wise decision to supply

the maximum load with the available power. This will make him get more profits. This

experimental study has been executed by driving solar energy predictions along with load

predictions to an algorithm that gives an optimum charge and discharge schedule of the

battery considering the profit of the electric vehicle charging station. Profit is calculated

with solar predictions in different scenarios with the consideration of the price of the energy

at a given time.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

According to the United States Environment Protection Agency Electricity, trans-

portation, and industries contribute seventy-nine percent to the greenhouse gas emissions.

Transportation sector topped followed by electricity production. Currently, around sixty-

three percent of electricity is generated by fossil fuels either coal or natural gas. Increment of

greenhouse gasses concerns future climate changes. Hence Paris agreement has been adopted

by 197 nations to keep global temperature below 2◦ Celsius. [4] Decarbonizing the energy

sources is one of the prominent steps to achieve this goal. This makes us explore carbon-free

energy production options. Many countries decided upon integrating clean energy sources

into their grid as 100% renewable energy system is impractical at the moment. [5] [6]

Integrating clean energy sources is not an easy task to achieve because of two reasons:

1.its intermittent and uncontrollable nature [5] 2. ever-growing demands. All renewable

energy sources like solar energy, wind energy, tide energy, geothermal energy are available

from no reliable sources. Many unknown parameters contribute to affects energy production

and make them unpredictable and uncontrollable. There would be a 40% increase in the

demand until 2040 [6]. But if one can overcome those challenges by reliable forecasting

and load shifting algorithms, then they no need to import oils and natural gas from other

countries. Energy production in every country will become independent of coal reserves.

This shift would greatly benefit the country’s economy in the long run.

Due to the development of artificial intelligence and the availability of high-end com-

puter sources, it is possible to predict solar and wind energies. Solar irradiance is directly

proportional to the amount of solar energy generated. Though solar irradiance data is cyclic

in general nonlinearity occurs because of various atmospheric parameters like temperature,
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relative humidity, dew point, etc. [7]

Solar Irradiance is defined by three components. Those are GHI (Global Horizontal

Irradiance), DHI (Diffuse Horizontal Irradiance) and DNI (Direct Normal Irradiance). GHI

is defined as the total amount of radiation received by the surface horizontal to the ground

per unit area, θ is 90 at the vertical sun.

GHI = DNI × cosθ +DHI

DHI is the amount of diffused solar energy received from all directions per unit area

other than direct sun rays. Generally, radiation is scattered by all the particles and things

for example clouds. [8]

DNI is the amount of radiation received per unit area that is normal to the rays from

the sun. In this work, GHI is predicted and GHI is addressed as solar irradiance in the rest

of the document.

1.2 Problem Description

Solar irradiance is directly proportional to solar energy produced. Hence predicting

solar irradiance will help to predict solar energy by a mathematical formula. [9] Solar irra-

diance is defined as the amount of energy received from the sun for one-meter square. The

measure of solar irradiance is highly dependent on sun position diurnal cycle and weather pa-

rameters like cloud cover, relative humidity, temperature, dew point, precipitation, etc.. [8].

To forecast it, a model needs to be built using machine learning algorithms, that can pre-

dict solar irradiance that is GHI(Global Horizontal Irradiance) by weather parameters and

position of the sun which ultimately mapped to solar energy.

Given that latitude and longitude of a location and historical solar irradiance of a par-

ticular location, global horizontal irradiance is predicted using numerical weather forecast,

for ten days with the resolution of three hours.

1.3 Previous work
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Fig. 1.1: Different prediction methods used for different spatial and temporal resolutions [1]

Based on different scenarios different methods are used to predict solar irradiance. In

figure 1.1, different methods for different time and spatial resolutions are shown. There

are six different classes of methods for the prediction. They are persistence models, classi-

cal statistical models, machine learning techniques, cloud motion tracking from ground or

satellite, numerical weather prediction models, hybrid models [8] [1].

Persistence models mainly state that current climatic conditions will be similar to past

climatic conditions. Instead of using it individually, it is used with the combination of the

model to accurately measure the solar. [8]

Classical statistical methods like ARMA, ARIMA are used for intra hour prediction

and sometimes up to three hours ahead. [8] These methods consider the past values of

solar irradiance to predict the future. They don’t consider the present weather conditions.

[8]These methods capture the sharp transitions in solar irradiance associated with diurnal

cycle. [1]

Cloud motion tracking from ground or satellite methods are very accurate and can

predict the fluctuations better. These methods require a camera that would capture the

cloud motion. By processing these images by a convolution network prediction of solar power

is made. As ground camera covers just a few meters and clouds move rapidly prediction
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for short periods holds good. [8] If satellite images are used instead of ground images it can

predict for intraday. [9] [1] In either way, predicting this way gives a high resolution.

Numerical weather forecast models are a mathematical model that takes the present

weather conditions and predict weather conditions in the future. After predicting climatic

conditions solar irradiance can be derived by a formula [8]. NWP methods are good to

predict for two days and can be extended up to 6 days. [9]

Machine learning techniques are used to understand the relationship between inputs

and output [9]. These techniques are better to understand the variance of solar irradiance

using weather data [9]. Many regression algorithms like an artificial neural network, decision

tree learning, support vector machines, K-means clustering, ensemble learning, etc methods

have been used for prediction. [8] [9]. Because of the lack of uniformity in data performance

comparison is impossible. [9].But prediction is dependent on the weather forecast available.

The method proposed in this work is a hybrid model that uses machine learning algo-

rithms on the numerical weather forecast data to address the uniformity in data throughout

the world and exploit the weather forecast.

Chapter 2 describes the numerical weather forecast and its validity along with feature

selection. Chapter 3 describes the different learning algorithms used and talks about the

performance of each learning method. Chapter 4 talks about the error analysis and experi-

mental study of solar prediction on the optimizer to make a profit out of this solar irradiance

prediction.

The scope of this work limited to the accuracy of solar irradiance and understand how

numerical weather prediction forecast influences the accuracy of solar irradiance. But no

efforts are made to correct the numerical weather forecast data in case of errors.
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CHAPTER 2

NUMERICAL WEATHER PREDICTION MODELS

2.1 Dataset selection

Considering this project will be deployed in a physical system, a dataset is required

that can predict solar irradiance in real-time. Additionally, one can predict at any given

location in the entire world. Numerical weather forecast data gives us the flexibility to

work on any data set at any location. For example, if one has load data somewhere in

New York he should be able to pull out the solar irradiance prediction at that place and

carry on with the research. When different datasets are considered other than numerical

weather prediction data there is no synchronization between historical weather parameters

and forecasted weather parameters. For example, NOAA provides historical cloud data in

octanes but forecasted cloud data is in percentage. There is no single source that provides

both historical and forecasted weather parameters. As the main task is to build a machine

learning model, historical data is very important for training the model.

The numerical weather prediction dataset addresses all the issues. Each file generated

from the mathematical model contains weather parameters all over the world. As one can

get historical data and forecasted data from a single source it makes training and predicting

easy. Numerical weather prediction file also contains many weather parameters that would

help us to choose all the attributes that contribute to solar irradiance.

2.2 Description

Forecasts of atmospheric parameters can be done using physical laws. As per this ap-

proach forecasting should be looked at as an initial value problem of mathematical physics.

By integrating the initial climate conditions with partial differential equations to predict

future values. [2] When this idea is proposed the world has very limited resources but now
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after 100 years, it has the most powerful computers which can solve all the complex prob-

lems. The physical-chemical processes that happen in the atmosphere are more accurately

measured and considered in the mathematical model. If one look back 40 years there is a

huge improvement in forecasting skills by numerical weather predictions as in figure 2.1

Forecasting skill is the correlation between the forecasts and verified data. If predictions

Fig. 2.1: Improvement of forecasting skill over 40 years for 3 days, 5 days, 7 days and 10
days ahead by NWP model [2]

are 60% accurate it is a useful prediction were 80% accurate it can be said highly accurate.

There have been continuous efforts to make these NWP models accurate. [2]

2.3 Different numerical weather prediction models

There are different NWP models but mainly classified as global models and mesoscale

models. Global models give forecasted parameters for the entire world while mesoscale

models provide forecasted parameters for a limited area. Meso-scale models are built on

the output of global models and add local variables and make them accurate. NAM(North

American Meso Scale model) and NDFD(National Digital Forecast Database) are examples

of the mesoscale model. To measure solar irradiance at any given place in the world one

needs to consider a global model. GFS(Global Forcast System) and ECMWF( The Euro-
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pean Center for Medium-range Weather Forecast) are two important global NWP models.

Though ECMWF does better predictions than GFS, ECMWF data is not freely available.

Hence this work is carried on using GFS forecasts.

2.4 Understanding GFS data

GFS(Global Forecast Model) is built and maintained by NCEP(National Centers for

Environmental Prediction).GFS runs four times in a day at 00,06,12 and 18 hours in UTC.

In each run, it can predict 384 hours with a resolution of three hours for 240 hours that is

10 days and for 12 hours from 240 to 384 hours with a spatial resolution of 0.5 latitudes

and longitude. [10]

All the files generated are in the GRIB format and the past one year data is available

for immediate download but data previous than one year will be uploaded on the request.

Each time the system also provides a zero-hour forecast. Ideally, the zero-hour forecast

would be the initial atmospheric state which is collected from weather stations. Hence

in the given work that data is considered as historical data and used to train the model.

The latest file will be updated after each run this enables us to predict solar irradiance in

real-time.

There are 354 weather parameters given in the output of the GFS model and each

parameter is a matrix of (361,720) as there are 180 latitudes and 360 longitudes. Locating

the exact location among this matrix is one of the crucial steps. One can directly map

latitude value to the 2-d matrix. But there is a need to change the notation of longitude

from (-180,180) to (0,360) to accurately take the required location. Each point represents

the intersection of latitude and longitude in a 2-D array which is then averaged value around

50 km. Few parameters are given at different pressure levels of the atmosphere.

2.5 Data Extraction

The output of the GFS model is gridded data with a resolution of 0.5 latitudes and

longitudes. There is a python package named Pygrib which is written in C helps to read

grib file. EcCodes setup is required to install Pygrib. This is recommended to use in ubuntu
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in the given documentation but it can be set up in windows as well. This work is carried

on a python miniconda environment in windows.

Each atmospheric parameter is given in 361 by 720 2-D matrix as there are 180 latitudes

and 360 longitudes. In GFS latitudes vary from 90 to -90 with 0.5 resolution and longitudes

from 0 to 360 with 0.5 resolution. The exact location should be located based on the latitude

and longitude of a specific place. Consider the location Desert Rock in Nevada which has

latitude 36.624 and longitude -116.019. The first step is that one needs to approximate the

latitude and longitude to the nearest latitude and longitude that is 36.5 and -116 in this

scenario as the data has a resolution of 0.5.

In figure 2.2 left side window shows the 2-D matrix of latitudes and right side window

shows 2-D matrix of longitudes. 107th row represents 36.5 latitude. To locate longitude

one needs to convert -180 to 180 notation to 0 to 360 notation. This conversion can be

done by longitude(-180 to 180) mod 360 which in 244 in this scenario hence 244 longitude

is located in 488th column. [107,488]th value in the 2-D array correspond to Desert Rock in

Nevada. 2.3 shows temperature matrix measured in Kelvin. The highlighted cell gives the

temperature value of Desert rock in Nevada. To extract data one needs to select [107,488]th

value in each atmospheric parameter.

GFS model output is available every six hours that is at 00,06,12 and 18 hours of

universal time zone but forecasts with an interval of 3 hours. The live data is also available

with NOAA which helps us to predict the real future.

Under SUFRAD program NOAA has established the SUFRAD stations at seven places.

These stations measured the solar irradiance components with high accuracy using a pyra-

nometer. This data is helpful for the training of the model. Data is available for every

minute. To match this data to the weather data which is available for every six hours,

downsampling is required. Downsampling can be done in many ways. One among them

is picking up the instantaneous value. This does not give accurate measure because of the

sudden cloud at that minute. Hence averaging about an hour data will give a better mea-

sure while downsampling. For example, if one needs a solar irradiance measure at 6 then
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Fig. 2.2: Identifying the exact location for Desert Rock in Nevada with latitude 36.624 and
longitude -116.019

Fig. 2.3: Locating temperature at Desert Rock Nevada
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averaged values of solar irradiance from 5:30 to 6:30 is considered. In figure 2.4 blue line

shows the solar irradiance varying every 10 minutes and the red line shows the averaged

solar irradiance over an hour at each point on the curve. This red curve has been used to

match the weather parameters for the particular timestamp.

Fig. 2.4: Solar irradiance curve for a day by averaging the values over one hour

2.6 Re-evaluating the forecast

Error in prediction is highly dependent on numerical forecast error. Hence it is nec-

essary to re-evaluate how close is the forecast value to the true data. Figures 2.5 2.6

2.7 helps to understand the deviation of real value to the predicted value as the predicted

timestamp is approaching. Where the x-axis shows the timestamp of true data and the

y-axis shows the number of hours before which the value has been predicted. This has been

plotted for all the considered weather parameters.

In figures 2.5 2.6 2.7 each block in the heat map shows the difference between

forecasted weather parameter and recorded weather parameter. A randomly selected period

of November is considered for the evaluation. On the x-axis it shows the timestamp of a

particular column which is from November 10th zeroth hour to November 20th the eighteenth
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Fig. 2.5: Absolute difference of forecasted versus verified temperature and relative humidity

Fig. 2.6: Absolute difference of forecasted versus verified cloud coverage and cloud water

Fig. 2.7: Absolute difference of forecasted versus verified frozen and water precipitation
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hour for every six hours. The top row in the visualization shows the absolute difference

between predicted value 240 hours ahead to the true data for the particular time stamps.

The second top row shows the difference between 234 hours ahead predicted value to true

data. Likewise, it goes down by six hours until it reaches zero. Dark blue shades show the

minimum error. As one can see through, the error is more and varying for long forecasts

and it is forecasting good for short forecasts which are until 72 hours ahead.

Few observations can be made looking at these pictures. One is the visible cross lines

in the heat maps this shows carrying on of error for future forecasts. For example fig 2.5 for

temperature there are many diagonal lines in the upper part of the heat map. One among

them is forecast on November 7th 18th hour for November 14th 6th hour temperature value

has an error. In other words temperature forecast made for November 14th 6th hour 156

hours ahead has an error when compared with true data. So the error is carried on to the

further temperature forecast. As November 7th 18th has error when forecasted for November

14th 6th hour this results in error for November 14th 12th hour temperature forecast and

November 14th 18th hour temperature forecast and so on. In general, the diagonal line

shows that forecast error at a particular time is carried on to other future forecasts.

Observing red blocks in figures 2.6 2.7 for cloud coverage, cloud water, frozen pre-

cipitation, and water precipitation shows that frozen precipitation has not been forecasted

properly for November 13 18 th hour 150 hours ahead but as the forecast is approaching near

to zero the error has been reduced. This shows forecasting is getting better as it becomes a

short-range. Though it was able to predict better for short ranges there are few exceptions.

For example in figure 2.7 water precipitation error is more for 48 hours ahead prediction

during unexpected precipitation time. Apart from that numerical weather forecast is doing

a good job to be considered for solar irradiance prediction.

2.7 Feature Selection

The correlation matrix in Fig 2.8 gives how weather parameters are correlated with

the GHI. Blue color shows a positive correlation while red shows a negative correlation.

There is a total of 354 variables available from the GFS output. Among them, few weather
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Fig. 2.8: Correlation matrix plot with different possible features
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parameters are available at different pressure levels. For example wind speed, U component

of wind speed, V component of wind speed, vertical velocity, relative humidity, temperature,

etc. So the first set of parameters is selected by looking at the previous work and general

analysis. For example, geopotential height and wind components would not have any effect

on solar irradiance. So among 354 a set of 33 are selected as the second set.

Solar irradiance is indirectly proportional to the density of the cloud. A total amount

of cloud density throughout the atmosphere of the earth should be calculated to see how

much cloud is obstructing the sun’s intensity. To find out the total cloud density the cloud

mixing ratio which means the mass of the cloud divided by the mass of the air is considered.

As it gives values amount of cloud material that is obstructing the sun rays. So a simple

addition of cloud mixing ratio at different levels gives total cloud density. Hence cloud

density of 20 different levels has been added to know the entire cloud cover. With that 14

parameters have been plotted to see their correlation.

Temperature and Relative humidity above two-meter are available. These parameters

are also available at different pressure levels. The pressure level’s values are not considered

because this parameter is fixed in terms of height where value is calculated. But as the

altitude of the place changes this value doesn’t make much sense. Hence for temperature,

two-meter temperature and apparent temperature are considered and for relative humidity,

two-meter relative humidity and specific humidity are considered as the altitude does not

affect these values. Apparent temperature is considered as the feature because it gives how

much temperature a person feels this gives a generalized temperature in the atmosphere

irrespective of altitude of the location. There is a total of three different kinds of features

that have been used for training the dataset. One is meteorological parameters like appar-

ent temperature, cloud water, relative humidity, frozen precipitation, water precipitation,

Specific humidity, dew point, cloud cover, temperature. Second is sun position parameters

and the third is the diurnal cycle parameters.

Sun position is the key to determine the variation of sun intensity on the given day. Sun

position can be defined by the zenith angle and azimuthal angle. So these two parameters



15

have been considered as features. The third set of features are diurnal cycle parameters like

the day of the year, month, and hour are considered.



CHAPTER 3

METHODS

Machine learning is a part of artificial intelligence. Due to technological advancements,

the world has an enormous amount of data available in all industries. This made ma-

chine learning as an indispensable tool in every industry to draw formative conclusions [8].

Predicting solar irradiance has also been treated as a machine learning problem because

calculating solar irradiance is the complex environmental physics it is very difficult to cal-

culate numerically as it has many variables to be considered. Machine learning algorithms

can draw linear and nonlinear relationships between inputs and output. Solar irradiance

has a nonlinear relationship with the environment variables. Support Vector regression

with radial bias kernel is helpful to extract relations as per previous work. And gradient

boosting algorithms which are tree-based machine learning algorithms are also powerful.

These algorithms won many coding competitions. xg-boost, in particular, has won many

coding competitions. In KDD cup 2015 all the top 10 winners used the xg-boost algo-

rithm [11]. While training day data has been considered. 2016 to 2019 august weather data

is considered as a training dataset at all locations and for all methods.

3.1 Support vector regression

Support Vector Machine algorithm can be modified and can use as a regression algo-

rithm. The modified algorithm is known as SVR(Support vector regression). It produces

accurate results with less computation. It fits a hyperplane in multidimensional space to

categorize data. This hyperplane is the regression line in the case of SVR and works as a

segregation for classification problems. Support vectors which are the data point close to the

hyperplane help to maximize the margin for efficient classification. For complex data where

hyperplane cannot be fit, these data points are transformed into the higher dimensional

plane where it fits a hyperplane and again inverse the transform. These transformations are



17

called kernel functions. These three types of kernel functions which are the linear kernel,

polynomial kernel, and radial bias kernel. I have used the radial bias kernel which helps to

fit a nonlinear curve for the given data. [12]

Fig. 3.1: Support vector regression method representation [3]

In Fig 3.1 the red points are the data points and a line is a hyperplane. The dotted

line denotes the margin around the hyperplane

The basic difference between linear regression and support vector regression is the error.

In linear regression, the algorithm tries to fit the line with as much less error as possible. But

in support vector regression, the algorithm fixes the error and try to fit the best possible

line between that error. SVR uses ε insensitive loss function. If the error is between -ε

and ε the cost function is not penalized. If there are data points above that margin it

penalizes the loss symmetrically. To avoid the overfitting regularization parameter is used.

Regularization is penalizing the loss function and make it insensitive to the loss and avoid

over-fitting the curve [3].

Fig 3.2 shows the solar irradiance prediction in Nevada using SVR
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Fig. 3.2: True data Vs predicted data using SVR in Nevada

3.2 Gradient boosting methods

Machine learning algorithms that come in this category are really powerful. These algo-

rithms have proven records in many Kaggle data science competitions. After deciding upon

data a single predictive model either by ANN(Artificial Neural Network) or SVR(Support

Vector Regression) and use a particular model to do prediction. But ensembling has brought

a different idea of building a model. Many models will be built by different parameters and a

final decision is made. This is the idea to build strong learners using many weak learners. In

random forests has simple averaging of predicted models but gradient boosting algorithms

follow a different strategy to combine and make a strong learner. The gap between predicted

and true data will be further processed by another model. This process is repeated until

one gets a good accurate model. The gap between predicted output and true data is the

loss function. Generally, the mean square error(MSE) is used. Gradient descent has been

used for minimizing the loss function. [13]

Suppose for the given data Fo(x) is the model to estimate with a minimum loss function.

F o(x) = argminγ

n∑
n=1

(yi, γ)
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Fo(x) gives the initial stage of the model and now residual error for each instance (yi-

Fo(x)).This helps to predict h1(x) which is not predicting value instead it helps to predict

F1(x). h1(x) is the addictive model that computes the mean of the residuals at each leaf of

the tree.F1(x) is obtained by the addition of h1(x) with Fo(x). This way h1(x) learns from

residuals of Fo(x) and suppress it in F1(x) in order to obtain better model. This process is

repeated many times. The residual at each stage will be useful to predict the next model

and it observes the pattern in the residual errors. When it obtains maximum accuracy or

there won’t be any pattern in the residual error finally training would be stopped. The

number of splits that a tree can make can be specified by the user.

3.2.1 xg-boost

Xg-boost(eXtreme gradient boosting) is one of the powerful machine learning algo-

rithms in recent times. It has taken over the world in terms of accuracy and speed. It

operates on parallel and distributed computing which makes learning very fast compared to

other ensemble algorithms. This algorithm is a modified version of the generalized gradient

boosting algorithm. [14] xg-boost algorithm builds a different kind of tree from the gradient

boosting algorithm. In xg-boost, the split is found by using similarity score and gain. The

regularization parameter is used to avoid over-fitting of the split. When the regularization

parameter is zero it falls into the traditional gradient boosting algorithm. Along with reg-

ularization, two other techniques avoid overfitting. One is shrinkage scales which modify

the weight after each step by a factor η. Its idea is to reduce the influence of an individual

tree on the model. The second way is to use column subsampling this also improves the

training time. The other important step is finding the best split by using an approximate

algorithm. [14]

An efficient xg-boost tool has been built which can be used with Python, R, Julia, and

scala. This work has been integrated with a python application. This library has built with

the best system optimizations to push the computational limits.

Feature score can be generated by considering many times a particular feature appears

for the split. This does not necessarily mention the importance of a particular feature. For
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Fig. 3.3: One of the decision tree generated in xg-boost algorithm
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Fig. 3.4: True data Vs predicted data using Xg-boost in Nevada

example, based on an hour of the day a split can be made based on which algorithm will

understand the weather is morning or afternoon or evening. But the feature score of the

hour is less but still, it is an important feature in the prediction. Feature scores should be

looked at as the number of key decisions made based on a particular feature.

Hyper parameter value

objective squared error
learning rate 0.09

eta 0.1
early stopping rounds 10

maximum dept 5
subsample 0.9

colsample by tree 0.7
scale pos weight 1

Table 3.1: Hyper parameters for the given xgboost model

In table 3.1 the designed model hyperparameters are shown for the given problem. In

objective, one can specify what they want to achieve in the given problem like to build a

regressor with a squared error. This also specifies squared error as an evaluation metric.

The learning rate defines the influence of the new tree on the existing model values. There
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Fig. 3.5: Feature score for xg-boost algorithm for Pensylvania

are different parameters to avoid the overfitting of the function. For example eta, max

depth, gamma, min child weight which will be used at different stages of building tree. eta

is used to shrink weights, max depth specifies the maximum dept a tree can go to avoid

overfitting, gamma is regularization parameter and min child weight is the minimum sum

of weights of all observations required in a child. sub-sample is used to choose the random

samples from the given training data set before building each tree.col sample by the tree is

used to select a fraction of features to be selected randomly.

An efficient set of parameters should be selected among all. The grid search cross-

validation method is used for hyperparameter tuning. All the possible values are considered

for each parameter. First, the model complexity(eta, gamma, max dept, min child weight)

is fixed and then adjusted randomness(sub-sample and col sample by the tree) of the model

[15].
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3.2.2 cat-boost regression

Cat boost regression algorithm is an advanced version of gradient boost algorithms.

A drawback of prediction shift caused by target leakage is identified in gradient boost

algorithms including xgboost. To overcome that, a new concept of ordered boosting with

a permutation driven alternative is explained [16]. This changes the way how samples are

selected to make a tree in each step.

Fig. 3.6: True data Vs predicted data using cat boost in Nevada

Hyper parameter value

evaluation metric RMSE
learning rate 0.02
random seed 23

early stopping rounds 10
dept 12

bagging temperature 0.2
od type Iteration

metric period 25

Table 3.2: Hyper parameters for the given cat model

Table 3.2 shows the hyper parameter selected for cat boost algorithm.Figure 3.7 shows
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the feature importance by loss function. The value for each feature gives the difference

between the metric obtained by the model and the metric obtained with out that feature.

This helps to understand the importance of each feature in the algorithm. This more

relevant feature importance plot than xg-boost model.

Fig. 3.7: Feature Importance by loss value change in Pennsylvania

Figure 3.8 shows the feature importance by prediction value changes. This gives the

how much is the variation on an average if particular feature changes. This plot tells the

sensitivity of the feature in the given model.

cat boost algorithm is doing equally well compared to the xg-boost model in terms of

accuracy. But the xg-boost model is being used for the experimental study because the

amount of training time for the xg-boost model is very less when compared to the cat boost

model. Table 3.4 shows the training time for both algorithms.
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Fig. 3.8: Feature Importance by prediction value changes in Pennsylvania

Location Algorithm r-square score Mean absolute error Rms error

Rock Springs,Pennsylvania SVR 0.816 81.2 126.4

Rock Springs,Pennsylvania xg-boost 0.850 68.4 111.4

Rock Springs,Pennsylvania cat-boost 0.856 68.0 111.7

Sioux Falls,South Dakota SVR 0.816 81.2 126.4

Sioux Falls,South Dakota xg-boost 0.853 67.0 112.9

Sioux Falls,South Dakota cat-boost 0.854 68.0 112.7

Desert Rock,Nevada SVR 0.824 87.4 118.2

Desert Rock,Nevada xg-boost 0.93 42.4 73.9

Desert Rock,Nevada cat boost 0.93 42.7 74.6

Table 3.3: Comparing errors for different algorithms and different locations

Algorithm Training time in seconds

xg-boost 0.14

cat-boost 144

Table 3.4: Comparing training time for two algorithms



CHAPTER 4

RESULTS

In the previous chapter, it has been proven that the xg-boost algorithm could predict

solar irradiance. In this chapter validation of the findings in different scenarios is under-

stood. It also shows how different parameters influence the prediction. One is to check

whether the prediction accuracy is the same in all the locations around the US. Another is

how long prediction is reliable. And an experiment study needs to be conducted on how

solar irradiance prediction is helping to make a profit for an EV charging station.

4.1 Prediction analysis

Solar irradiance accuracy is checked in different scenarios in the following section.

4.1.1 Predicting at different locations

A one can predict solar irradiance at any location in the world if the historical GHI

is available to train the model. This developed xg-boost model has experimented at three

different locations. Those are Desert Rock in Nevada, Sioux Falls in South Dakota, Rock

Springs in Pennsylvania. Nevada produces the best results with an r-square score of 0.94

followed by South Dakota and Pennsylvania with 0.85. As the weather parameters from

GFS are available with 0.5 latitude and longitude resolutions, the values have been averaged

over the entire square. So the accuracy of GHI depends on how much particular location

climate will correlate with the average value of 50 km. Nevada got good accuracy and

compared it to Pennsylvania and South Dakota. Figures 4.1, 4.2 and 4.3 shows prediction

for random two hundred timestamps which is not seen in training dataset.

4.1.2 Predicting hours ahead

As weather forecast data is available for 16 days. It is important to know how long
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Fig. 4.1: True data versus Predicted data in Nevada

Fig. 4.2: True data versus Predicted data in Pennsylvania

Fig. 4.3: True data versus Predicted data in South Dakota
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the model can predict GHI accurately. Figure 4.4 is plotted to know the trends of average

mean absolute error for as long as 10 days ahead prediction. Each dot in the figure shows

the mean absolute error of the averaged value of 100 timestamps prediction. That is the

first blue dot in the figure show the averaged mean absolute error for 100 timestamps for

zeroth hour prediction. The second blue dot shows the average mean absolute error for

three hours ahead prediction and so on until 240 hours for every three hours. The x-axis

shows how many hours ahead the value is predicted and the y-axis shows the averaged

mean absolute error. There is an exponential growth of error, as one is predicting further

ahead. The training dataset is for every six hours interval but practically weather forecast

is available with a resolution of three hours this helps to do a solar irradiance prediction

for every three hours. The model has been trained with the sun position which helps it to

predict for every three-hour resolution though trained for every six hours. This is clearly

shown in the figure, the error is little high for three, nine, fifteen hours ahead compared

to zeroth, six, twelve hours ahead prediction. When a polynomial curve is fit the error

is increasing exponentially. So to optimize the error 48 hours prediction is considered for

further experimental study.

Fig. 4.4: Trends of mean absolute error of solar irradiance from October 1-17 days in Sioux
Falls to hours ahead forecast
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This prediction will be helpful to get the best estimation of solar energy available in

the near future. In figures 4.5 4.6 different scenarios of prediction for 48 hours are shown.

Prediction is compared with the recorded GHI values. Blue lines represent the true values

of the GHI and the orange line shows the predicted values. The y-axis shows GHI in

Watts/msquare and the x-axis shows the number of hours ahead that is zero to forty-eight

hours from the given time. In figure 4.5a predicted curve is completely different from the

true curve on the second day as the day has sunlight for only 3 hours. The model misses

recording any value between those three hours. This is one of the scenarios where the

prediction would give completely different results. These kinds of scenarios are unavoidable

as the weather forecast resolution is three hours. A sudden drop in solar irradiance can

occur because of the passing cloud. In figure 4.5b is an example of one such scenario. In

4.5b there is a drop in solar irradiance for about an hour. This can not be included in

the predicted solar irradiance curve because of low resolution. The given prediction cannot

exactly trace the ramps of the solar curve. But if the cloud is for a long period it predicts

decently as in figure 4.6a. In this figure, it is a cloudy day and prediction has been a good

estimate. 4.6b shows the perfect prediction on a sunny day.

Weather forecast is available at 0,3,6,9,12,15,18,21 hours of the day in UTC. Figure

4.5 plotted in Eastern timezone and figure 4.6 plotted in central timezone. In eastern time

zone prediction can be done at 8 am, 11 am, 2 pm, 5 pm during the day. There is a high

chance of missing a peak at noon. In central timezone weather forecast is available at 7 am,

10 am, 1 pm 4 pm. In central timezone, there are fewer peak cutoffs compared to other

timezones. Timezone also plays a role in accuracy when one samples the solar irradiance

curve for high frequency.

4.2 Solar energy prediction applications

Solar energy is not self-sufficient to address all the energy demands as it is available only

for eight to ten hours a day. Hence integrated systems are required to handle the energy

storage and demand-supply. Demand supply could be anything either we are powering

an industry or electrical vehicles. Wherever there is a requirement in power solar energy
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(a) September 1,2019 at 8 pm (b) September 9,2019 at 8 pm

Fig. 4.5: GHI prediction for 48 hours in Rock springs, Penn State

(a) October 2,2019 at 2am (b) October 6,2019 at 2am

Fig. 4.6: GHI prediction for 48 hours at 2 am in Sioux Falls, South Dakota
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storage should be planned to utilize the power efficiently.

One such integrated system is microgrid. To operate microgrid efficiently solar energy

prediction and load prediction is needed. One prediction is provided a learner like reinforce-

ment learner can give optimal charge or discharge schedule to minimize the cost. While

making decisions it would consider the price of energy at a given point and look forward to

the energy available and energy demands it decides on when to buy electricity and when sell

to the power grid. These intelligent decisions by reinforcement learners manage microgrid

with fewer maintenance costs.

Solar energy can also be helpful to set the prices of energy in the future. If the amount of

solar energy production may be estimated a week beforehand along with estimated demand,

an energy trader can set a price for that energy and increase their likelihood of profit. As

a demonstration, an experimental study has been conducted on one of the applications of

solar energy prediction and load prediction for an EL charging station.

4.3 Experimental study on EV load optimization

To understand the use of predicting solar energy a specific example is considered. This

study is conducted from the perspective of an electric vehicle charging station.

Consider an electric vehicle charging station with a solar panel that has a capacity of

60 kiloWatts. It is designed to serve the demands of electric vehicles by only solar energy.

A wise decision should be made about storing power in the battery to maximize profit. A

reinforcement learning system is implemented using the value iteration algorithm [17] which

helps to make these decisions.

A prediction of solar energy and load is provided for 48 hours with a one-hour resolution.

Solar prediction and load prediction is feed to the optimizer to determine actions after every

one hour, which are fed to the power management system to execute them. Figure 4.7

shows the integrated system.

The load is measured in kWh and is predicted using historical data. Rocky mountain

power data is used for this study based on data collected from EV charging stations deployed

around the Salt Lake City area. [18]
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Fig. 4.7: Integrated system for an EV fuel station optimization

Solar energy generated should be support as many EVs as possible to gain profits is the

main goal of this analysis. The algorithm optimizes the action sequence of battery charging

and discharge based on the source and demand predictions. Time of day price of electricity

and battery modeling are also considered to generate an action sequence. Action sequence

dictates when to charge the battery and when to discharge the battery. In 4.8 third row

shows the action sequence for 48 hours. The amount of profit from the generated action

sequence has also been calculated. Action is generated for every one hour and solar and

load predictions are also with one-hour resolution.

Figure 4.8 illustrates the operation of the microgrid optimizer as four plots aligned on

the same horizontal axis of time. The first plot shows predicted solar energy generated

(top in orange) and predicted demand (in grey as negative values). The second plot shows

the amount of energy stored in the battery for future needs at a given point of time. The

third plot shows the action sequence to charge or discharge the battery. The fourth plot

shows the amount of energy wasted because of lack of battery capacity and it also shows

the amount of energy charging station failed to supply. The fourth plot shows the profit

EV charging station earns by following this optimized action sequence until that moment.

Experiment study is carried on this algorithm by mapping different scenarios of solar
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prediction to the dollar value and studied how much is the difference between profits for

predicted solar and load and true solar and loads.

Fig. 4.8: Optimized charge-discharge schedule of battery suggested by RL-learner for a one-
time stamp with 60 kW tracking solar and load predictions and also shows the optimized
profit generated, by specifying the times when the charging station fails to supply the
demand

4.3.1 Experimental setup

There two types of solar panels one is fixed solar panels and the other is tracking

solar. Tracking solar changes its rotation to face the sun throughout the day. Different

configurations of solar panel configurations and battery capacities are considered. For the

given experiment study 60 kW tracking solar and 100kW battery has been used. This
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Fig. 4.9: Optimized charge-discharge schedule of 100kW battery suggested by RL-learner
for a one-time stamp with 100 kW non tracking solar and load predictions and also shows
the optimized profit generated, by specifying the times when the charging station fails to
supply the demand
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configuration was compared to an alliterative configuration using a 100kW fixed solar and

100kW battery. Figure 4.9 shows the charge-discharge schedule of 100kW battery with

100kW fixed solar panel and 4.8 shows the charge-discharge schedule of 100kW battery

with 60kW tracking solar. Considering the power wastage and failing to supply load both are

working equally well. Hence for this experiment study 60kW tracking solar as installation

cost will be less.

4.3.2 Profits made in different seasons of the year in Nevada Desert Falls

Fig. 4.10: Averaged difference in profit between forecasted profit and true profit in different
months in Nevada

Forecasted profit with predicted load and solar has been compared with the true profit

that is obtained for the true data in the given months. The difference between the two profits

is averaged over one month is plotted in Figure 4.10. Different months are considered to

show the effect of the season’s summer, fall, and winter. Results show that summer and fall

months are doing better in predicting the actual profit compared to winter months.
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4.3.3 Profit made by EV charging station at different locations in United

States

Fig. 4.11: Averaged difference in profit between forecasted profit and true profit at different
locations in United States

Figure 4.11 show the averaged difference between predicted profit and true profit for

different locations in the United States in the month of October. Profit is calculated con-

sidering the same load at all the locations to understand how solar irradiance accuracy

is affecting profit. Solar irradiance prediction has a high accuracy of 94% in Nevada and

it around 85% in South Dakota and Pennsylvania. The prediction of profit is directly

proportional to the accuracy of solar irradiance.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter concludes with the findings in the work and future work to improve the

prediction of solar irradiance at a higher time and spatial resolution.

5.1 Conclusion

This work is helpful to predict solar irradiance for about two days ahead with three

hours resolution. As numerical weather forecast data is used it is available all over the world

and can predict at any location. As solar irradiance varies with many environmental param-

eters this problem is treated as a regression problem. SVR and gradient boost algorithms

like xg-boost and cat-boost were applied to the given problem. xg-boost performs well in

terms of accuracy and speed with an accuracy of between 85% and 94%. Error analysis

shows that error is less until 48 hours ahead and after that, the error tends to increase.

The accuracy of the model is dependent on the location. As the spatial resolution con-

sidered is 0.5-degree latitude and longitude. The atmosphere parameters value is averaged

over 50 km. So the variability of atmospheric parameters of a particular location deter-

mines that possible accuracy at that location. Highly accurate predictions were obtained

in Nevada compared to Pennsylvania and South Dakota because of this. Additionally, an

artifact of the phase of the 6 hour sampling period influenced accuracy in eastern time

zones. Here, the samples missed the time of peak solar energy production (around noon),

so overall energy prediction accuracy was lower.

The sampled predicted solar irradiance curve is converted to solar power and fed to the

microgrid optimizer along with predicted load that gives optimizing charge-discharge sched-

ule of a battery to make profits. Solar irradiance is mapped to solar power by two different

methods depending on whether the panels are fixed or track the sun. A configuration of a

60kW tracking solar panel was shown to perform equally well compared to the 100kW fixed



solar panel in terms of supplying the demand. For 60kW tracking solar variation in profit,

an error has been observed at different locations and different seasons. By 4.11, 4.10 we

can conclude that profit is prone to error in winter months compared to summer and fall.

The profit prediction is also proportional to solar irradiance accuracy. As Nevada has high

accuracy, RL learner predicted the profit two days ahead with less than a dollar error.

5.2 Future work

This work has been done with the mesoscale numerical weather forecast, which has a

spatial resolution of about 12km. Training data considered in this work is over three and a

half years, which can be extended so that the predicted model would consider more weather

patterns over a longer period. The error appears to increase significantly after 48 hours

mainly because of the numerical weather forecast errors grow similarly. So as weather

forecasts improve, then the predictions will also improve. Figure 2.1 shows the continu-

ous efforts to make the weather forecast better that will result in better solar irradiance

prediction in the future.

Experiments were run with electric vehicle optimizer and may be extended to microgrid

optimization that will greatly benefit the industrial sector and increase the solar energy

market that would ultimately reduce the dependency on non-renewable energy sources.

This will reduce the emission of greenhouse effect gases and help humanity reduce the

impact of global climate change.
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