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ABSTRACT

Machine Learning Enhanced Free-Space and Underwater OAM Optical Communications

by

Patrick L. Neary, Doctor of Philosophy

Utah State University, 2020

Major Professor: Nicholas Flann, Ph.D.
Department: Computer Science

Machine learning has wound its way into a broad range of areas. Among those appli-

cations is the exploratory field of free-space and underwater optical communications using

orbital angular momentum (OAM) of light. With proper hardware, a laser beam can go from

a Gaussian shaped distribution to a doughnut shaped pattern, with a configurable radius.

Multiple OAM patterns, or modes, can be multiplexed to create unique interference patterns.

OAM patterns can be used to encode bits for communicating information.

Traditional approaches in optical demultiplexing require hardware that is sensitive to

alignment and other environmental factors. Using machine learning to identify patterns

allows the de-multiplexing of OAM patterns without complicated or expensive hardware. In

lab environments signal integrity can be ensured, however, operational integrity in non-ideal

environments can cause serious signal degradation.

This work explores ways to improve pattern recognition or classification in both under-

water and free-space environments. Specifically, principles of physics inspired training are

applied to convolutional neural networks to make the trained networks more robust to sig-

nal attenuation. Continuous, linear optimal transport principles are applied to improve the

classification of OAM patterns. Optimal transport is used to create attenuation models that,



iv

when inserted in the training pipeline, improve neural network robustness to signal attenu-

ation. Finally, state-of-the-art deep convolutional neural networks are explored to see which

provide the most robust performance in free-space and underwater communications. These

environments are explored when the signal is degraded by turbulence and attenuation.

(171 pages)
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PUBLIC ABSTRACT

Machine Learning Enhanced Free-Space and Underwater OAM Optical Communications

Patrick L. Neary

Communications, bandwidth, security, and hardware simplicity are principles of interest

to society at large. Recent advances in optics and in understanding properties of light, such as

orbital angular momentum (OAM), have provided new potential mediums for communication.

Machine learning has wound its way into a broad range of fascinating areas. An emerging

field of research is the use of a unique property of lasers called orbital angular momentum

(OAM). With the proper hardware, a laser can go from a Gaussian shaped distribution to

a doughnut shaped pattern, where the radius can be changed. Multiple OAM patterns, or

modes, can be combined to create unique patterns. This research explores the use of machine

learning to de-multiplex OAM patterns. The OAM patterns can be used to encode bits for

communication.

This work explores ways to improve pattern recognition or classification in both un-

derwater and free-space environments. Specifically, various approaches are applied to train

convolutional neural networks to make them more robust to signal degradation through turbu-

lence and attenuation. A new image transform is used to improve OAM pattern classification.

Finally, some of the state of the art deep convolutional neural networks are explored to see

which provide the most robust performance in free-space and underwater communications. A

variety of methods are shown to improve the state of the art in pattern classification in OAM

communications.
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CHAPTER 1

INTRODUCTION

Communication mediums provide an important backbone to our society. Social media,

entertainment, information distribution, information storage and retrieval, military commu-

nications, GPS, etc. all require a medium for transfer. Many communications take place over

wire, fiber, and RF links.

A current estimate is that only 58% of the world’s population is connected to the Internet

(1). As Internet access to remote areas improves and usage continues to increase, demand

for bandwidth will grow. A variety of difficulties exist for providing access to remote areas,

including labor costs for laying cables, infrastructure hardware costs, and addressing physical

obstacles (in water or land). Communication security is another are of consideration, such as

eavesdropping of signals (2).

One approach to addressing these issues is the use of free-space optical (FSO) or underwa-

ter optical communications (UWOC). FSO and UWOC are different from RF communications

in that they are based on optical, direct line of sight, transmission between a transmitter and

receiver. Optical wavelengths can include ultraviolet, visible, and infrared light.

Free-space and underwater optical communications have a potential benefit of bypassing

costly cable installations through geographically difficult regions. Another benefit is the

fact that it is difficult to intercept the communication stream without degrading the signal

and alerting the system to tampering attempts. However, security is an ongoing area of

interest and study with optical communications (2). Information capacity needs will only

continue to grow as more of the world becomes connected and more data is generated. Optical

communications provide a potential solution to bandwidth bottlenecks (3).

The research in this dissertation is developed within the domain of optical communica-

tions. While the computer science (CS) and machine learning (ML) principles may be familiar

to those in the CS field, the physics and optics details may be new. In light of this, several

appendices have been added to provide background on a number of relevant topics. These
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may be read according to the interest and curiosity of the reader. Appendix A provides high

level background on OAM, details on how the data was generated, and how it was divided

for training and testing. Appendix B provides some of the math behind the wave equa-

tion, which is foundational to the starting point in many OAM related papers. Appendix C

provides background on optimal transport and the radon-cumulative distribution transform

(R-CDT). Appendix D contains a discussion of many of the state of the art CNNs and what

makes them unique. Finally, Appendix E contains a primer on neural networks. Moving

forward, familiarity with this background material is assumed.

1.1 Problem Overview

Orbital Angular Momentum (OAM) is a relatively new discovery as a property of coherent

light. In 1992, Allen et al. discovered that Laguerre-Gaussian beams could transition from a

forward propagating wavefront to a helical shaped path(4). Different modes can be applied

to a beam, which cause the radius associated with helical path to increase or decrease (4).

While the fact that light can travel in a helical path is, in and of itself fascinating,

there are some important properties that accompany this phenomenon. It turns out that

OAM modes are completely orthogonal to each other (4), so different OAM modes can be

multiplexed for transmission and be completely de-multiplexed upon receipt (5; 6). Initial

tests using these ideas, in controlled environments, have resulted in terabit data rates under

ideal conditions (5). OAM as a means for communication has created a significant stir in the

research community (7; 8).

For OAM pattern classification in communications, there is a confluence of a number

of interesting areas. These topics include OAM communications, convolutional neural net-

work architectures, modeling, physics-inspired training, and automatic differentiation. In this

section, literature in these topics will be reviewed with a special emphasis on the subset of

those areas that relate to the subsequent research. Once the review of relevant literature is

complete, specific research objectives and contributions will be outlined.

OAM, via electromagnetic waves, has shown great potential in communications research

(7; 8). OAM communications can take place in either free-space (9) or underwater (10) envi-
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ronments and communication bandwidth can be increased by multiplexing modes together.

Several significant degrading factors in OAM communications exist, these include turbulence

(11) and signal attenuation (12).

The benchtop OAM communication setup used for transmitting and receiving OAM

beams in this work is shown in Figure 1.1. A laser generates a Gaussian shaped beam,

which is reflected off a mirror and passed through a series of beamsplitters. The light from

each beamsplitter is passed through phase plates where a unique OAM mode is imparted to

each beam. The phase plates can be enabled or disabled to allow for different combinations

of the patterns. After passing through the phase plates, the beams are recombined using

beamsplitters and the multiplexed beams are then passed through a tank (for underwater

communications). The tank has pumps that keep attenuation particles in suspension. As the

beam exits the tank, mirrors are used to direct the beam back to a camera. The laser and

the camera are synchronized at a rate of 1KHz using a waveform generator.

Fig. 1.1: OAM Benchtop Diagram.

An example of a few of the patterns created through a combination of four different phase

plates is shown in Figure 1.2.

Turbulence causes intensity displacement (13), thereby imparting distortions in the in-

tensity patterns at the receiver. This amounts to crosstalk (14; 15) between multiplexed
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Fig. 1.2: Underwater OAM Patterns.



5

channels. Several approaches have been explored to address this issue in the literature. One

approach (16) uses a beam to determine the amount of distortion present, then applies that

information to correct subsequent transmissions. Other approaches (9; 17; 18; 19) use clas-

sification algorithms to recognize the modes. Ref. (20) used a novel approach applying a

radon-cumulative distribution transform (R-CDT) of the received image. They found that

detection algorithms trained on patterns in the R-CDT space did as well as or better than

those based purely on the original OAM pattern images.

Refs. (9; 20; 21) applied deep learning to OAM free-space communications as a way

to classify multiplexed OAM modes. This data included sets created from four levels of

simulated turbulence. Both used a custom shallow CNN as well as AlexNet (22) for OAM

mode classification.

A number of important questions remain unanswered from their work. Questions include,

do their findings extend to the underwater domain? Where there was turbulence in free-space,

do similar methods extend to attenuation in underwater communications?

Another factor to consider is classifier robustness when presented with data degraded

beyond that which was in the training set. Given the established methods presented in (9)

and (20), how do those approaches fare under heavy attenuation and turbulence? Is it possible

to improve classifier robustness using models? Their work didn’t explore these conditions and

questions.

Additionally, if the shallow network and deep CNN (AlexNet) were able to get good

results, would one of the more recent state of the art architectures provide greater perfor-

mance? Are some architectures more robust in the face of turbulence or attenuation outside

of what was present in the training set? As the end goal of this research is communications,

classification robustness in the face of signal degradation is of primary importance.

1.2 Solution Overview

To address the questions and explore the problems outlined in Section 1.1, a number of

principles and approaches are proposed. Robust OAM communications in underwater optical



6

communications are explored and improved by applying principles of automatic differentia-

tion, deep convolutional neural network architectures, optimal transport, and the R-CDT.

The area of automatic differentiation (AD) is an active area of research. Ref. (23)

did a great survey on how AD works and the many ways it can be applied. While AD is

used in backpropagation, there are many additional ways it can be used. For example, partial

differentiation equation research has used AD in the formation of their models (24; 25). It has

also been used in computer vision (26; 27), natural language processing (28; 29), optimization

(30; 31; 32), and hyperparameter tuning (33; 34), to name a few. Given the flexibility of AD,

can it be applied in the area of underwater OAM communications?

Since the success of AlexNet, CNNs have enjoyed a great deal of attention. The ImageNet

(22) competition provides a forum for competing and extending the state of the art in image

detection. Some of the landmark architectures include AlexNet (22), VGGNet (35), Inception

(36; 37), ResNet (38), XCeption (39), ResNeXt (40), and DenseNet (41).

While these architectures provided state of the art performance on data sets like Ima-

geNet, the question is whether those improvements extend to other image domains? Ref. (42)

recently identified issues with some of the state of the art CNNs in terms of their ability to

generalize. In light of this, does grabbing the latest and greatest CNN guarantee that optimal

classification accuracy will be obtained?

While neural networks have been able to achieve impressive results in many different

applications, one concern with using them is that their predictions may be inconsistent with

physical realities. An area of interest in machine learning, and other areas of domain specific

research, is creation of models using physics-based approaches. For example, (25; 43) applied

AD to learning models for partial differential equations (PDE). They approached the question

of models from the perspective of having large data quantities and working backwards toward

finding models that uncovered the underlying physics of a system. Ref. (44) demonstrated a

physics-guided neural network that was used for modeling lake temperatures. During training,

it was shown that the neural network could predict values inconsistent with reality. By

including physics models in the training loop, they were able to speed up and improve the

model’s results by using physics models to impose limits on realistic outputs.
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Inclusion of physics-based models has the potential to increase CNN robustness in OAM

pattern classification. Optimal transport is a mathematically rich, physics-based approach

to representing an optimal path for the transfer of material from one location to another.

Ref. (13) showed that the physics described by optimal transport can be adapted to elec-

tromagnetic waves. Given a source image and a received image, a transform can be created

that captures how the signal moved through space. The optimal transport can be efficiently

computed using the R-CDT (45). More in-depth information about optimal transport and

the R-CDT can be found in Appendix C.

Optimal transport is used to learn a physics-based attenuation model in Chapter 3. An

advantage of using the R-CDT is that it is able to capture the transform using a minimal

number of samples (45). The R-CDT is also used in Chapter 2 as an alternative to standard

approaches to using images in a CNN image classifier.

Given these examples of using physics-inspired training, is it possible to improve OAM

mode classifier performance by incorporating these principles? Additionally, are there new

ways to apply the R-CDT to allow improvement of OAM classifier robustness?

1.3 Research Questions and Contributions

While initial OAM data rate results are very exciting, a number of significant hurdles

remain before it becomes a viable option for general use. Some factors include dealing with

both turbulence (11) and signal attenuation (12). In looking at the current literature, it’s

apparent that there are many questions that remain to be answered. The work presented in

subsequent sections address the specific interest of applying ML principles to improve OAM

communications in underwater and free-space environments.

Chapter 2 explores whether current, proven methods in free-space optical communica-

tions, using the R-CDT, extend to underwater communications. Understanding of underwater

OAM communication in attenuated environments is advanced through this research.

Chapter 3 explores model creation through training attenuation models from a custom

CNN as well as the Radon-cumulative distribution transform. Questions addressed include

exploring how attenuation can degrade classifier performance. Can physics-inspired models
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be created to improve classifier performance? Implications of using optimal transport and the

R-CDT in this way are discussed, especially in the context of one-shot and few-shot learning.

Attenuation models are developed using automatic differentiation.

Chapter 4 explores the current state of the art in convolutional neural networks in free-

space and underwater environments. Do these newer CNNs produce corresponding improve-

ments in OAM classification improvements? How well do the architectures perform when

presented with images attenuated beyond that which was present in the training set? Ad-

ditionally, some recent architectures have been optimized for resource constrained systems.

Best performing architectures for resource constrained and resource rich systems are detailed.

Chapter 5 summarizes findings from the research.

This dissertation presents and demonstrates methods and principles for improving the

state of the art in underwater optical communications under the presence of signal attenuation

and turbulence. This is accomplished through advancing the state of the art in machine

learning.
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CHAPTER 2

TRANSPORT-BASED PATTERN RECOGNITION VS. DEEP NEURAL NETWORKS

IN UNDERWATER OAM COMMUNICATIONS

Patrick L. Neary, 12 Jonathan M. Nichols, 34 Abbie T. Watnik, 3 K. Peter Judd, 3 James R.

Lindle, 5 Gustavo K. Rohde, 6 and Nicholas S. Flann 1

2.1 Abstract

Comparisons between machine learning and optimal transport-based approaches in classi-

fying images, previously made in turbulent free-space environments, are extended to underwa-

ter orbital angular momentum (OAM) communications. Mathematics are derived that justify

optimal transport for use in attenuated water environments. OAM pattern de-multiplexing

is performed with both optimal transport and deep neural networks and compared to simi-

lar tests in free-space. In clear water and attenuated environments, results are shown to be

similar to free space communications. Additionally, some of the complications introduced by

signal attenuation are highlighted. The radon cumulative distribution transform (R-CDT)

is applied to the OAM patterns and its classification results are compared to standard ma-

chine learning-based image classification accuracies. To perform classification on the original

OAM patterns and the R-CDT, the Nearest Subspace algorithm, shallow convolutional neural

network (CNN), and deep neural network are used. It is shown that optimal transport and

the R-CDT provide better results than CNNs in OAM pattern classification in underwater

environments.
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2.2 Introduction

Digital communication demands are continually increasing. Currently it is estimated that

only 58% of the world’s population is connected to the Internet (1). As access continues to be

extended to remote areas and usage continues to proliferate, demand for bandwidth will only

increase. Difficulties exist in providing access to remote areas, such as costs for laying cables,

and dealing with difficult obstacles (in water or land) when laying cables. Other concerns

related to communications are the problems of security and dealing with eavesdropping with

signals (2).

One approach to addressing these issues is to use free space optical (FSO) communica-

tions. FSO provides the benefit of bypassing costly cable installations through geographically

difficult regions. Another benefit of FSO is the fact that it is difficult to intercept the commu-

nication stream without degrading the signal and alerting the system to tampering attempts.

However, security is an ongoing area of interest and study with OAM communications (2).

OAM is a property of electromagnetic (EM) waves. As coherent light is created and

transmitted, EM radiation propagates in plane waves. In 1992, Ref. (3) was able to show,

that in addition to having forward momentum, Laguerre-Gaussian (LG) beams also display

orbital angular momentum. Assuming that light propagates along the z-axis, Allen et al.

showed that LG beams travel in a helical pattern about that axis. The LG equation contains

an azimuthal dependency expressed as exp(−i`φ), where ` is called the topologically-charged.

When ` is 0, the beam propagates in a standard planar wavefront. When |`| > 0, the EM wave

experiences angular momentum and travels in a helically shaped wavefront and the radius of

the EM wave increases with `. The sign on ` determines whether the EM helix propagates in

a left-handed or right-handed direction.

One of the compelling properties of OAM is that topologically charged modes are or-

thogonal to each other. Consequently, OAM modes are good candidates for representing in-

dependent patterns that can be easily multiplexed/de-multiplexed in a communications link.

Methods for de-multiplexing OAM patterns include adaptive optics (4), conjugate mode sort-

ing (5; 6), spiral fringe counting (7), optical transformers (8), Doppler effect measurements

(9), dove prism interferometers (10), DSP-based MIMO channel equalizers (11), and machine
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learning (ML) approaches (12; 13).

In ideal transmission environments, the beams can be demultiplexed at the receiver

without loss or crosstalk of any signals. Ref. (14) showed that by multiplexing four OAM

modes together, they were able to achieve > 100 Tera-bit/s data rates. This was accomplished

over short distances in an ideal environment.

Communications in real-world environments are complicated by varying degrees of at-

tenuation and or changes in the refractive index of the medium, i.e., n(~x, z) 6= 1. Attenuation

is caused by particles that either absorb or deflect signal. Turbulence is a frequent cause

of variations in the index of refraction and can result in a loss of orthogonality among the

modes. Turbulence creates crosstalk between channels.

Several approaches have been explored to address these issues. One approach (4) uses

a separate non-OAM beam to determine the amount of phase distortion present to pre-

compensate transmission of the OAM signals. Other approaches use classification algorithms

to recognize the modes (15; 16; 17; 18). Ref. (19) used a novel approach applying a Radon-

cumulative distribution transform (R-CDT) of the received image. This transform takes the

received OAM patterns and maps them to the R-CDT space. They found that detection

algorithms trained on patterns in the R-CDT space did as well as or better than those based

purely on the original OAM pattern images.

This work focuses on ML and optimal transport-based demultiplexing approaches that

are based on the problem physics. These approaches help correctly classifying OAM modes

in the presence of both attenuation and variations in the medium’s optical properties.

The main contributions of this work are extending R-CDT detection in OAM communi-

cations from the free space domain to the underwater domain. In addition, the mathematics

extending optimal transport to attenuated environments are derived. This work explores

the use of the optimal transport model from FSO communications, extends it to underwater

optical communications (UWOC), and demonstrates a similar improvement in detection per-

formance. Another contribution in this work is in looking at signal attenuation in water as

opposed to turbulence in free-space. The remainder of the paper proceeds as follows: back-

ground on OAM and optimal transport (Section 2.3), experiment setup (Section 2.4), results
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(Section 2.5) and final conclusion (Section 2.6).

2.3 Background and Prior Art

2.3.1 Signal Propagation and Orbital Angular Momentum

The electric field associated with a linearly polarized, monochromatic beam propagating

in the z-direction is typically modeled as E(~x, z, t) = U(~x, z)ei(ωt−k0z)~̂x. Here ω = 2πc/λ =

k0c is the temporal frequency of oscillation, c is the speed of light, λ is the wavelength, and

k0 is the wavenumber and the vector ~̂x encodes the direction of polarization in the plane

transverse to the direction of propagation i.e., ~x ≡ {x, y} in Cartesian coordinates. In a

homogeneous, isotropic medium characterized by refractive index n(~x, z), and assuming the

rate of transverse variations are slow relative to speed of propagation the complex amplitude

of this electric field can be shown to obey:

−i2k0
∂U(~x, z)
∂z

+∇2
XU(~x, z) + k2

0[n2(~x, z)− 1]U(~x, z) = 0 (2.1)

where ∇2
X is the Laplacian, acting in the transverse plane only.

There are many solutions to Eq. (2.1), particularly in the so-called “free-space” situation

where n(~x, z) = 1 and the last term in Eq. (2.1) vanishes (20). For example, a variety of

circularly symmetric solutions have been found which exhibit the OAM properties including

Bessel (21), Bessel-Gauss (22), Laguerre-Gauss (3), Hermite-Gauss (23), Ince-Gauss (24), and

Mathieu-Gauss (25). The complex amplitude of Laguerre-Gaussian (LG) beams, for example,

can be represented in cylindrical coordinates as

U`,m(r0, φ, z) = A

[
W0
W (z)

] [√2r0
W (z)

]|`|
L|`|m

(
2r2

0
W 2(z)

)

× exp
(
− r2

0
W 2(z)

)
exp

(
ik

r2
0

2R(z) + i`φ+ iζ(z)
)

(2.2)
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where ζ(z) = −(|`|+2m+1) tan−1(2z/kW 2
0 ) is the Gouy phase andW (z) = W0

√
1 + 4z2/k2W 4

0

is the beam waist (26). The function L
|`|
m(·) denote the Laguerre polynomials.

Different OAM modes are defined by the the topological charge or mode number, `. In

practice, the mode number can be controlled through vortex phase plates or spatial light

modulators.

2.3.2 Lagrangian Model and Problem Statement

In a prior work (27), Nichols et al. developed image models consistent with the physics ex-

pressed in Eq. (2.1) by first describing the field as the phasor U(~x0, z) ≡ ρ1/2(~x0, z) exp[iψ(~x0, z)].

Specifically they were able to show that substituting this description of the electric field into

Eq. (2.1), and neglecting diffraction, the magnitude of the complex electric field ρ ≡ U∗U

is governed by a transport equation which can be written (see Appendix A for the model

development) as

ρ(~xz) = ρ(~x0)det−1 (Jf (~x0, z)) (2.3)

while the associated transverse phase gradient 1
k0
∇Xψ(~x0, z) ≡ d~xz/dz is governed by

d2~xz
dz2 = ∇Xη(~xz) (2.4)

where η(~xz) =
(
n2(~xz)−1

2

)
. Eq. (2.3) is simply the continuity equation in Lagrangian coordi-

nates ~xz = ~f(~x0, z), expressed in terms of the transverse Jacobian of the function that defines

those coordinates. In other words, the total magnitude of the electric field is conserved as it

is transported over a distance z under the action of ~f(~x0, z). This coordinate transformation

is, in turn, the solution to Eq. (2.4) and is clearly governed by the refractive index of the

medium (see Ref. (28) for details). In the communications application, the function ~f(~x0, z) is

a disruptive influence that prevents an accurate identification of the multiplexed pattern that

was sent. This stems from the fact that η(~x, z) is a realization of a random process consistent

with probabilistic models of the refractive index fluctuations (e.g., Kolmogorov turbulence).

The classification problem is then as follows: given a received image ρ(`)(~x0, Z) that has
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traveled a distance Z and been corrupted by the medium according to Eq. (2.3), identify

the correct mode number ` ∈ [1, L] of the “clean” pattern ρ(`)(~x0, 0) that was sent. This

is precisely the problem considered in Ref. (29). In the cited work, a new classifier was

developed and demonstrated effective in this setting, outperforming a number of standard

machine learning and neural net algorithms. We will describe this approach in what follows

and then apply the classifier to the underwater communications applications alluded to earlier.

2.3.3 Classification in the R-CDT Domain

Before describing the classifier, the mathematics underlying the one and two-dimensional

cumulative distribution transforms (CDTs) (30; 31) are reviewed.

In one dimension, an alternative formulation of Eq. (2.3) is

∫ x0

−∞
ρ(u, z)du =

∫ f(x0,z)

−∞
ρ(u, 0)du (2.5)

which again states that the total intensity present at z = 0 remains unchanged under the

coordinate transformation induced by the physics of the problem. The expression in Eq. (2.5)

is closely related to the cumulative distribution transform (CDT) introduced in Ref. (30).

For strictly positive signals, the CDT is defined in terms of a reference signal s0(y), y ∈ Ωs

as

∫ ρ̂Z(y)

−∞
ρ(u, Z)du =

∫ y

−∞
s0(u)du (2.6)

Choosing the reference domain Ωs = [0, 1] and s0(y) = 1/|Ωs| = 1, it can be shown that

ρ̂Z(y) becomes the inverse of the cumulative distribution of the recorded signal ρ(x0, Z). The

CDT ρ̂Z(y) is an invertible transform defined on the reference signal domain and the pairing

ρ(x0, Z); ρ̂Z(y) is thus analogous to the more familiar Fourier Transform pair.

We can use the properties of the CDT to develop a measure of similarity between signals

for classification purposes. We write

‖ρ̂Z(y)− ρ̂0(y)‖2 =
∫
X0

[f(x0, Z)− x0]2 ρ0(x0)dx0 (2.7)
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as the amount of “effort” it takes to transform ρ(x0, 0) into ρ(x0, Z). In fact, the coordinate

transformation f that minimizes this distance was shown in Ref. (32) to coincide with the

solution to the physical equations of motion described in Eq. (2.4). Thus, a physically

meaningful criteria for classification judges signals to be from the same class if the Euclidean

distance between their respective CDTs is minimized.

The CDT and the similarity metric in Eq. (2.7) was extended to two-dimensions in Ref.

(31) with help from the Radon transform. The Radon transform of an image ρ(~x0, z) ∈ Ωs ⊂

R2, is denoted ρ̃0 = R(ρ), and defined by

ρ̃θ(t, z) =
∫

Ωs

ρ(~x0, z)δ(t− ~x0 · ~ξθ)d~x0 (2.8)

Here, t is the perpendicular distance of a line from the origin and ~ξθ = [cos(θ), sin(θ)]T , where

θ is the angle over which the projection is taken. This is an intensity preserving transform

that also possesses a well-defined inverse (29). In the Radon domain, the two-dimensional

R-CDT is defined with respect to the reference image s0(~x) as

∫ ρ̂z(t,θ)

−∞
ρ̃θ(u, z)du =

∫ t

−∞
s̃θ(u, 0)du, ∀θ ∈ [0, π] (2.9)

which is also invertible. Therefore, if one applies the Radon transform to the received signal,

the two-dimensional CDT is “split” into a computation of many one-dimensional CDTs, one

for each θ in the range (0, π).

The Radon transform has a similar influence on the model presented in Eq. (2.3). Ap-

plying the Radon transform, one has that for every θ,

ρ̃θ(t, z) = ρ̃θ(t, 0)
∣∣∣∣dfθ(t, z)dt

∣∣∣∣−1
(2.10)

where the collection of 1D mappings fθ can be related to f ; i.e., the fθ still captures the

physics of the problem (see Appendix A).
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Given these properties, we can now formulate our strategy for solving the classification

problem. As in the 1D case presented in Eq. (2.7) we suggest the metric

d2(ρ0, ρZ) =
∫ π

0

∫ ∞
−∞

[fθ(t, Z)− t]2 ρ̃θ(t, 0)dtdθ

= ‖ρ̂z(t, θ)− ρ̂0(t, θ)‖22. (2.11)

as the “cost” associated with transforming the signal ρ(~x0, 0) into ρ(~x0, Z) in the Radon

domain. This cost is also known as the sliced Wasserstein metric (33). It has been shown

that the mapping ~f ≡ ~xz that solves Eq. (2.4) is the minimizer of both Eq. (2.11) and the

kinetic energy associated with propagation (28). The distance d between the R-CDTs of two

images is therefore assumed to be minimal when the only difference between those images

is the distorting influence of the problem physics. Put another way, in the R-CDT domain

the corrupted pattern should be closest, in the Euclidean sense, to its pristine counterpart.

Different patterns (sent/received) would require more than simply the physics of propagation

to transform one into the other and hence will be further apart in CDT space. This is

true since the physics obeys the principle of least action, an assumption that underlies the

derivation of many physical systems.

Based on the metric suggested in Eq. (2.11), a classifier can be suggested based on the

understanding that a generative model for the R-CDT of a certain known pattern for the

k-th class, denoted as ϕ̃(k)
θ (t, z), is given by some unknown displacement (in Radon domain)

applied to it via:
dfθ(t, Z)

dt
ϕ̃(k)[fθ(t, Z), θ] (2.12)

where fθ(t, Z) is a model approximation for the unknown transport-based distortion imparted

on the wave as it travels through a non-uniform medium. Using the composition property

stated in Ref. (31), we have that the deformed pattern in R-CDT space can be expressed as

f−1
θ

[
ϕ̃

(k)
θ (t, Z), Z

]
. Furthermore, if we assume that f−1

θ (·, ·) forms a convex subspace within

the set of all possible 1D diffeomorphisms, then an easy solution to the classification problem

can be proposed. In Ref. (29), the authors propose a classification method that utilizes the

convex subspace assumption above to perform image classification.
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The principle is to estimate the subspace that models all possible variations of the ob-

served deformed pattern f−1
θ

[
ϕ̃

(k)
θ (t, Z), Z

]
(in Radon space), by simply estimating a basis for

each subspace formed by the training data in that class. The approach taken here is the same

as the one proposed in Ref. (29) where the Principal Component Analysis (PCA) technique

is used to obtain a basis for the training set of each class. The testing procedure then simply

consists of transforming the input test data, computing the least squares distance to each of

the trained subspaces, and assessing the class of the test sample to be the same of the closest

R-CDT subspace.

In summary, for data modeled by Eq. (2.3), minimizing the Euclidean norm in the

R-CDT domain will give the pattern that required the “least action” to transform into the

received image. Thus, one might expect good classification performance in situations such

as optical communications where we have just shown the observed data indeed obey such a

model.

2.4 Experiment Setup

2.4.1 Hardware

The laser source used in these measurements was a diode-pumped solid state laser (Bright

Solutions ONDA 532) that operates at 532 nm and produces 5 nS pulses with 300 uJ/pulse.

The laser is externally triggered at 1 kHz using a waveform generator (Agilent 33600A) and

the output beam was expanded to fill the aperture of the static vortex phase plates. The

output beam was then split into four equal intensity beams and each beam was normally

incident on one of the four phase plates of different charge [1, 4, -6, -8], imprinting a different

OAM phase on each beam. The phase plates were fabricated at Clemson University. The

beams were then coherently recombined using beamsplitters and reflected through a water

tank 1.2 m in length. The transmitted intensity patterns were captured by a high performance,

fast-frame-rate camera (Photron FASTCAM SA-Z) that was externally triggered at the rate

of 1000 frames per second, synchronized with the laser pulses.

The 16 OAM mode patterns were manually selected by blocking one or more of the beams.
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The camera spatial resolution is 1024x1024 pixels with a 20 m pitch and resolution depth of

12 bits. Five micron polyamid seeding particles (Dantec Dynamics) are added to the water

tank thereby introducing scattering of the beam, resulting in beam attenuation in the forward

direction. Beam attenuation is continuously monitored by measuring the transmission of a 15

mW, 532 nm CW laser beam propagating through the tank parallel to the OAM beam. Small

pumps agitate the water to ensure that the particles remain in suspension and homogeneously

distributed.

In previous work ferroelectric spatial light modulators (SLMs) were used for generating

different phase patterns. Since SLMs are relatively slow, specially fabricated phase plates were

created to improve throughput rates, to simplify configuration, and to prepare for eventual

use in real environments.

2.4.2 Data Set

The influence of an attenuating medium on the propagation physics are discussed in

Appendix A. In summary, attenuation by scattering or absorption is modeled here by the

complex refractive index n(x) − iκ where κ is the well-known “extinction coefficient”. This

results in the removal of signal intensity as the beam moves in the direction of propagation.

In this work, it is assumed that this effect is uniform in the transverse dimension (i.e., κ is

not a function of ~xz). The resulting signal model is therefore

ρ(~xz) = ρ(~x0)det−1 [Jf (~x0, z)] e−2κkz. (2.13)

As expected, as the beam propagates, it loses photons at an exponential rate governed by

the attenuation length (AL) (2κk)−1. The end result of these losses is a lower signal-to-noise

ratio (SNR) for the received signal ρ(~xz). Prior to computing the R-CDT, all images are first

normalized to the same intensity to enforce the continuity constraint. Those images collected

at longer attenuation lengths will therefore have their SNR lowered by the exponential factor

in Eq. (2.13).

One thousand images from each of the 16 permutations of the OAM beam set were

captured for the analysis, resulting in 16,000 images per data set. The base attenuation
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length, 0, is obtained in clear water. The subsequent attenuation lengths are 4, 8, and 12.

The data sets collected at these attenuation lengths are referred to as AL0, AL4, AL8, and

AL12.

The AL sets are further combined to create data sets with mixed attenuation lengths.

The combined sets are referred to as AL0-4, AL0-4-8, and AL0-4-8-12. In creating combined

data sets, the total data set size is kept to approximately the same size as the originals, i.e. a

total set size of 16,000 or 1,000 for each pattern. In AL0-4, for example, AL0 and AL4 beam

patterns are randomly sampled where 50% come from AL0 and 50% come from AL4. This

allows computational complexity between training sets to be kept equal.

After combined data sets are created, each data set is randomly sampled and split into

70%/15%/15% for training, validation, and testing. Figure 2.1 shows six OAM modes with

images taken from each attenuation level.

The images are cropped and downsampled to capture the patterns of interest and exclude

borders that do not contain relevant information, thereby reducing computation time. The

clipped images are 512x512 in size. The images are further downsampled to 128x128 and are

used as the basis for the experiments performed in this paper. Figure 2.2 contains example

images of the 15 multiplexed OAM beam patterns sampled from the AL0 set.

Two image spaces are used in subsequent experiments, the downsampled images and

their transform. A Radon-cumulative distribution transform is performed on each of the

128x128 AL data sets to create the second image space. An example of an OAM mode and

its corresponding R-CDT is shown in Figure 2.3.

For the R-CDT set creation, the R-CDT transform was run between 0-90 degrees with

a step size of 2 degrees on the OAM images. In computing the R-CDT, a mapping from one

image to another is performed. A base image with dimensions equal to the original is created

that has uniform intensity, where all pixel intensities sum to one.

2.4.3 Experiment descriptions

An objective of this work is to see if OAM pattern classification in an underwater en-

vironment, subjected to attenuation, is similar to the free space results of Ref. (19) under
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Fig. 2.1: Examples of attenuated images from the underwater environment. Each row repre-
sents a specific level of attenuation. The first row contains attenuation level 0. The subsequent
rows show progressively higher levels of attenuation. Each column contains a specific OAM
beam pattern.
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Fig. 2.2: OAM modes used for underwater optical communications. The background image
is the image taken without the laser being active. Images are individual samples from the
AL0 set.

turbulence. An additional goal is to identify how attenuation affects the performance of OAM

beam classification and which, if any, of the algorithms provides the most robust performance.

Ref. (19) established that linear discriminant analysis (LDA) with R-CDT provides

superior computational training speed and accuracy compared to several deep learning archi-

tectures. Recently Ref. (29) provided an updated approach to computing the R-CDT and

provides a Python package to implement it easily. The software is available on GitHub (34).

The package also provides a Nearest Subspace (NS) algorithm for performing classification.

The NS algorithm estimates the subspace for possible variations in the R-CDT patterns and

performs classification based on those subspace estimates (29).

Following the initial approach of Ref. (19), LDA classification was performed on the PCA

of 4000 components of features found within the images. Accuracy results and computational
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speed were then compared to the classifier recently provided by Ref. (29) and an improvement

in both were observed. Consequently, the NS classification algorithm is used in this work

instead of LDA.

Similar to Ref. (19), this work contrasts the NS algorithm (in place of LDA) and two

convolutional neural networks (CNN). For these experiments, images and their corresponding

R-CDT are compared against each other to identify which provides better discrimination.

The shallow CNN consists of a CNN layer with sixteen 11x11 filters configured with a

stride of 3x3. Next is a CNN layer with thirty-two 3x3 filters with a stride of 3x3. These

layers are followed by a max pool layer, ReLU, and a fully connected layer. Weights in this

shallow CNN are initialized according to Ref. (35). Adam is the selected optimizer (36). The

deep neural network selected is AlexNet (37) for comparison with Ref. (19). When AlexNet

and the shallow CNN are used with 128x128 images, the input kernels are 11x11. When the

R-CDT sets are used, the kernels dimensions are configured as 11x5.

2.5 Results

This section presents a comparison of R-CDT and image space classification accuracies.

The effects of attenuation on classification performance are also presented.

Table 2.1 shows the side-by-side classification results of R-CDT and OAM image pattern

prediction accuracy for three different classification algorithms. The first column shows the

training sets that are formed from various combinations of AL0-AL12. The second column

shows the NS-based R-CDT results. Columns three and four show results for the Shallow

CNN and columns five and six show results for the Deep CNN. The Shallow and Deep CNNs

were trained on both the R-CDT image sets as well as the OAM images.

As displayed in column 2, the NS-based R-CDT algorithm outperforms the CNN methods

on all combinations of the data sets. The Shallow and Deep CNN columns show that accu-

racies using the R-CDT patterns perform as well as or better than the image-based classifier

the majority of the time.

The following test explores and contrasts how well the algorithms perform with limited

numbers of training samples. Recently, Ref. (29) improved the R-CDT using the NS algo-
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Table 2.1: R-CDT to image space comparison across classifiers

NS Shallow CNN Deep CNN
AL R-CDT R-CDT Img R-CDT Img
0 100 100 99.5 99.8 99.4
4 100 99.2 99.6 99.5 99.7
8 100 99.8 99.3 99.4 99.6
12 100 99.9 98.8 99.7 98.4
0-4 100 100 99.4 99.6 99.2

0-4-8 100 99.9 99.4 99.2 99.4
0-4-8-12 100 99.9 99.0 99.0 99.7

rithm. These tests compare accuracies of the NS algorithm trained with R-CDT patterns,

a shallow CNN trained with images, and a deep CNN named VGG-11 ((38)) trained with

images. The number of training samples per class are from the set {1, 2, 4, 8, 16, 32, 64, 128,

256, 512}. The previous tests used approximately 700 images per class for training.

Figures 2.4 and 2.5 provide curves plotting classification accuracy of each algorithm given

a fixed number of samples per class. Both figures show that the R-CDT combined with the

Nearest Subspace algorithm is able to quickly learn distinguishing features with a limited

number of training examples per class. Results for the other data sets follow the trends

presented for AL0 and AL4 as shown in Figures 2.4 and 2.5.

Table 2.1 shows that the NS algorithm coupled with the R-CDT provides the best results.

Each CNN architecture is trained and evaluated with R-CDT patterns. The CNN is then

trained and evaluated with images. It is found that the R-CDT, in general, works as well as

or outperforms the images based classification.

Looking closely at Table 2.1, the R-CDT-based test accuracies are consistently better

than OAM image-based test accuracies for both the NS and CNN classification algorithms.

Intuitively, it makes sense for the R-CDT space to provide better results than the original

OAM image space. By performing the R-CDT, the images are moved into a new space

where there is more separation between the classes, as shown in Ref. (19). Because there is

greater separation between the classes in the R-CDT space, the decision boundaries that the

classification algorithms learn are easier to differentiate and classification results are improved

over what is achieved in the image space.
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Fig. 2.3: Example of OAM pattern mode 0001 and its corresponding R-CDT.

Fig. 2.4: Accuracy curves for AL0 data set.
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Fig. 2.5: Accuracy curves for AL4 data set.

Figures 2.4 and 2.5 display similar characteristics to those presented in Ref. (29). The

NS algorithm, combined with the R-CDT, obtains better results than CNNs given the same

number of training samples per class.

2.6 Summary and Conclusions

OAM beam patterns were collected at four different attenuation levels: AL0, AL4, AL8,

and AL12. From these data sets, three new composite sets were created by combining different

attenuation levels. These composite data sets are AL0-4, AL0-4-8, and AL0-4-8-12.

These data sets were used to evaluate how well training in the R-CDT space compared to

training in image space. These sets were also used to explore how well different classification

algorithms perform relative to each other. Concretely, the algorithms selected were the NS

R-CDT classifier, a shallow convolutional neural network, and a deep CNN.

This work first set out to justify the use of transport theory in attenuated underwater

environments. We then set out to see if classification gains seen by the R-CDT over image

patterns in free space, extended to attenuated environments in water. It was found that, in

the underwater environment, the R-CDT space performed better than the image space. This
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outcome correlates with what was observed in free space as reported in Ref. (19) and in Ref.

(29).

Several areas exist for further exploration. In this work, a negligible amount of turbu-

lence was present in the underwater environment, so a direct study of turbulence in water

versus free-space (as presented in (19)) was not possible. Future work can perform a direct

comparison of turbulence in water to free-space turbulence. Additionally, in future work it

will be important to allow both turbulence and attenuation to vary simultaneously, to gain a

full picture of the best algorithms for classification. Another interesting direction of research

is to explore other transforms, to see what additional gains can be made in classification

accuracy in the presence of signal degrading conditions.
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2.9 Appendix A: Image Model in Lagrangian Coordinates for Attenuated Beams

Representing the complex amplitude as U(~x0, z) = ρ1/2(~x0, z)ei[ψ(~x0,z)] and substituting

into Eq. (2.1) yields a complex equation in ρ, ψ. The imaginary and real portions are,

respectively,

∂ρ(~x0, z)
∂z

+∇X · [ρ( ~x0, z)~u(~x0, z)] = 0 (2.14a)

d~u(~x0, z)
dz

+ [~u(~x0, z) · ∇X ]~u(~x0, z) =

∇Xη(~xz) + 1
2k2

0

∇2
Xρ

1/2(~x0, z)
ρ1/2(~x0, z)

(2.14b)
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where ~u(~x0, z) ≡ 1
k0
∇Xψ(~x0, z). Expression (2.14a) governs the magnitude of the electric field

and is the familiar continuity equation. The second expression is a conservation of momentum

where the phase gradient acts as a dimensionless “velocity” and governs the change in optical

path in the transverse dimension per unit change in the direction of propagation. The second

term on the right hand side of Eq. (2.14b) is of negligible magnitude (note k−2
0 dependence)

and can be safely neglected (39).

Both expressions can be simplified to some extent with a change to Lagrangian coor-

dinates. Let ~xz ≡ ~f(~x0, z) be a vector function of the coordinates ~x0, z. In this coordinate

system, material derivatives, e.g., ∂zρ(~x0, z) + ∇Xρ(~x0, z)~u(~x0, z), become ordinary deriva-

tives dρ(~xz)/dz. The velocity of the field then becomes simply ~u(~x0, z) = d~xz/dz. In this

formulation the expressions in Eq. (2.14) become

dρ(~xz)
dz

+ ρ(~xz) [∇X · ~u(~xz)] = 0 (2.15a)

d2~u(~xz)
dz2 = ∇Xη(~xz). (2.15b)

Equation (2.15a) is now an ordinary differential equation in intensity (40) which can be solved

to yield

ρ(~xz) = ρ(~x0) exp
[
−
∫ z

0
∇X · ~u(~xs)ds

]
(2.16)

To arrive at our data model described in Eq. (2.3) we require a final identity. Start with the

expression that defines the Lagrangian coordinates d~f(~x0, z)/dz = ~u(~xz). Take the spatial

gradient ∇~x0 of both sides, and simplifying (re-arranging differential elements) gives

dJf (~x0, z)
dz

= [∇X · ~u(~xz)] Jf (~x0, z). (2.17)

where Jf (~x0, z) is the 2× 2 Jacobian of the Lagrangian vector function ~f(~x0, z). Taking the

determinant of both sides then results in an ordinary differential equation in det[Jf (~x0, z)].
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Solving this equation (noting det[Jf (~x0, 0)] = 1) yields the identity (40; 41)

det[Jf (~x0, z)] = exp
(∫ z

0
∇X · ~u(~xs)ds

)
. (2.18)

That is to say, the determinant of the Jacobian of the vector function governing the optical

path is directly related to the path integral of the divergence. Substituting Eq. (2.18) into

Eq. (2.16) then yields our image model presented in Eq. (2.3).

The above analysis presumes zero losses during signal propagation. However, assuming a

non-zero extinction coefficient, the refractive index can be written n(~x, z)− iκ with extinction

coefficient κ. The governing equations, in Lagrangian coordinates, then become

dρ(~xz)
dz

+ ρ(~xz) [∇X · ~u(~xz)] = −2κn(~xz)k0ρ(~xz) (2.19a)

d2~u(~xz)
dz2 = ∇X η̃(~xz). (2.19b)

where η̃(~xz) = [n2(~xz) − κ2 − 1]/2. As expected, non-zero losses results in a “sink” term in

the continuity equation. The image model in Lagrangian coordinates therefore reads

ρ(~xz) = ρ(~x0) exp
[
−
∫ z

0
∇X · ~u(~xs)ds

]
exp[−2κn(~xz)k0z] (2.20a)

or

ρ(~xz) = ρ(~x0)det−1 [Jf (~x0, z)] exp[−2κn(~xz)k0z]. (2.20b)

While this model predicts that the energy loss will be spatially non-uniform, depending on

the varying refractive index, these variations will be treated as uniform in our analysis of

signal loss. That is to say, at a given propagation distance, the signal loss due to absorption

is assumed uniform across the image and proportional to the exponential factor exp(−2κkz)

where k = n̄k0 is the (uniform) wavenumber implied by the average refractive index.

2.10 Appendix B: Relating fθ(t) to ~f(~x0, z)

In this section, we relate the problem physics, as encoded in the Lagrangian mapping
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~f(~x0, z), to the corresponding function(s) in the Radon Transform domain. Taking the Radon

Transform of both sides of Eq. (2.14a) yields (42)

∂ρ̃θ(t, z)
∂t

+ d

dt
[ρ̃θ(t, z)uθ(t, z)] = 0 (2.21)

where

uθ(t, z) ≡
dfθ(t, z)
dt

=
R
[
ρ(~x0, z)~u(~x0, z) · ~ξθ

]
ρ̃θ(t, z)

(2.22)

and ~u(~x0, z) = d~f(~x0, z)/dz. The Radon transform therefore splits the continuity equation

in the transverse plane into a collection of such equations, one for each angle θ. Moreover,

the coordinate mapping in transform space is directly related to the Cartesian mapping that

defines the problem physics via Eq. (2.22). The collection of one-dimensional functions fθ

therefore carries the same information about the problem physics as does the vector function

~f . In the instance of spatially constant “velocity” movement of intensity, Eq. (2.22) implies

quite sensibly that the mapping in Radon space is the projection of the Cartesian mapping

onto the vector ~ξθ.
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formulation for invariant optical fields: Mathieu beams,” Optics Letters, vol. 25, no. 20,

pp. 1493–1495, 2000. [Online]. Available: https://www.osapublishing.org/ol/abstract.

cfm?uri=ol-25-20-1493
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CHAPTER 3

MACHINE LEARNING-BASED SIGNAL DEGRADATION MODELS FOR

ATTENUATED UNDERWATER OPTICAL COMMUNICATION OAM BEAMS

Patrick L. Neary, 12 Abbie T. Watnik, 3 K. Peter Judd, 3 James R. Lindle, 4 and Nicholas S.

Flann 1

3.1 Abstract

We extend work from free-space, orbital angular momentum (OAM)-based communi-

cations to underwater optical communications (UWOC). Signal attenuation in UWOC is a

problem that degrades classification performance. We develop and contrast several novel ways

to create attenuation models and insert these models in the classification training pipeline.

One model is built and trained using automatic differentiation and another uses the radon cu-

mulative distribution transform (R-CDT). We show that including these attenuation models

in classifier training significantly improves classification performance.

3.2 Introduction

Orbital Angular Momentum (OAM) in electromagnetic waves has created a stir in com-

munications research ((1; 2)). OAM communications have great potential in free space or

underwater ((3)) environments to increase communication bandwidth by multiplexing modes

together. Early tests have shown Tera-bit/s potential data rates using four multiplexed modes

((4)). Several significant limiting factors in OAM communications exist, these include both

turbulence ((5)) and signal attenuation ((6)).

While strides have been made in free space environments ((7; 8)), a number of issues

remain in the underwater domain. (9) and (10) applied deep learning to the OAM domain
1Department of Computer Science, Utah State University, Old Main Hill, Logan, UT 84322, USA
2Space Dynamics Laboratory, 1695 N Research Park Way, North Logan, UT 84341
3Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USA
4DCS Corporation, 6909 Metro Park Drive, Suite 500, Alexandria, VA 22310, USA
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as a way to learn multiplexed OAM modes in free space. Both used a custom shallow CNN

as well as AlexNet ((11)) for OAM mode classification. We extend the work presented in

these papers to a signal attenuated in the underwater domain, and use the shallow CNN

they presented as a baseline architecture. We are specifically interested in creating machine

learning-based signal-noise models in the presence of attenuated signals, and using those

models during training of a classifier, with the intent of improving classifier robustness.

The signal to noise ratio (SNR) between a laser source and an imager can change due to

water turbidity. SNR in clear water may be initially high, but weather conditions may stir up

particulates in the water and cause it to decrease. Additionally, the source and receiver may

move to a location where SNR is lower. Any number of scenarios may cause a decrease in

SNR. Consequently it’s important to investigate system performance and robustness in these

situations.

A potential weak point of OAM mode classification systems is how the classifier responds

when presented with heavily attenuated, low SNR data. When training an OAM mode

classifier, initial training sets are likely to be collected in environments different from those

that the system will be actually operating in. Consequently, we are interested in finding ways

to increase the robustness of the classification model for degrading factors such as turbulence

or signal attenuation. In this work, we take a particular interest in signal attenuation.

As the term ‘model’ can mean refer to different things, we endeavor to clarify some

terminology at the outset. The theoretical, physical model for attenuation is provided in

Equation 3.10. We seek to create a machine learning-based model that learns how to take an

image with a high SNR at its input and generate an image with a low SNR at its output. We

refer to the machine learning-based model as ‘SNR MAchine leaRning aTtenuation Model’,

or SMART Model for short. A SMART Model in this paper can be any machine learning-

based model, such as a convolutional neural network (CNN). SMART models are discussed

in Section 3.4.3.

We show that when a classifier is trained with high SNR images, it performs poorly on

low SNR images. To improve performance, we insert a SMART Model in the training pipeline.

This paper, therefore, explores the training of two distinct processes. First, we explore several
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methods for creating SMART Models as shown in Figure 3.1. Second, we create a standard

CNN-based image classifier and try to improve its performance by using the SMART Model

in the training pipeline, as depicted in Figure 3.2.

Fig. 3.1: High level training process for a SMART Model.

Fig. 3.2: High level training process for the classification model.

Concretely, contributions of this paper include the following points. We show that,

starting from the baseline architectures of (10), when trained on a baseline data set and then

presented with attenuated data, the classifier experiences serious degradation in performance.

Where (10) worked with turbulent data in free-space communications, we’re working with at-

tenuated data in underwater communications. By creating, training, and inserting a SMART

Model in the classifier training pipeline, we significantly improve the robustness of the classi-

fier. We use several novel approaches to creating the SMART Models. The most compelling

SMART model uses a Radon Cumulative Distribution Transform (R-CDT) ((10; 12; 13)),

it achieves the best results while using only a single attenuated image from each class. As

deep neural net models often require many samples, this approach could have significant

implications in other machine learning applications as well.

3.3 Background and Prior Art
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Orbital Angular Momentum

Orbital angular momentum in electromagnetic waves (EM) is a relatively new finding

in physics. While known to exist at the atomic level, (14) identified and demonstrated its

existence in 1992 using Laguerre-Gaussian (LG) beams. Electrons have long been known to

exhibit spin (left or right rotation about the z-axis) and angular momentum, relating to the

particular orbit of the electron. Allen and his team were able to show that monochromatic,

EM waves also exhibit similar properties. EM waves are known to have spin or polarization.

They were able to show that certain fields from Laguerre-Gaussian beams contain an angular

component relative to the z-axis (direction of propagation), that is dependent on exp(−i`θ),

where ` is called the topological charge. When |`| > 0 the wavefront becomes a helically

shaped wavefront. The beam center, which usually has a radially Gaussian intensity profile,

adopts a dark hole at the center (optical void) with an intensity pattern in a ring around the

void. As the value of ` increases, the radius of the ring also increases.

Monochromatic light from an LG beam can be expressed with Equation 3.1:

Ul,m(ρ, φ, z) = Al,m[ W0
W (z) ]( ρ

W (z))lLlm( 2ρ2

W 2(z))exp(− ρ2

W 2(z))

×exp[−jkz − jk ρ2

2R(z) ∓ jlφ+ j(l + 2m+ 1)ζ(z)],
(3.1)

The LG beam is defined in cylindrical coordinates (ρ, φ, z), where ρ is the radius, φ is

the angle in the plane perpendicular to the z axis, and z is the axis of propagation. l and

m are azimuthal and radial indices, Al,m is a constant, W0 is the waist radius, W (z) is the

beam width, Llm represents generalized Laguerre polynomials, R(z) is the radius of curvature

for the wavefront at position z, and ζ is phase delay of the wavefront. The OAM dependency

is given by exp(−i`φ), which controls whether the EM wave experiences a helical wavefront

(|`| > 0) or a plane wave (` = 0).

A useful property of OAM, is that topical charge modes are orthogonal to each other

((15)). Consequently, modes of different topical charges can be multiplexed together, and

data carried within the modes are completely orthogonal and easily demultiplexed, at least
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in ideal environmental conditions.

Several methods exist for imparting OAM modes to Gaussian laser beams ((16; 17; 18)).

Optical vortex phase plates are an optic composed of a helical surface that is specially designed

for specific wavelengths. Each phase plate is designed to impart a specific mode to the

Gaussian beam.

Optimal Transport

Mathematics of optimal transport, or Earth Mover’s distance, can be applied to intensity

information from signals, among other application domains ((19)). (20) formulated a link

between atmospheric propagation of EM waves to optimal transport. EM radiation can be

modeled with Maxwell’s equations for isotropic materials. Given Maxwell’s equations (3.2-

3.5), if we take the curl of Equation 3.2 and substitute in Equations 3.3-3.5 we get Equation

3.6.

5×E(x) = iωµ0H(x) (3.2)

5×H(x) = −iωε0ε(x)E(x) (3.3)

µ0 5 ·H(x) = 0 (3.4)

µ0 5 ·(ε(x)E(x)) = 0 (3.5)

52E(x) +5(E(x) · 5ε(x)
ε(x) ) + k2

0ε(x)E(x) = 0. (3.6)

Substituting the electric field with the scalar electric field (E(x) = Ψ(~x, z)eik0z) in Equa-

tion 3.6 yields an equation similar to the Schrodinger equation. The Madelung transformation
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(21) can then be used on it to derive the following equations

∂ρ(~x, z)
∂z

+5X · [ρ(~x, z)v(~x, z)] = 0 (3.7)

∂ρ(~x, z)
∂z

+ [v(~x, z) · 5X ]v(~x, z) = 25 xγ[η(~x, z)] (3.8)

∂φ(~x, z)
∂z

+ 1
2[5Xφ(~x, z)]2 = 2γ[η(~x, z)]. (3.9)

Equations 3.7, 3.8, and 3.9 describe electric field propagation through the atmosphere

in terms of intensity and phase. The format of Equations 3.7-3.9 allow electric fields to be

modeled and analyzed using optimal transport theory ((22)).

(10) showed that, given the formulation of electric fields in a form compatible with

optimal transport, one can create a transform between a clear and corrupted image. An

efficient method for computing the transform is called the Radon Cumulative Distribution

Transform ((23), (5)). The R-CDT is used in this work to provide transforms between high

and low SNR images.

OAM Communications

(10) presented free space OAM mode classification in the presence of turbulence. They

trained classifiers using OAM images and compared them to classifiers trained using patterns

from the R-CDT. We use their work as a launching point for exploring the UWOC domain.

Specifically, they used a custom neural network and showed very good classification results

with it. That same architecture will be used here. They used the R-CDT patterns for

classification, but in this paper, the R-CDT will be used to map intensity distributions from

low to high attenuation levels.

While neural networks have been able to achieve impressive results in many different

applications, one concern with using them is that their predictions may be inconsistent with

physical realities. This has been one of the drivers behind the idea of physics-guided training

in neural networks. (24), for example, demonstrated a physics-guided neural network that
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was used for modeling lake temperatures. During training, it was shown that the neural

network could predict values inconsistent with reality. By including physics models in the

training loop, they were able to speed up and improve the model’s results by using physics

models to impose limits on realistic outputs.

We adapt this principle to training an OAM classification model. As it has been shown

that optimal transport is able to capture the underlying physics in a system ((20)), we can

use it to learn a physics-based SMART model for attenuation. An advantage of using the

R-CDT is that it is able to capture the transform using a minimal number of samples. Once

the SMART model is learned, it can be placed in the training loop. The SMART model

can be used to modify a high SNR data set and transform some of the images to their low

SNR counterparts. We show that applying these principles greatly improves classification

performance.

The rest of this paper will proceed as follows. In Section 3.4 we discuss the hardware

configuration used to generate OAM data and details, attenuation model creation, and clas-

sification network architecture with training parameters. Section 3.5 presents results from

training and inference. Finally, Sections 3.6 and 3.7 conclude with discussions of the results

and conclusion.

3.4 Experiment Setup

In this Section we discuss the hardware configuration used to generate the OAM images,

image set composition, SMART model architectures and training details, OAM mode classifier

architecture and training details, and final test configuration.

3.4.1 Hardware Configuration

A 1.2 meter water tank was used in the configuration for image acquisition. A Laguerre-

Gauss beam is generated by a Q-switched diode pumped solid state laser operating at 532

nm. The laser and a camera were are synchronized at 1 KHz. The laser beam is split into

four coherent beams and is passed through vortex phase plates with different charges, where

an OAM phase is imparted to each beam. Subsequently, the beams are recombined using
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beamsplitters, the beam passes through the water tank, and are incident on the camera. The

OAM modes used for this configuration are [1, 4, -6, -8].

A Phototron FASTCAM SA-Z camera was externally triggered to be in sync with the

laser. Several unique artifacts seen in the images are associated with camera dynamics. In

Figure 3.4, one may notice vertical stripes in the images. They are very apparent in the

higher attenuation length images. Additionally, the image intensity patterns appear to be

pixelated, as opposed to being continuous. Both of these characteristics are byproducts of

camera dynamics.

Since OAM modes are orthogonal, the modes can be mixed and matched to produce

different light patterns. The beams for each phase plate can be blocked, so with 4 OAM

modes there are 24 possible combinations. For this effort, 15 patterns are used and one class

consists of a background reading, which is an image capture on the camera when the laser

beam is completely blocked. One thousand images were collected for each class (or OAM

pattern), for a total of 16,000 images per data collection. Figure 3.3 shows intensity patterns,

without attenuation, for each of the OAM mode combinations used in this paper.

3.4.2 Image Set Composition

Five micron plastic beads were added to the water to attenuate the signal by different

amounts. The beads are designed to absorb or scatter the light, and the amount of absorption

and scattering is proportional to the number of beads present. A total for 4 sets of data collects

were made for attenuation lengths 0, 4, 8, and 12 (AL0, AL4, AL8, AL12), where AL0 was

collected without any attenuation beads present. Signal attenuation lengths are described by

Equation 3.10, where i is the attenuated signal, i0 is the original signal strength, and AL is

the level of attenuation. In this case AL values are set to 0, 4, 8, and 12.

i = i0e
−AL (3.10)

Figure 3.4 shows an example of six classes at each of the attenuation lengths. In OAM

pattern 0001, the AL0 image shows a distinct pattern with a high SNR. As the attenuation

length increases, the noise floor of the camera moves up and the SNR drops. At AL12 we
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Fig. 3.3: Examples of intensity patterns for each OAM mode combination.
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see the noise overcoming the lower intensity portions of the OAM pattern. For a standard

convolutional neural network trained to look for patterns, it is easy to see why there would

be significant degradation of performance when presented with images with low SNR.

Fig. 3.4: Examples of attenuation in underwater environment. Each column contains pat-
terns for one OAM mode and each row represents a specific level of attenuation. The first
row contains attenuation level 0. The subsequent rows show progressively higher levels of
attenuation. Note that these images are scaled to the brightest pixel in each individual image
to make the OAM mode patterns easier to see.

In generating results for this paper, the data sets were divided up in the following way.

Each attenuation set was split into 70%/15%/15% for training, testing, and validation, re-

spectively. The attenuation and classification models were trained using only the training

and validation sets. Test sets were used only once, at the end to produce final results. Images



52

from the camera were originally 1024x1024 grayscale images. The borders were cropped to

remove pixels without intensity information and were downsampled to a final dimension of

128x128.

As we are interested in seeing how well the classifier performs with unseen data, the OAM

mode classifier is trained using only the AL0 data set. Once the classifier has been trained,

its accuracy is evaluated with all attenuated image test sets. Concretely, the AL0 test set

is first passed through the classifier and its performance metrics are recorded. AL4 is then

passed through the classifier and its performance metrics are recorded. AL8, and AL12 are

sequentially processed in the same manner. This way we are able to see how well the classifier

performs with each group and can easily see the performance trends as the attenuation level

increases. While the sets were processed serially, they could have been processed in parallel

with the right hardware.

3.4.3 SMART Model Details

The purpose of the SMART attenuation model is to learn how to mimic the SNR char-

acteristics of the environment and hardware. Once an algorithm learns that mapping, the

SMART model can be placed in the classifier training loop. In this section, we discuss details

of the SMART models used to learn signal attenuation performed by the environment. Two

different SMART models are discussed, a convolution based model and an R-CDT based

model.

CNN-Based SMART Model

For the CNN SMART model, we combine convolutions and feature maps in a non-

standard way to produce images that resemble their attenuated counterparts. Figure 3.5

shows the architecture for the CNN model. Model construction is based on observations that

AL4-AL12 images have a low SNR and the camera introduces pixelated characteristics in the

intensity patterns and background. The first convolution and max layers act on the original

image and then the original image is subtracted from the result. There are several benefits to

this combination. One, the effective SNR between background and signal is reduced. Addi-



53

tionally, as previously mentioned, the camera being used introduces a pixelated characteristic

in the intensity patterns. Convolutions can potentially smooth out an image, so subtracting

off the original image can reintroduce some of those pixelated characteristics. This process is

repeated in several stages as displayed in Figure 3.5.

Fig. 3.5: CNN model architecture.

In training the CNN-based SMART attenuation model, all AL training data sets (AL0,

AL4, AL8, and AL12) are used. The four sets contain a total of 54,400 images. During

training, AL0 images are randomly selected from the training set. Once the source images

have been collected, attenuated images are drawn from matching classes and paired with

the source images. Loss terms are calculated using the mean-squared-error (MSE) between

the model output and images from the attenuated set. Model weights are updated using

automatic differentiation (25) with the calculated loss. In this way, the CNN model learns

how to map from one attenuation level to another. This process is shown in Figure 3.6.

Fig. 3.6: Training loop for the CNN based model.

Automatic differentiation is used in backpropagation, but can be generally applied to

any equation. In this case, the CNN-based model is trained using automatic differentiation.

Once an image is generated by the model, a difference between the two images is calculated

using the MSE from pixel differences in the images. The loss calculated from the MSE is used
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to generate gradients, which are then applied to the weights in the model. Training of the

CNN model takes place over 100 epochs with a learning rate set to 1e−4.

Figure 3.7 contains an example of the output from this architecture. The image on the

left is the AL0 input, the image in the middle is the AL12 reference, and the image on the

right is the model output.

Fig. 3.7: CNN AL0 input (left), AL12 reference (center), and CNN forward map output
(right).

R-CDT-Based SMART Models

As previously discussed, the R-CDT, learns a mapping from one mass distribution to

another. In this case, the initial intensity distribution is provided by image classes in the

AL0 training set. The ’final’ intensity patterns are provided by corresponding classes in the

attenuated data sets.

Once the R-CDT has been computed, it creates a transform that enables a translation of

the intensity ’mass’ from one OAM AL level to another. The R-CDT enables either forward

or backward transforms, so as an example, one might have an image without attenuation,

apply the forward transform, and get an image with intensity mass distribution of a high

attenuation level.

In this work, two R-CDT SMART models were created. The first model is a mapping

from AL0 images to AL12 images, so it uses 32 total images to form the model (16 from

AL0 and 16 from AL12). With this model, we look to learn whether AL4 and AL8 also see

improved gains in accuracy or just AL12. The second model includes mappings from AL0 to

AL4, AL8, and AL12. This model is created by using a single source image from each class
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in AL0 and mapping them to corresponding images from the classes in the other attenuated

sets. This model uses a total of 64 images to create the mappings. This is in contrast to the

54,400 images used to train the CNN model.

Figure 3.8 shows an example of the R-CDT input, reference, and output images. The

left image is from the AL0 set and is given to the R-CDT forward map operation. The middle

image is an example of the same class from the AL12 data set. The right image is the output

from the forward operation of the R-CDT model.

Fig. 3.8: R-CDT AL0 input (left), AL12 reference (center), and R-CDT forward map output
(right).

3.4.4 Classification Model Details

The training classifier is a shallow convolutional network patterned after the one used

in (10). Using this same architecture provides a baseline for comparison to previous work.

The shallow convolutional network is composed of six basic layers. It has a convolution layer

with 16, 11x11 kernels, a convolution layer with 32, 3x3 convolution kernels, a max pooling

layer, a ReLU, a flattening operation, and a dense layer with an output size of 16 (one for

each class). The optimizer is Adam with an initial learning rate of 1e−3. The mini-batch size

is 32 and training takes place over 1050 iterations.

The classifier training process is shown in Figure 3.9. While training the classifier, train-

ing batches from AL0 are acquired. Images within the batch are then randomly selected

to be transformed with the SMART model. Random selection helps broaden the variety of

images the classifier sees over multiple epochs of training. The batch is then passed on to the

classification model for training.
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Fig. 3.9: Training loop for the classification model.

Figure 3.10 shows the process for using the attenuation model in the training pipeline.

At the top, it shows the different attenuation length sets. The left box indicates a test set

that will be fed through the classifier. The data goes through the classifier, generates a set

of predictions, and then the results are accumulated and a confusion matrix is created based

on those results. Test sets are passed, one at a time, through the classifier and results are

collected for each set.

Fig. 3.10: Test loop for the classification model.

3.5 Results

The CNN and R-CDT-based SMART models were trained on images from the AL0, AL4,

AL8, and AL12 training sets. After training the CNN-based SMART model, it was placed

in the classification training pipeline and randomly enabled to apply transformations to the

high SNR images. The transformed images were then passed on as inputs to the classifier

for training. Likewise, once the R-CDT-based SMART attenuation model was created, it
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was placed in a new classification training model pipeline and randomly enabled to apply

transformations on the high SNR images.

Table 3.1: Classifier comparison

Classifier AL0 AL4 AL8 AL12
No model 100 75.9 23.1 6.1

CNN model 99.6 82.6 66.5 55.5
R-CDT model 1 99.9 86.8 65.3 73.5
R-CDT model 2 99.9 97.3 82.6 74.2

Table 3.1 shows results from inference using the different SMART models in the classifi-

cation architecture.

The first entry shows results for the classifier that is trained without a SMART model

in the training pipeline. This provides the baseline results to see how much improvement is

made by adding a SMART model into the training baseline. As expected, results for AL0 are

very good. AL4 sees a drop to 75.9%. AL8 and AL12 accuracies become unusable at 23.1%

and 6.1%.

The second entry in Table 3.1 displays results for the CNN-based SMART model. AL0

experiences a small drop in accuracy, however AL4 jumps to 82.6% while AL8 and AL12 also

experience significant jumps in accuracy to 66.5% and 55.5%.

Row three in the table shows results for the first R-CDT SMART model. This model

contains the single mapping from AL0 to AL12. AL0 shows improved performance over the

CNN model. It also shows better results for AL4 at 86.8%, slightly lower results for AL8 at

65.3%, and a significant improvement in AL12 at 73.5%.

Row four contains results from the second R-CDT SMART model, with mappings from

AL0 to AL4, AL8, and AL12. This model shows the best results with AL0 at 99.9%, AL4 at

97.3%, AL8 at 82.6%, and AL12 at 74.2%.

Table 3.2 shows a confusion matrix generated from the classifier using second R-CDT

SMART model. This table provides some insight into where the majority of the problems exist

for the AL12 data set. AL12 was selected because it performed the worst and may provide

the most insight into ways to improve. In this table, ‘0’ corresponds to the ‘Background’
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Table 3.2: Confusion matrix for AL12 classification with R-CDT model 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 237 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 232 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 64 0 169 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 219 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 227 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 22 15 1 0 36 0 8 0 0 0 158 0
7 0 0 0 0 1 187 0 44 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 212 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 20 208 0 0 0 0 0 21
10 0 0 0 0 0 0 0 0 4 0 237 0 0 0 1 0
11 0 0 0 0 0 0 0 0 20 29 87 78 2 0 11 3
12 0 0 0 0 7 0 0 0 49 0 0 0 104 0 77 0
13 0 0 0 0 35 1 0 0 10 46 0 0 31 93 8 23
14 0 0 0 0 0 0 0 0 0 0 4 0 3 0 222 0
15 0 0 0 0 8 0 0 0 23 33 2 3 0 7 151 4

image from Figure 3.3, ‘1’ corresponds to ‘0001’, and so on. From the table we can see that

the images 6 (0110), 7 (0111), 11 (1011), 13 (1101), and 15 (1111) performed poorly.

3.6 Discussion

As shown in Table 3.1, the base classifier was unable to perform at the AL8 and AL12

attenuation levels, while having moderate results at the AL4 attenuation. Once the SMART

models were introduced, accuracy for all attenuation levels jumped and AL12 experienced

the greatest improvement by jumping from 6.1% to 74.2%.

It’s interesting to note the significant improvement in performance of the R-CDT-based

SMART model over the CNN SMART model. While the CNN-based model used all available

training data, the R-CDT model used only one image from each of the classes in the AL12

based set. One of the difficulties that is experienced in machine learning applications is the

collection and labeling of training data sets. Indeed, in many applications where groups desire

to apply machine learning, the collection and labeling of large data sets for training represent

a significant hurdle. The fact that the R-CDT SMART model was able to generate such a

significant improvement in performance with so few examples is a powerful result. This may

have some potential implications in the areas of one-shot and few-shot learning.
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From the confusion matrix in Table 3.2, we observe a number of classes with particularly

poor performance. The poor performance is very likely due to attenuated signals whose

patterns are very similar to each other. It shows that patterns 6, 7, 11, 12, 13, and 15 have

the majority of the problems. Looking more closely at 6 (0110), for example, shows that most

of the misclassifications are directed at 14 (1110). Inspecting the two patterns visually, it’s

apparent that the two closely resemble each other. In future efforts, this information can be

used to help select OAM modes and patterns with characteristics that differ more under high

attenuation environments.

3.7 Conclusion

From the outcomes presented in Section 3.5, we observed a significant improvement in

OAM classification results under heavy signal attenuation. Without an attenuation model,

the baseline classifier experienced a 6.1% accuracy level for the AL12 data set. With the best

SMART model in the training loop, the accuracy level was raised to 74.2%.

We were able to see significant improvement in accuracy for attenuation levels the clas-

sifier had not previously seen. This was accomplished by inserting a SMART model into the

classifier training pipeline. The best performing model was based on the R-CDT, which has

strong fundamental ties to the underlying physics of the optimal transport of photons.

A significant characteristic of the R-CDT based models is the low number of samples

required. The first model required only 32 images to perform the mapping between AL0

OAM patterns and AL12 OAM patterns. The second model required only a few more at 64

images to map from AL0 to AL4, AL8, and AL12. The ability of the R-CDT to create such

a robust SMART model with so few images may have significant implications in machine

learning, especially for applications dependent on one-shot or few-shot learning. That is an

area that warrants future research.

The confusion matrix for the second R-CDT model is shown in Table 3.2. It provides

future direction as to which patterns to consider changing to provide greater pattern discrim-

ination in high attenuation environments.
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CHAPTER 4

OPTIMAL ARCHITECTURES FOR OAM BASED COMMUNICATIONS IN

ATTENUATED UNDERWATER AND TURBULENT FREE-SPACE

COMMUNICATIONS

Patrick L. Neary, 12 Abbie T. Watnik, 3 K. Peter Judd, 3 James R. Lindle, 4 and Nicholas S.

Flann 1

4.1 Abstract

Turbulence and attenuation are signal degrading factors that can severely hinder free-

space and underwater OAM optical pattern demultiplexing. A variety of state-of-the-art

convolutional neural network architectures are explored to identify which, if any, provide op-

timal performance under these non-ideal environmental conditions. Hyperparameter searches

are performed on the architectures to ensure that near-ideal settings are used for training.

Architectures are compared in various scenarios and the best performing, with their settings,

are provided. We show that from the current state-of-the-art architectures, DenseNet out-

performs all others when memory is not a constraint. When memory footprint is a factor,

ShuffleNet is shown to performed the best.

4.2 Introduction

In 2014, Krenn et al. explored the use of machine learning (ML) to demultiplex OAM

beam patterns for free-space optical communications (1). Since then, ML techniques have

been applied in a variety of ways to improve demultiplexing accuracy in free-space turbulent

conditions (2; 3; 4).
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In OAM communications, turbulence and attenuation can cause significant degradation

of signal integrity and lowering of the signal-to-noise ratio (SNR) (5; 6). These disturbances

can displace spatial patterns, cause crosstalk, or scatter the signals such that only a portion

of the original intensity distribution makes it to the receiver.

One of the unresolved questions from Ref. (2) is with regards to which, if any, of the

state-of-the-art convolutional neural network (CNN) architectures performs best for OAM

pattern demultiplexing in signal degrading environments. This paper explores turbulent free-

space and attenuated underwater OAM optical communications with the state-of-the-art deep

convolutional neural networks to answer this question.

Several data sets under varying environmental conditions are used for this effort. In free-

space, three sets of data are collected at different turbulence levels. In water, four sets of data

are collected at various attenuation levels. All tests are performed on specific combinations

of these data sets.

Contributions of this paper include a comparison of recent, state-of-the-art CNN ar-

chitecture in both turbulent free-space and attenuated underwater OAM communications.

Baseline performance, inter-set performance, and parameter count are analyzed. At the end

of the analysis, the best performing architectures, along with their parameters, are provided.

4.3 Background and Prior Art

In the following sections OAM communications, hyperparameter tuning, and an overview

of some of the current state-of-the-art CNNs are covered.

4.3.1 Orbital Angular Momentum

Orbital angular momentum (OAM) in electric fields was discovered by Allen et al. (7).

They found that under certain conditions, the Laguerre-Gauss beam could transition from

a standard plane wave propagation to a helical path. Consequently, the Gaussian-shaped

distribution frequently exhibited by lasers becomes a doughnut shaped pattern when an OAM

mode is adopted. The OAM azimuthal dependency is expressed by exp(i`φ), where ` is the

topological charge or mode number. When ` = 0, the wavefront is a plane. When |`| > 0,
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the wavefront travels in a helical path, where the direction of rotation about the z-axis is

controlled by the sign on `. The radial distance from the z-axis to the helix is controlled by

the mode number. The larger the mode number, the greater the radius.

A significant property exhibited by OAM modes is that they are orthogonal to each other

(7). Consequently, multiple OAM beams with different modes can be multiplexed together

and be completely recovered at the receiver. Leveraging this property allowed Want et al.

to achieve terabit data rates in ideal conditions (8). While promising, communications in

non-ideal conditions with turbulence and attenuation present hurdles in actually achieving

these rates.

Various of approaches have been used to detect modes at the receiver, including con-

jugate mode sorting (9; 10), Doppler effect measurements (11), dove prism interferometers

(12), optical transformers (13), and spiral fringe counting (14). In 2017 Doster and Watnik

applied ML to the problem and found significant improvements in demultiplexing accuracy

and simplification of hardware setup over existing approaches (2).

While Ref. (2) provided a proof of concept in applying CNNs to determining OAM

modes, they left an exploration of the best CNN for future work. That investigation is

completed here in addition to addressing other questions.

4.3.2 State-of-the-Art CNNs

CNNs are great for image-based applications because their convolution kernels are able

to learn and differentiate shapes, colors, hues, etc. found in the training images. The unique

characteristics associated with each class are learned during training and then used later for

identifying classes during inference.

The deep learning revolution was accelerated with the groundbreaking results achieved

by the LeNet architecture developed by LeCun (15). The AlexNet (16) architecture later

smashed previous records on the ImageNet (17) data set by combining convolution layers,

fully connected layers, rectified linear units (ReLU), and dropout layers. ImageNet is a

benchmark set of images containing 1,000 different classes and is frequently used to compare

architecture performance.
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Since AlexNet, a number of significant improvements have been made in CNN archi-

tectures, layers, and optimizers. Adam, for example, is an optimizer that provides adaptive

learning rates (18). As training progresses, learning rates are automatically adjusted up or

down so weights do not train too slowly or diverge, because learning rates are too high.

ResNet created another revolution in the CNN architecture field by introducing the

concept of special processing blocks surrounded by identity connections (19). ResNet is able

to address the problem of diminishing gradients by allowing vital image information to be

made available, through the identity connections, to deeper layers of the network. ResNet

is able to bypass the accuracy inflection point of the VGG architecture, where adding layers

caused decreases in performance (20). ResNet is able to continue improving performance by

stacking much deeper layers, beyond which VGG performance degraded.

ResNeXt is an extension of the ResNet architecture (21). They postulated that gains

could be made through widening the architecture. They introduced the idea of cardinality,

where N branches were introduced and each branch contained a small number of kernels.

DenseNet provides a complimentary approach to ResNet (22). Rather than using identity

connections, DenseNet is able to feed forward feature maps from each processing block (which

is composed of convolution layers and other operations). Each processing block is provided

feature maps, at its input, from all previous processing blocks.

SqueezeNet is an architecture designed for small memory footprint applications (23). It

is composed of ‘Fire modules’ which contain squeeze (1x1 convolutions) and expand (1x1 and

3x3 convolution) layers. It was found to perform comparable to AlexNet on the ImageNet

set, but with 50x fewer parameters.

MobileNet is a series of streamlined architectures that use depth-wise separable convolu-

tions (24). The series was designed to be lightweight so as to be appropriate for applications

such as self-driving cars, robotics, etc.

ShuffleNet is an architecture designed to be memory efficient, so as to be deployed in

robotics and mobile devices (25). While its accuracies are not competitive with architectures

like ResNet, when trained and tested against ImageNet, it has a much lighter memory foot-

print and can fit in small devices where the larger architectures will not. It was shown to
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have better accuracies on the ImageNet set than MobileNet.

SqueezeNet, MobileNet, and ShuffleNet are small, efficient architectures where AlexNet,

DenseNet, ResNet, ResNeXt, and WideResNet are large but produce better results on the

ImageNet benchmark data set. These architectures will be used and contrasted with each

other in this work to determine which provides the best performance in the OAM commu-

nication domain. Ref. (26) provides an interesting insight that some of the state-of-the-art

CNNs struggle in their ability to generalize and are in fact ‘brittle’. This warrants a care-

ful consideration in applying the state-of-the-art to new domains. The best architecture in

ImageNet classification does not necessarily mean optimal performance in another domain.

These architectures are trained and analyzed to show which perform best in OAM free-space

and underwater communications.

4.3.3 Hyperparameter Tuning

‘Hyperparameters’ are parameters that are set before training begins. Examples of these

parameters include learning rates, batch size, number of training epochs, optimizer, methods

for weight initialization, etc.

Learning rates control the magnitude of updates to weights during training. When

learning rates are too large, training can diverge. If weights are too small, it may take a very

long time to converge to a solution.

An epoch is a cycle of training where all available data has been used once to train the

network. A data set is often broken into batches and trained one batch at a time. The batch

size can influence how well the architecture trains. The number of epochs also influences

the overall performance of the network. If the network trains for too many epochs it can

over train and will not generalize well. If trained too little, then the network will not learn

the unique characteristics of the information presented to it. Either case can result in poor

performance.

Adam is currently among the most popular optimizers (18). Ref. (27) found that Adam

did not always perform better than other optimizers. In light of this, several additional

optimizers were selected to include in the parameter search. A comparison of various opti-
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mizers was done by Ruder (28). From their list, the following optimizers were selected for

comparison: Adam, AdaMax (18), Nadam (29), and RMSProp (30).

In order to perform a fair comparison between the selected CNN architectures, a hy-

perparameter search can be used to make sure architectures have been suitably configured.

Selecting a good learning rate is considered to be one of the most important hyperparameters

to tune (31). For this research, optimizers and learning rates are evaluated.

Approaches to hyperparameter tuning are an ongoing area of research. The most basic

approach is a grid search, where a range of values is selected for each hyperparameter, the

values are changed one at a time, and all combinations are exhaustively evaluated. This

approach is computationally expensive. A more effective approach is a random search (32).

It is able to find better configurations in less time compared to grid search.

Hyperopt is a parameter tuning approach that allows searching across multiple hyper-

parameters in an efficient way (33). Ref. (33) shows that Hyperopt provides an order of

magnitude speed-up over Bayesian parameter tuning methods. For this research, the Hyper-

opt algorithm was used from the Tune package for the learning rate search (34).

4.4 Experiment Setup

Turbulent free-space image sets and attenuated underwater sets of data are used in

this study. Free-space turbulent data is collected according to the setup described in Ref.

(2). This imagery is collected using a 635-nm 5-mW laser, a Dalsa GigE camera, several

Forth Dimension Displays binary phase ferroelectric SLMs, and standard optical tools such

as mirrors, pinhole filters, and diffraction order filters. The SLMs are programmed with a

binary phase hologram. Simulated turbulence is also added to the holograms. MATLAB

is used to generate signals that synchronize the laser, SLMs, and camera. The lab setup,

originally shown in Ref. (2), is displayed in Figure 4.1. The images generated by the free-

space camera are 512x512 pixels and subsequently cropped to 256x256 pixels. They are resized

to 128x128 for computational efficiency.

The free-space OAM images consist of 32 different patterns, created through multiplexing

beams passed through combinations of five different phase plates with modes [-4, -1, 2, 5, 8].



70

Fig. 4.1: Bench setup for free-space configuration.

OAM patterns from this set are shown in Figure 4.2.

Fig. 4.2: Example of OAM patterns from the free-space data set.

The free-space set is composed of three distinct data collects, where each group is collected

at a specific turbulence level. Turbulence is simulated and imparted through inserting phase

screens in the OAM beam path. The turbulence levels are D/r0 = 5, D/r0 = 10, and

D/r0 = 15. Examples of OAM patterns at different turbulence levels are showing in Figure
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4.3. The data collects will be referred to as TB5, TB10, and TB15, where each data collect

contains images from each of the 32 patterns.

Fig. 4.3: Example of different turbulence levels from the free-space data set. Column header
indicates the pattern number and the row label indicates the level of turbulence. Inspecting
the different levels for the OAM modes shows pattern displacement or distortion due to the
turbulence.

Underwater data is collected using the following hardware setup. The laser source used

in these measurements was a diode pumped solid state laser that operates at 532-nm and

produces 5 nS pulses with 250 uJ/pulse. The intensity patterns are captured by a high

performance, fast-frame-rate camera (Photron FASTCAM SA-Z). The camera is synchronized

with the laser pulses at a rate of 1kHz. As shown in Figure 4.4, the laser beam splits into four

coherent beams and is expanded to pass through and fill vortex phase plates where an OAM

phase is imparted to each beam. After leaving the phase plates, the beams are recombined
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using beamsplitters. The multiplexed OAM beam passes through a 1.2-meter water tank and

is routed to the camera using mirrors. Polyamid beads are added to the water to introduce

signal scattering while small pumps agitate the water to ensure that the particles remain in

suspension and homogeneously distributed. Attenuation length is measured by running a 15

mW, 532 nm CW probe laser parallel to the beam that is incident on a sensor. The OAM

modes used for this configuration are [1, 4, -6, -8]. Images created by the camera for this

setup are 1024x1024 pixels. The images are cropped and then resized to 128x128 pixels.

Fig. 4.4: Bench setup for underwater OAM communication configuration.

Underwater OAM images consist of 16 unique patterns derived from combinations of four

different phase plates. Examples of the OAM patterns are shown in Figure 4.5.

The underwater set is composed of four different data collects, where each group is

collected at a specific level of attenuation. Attenuation is created by adding polyamid beads

designed for scattering light. Attenuation length sets are composed of levels 0, 4, 8, and

12. The sets will be referred to as AL0, AL4, AL8, and AL12. Each set contains images

representing each of the 16 OAM patterns. Figure 4.6 shows attenuated patterns at the four

levels of interest.

Each free-space and underwater data set is divided into training, validation, and test

sets at a 70%/15%/15% respective split. The test sets are used only after a classifier is fully
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Fig. 4.5: Example of OAM patterns from the underwater data set.
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Fig. 4.6: Example of different attenuation levels from the underwater data set. Column
header indicates the pattern number and the row label indicates the attenuation level.
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trained and its final performance metrics are gathered. The test set is often referred to as a

holdout set, as it is put aside until the very end.

Training took place on a computer with a NVIDIA RTX 2080 GPU with 8 GB of RAM.

The computer also has 32 GB RAM and an Intel i9 processor with 16 cores. For the CNN

training and evaluation in this paper, the code is developed in Python and the ML library

used is PyTorch.

Table 4.1 provides the total number of trainable parameters for the architectures used in

this study, as reported by PyTorch.

Table 4.1: CNN Architecture Trainable Parameter Count

CNN Parameter Count
ShuffleNet 374592
SqueezeNet 751840
MobileNet 2264864
DenseNet 6982048
ResNeXt 23045472
ResNet 23573600
AlexNet 57134944

WideResNet 66899808

4.5 Results

In this section, results for each of the tests are presented. In Section 4.5.1, results are

presented for the hyperparameter search in free-space and underwater environments for each

of the CNN architectures. Section 4.5.2 presents results for architectures trained against each

data set. Finally, Section 4.5.3 shows results when architectures are trained with one data

set and tested against other, more distorted, data sets.

4.5.1 Hyperparameter Tuning

Architectures are initialized with pre-trained weights from ImageNet training, and are

used as the starting point for training the OAM patterns. As the ImageNet competition

has 1,000 classes and a fixed input size of 224x224, the CNN input and output layers were
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modified for 128x128 sized input images and output dimensions for classes of 16 (underwater)

and 32 (free-space).

As hyperparameter searches can quickly become computationally expensive, a two-tier

approach is taken to narrow the field. The first tier is to identify an optimizer that provides

the best results. The second tier it to identify the best learning rate for each architecture

using the selected optimizer. For the hyperparameter study, the ResNeXt 50 architecture

is used, training is limited to 5 epochs, and the TB5 data set is used. Batch size is set to

32 for DenseNet because of its memory requirements during the training process. All other

architectures use batch sizes of 128.

Optimizers are selected from the set of Adam, RMSProp, AdaMax, and Nadam. The

ResNeXt 50 architecture is used to train data from the TB5 free-space data set. Learning

rates are selected from a range of 1e− 6 to 1e− 1 for each optimizer. A quick random search

was first performed to find a few good performing starting values for each optimizer. Those

values are then used as best guesses to seed a Hyperopt search to support the optimizer

analysis. The Hyperopt search is allowed to run 25 iterations to identify the best performing

learning rate.

Figure 4.7 plots accuracies achieved using the four optimizers from learning rates selected

by Hyperopt search. The x-axis shows the learning rates on a log scale, while the y-axis

represents the accuracy achieved on the holdout set after 5 epochs of training. It is interesting

to note that all of the optimizers achieve similar peak accuracies and the overall distribution

of accuracies is very similar. The primary difference being the offset of the accuracy curves

relative to the learning rate.

Figure 4.8 shows an accuracy curve for each optimizer over the course of 60 epochs.

The TB5 data set is used for training the ReNeXt architecture in this figure. Learning rates

for each optimizer are derived from the peaks from Figure 4.5. Figure 4.8 shows similar

convergence rates for all of the optimizers.

As Figure 4.8 shows similar performance between the optimizers, a simple statistical

analysis is employed to make the selection of which optimizer to use. Table 4.2 shows the

average and standard deviations of accuracies for epochs 20-70 from Figure 4.8. Results in the
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Fig. 4.7: Optimizer accuracy to learning rate comparison using TB5 free-space data set and
ResNeXt 50 architecture. Accuracies are recorded after 5 epochs of training for learning rates
selected by the Hyperopt algorithm.

Fig. 4.8: Optimizer training curve comparison using TB5 free-space data set with ResNeXt
50 architecture. Accuracies are recorded after each training epoch for a total of 60 epochs.
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table show that Nadam gets better average accuracy and lower standard deviation than the

other optimizers. Consequently, Nadam is selected as the default optimizer for all subsequent

training in this paper.

Table 4.2: Optimizer Averages and Standard Deviations

Avg SD
Adam 97.9 0.0140

Adamax 98.7 0.0085
Nadam 98.7 0.0064

RMSProp 98.3 0.0091

With the optimizer selected, the second tier of the hyperparameter search is to identify

the best learning rates for each CNN architecture. Given that there are potential differences

between the free-space and underwater data sets, this search is applied to each domain to see

whether there are any significant differences in learning rate selection.

Figures 4.9 and 4.10 show Hyperopt results for accuracy vs. learning rate. The training is

limited to 7 epochs, which is sufficient to generate curves showing relative training responses

for different learning rates. The region of the figures of primary interest is the rising portion

of the curve as these regions suggest the best place to draw learning rates from.

For the underwater set, Figure 4.9 shows very similar curves for the ResNet family of

architectures. ShuffleNet shows the most difference as its learning rates are shifted to the

right. Differences between the architectures are more pronounced in the free-space data as

shown in Figure 4.10. Again, the ResNet family of architectures are similar at the same range

of learning rates while ShuffleNet is also shifted far to the right in its learning rate curve.

SqueezeNet appears to learn significantly slower than the other architectures. This graph

turns out to be indicative of its overall performance later in the paper.

These curves provide an idea of what learning rate to use for training the architectures.

Learning rates are selected moving from the left side of the curve (which begins at 1e−7) and

are selected at approximately 95% of the peak value. This allows selection of learning rates

with good efficiency, but are not so high as to create convergence problems. This learning

rate selection approach was established by Ref. (35).
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Fig. 4.9: Hyperopt learning rate search results for AL4 underwater image set.

Fig. 4.10: Hyperopt learning rate search using TB5 free-space image set.
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Final learning rates used for each architecture, in underwater and free-space environ-

ments, are derived from these figures. Results are shown in Table 4.3. These are the learning

rates used for the rest of the training in this paper. It is interesting to note that the learning

rates between the two data sets are fairly similar to each other.

Table 4.3: Final learning rates for architectures in underwater and free-space data
sets.

Architecture Underwater Free-space
AlexNet 1.2e-5 1.1e-5

DenseNet 4.2e-5 4.2e-5
MobileNet 1.2e-4 7.4e-4

ResNet 3.2e-5 3.2e-5
ResNeXt 2.4e-5 2.4e-5

ShuffleNet 4.2e-4 3.1e-4
SqueezeNet 1.5e-5 5.5e-5
WideResNet 1.4e-5 1.4e-5

Using the established learning rates, accuracy curves were generated for each architecture.

This provides an initial comparison of how quickly the architectures learn and the levels that

they converge to.

Figure 4.11 shows accuracy per training epoch curves for the underwater AL4 data set

for each architecture (at the learning rates indicated in Table 4.3). It is apparent from the

curves that, over time, all of the architectures achieve fairly similar accuracies.

Figure 4.12 shows accuracy per training epoch curves for the free-space TB5 data set for

each architecture. Most of the architectures settle in at approximately the same end accuracy,

the lone difference being SqueezeNet.

Aside from SqueezeNet, there does not appear, at this point, to be a great deal of

difference from one architecture to another when using the AL4 (underwater) and TB5 (free-

space) data sets. With hyperparameters selected, the architectures are ready for training

against the data sets.

4.5.2 Baseline, Intra-set Tests

Baseline performance of the underwater data sets (AL0, AL4, AL8, AL12) and free-space
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Fig. 4.11: Accuracy training curves for underwater data.

Fig. 4.12: Accuracy training curves for free-space data.
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sets (TB5, TB10, TB15) is established in this section. In establishing baseline performance,

the focus is placed on training an architecture with one data set and testing it the correspond-

ing holdout set. Later, an architecture will be trained with one data set (TB5 for example)

and then the holdout sets from TB10 and TB15 (inter-set testing) will be used to explore how

well the architecture is able to generalize on data outside the training set. Percent accuracy

is used at the metric for comparing relative performance of the different architectures.

Table 4.4 shows the baseline results for architectures trained with the underwater atten-

uated sets. As a whole, the architectures perform very well. Most accuracies achieved are

100%, or close to it. The only outlier is SqueezeNet on the AL12 set.

Table 4.4: Architecture baseline performance with underwater sets.

AL0 AL4 AL8 AL12
SqueezeNet 99.5 99.4 99.4 98.8

AlexNet 99.4 100.0 99.4 99.4
ShuffleNet 100.0 99.4 100.0 100.0
DenseNet 100.0 100.0 100.0 99.4
ResNeXt 100.0 100.0 100.0 99.4

MobileNet 100.0 100.0 100.0 100.0
ResNet 100.0 100.0 100.0 100.0

Wide ResNet 100.0 100.0 100.0 100.0

Table 4.5 shows the baseline results for architectures trained with the free-space turbu-

lent sets. This table includes a column that averages the results to help with sorting the

architectures. The results in these tables are sorted by accuracy and show that the complex-

ity imposed by turbulence, effects accuracy more than attenuation does. This table shows

that AlexNet and SqueezeNet struggled the most. DenseNet appears to provide the best

performance with the free-space data sets.

Table 4.6 shows an example of the amount of time it took to train each architecture.

The table shows the number of training epochs as well as the amount of time it took to train

for the specified number of epochs. The training loop had a maximum number of training

epochs, but was allowed to terminate early when a specific level of accuracy (99.9%) had been

achieved on the validation set. Most of the architectures trained quickly in terms of epochs
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and overall time. AlexNet and SqueezeNet took the longest amount of time to train while

yielding the poorest results. DenseNet and the ResNet family required the fewest training

epochs and took a comparable amount of time to train.

4.5.3 Inter-Set Performance Analysis

Section 4.5.2 shows that most of the architectures perform well when tested with the

holdout test sets from the original data set. In real environments the trained classifiers

are likely to be presented with images that have been distorted by larger turbulence and

attenuation than what was present in the training set. The tests in this section explore the

architectures and how well they perform when presented with images outside of their training

set. For example, how well does an architecture trained with the AL0 data set classify

attenuated images from the AL4, AL8, and AL12 holdout sets?

For this analysis, both underwater and free-space data sets are evaluated. For the un-

derwater sets, the AL0 and the AL0-4 trained architectures are used. These architectures

are evaluated against the AL0, AL4, AL8, and AL12 holdout sets. For the free-space data

sets, the TB5 and TB5-10 trained architectures are used. These architectures are evaluated

with the TB5, TB10, and TB15 holdout sets. In both cases, the results of interest are with

data sets that fall outside the training sets. In the following tables, the results are ordered

by ascending accuracies.

Table 4.7 contains results from architectures that have been trained with the AL0 data

set. The four columns contain accuracies from AL0, AL4, AL8, and AL12 holdout sets. In

looking at the performance of the AL4 test set, DenseNet and Wide ResNet give the best

accuracies at 63.7% and 81.2% respectively.

In evaluating architectures trained with the combined AL0 and AL4 data sets, Table 4.8

shows results ordered according to ascending results for the AL8 data set. DenseNet and

ShuffleNet take the lead spots with 80.0% and 84.4% respectively.

Tables 4.9 and 4.10 have similarly organized results for free-space data sets. ResNet and

DenseNet (97.8% and 97.9%) have the best results for TB10 in Table 4.9, while DenseNet

and ResNet (81.8% and 84.8%) take the lead spots in Table 4.10.
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Table 4.5: Architecture baseline performance with free-space sets.

TB5 TB10 TB15 Avg
SqueezeNet 96.9 90.4 88.3 91.9

AlexNet 99.7 99.6 83.0 94.1
ShuffleNet 99.9 99.9 100.0 99.9
MobileNet 99.8 100.0 100.0 99.9

Wide ResNet 99.8 100.0 100.0 99.9
ResNet 99.9 100.0 100.0 99.9

ResNeXt 99.9 100.0 100.0 99.9
DenseNet 100.0 100.0 100.0 100.0

Table 4.6: Training epochs and time for the TB5 free-space set.

Architecture Epochs Time (sec)
AlexNet 80 636

DenseNet 5 96
MobileNet 20 130

ResNet 6 110
ResNeXt 7 78

ShuffleNet 21 80
SqueezeNet 80 344

Wide ResNet 6 90

Table 4.7: Underwater AL0 inter-set test. Architectures trained on ALO and
tested against all AL data sets.

AL0 AL4 AL8 AL12
MobileNet 100.0 29.4 3.1 3.7
AlexNet 99.4 44.4 18.8 10.6

SqueezeNet 97.5 45.0 23.7 7.5
ShuffleNet 100.0 45.6 16.3 6.9

ResNet 100.0 46.9 13.8 15.6
ResNeXt 100.0 51.2 13.1 12.5
DenseNet 100.0 63.7 18.1 5.0

Wide ResNet 100.0 81.2 7.5 5.6
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Table 4.8: Underwater AL0-4 inter-set test. Architectures trained on ALO-4 and
tested against all AL data sets.

AL0 AL4 AL8 AL12
ResNet 100.0 99.4 46.3 19.4
AlexNet 99.4 100.0 58.8 13.1

MobileNet 100.0 100.0 61.3 13.1
Wide ResNet 99.4 100.0 70.0 23.1
SqueezeNet 100.0 99.4 71.3 17.5
ResNeXt 100.0 99.4 79.4 36.9
DenseNet 100.0 100.0 80.0 40.0
ShuffleNet 100.0 100.0 84.4 45.0

Table 4.9: Free-space TB5 inter-set test. Architectures trained on TB5 and tested
against all TB data sets.

TB5 TB10 TB15
SqueezeNet 98.6 83.9 62.4

AlexNet 97.4 86.4 58.0
ShuffleNet 97.6 92.2 75.9
MobileNet 98.8 93.9 77.0

Wide ResNet 98.6 94.5 82.2
ResNeXt 98.9 95.4 81.4
ResNet 98.8 97.8 87.8

DenseNet 99.6 97.9 85.5

Table 4.10: Free-space TB5-10 inter-set test. Architectures trained on TB5-10 and
tested against all TB data sets.

TB5 TB10 TB15
AlexNet 97.4 82.0 59.8

SqueezeNet 98.6 83.2 61.1
MobileNet 97.6 91.3 74.0

Wide ResNet 98.6 95.1 75.2
ShuffleNet 99.0 93.5 78.5
ResNeXt 97.9 94.1 79.3
DenseNet 99.0 96.7 81.8
ResNet 98.9 96.9 84.8
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4.6 Discussion

For this effort, three lightweight architectures (MobileNet, ShuffleNet, and SqueezeNet)

and five heavyweight architectures (AlexNet, DenseNet, ResNet, ResNeXt, and Wide ResNet)

are evaluated.

From Section 4.5.2, the free-space data set provides interesting insight in performance

differences. Table 4.5 shows DenseNet performing the best, however the ResNet family of

architectures follow very closely in achieved accuracies.

The main conclusion from the underwater results in Table 4.4 is to avoid the SqueezeNet

architecture. All other architectures seem to give comparable performance.

Another observation in comparing Tables 4.4 and 4.5 is the difference in accuracies be-

tween the two. The underwater data sets have great performance, even with the high signal-

to-noise ratio. Why do the CNNs perform so well with the attenuated versus the turbulent

images? The answer is likely due to the fact that, the overall shape of the attenuated images

remains constant, where turbulence causes displacement of the image patterns. The CNNs

have to work harder to learn many potential patterns that belong to a specific OAM set. In

addition, the turbulence patterns have twice the number of image patterns to learn.

Transitioning to out-of-training-set testing provides even further insight into architecture

robustness. Tables 4.7, 4.8, 4.9, and 4.10 have one consistent top performer, DenseNet.

DenseNet took about the same amount of time and number of epochs to train as the ResNet

family. It was also smaller than the ResNet family of architectures by at least a factor of 3.

So, it was a consistent top performer, while also having significantly fewer parameters than

many of the close performing architectures.

For a resource constrained system that can not support the size of DenseNet or other

heavy-weights, what is the next best performer? The options come down to ShuffleNet,

SqueezeNet, and MobileNet. Interestingly, in reviewing tables from Sections 4.5.2 and 4.5.3,

ShuffleNet consistently performed as well as or better than the other architectures most of

the time. Additionally, it is considerably smaller than the other two architectures.

4.7 Summary and Conclusions
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This paper set out to evaluate OAM transmitted turbulent, free-space and attenuated,

underwater images. The specific purpose is to identify, which, if any, of the state-of-the-art

CNN architectures performs best in the two environments.

Steps were taken, using a parameter search, to identify the best performing optimizer and

near-ideal learning rates for training the architectures. Four underwater and three free-space

data sets were then used to train each architecture.

With the trained architectures, test sets were presented from each data set to evaluate

their classification accuracy. For the baseline testing (no out of set images), architectures with

the underwater set appeared to perform at a level comparable to each other. The lone outlier

was SqueezeNet. The turbulent free-space images, however, presented a challenge sufficient

to start separating out varying levels of performance. DenseNet was the best performer from

this set of tests.

Advancing to the inter-set testing, additional performance differences emerged. These

tests took architectures trained with a data set, such as AL0, and then that trained archi-

tecture was presented holdout data from more attenuated data sets. This was repeated with

the turbulent, free-space data as well.

In the end, it was found that DenseNet consistently performed the best, or as a close

second, all the time. This finding is interesting considering its parameter count is at least a

factor of three less than the other architectures that performed well. This result implies that

DenseNet generalizes well during training.

For systems that are more resource constrained, three architectures with lower param-

eter count were tested: ShuffleNet, SqueezeNet, and MobileNet. In evaluating the results,

ShuffleNet consistently performed better than or was close to the performance of the other

two. It is also has considerably fewer parameters than the others. For a resource constrained

system, ShuffleNet would be the clear choice due to its low parameter count and competitive

accuracy.

For the turbulent, free-space data sets DenseNet was trained for 5 epochs with the

learning rate set to 4.2e − 5, while ShuffleNet was trained for 21 epochs with the learning

rate set to 3.1e − 4. Their respective batch sizes were 32 and 128. Nadam was used as the
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optimizer used in training all architectures.

For the attenuated underwater data sets, DenseNet was trained for 5 epochs with a

learning rate of 4.2e− 5 and a batch size of 32. ShuffleNet was trained for 21 epochs with the

learning rate set to 4.2e− 4 with batch size of 128.

This work provides an in-depth comparison of state-of-the-art, deep convolutional neural

networks in turbulent free-space and attenuated underwater environments. It shows which

architectures provide the most robust performance for degraded conditions outside of the

training set. For low memory systems, ShuffleNet performed the best. For higher capacity

systems, DenseNet consistently performed the best. Training parameters for both archi-

tectures are provided. Future work includes evaluating architectures in environments that

include both attenuation and turbulence. Also, it may be that a better architecture, with

fewer parameters still exists that is best suited for OAM images. A network architecture

search could be used to identify a better architecture for classifying OAM images.
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CHAPTER 5

Conclusions

OAM optical communications provide the potential to alleviating bandwidth and commu-

nication infrastructure issues. While there is appreciable potential with this technology, there

are serious hurdles to overcome before its adoption can be realized. Two fundamental issues

arise through signal degradation from the environment, namely turbulence and attenuation.

While turbulence in the free-space domain is being actively investigated, little has been

explored in underwater environments. The research in this dissertation embarks on that path

and looks at how attenuation impacts communication performance.

The research started in Chapter 2, by providing a physics-based justification for extend-

ing optimal transport from free-space turbulence to an underwater attenuated environment.

Previous research established the use of machine learning and optimal transport in the free-

space domain. This paper justified the use of the optimal transport in the underwater domain.

It then extended machine learning approaches from the free-space domain to underwater and

established a baseline of performance.

Chapter 3 explored the use of SMART Models. A SMART model is a model that captures

the underlying physics behind attenuation. SMART Models were trained to create a mapping

of images, or intensity patterns, from a high SNR environment to a low SNR environment. The

SMART Model was then inserted in the training pipeline for a CNN-based classifier. The

SMART Model randomly selects images and applies an attenuation based transformation

to the image. This allows retraining of the architecture using only one data set and simply

updating the SMART Model to reflect the problem physics. This approach provides a powerful

way to update models when deployed systems are exposed to environments that degrade their

performance. Using the SMART Model allows capture of the new conditions, update to the

SMART Model, and then retraining of the classifier with the updated model in the pipeline.

Two types of models were explored.
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A baseline of performance was established by training an architecture without the SMART

Model in the training loop. That architecture was then tested against attenuated data that

wasn’t part of its training set. With that baseline established, two SMART Models were

created and used while re-training architectures. The CNN-based SMART Model showed

great improvement over the baseline. However, its performance was superseded by the R-

CDT-based SMART Model. Interestingly the R-CDT-based SMART Model required only

one example from each class. The R-CDT-based SMART Model provides a viable way to

retrain architectures as the number of samples from the attenuated environment is negligible

compared to standard CNN training set sizes.

Chapter 4 provided and in-depth exploration of the state of the art CNNs in both free-

space and underwater OAM communications. Because grabbing the latest and greatest CNN

doesn’t guarantee the best performance, an evaluation of some of the top performing archi-

tectures was done, and then compared against the baseline architectures from previous works.

This study concluded that the best architecture for both environments with their associated

environmental problems was DenseNet. The study also looked at architectures with lighter

memory footprints for robotic or embedded scenarios. It was shown that ShuffleNet provided

the best performance from this class of architectures.

Moving forward, there are many questions that need to be addressed. One is exploration

of the impact of changing distances between source and receivers. As images spread out over

distance, what is the impact of patterns shifting in size? There are hardware considerations

in keeping sources and receivers aligned for platforms that move in between communications.

Studies of the best OAM modes to use, multiplexed modes that are most robust to turbulence

and attenuation. Ideal information encoding schemes. These are just a few of the areas that

still need to be addressed for OAM to become a viable means of communication.
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APPENDIX A

OAM Hardware and Data Set Details

A.1 OAM Overview

When light is generated by a laser, the light leaving the laser is collimated. In three

dimensional space, these synchronized waves appear as plane waves. In addition to forward

momentum light can also have angular momentum. In the 1930’s Beth showed mechanical

torque could be induced by light (1). In the 1990s, Allen et al. combined the idea of an

optical vortex with OAM (2) and brought the idea back into the spotlight. If pushing on

a door is analogous to the standard forward momentum, or radiation pressure, then orbital

angular momentum could be thought of as twisting the door knob. This rotational force of the

electric and magnetic fields is thought of propagating along the z-axis of a three dimensional

coordinate system. The plane perpendicular to the z-axis is referred to as the transverse

plane.

Orbital angular momentum can be represented in three dimensions by a helical shape

rotating about the z-axis. A topical charge or mode number is defined for the wavefront that

describes the number of rotations undergone in one wavelength. In the literature the topical

charge is interchangeably referenced as l or m. The higher the topical charge, the faster the

rotation around the z-axis.

When projected onto a surface, the wavefronts form rings whose diameter is related to

the charge number m. The charge number can take on both positive and negative values and

indicates the direction of rotation about the z-axis. Due to the twisting, the light waves at

the center can cancel each other out, resulting in a dark spot, and is called an optical vortex

or an optical void.

Another characteristic of OAM beams of different mode numbers is that they’re com-

pletely orthogonal (2). Consequently, OAM beams can be multiplexed together, as shown in

Figure A.1. Here the laser beam is generated and then split into four different beams. Each
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beam is incident on a phase plate where an OAM mode is imparted. The resulting OAM

beams are multiplexed back together using the beam splitters and passed through a tank.

The resulting beam is then bounced off of a few mirrors and incident on the camera.

Fig. A.1: Examples of an underwater OAM beam bench top setup.

The multiplexed beams can take on complex patterns. An example of what the patterns

may look like is shown in Figure A.2. These images were generated in the lab at the Naval

Research Laboratory and were used in this research.

Fig. A.2: Examples of OAM patterns from an underwater OAM set. OAM images sampled
from set produced from mode numbers [1, 4, -6, -8].
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One characteristic of OAM patterns that may be observed, is how the patterns themselves

may rotate in the transverse plane. If minor vibrations in the z-direction are present when

recording light incident on the camera focal plane, then the pattern may appear to rotate.

This is due to the helical path traveled by the electric field. If a transverse plane is moved

back and forth along the z-axis and we’re effectively taking a cross-sectional slice of that field,

then one can conceptually envision why the image will rotate. Figure A.3 shows an example

of several OAM patterns at different points in time and variation in their intensity patterns.

Fig. A.3: Examples of variations in OAM intensity patterns. Each row contains a single OAM
mode combination. Each column is a different sample of the OAM mode in time.

OAM Mode Number Origin

A common reference in OAM literature is the ubiquitous reference to a phase number

expressed as exp(ilφ), where l referred to as a mode number. It turns out that not all lasers

exhibit OAM properties. The beams that do, include Bessel (3), Bessel-Gauss (4), Laguerre-

Gauss (2), Hermite-Gauss (5), Ince-Gauss (6), and Mathieu-Gauss (7).

A Gaussian beam is a special electromagnetic field whose EM field amplitudes are given

by a Gaussian function. For most lasers, this means that the intended output displayed on

a surface is a high intensity region in the middle with the intensity falling off as a Gaussian

curve at the radius.

The Laguerre-Gaussian beam that sparked OAM interest, is a complete set of solutions to
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the paraxial Helmholtz equation. It is derived by writing the paraxial Helmholtz equation in

cylindrical coordinates (ρ, φ, z), where ρ is the radius, φ is the angle in the plane perpendicular

to the z axis, and z is the axis of propagation. The Laguerre-Gauss beam is described by

Equation A.1

Ul,m(ρ, φ, z) = Al,m[ W0
W (z) ]( ρ

W (z))lLlm( 2ρ2

W 2(z))exp(− ρ2

W 2(z))

×exp[−jkz − jk ρ2

2R(z) ∓ jlφ+ j(l + 2m+ 1)ζ(z)],
(A.1)

where Al,m is a constant, W0 is the waist radius, W (z) is the beam width, Llm represents

generalized Laguerre polynomials, R(z) is the radius of curvature for the wavefront at position

z, and ζ is phase delay of the wavefront.

The OAM dependency is given by exp(∓j`φ), which controls whether the EM wave

experiences a helical wavefront (|`| > 0) or a plane wave (` = 0). The sign determines

whether the twist is right or left.

The OAM dependency just described is a term that is frequently cited in papers. Back-

ground on where the value comes from is often assumed prior knowledge.

A.1 Orbital Angular Momentum - Imparting Methods and Characteristics

Imparting OAM modes to beams can currently be accomplished in a variety of ways.

Generally a beam is incident on a surface with special characteristics. Surfaces that can

impart OAM include computer-generated holograms (8), spiral phase plates (9), or cylindrical

lenses (10). These devices effectively receive a plane wave at one surface and induce a twist

such that an OAM wave comes out. Each OAM device is specially designed to impart a

specific mode number and a specific direction to the incident beam. Practically, the number

of modes is limited by physical constraints such as aperture size. The OAM beams for this

research were generated using spiral phase plates to impart OAM modes.

As a side note, OAM isn’t unique to only light waves. Since the original paper, these

principles have been applied to sound waves (11), Doppler shifts (12), and radio waves (13).

A nice summary of current work is here (14).
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A.2 OAM Hardware Setup

All of the OAM data used for research in this dissertation was generated at the Naval

Research Laboratory. The following information is available for anyone interested in creating

a hardware setup like theirs for generating similar images. All of the data sets were created

following a similar format and is detailed in Section A.3.

The laser source used in these measurements was a diode pumped solid state laser (Bright

Solutions ONDA 532) that operates at 532 nm and produces 5 nS pulses with 300 uJ/pulse.

The laser is externally triggered at 1 kHz using a waveform generator (Agilent 33600A) and

the output beam was expanded to fill the aperture of the static vortex phase plates. The

output beam was then split into four equal intensity beams and each beam was normally

incident on one of the four phase plates of different charge [1, 4, -6, -8], imprinting a different

OAM phase on each beam.

The phase plates were fabricated at Clemson University. The beams were then coherently

recombined using beam splitters and steered through a 1.2 m water tank. The transmitted

intensity patterns were captured by a high performance, fast-frame-rate camera (Photron

FASTCAM SA-Z) that was externally triggered at the rate of 1000 frames per second, syn-

chronized with the laser pulses.

One thousand images from each of the 16 permutations of the OAM beam set were

captured for the analysis. The 16 OAM mode patterns were manually selected by blocking

one or more of the beams. The camera spatial resolution is 1024x1024 pixels with a 20 m

pitch and a bit depth of 12 bits.

Five um polyamid seeding particles (Dantec Dynamics) are added to the water in the

tank to introduce attenuation into the beam path. The beam attenuation is continuously

monitored by measuring the transmission of a 15 mW, 532 nm CW laser beam propagating

through the tank parallel to the OAM beam. Small pumps agitate the water and insure that

the particles remain in suspension and homogeneously distributed.

In previous work (15) ferroelectric spatial light modulators (SLMs) were used for gen-

erating different phase patterns. Since SLMs are relatively slow, specially fabricated phase

plates were created to improve throughput rates.
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A.3 OAM Data Set Details

Plastic beads with, five micron diameter, were added to water to attenuate signal inten-

sity. The beads are designed scatter light and the amount of scattering is proportional to

the number of beads present. A total of four data sets were made, one each for attenuation

lengths 0, 4, 8, and 12. These data sets are referred to as AL0, AL4, AL8, AL12 in the

research chapters. Signal attenuation lengths are described by Equation A.2, where i is the

attenuated signal, i0 is the original signal strength, and AL is the level of attenuation.

i = i0e
−AL (A.2)

Figure A.4 shows an example of six classes at each of the attenuation lengths. In OAM

pattern 0001, the AL0 image shows a distinct pattern with a high SNR. As the attenuation

length increases, the noise floor of the camera moves up and the SNR drops. At AL12 we see

the noise overcoming the lower intensity portions of the OAM pattern.

For training and testing, the AL sets were split into 70%/15%/15% for training, testing,

and validation, respectively. Test sets were used only once, at the end to produce final

results. Images from the camera were originally 1024x1024 grayscale images. The borders

were cropped to remove pixels without intensity information and were downsampled to a final

dimension of 128x128.



103

Fig. A.4: Examples of attenuation in underwater environment. Each column contains patterns
for one OAM mode and each row represents a specific level of attenuation. The first row
contains attenuation level 0. The subsequent rows show progressively lower SNR levels.
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APPENDIX B

Optics Background

The motivation for the following derivations, is to follow the path in understanding how

light (electromagnetic waves) are able to go from a plane wave to following a helical path. Also,

much of the current literature on orbital angular momentum cite the expression ‘exp(i`θ)’.

The path to this important expression is also illuminated.

In the following sections Stokes’ Theorem will be reviewed and its impact on Maxwell’s

equations relating to electrical and magnetic fields will also be highlighted. With relationships

from Maxwell’s equations established, we’ll explore Laguerre-Gaussian (LG) beams and the

special properties that they possess. Finally, the relationship of LG beams and orbital angular

momentum will be shown.

B.1 Stokes’ Theorem

In vector calculus, one might be interested in measuring the the amount of a substance

that flows through a cross-sectional region of interest. The quantity of substance (the mea-

sured quantity being defined as flux) might be a fluid such as water through a pipe or the

amount of electricity flowing through a wire.

Across some surface ‘S’ there may be a closed path ‘C’ through which we are interested

in evaluating the flux of some vector field ‘F’. The integral describing this measurement is

shown in Equation B.1.

∫
C
Fds (B.1)

Stoke’s Theorom states that we can divide the enclosed path into two paths, take their

integrals, add them together, and have the same total flux as if we’d just used the single
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integral. This is represented by Equation B.2.

∫
C
Fds =

∑
i

∫
Ci

Fds (B.2)

If we continue taking smaller and smaller areas, we eventually wind up with a point in

the area with a vector coming out of it. When the area has been reduced to a point, the local

value is referred to as the curl and is denoted as 5× F . As we’re primarily concerned with

the normal component of the vector at the specified point, the equation at that location is

shown in Equation B.3.

(5× F ) · n = lim
ai to∞

( 1
ai

∫
Ci

Fds) (B.3)

To get the integral of all curls over the surface of interest we get Equation B.4.

∫
S
5× Fda (B.4)

But, from Equation B.1 we have that the sums of all curls is nothing more than:

∫
C
Fds (B.5)

Stokes’ Theorem says that Equations B.4 and B.5 are equal to each other. Hence we

arrive a the Equation B.6:

∫
C
Fds =

∫
S
5× Fda (B.6)

This equation allows us to either compute a line integral over a surface boundary or the

curl of a vector field. The two calculations are equivalent to each other and whichever is most

convenient may be used.

Stoke’s Theorem and Maxwell’s Equations

Maxwell’s equations play an important role in understanding electromagnetic propaga-

tion. Stoke’s theorem helps to make some important generalizations in working with these
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equations.

From Ampere’s Law we have that

∫
loop

Bds = µ0Iencl. (B.7)

This equation tells us that the magnetic flux over a defined loop is proportional to

the current through a similarly closed region (like a wire) times the vacuum permeability.

Permeability expresses how easy it is for the magnetic flux to move through a medium.

Stokes’ Theorem can be applied to this equation to relate the magnetic flux over the loop

to the local curl such that:

∫
loop

Bds =
∫
surface

5×Bda. (B.8)

Ampere’s law also states that:

∫
loop

Bds = µ0Iencl = µ0

∫
surface

Jda. (B.9)

Bringing the µ0 inside the integral and setting equations equal to each other we get:

∫
surface

5×Bda =
∫
surface

µ0Jda. (B.10)

From these integrals we can deduce that the integral contents can be set equal to each

other:

5×B = µ0J. (B.11)

Another way this expression can be presented is:

5×B = µ0J + µ0ε0
d

dt
E. (B.12)
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A similar set of steps can be taken to deduce Faraday’s law from:

∫
loop

Eds = − d

dt

∫
S
Bda. (B.13)

to:

5× E = − d

dt
B. (B.14)

This shows the relationship between changing magnetic flux and electric fields.

B.2 Deriving the wave equations from Maxwell’s equations

Working with Maxwell’s equations a little more we make the simplification of an electro-

magnetic wave propagating through a vacuum and charge free space. With these settings we

have:

5 · E = 0 (B.15)

5× E = − d

dt
B. (B.16)

5 ·B = 0 (B.17)

5×B = µ0J + µ0ε0
d

dt
E. (B.18)

If we take the curl of Equations B.16 and B.18 we deduce:

5× (5× E) = 5× (−dB
dt

) = − d

dt
(5×B) = −µ0ε0

d2E

dt2
. (B.19)

5× (5×B) = 5× (µ0ε0
dE

dt
) = µ0ε0

d

dt
(5× E) = −µ0ε0

d2B

dt2
. (B.20)
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Given the vector identities:

5× (5× V ) = 5(5 · V )−52V (B.21)

52V = 5 · (5V ) (B.22)

The electrical field, E, and the magnetic field, B, can be substituted in for the vector

fields, V of Equation B.21. Given the relationship between Equations B.19 and B.21 we can

substitute the vector and values of B.19 into B.21 to get:

5× (5× V ) = 5(5 · V )−52V (B.23)

5× (5×E) = 5(5 ·E)−52E (B.24)

We know that 5 · E is 0 by Equation B.15. Substituting into B.24 we get:

5× (5×E) = −52 E (B.25)

Substituting Equation B.19 into B.25 we get:

−µ0ε0
d2E

dt2
= −52 E (B.26)

Given that the speed of light is c0 = 1√
µ0ε0

and rearranging the sides in Equation B.26

we arrive at:

1
c02

d2E

dt2
−52E = 0 (B.27)
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Following a similar process of substitutions we can arrive at a similar wave equation for

magnetic fields:

1
c02

d2B

dt2
−52B = 0 (B.28)

The general form of these equations can be written as:

1
c02

d2U

dt2
−52U = 0 (B.29)

This becomes important in various areas of optics. The fact that we can represent the

electric field and magnetic field as wave equations become important to use other computation

tools to analyze electric fields.

B.3 Monochromatic waves

Euler’s identity forms a relationship between wave equations and their complex repre-

sentation and is expressed in Equation B.30.

Aej(ωt+θ) = A cos (ωt+ θ) + jA sin (ωt+ θ) (B.30)

In Euler’s identity, the cos portion of the wave is the ’real’ component while the sin is the

’imaginary’ component. When converting between the wave and exponential representations

of the wave, it’s common to just use the real portion of the wave representation.

A monochromatic wave can be described with the function:

u(r, t) = a(r) cos [2πνt+ ϕ(r)] (B.31)

Assuming that this expression represents the real portion of the wave in Euler’s identity,

we can represent it in the complex form in Equation B.32. Equation B.32 describes the wave

completely, containing imaginary and real components, whereas B.31 provides only the real
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component of the wave representation.

U(r, t) = a(r)ejϕ(r)ej2πνt (B.32)

Equation B.32 can be further modified by noting that the amplitude and the first expo-

nential value are both functions of r. If we let U(r) = a(r)ejϕ(r), then B.32 becomes:

U(r, t) = U(r)ej2πνt (B.33)

The motivation for this becomes apparent when considering the Helmholtz equation.

Helmholtz Equation

Hermann von Helmholtz was a German physician and physicist. Among his contributions

to science was the derivation of the Helmholtz equation. This equation is important because

it simplifies analysis of physical systems that have spatial and time varying components. It

provides a convenient way of separating the spatial and time varying pieces to be individually

analyzed. The spatial component of the Helmholtz equation is defined as:

52f = λ2f (B.34)

Here, 52 is the Laplacian operator. f is the eigenfunction which, in the case for waves,

represents amplitude. λ is the eigenvalue which, again for the case of waves, is the wave

number.

To get to this equation, we can simplify Equation B.33 to U(r, t) = U(r)ej2πνt =

A(r)T (t) = AT .

Given the wave equation from B.29

1
c02

d2U

dt2
−52U = 0 (B.35)
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we can substitute the simplified Values for U(r, t) giving:

1
c02

d2AT

dt2
−52AT = 0 (B.36)

and separating to different sides yields:

1
c02

d2AT

dt2
= 52AT (B.37)

Moving the spatial components right and temporal left leaves:

1
c02T

d2T

dt2
= 5

2A

A
(B.38)

For Equation B.38 to be true, both sides have to be equal to a constant. If the constant

is defined as −k2 and we take the right side of the equation then we get:

52A

A
= −k2 (B.39)

and finally by multiplying both sides by A and bringing to the same side:

52A+ k2A = 0 (B.40)

which is the Helmholtz equation for the spatial component, or amplitude, of the wave

equation.

k is defined as the wave number and is defined as k = 2πν
c = ω

c .

This separation is important as it allows the analysis of the amplitude of a wave without

having to deal with the time varying complications from the other elements of the wave

equation. A plane wave with a complex amplitude is one of the solutions to the Helmholtz

equation.

Paraxial Helmholtz Equation

Within an optical system, an optical axis a central frame of reference that is parallel to

rays of light. In real systems, rays are often not exactly parallel, but if they’re nearly parallel,
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they’re defined as paraxial rays. This definition holds if the angle from the optical axis are

small such that cos (θ) ≈ 1 and sin (θ) ≈ θ.

A paraxial wave is a wavefront whose normals are paraxial rays. A paraxial wave can be

described with

U(r) = A(r)e−jkz (B.41)

Following a similar procedure with deriving the Helmholtz equation, we can use the

paraxial wave with the wave equation to arrive at:

52
TA− j2k

dA

dz
= 0 (B.42)

where k = 2π
λ .

The Gaussian beam is one of the useful solutions to the paraxial Helmholtz equation.

Laguerre-Gaussian Beams

A Gaussian beam is a special electromagnetic field whose amplitudes are given by a

Gaussian function. For most lasers, this means that the intended output displayed on a

surface is a high intensity region in the middle with the intensity falling off as a Gaussian

curve at the radius.

The Gaussian beam can be represented by the equation:

U(r) = A0[ W0
W (z) ]exp(− ρ2

W 2(z))exp[−jkz − jk ρ2

2R(z) + jζ(z)] (B.43)

Laguerre-Gaussian Beams

A Laguerre-Gaussian beam is another complete set of solutions to the paraxial Helmholtz

equation. It is derived by writing the paraxial Helmholtz equation in cylindrical coordinates.

As before, we’re primarily interested in the complex amplitude. There are two dependencies

in the equation, namely l,m, that represent azimuthal and radial indices.
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Assuming that the LG wave travels in the z direction, the LG equation is given as:

Ul,m(ρ, φ, z) = Al,m[ W0
W (z) ]( ρ

W (z))lLlm( 2ρ2

W 2(z))exp(− ρ2

W 2(z))

×exp[−jkz − jk ρ2

2R(z) ∓ jlφ+ j(l + 2m+ 1)ζ(z)],
(B.44)

where ρ is the amplitude of the wave, φ is the angle in the plane perpendicular to the z

axis, and z is the distance along the z axis.

Orbital Angular Momentum

The Gaussian and LG beams have the same dependency on ρ and z. One of the notable

difference between the two equations, however, is the additional phase factor, e∓jlφ, present

in the LG equation. This factor is proportional to the azimuthal phase angle. When l is zero,

the wavefront is composed of planewaves. When |l| > 0 the wavefront assumes a helical shape

and is referred to as a screw dislocation. The sign on l determines whether the wavefront

twists left or right. l also determines the number of helices present. For l = 2, for example,

there are two intertwined yet distinct helices present.
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APPENDIX C

Primer on Optimal Transport

C.1 Overview

Optimal transport is a study of how to most efficiently transport mass from one location

to another. This area of study has implications in nearly any area where the matter of interest

can be represented as mass. This includes water, material, and light. The idea of optimal

transport was originally posed in 1781 by Gaspard Monge (16), who was interested in the

optimal way of redistributing mass (soil). The problem remained unresolved until the 1980s

and 90s when some breakthroughs in mathematics were made.

A Gaussian beam is monochromatic electromagnetic field whose amplitude profiles take

the shape of a Gaussian curve. Gaussian beams are useful, because they are solutions to the

wave equation for an electromagnetic field. In following sections we will see that solutions to

the wave equation can also be solved using optimal transport. Optimal transport is useful

because the field provides a variety of tools for solving a class of problems that can be

formulated in a specific way.

Gaussian beams are also useful because they can adopt a helical shape after passing

through an SLM or phase plate. This is important for the topic of OAM communications.

Image applications have long suffered from distortions due to spatial and temporal fluctu-

ations caused by physical properties in the atmosphere. The path of optical signals is altered

due to changes in the index of refraction, which is caused by temperature, humidity, etc. If

we consider an image intensity pattern that has just been formed by combining OAM modes

together, we have an interesting and unique light distribution. As this pattern propagates

through space, it is susceptible to disruptions. We can think of the pattern as regions of

densely packed photons. When turbulence arises in the path of the field, there is an interface

that is created from the current position of the photon density distributions to the other side

of the turbulent surface. That interface acts as many lenses placed next to each other and can
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cause displacement of photons of light. As turbulence may not be the same everywhere, there

is no guarantee that photons will be equally effected. When there are multiple interfaces that

are passed through, these photons can move from one intensity distribution to another within

the landscape of the image.

From this perspective one can imagine that at the receiver, due to turbulence or other

environmental factors, the original photon density distributions can be significantly altered.

In order to model the process that is undergone for an image propagating through space, we

need a methodology that is able to encapsulate or capture the changes.

To provide a useful solution to this problem we see a confluence from three primary fields.

We have the fundamental description of electromagnetic waves propagating in free space

provided by Maxwell’s equations. These provide mathematical models of how light moves

and can be used to derive useful relationships that can be exploited later on. Second, is the

field of optimal transport. Originally optimal transport was used to study how to efficiently

and optimally distribute physical material from one location to another. The mathematics

behind optimal transport have greatly matured in the past 50-60 years. More recently it has

proven very useful in providing a framework for understanding and modeling the movement

of light mass from one location to another. The final piece comes from computational tools

that allow working with these theories in a reasonably useful time frame.

The end objective is to develop an efficient process that is based in the mathematical

properties of electric fields and is justified by the underlying physics of propagation. In the

end, a model is created that is able to take a ‘clean’ image, a ‘corrupted’ image, and is able

to create a transform between the two. The final transform is efficient to compute and is

invertible. In this context ‘invertible’ means once we have the transform, we can get a clean

image and operate on it such that we get a corrupted image. We can also operate on a

corrupted image and get a clean image on the output.

In the following sections we’ll discuss and derive Maxwell’s equations C.2, provide an

overview of optimal transport C.3, and finally touch on one of the computational tools C.4.

These sections aren’t meant to provide full derivations, but rather highlight some of the

important concepts, key takeaways, and show how they come together to provide a cohesive
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foundation for work done in this dissertation. Full derivations can be found in the referenced

literature.

C.2 Maxwell’s Equations

Maxwell’s equations can be manipulated in a variety of ways. For this conversation, there

is a particular goal in mind. In order to form useful extensions into optimal transport, the

equations need to be expressed in a specific format. Optimal transport, as will be discussed

in Section C.3, is very good at working with problems that can be expressed in a certain

mathematical format. Here, we take the steps to express electric fields in that way.

Maxwell’s equations and meanings aren’t necessarily obvious at first glance. The idea

of an area of a field may not be easily definable so the curl operator (5) is used as a way

to reduce a field down to a single point. The principle idea being that the integral of a

field through a region (flux) will tell us how much of the EM field has passed through the

region. We can divide the region into two parts, take the integral of both, and add the results

together. If we continually take smaller and smaller integrals, we wind up with a point source

of the field. That point source is the curl.

Maxwell’s equations describe fundamental properties of electric fields, magnetic fields

and their relationship to each other. The equations for electromagnetic radiation are

5×E(x) = iωµ0H(x) (C.1)

5×H(x) = −iωε0ε(x)E(x) (C.2)

µ0 5 ·H(x) = 0 (C.3)

µ0 5 ·(ε(x)E(x)) = 0 (C.4)

where the electric field intensity vector, E(x), is in (V/m), ω is the angular frequency,
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µ0 is free-space permeability, H(x) is a magnetic field intensity vector in (A/m), ε0 is the

vacuum dielectric constant, and ε(x) is the relative complex permittivity of the atmosphere.

The vector x specifies 3-dimensional space where x ≡ (x1, x2, z) and z is the direction that the

EM wave propagates. EM radiation is assumed to be monochromatic and its time dependence

is governed by angular frequency ω.

If we take the curl of Equation C.1 and substitute in Equations (C.2-C.4) we get the

wave equation

52E(x) +5(E(x) · 5ε(x)
ε(x) ) + k2

0ε(x)E(x) = 0. (C.5)

where k0 = √ε0µ0ω = 1/λ0 is the wavenumber and λ0 is the wavelength.

To arrive at equations in the form needed for optimal transport, the vector electric field

needs to be replaced with the scalar electric field

E(x) = Ψ(~x, z)eik0z (C.6)

where ~x = (x1, x2) is the plane transverse to the direction of propagation. Substituting

Equation C.6 into C.5 yields an equation that is similar to the Schrodinger equation. The

Madelung transformation (17) can then be used on the resulting equation to generate the

following equations

∂ρ(~x, z)
∂z

+5X · (ρ(~x, z)v(~x, z)) = 0 (C.7)

∂ρ(~x, z)
∂z

+ (v(~x, z) · 5X)v(~x, z) = 25 xγ(η(~x, z)) (C.8)

∂φ(~x, z)
∂z

+ 1
2(5Xφ(~x, z))2 = 2γ(η(~x, z)) (C.9)

Equations C.7, C.8, and C.9 describe electric field propagation through the atmosphere

in terms of intensity and phase. z refers to the distance in the direction of propagation where

0 would be the starting point and Z would be the location at the imager. ρ(~x, z) is the image
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intensity, φ(~x, z) is the phase fluctuations from turbulence, 5x· is the transverse plane phase

gradient, v is the velocity of the ‘mass’ being moved, η(~x, z) is perturbations from turbulence.

(As a side note, for the application of OAM images, the starting point would be the ‘clean’

image and the final location would be the ‘corrupted’ image.)

The physical interpretation of these equations is very interesting. ρ(~x, 0) is the intensity

at the starting point. ρ(~x, Z) is the image intensities at the imager. At each progressive

location in z, image intensities can be moved according to the transverse phase gradient

5Xφ(~x, z).

While computational models exist for working with equations C.5, C.7-C.9 ((18; 19; 20;

21)), they are not practical because of their computational cost, incorrect assumptions, or

errors. Consequently we want a more efficient way of working with them.

As previously stated, we’re interested in formulating the electric field in a form that

optimal transport can work with. As optimal transport was originally developed around the

idea of moving mass, Maxwell’s equations have been transformed to express fields in terms of

mass (intensity), velocity, and location. Equations C.7-C.9 are in the form of continuity and

momentum equations from the field of fluid mechanics. This formulation allows the electric

field propagation to be analyzed as a transport problem.

C.3 Optimal Transport

Optimal transport was initially a study of how to most efficiently move mass from one

distribution to another. The theory of optimal transport was originally studied and developed

by Gaspard Monge in 1781 (22) and the principles were later matured with efforts from Leonid

Kantorovich in 1948 (23) and Yann Brenier (24). Brenier’s contributions lead to connections

in partial differential equations, fluid mechanics, geometry, probability theory, and functional

analysis. All of the research in optimal transport has resulted in a body of literature and

mathematical tools for solving a class of problems that are characterized in a similar way.

Recently, the principles of optimal transport have been applied to image data (25; 26).

Optimal transport has also been formally derived for electric fields in (27; 28), and they

additionally formulate ties to images being transmitted through a turbulent medium.
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As an overview for the following conversation, we’ll start with the end in mind. Given a

set of clean images and corrupted/distorted images, we want to find a framework that allows

us to easily learn a mapping between the two. Benefits of this approach include a model

that is invertible, computationally efficient, and requires a single pair of images. Rather than

reproducing the derivation, the high level procedure will be discussed, with an inclusion of

the primary equations of interest to motivate the topic.

Optimal transport seeks to minimize the amount of energy required to move mass from

one location to another. To do this, the kinetic energy required to move (v(~x, z)) a mass

(ρ( ~x0, z)) over distance z = [0, Z] and over time interval t = [0, T ] can be expressed in terms

of action. In continuum mechanics this is defined mathematically (29) as

A ≡ Z
∫
R2

∫ Z

0
ρ( ~x0, z)|v(~x, z)|2dzd~x. (C.10)

The principle of action minimization has been used for deriving equations of motion for

a variety of systems. (30) derived Equations 3.7-3.9 given that the condition that intensity is

conserved, which is the case for the application of OAM communications of interest. (28; 31)

showed that only one solution exists that minimizes Equation C.10 from a source image

intensity distribution, ρ(~x, 0), and destination image intensity distribution, ρ(~x, Z).

What is needed to map ρ(~x, 0) to ρ(~x, Z) is a modification to Equation C.10. The piece

needed to do this is in the form of a Lagrangian flow map, which takes coordinates from time

z = 0 and maps them to time z = Z. Mathematically this is expressed as ~xz ≡ f(~x, z). This

can be rewritten as

det(Jf ( ~x0, z))ρ( ~xz, z) = ρ( ~x0, z) (C.11)

where Jf ( ~x0, z) is the Jacobian of f( ~x0, z). Equation C.11 delivers the final piece needed

for that transformation. It relates a transformation from an initial image to a final image.

(32) and (33) show that if we plug Equation C.11 into C.10 we get

dp(0, Z)2 =
∫
R2
||f( ~x0, Z)− ~x0||2ρ( ~x0, 0)d~x. (C.12)
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which produces a unique flow map between the two images.

With the physics based justification of a mapping between two images in place, all that

is needed is an efficient algorithm to minimize Equation C.12.

C.4 Radon-Cumulative Distribution Transform

The final piece necessary to using optimal transport for the electric field, is a numerical

method that will solve Equation C.12. (25) reviewed a variety of approaches for doing this

and then proposed an efficient way to perform the mapping. They introduce the Radon-

cumulative distribution transform (R-CDT), which is shown to be highly efficient. Code for

performing the R-CDT is provided by (26).

The details behind the R-CDT are beyond the scope of this work. More in-depth infor-

mation can be found in (26; 34).

The R-CDT is used in a number of different ways in this research. It has been very

valuable as an efficient tool to provide the mapping between two images and is based on the

physics-based properties of optimal transport.
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APPENDIX D

Review of State of the Art CNNs

Research presented in this dissertation engages in a search of the best performing architec-

ture for OAM free-space communications under turbulence, and underwater communications

under attenuation. Part of the objective is to see if there is an architecture that provides the

most robust performance in both mediums under non-ideal conditions.

Here, a discussion of some of the current state of the art CNNs is provided. They each

have unique architectures and those unique characteristics are covered.

D.1 AlexNet

AlexNet(35) won the ImageNet competition in 2012 by a significant margin (15.3% error

vs. 26.2% error). They used 8 layers: 5 convolution layers and 3 fully connected. They

employed max pooling layers, ReLU activation functions, dropout, and normalization as

shown in Figure D.1. This architecture has 62.3 million parameters.

Fig. D.1: AlexNet architecture.

D.2 VGGNet

VGG(36) was the first runner-up for the ImageNet competition in 2014. To date, this was

the deepest architecture to win ImageNet at 19 levels. While deeper levels were attempted, it
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was found that accuracy reached an inflection point and the accuracy of the network dropped.

It’s believed that this is due to vanishing gradients.

VGG was significant because they used stacked 3x3 kernels. Two layers of 3x3 filters

is equivalent to a 5x5 kernel. Three layers of 3x3 filters is equivalent to 7x7, but with a

lower parameter count. Consequently, they were able to gain the value of larger filters from

stacked 3x3 kernels. This effectively dropped parameter count while also dropping training

time. They also reduced the size of the fully connected layer.

A family of architectures (such as ResNet and its variants) are derived from the VGG

architecture. Figure D.2 shows how the feature map size reduced through the layers of the

network and the number of kernels increased.

Fig. D.2: VGG architecture.

D.3 Inception/GoogleNet

GoogLeNet/Inception-V1 was the winner for the 2014 ImageNet competition. The Incep-

tion model was heavily engineered and employed the idea that kernels of different dimensions

could be simultaneously applied to a feature map to extract different information from it.
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Figure D.3 shows a diagram of two fundamental Inception Modules. They used max pool-

ing, 1x1, 3x3, and 5x5 kernels in the original implementation (37). In subsequent work they

found that the 5x5 kernel could be replaced with stacked 3x3 kernels (38) . This replacement

generated the same information, but was cheaper computationally and reduced the number

of trainable features.

Fig. D.3: Inception Modules.

The Inception model was very effective in the ImageNet competition. The overall ar-

chitecture is shown in Figure D.4. It has 22 layers, 27 including the pooling layers and uses

global average pooling. An interesting contribution from this architecture was the use of

auxiliary classifiers (in purple). These helped reduce vanishing gradients during training by

applying softmax to two of the inception modules and doing a weighted sum to the real loss.

Fig. D.4: Inception architecture.

D.4 ResNet

The ResNet (39) architecture is based on the VGG idea of stacking convolutions. The
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key contribution of their architecture was the idea of an identity connection. They contend

that a key reason VGG failed with deeper networks, was that of accuracy saturation. Due

to the depth of the network, the gradients vanished and the network was unable to properly

train. By adding identity connections, they were able to propagate information to the deeper

layers of the network, and they were able to continue training. They won the ImageNet

comptetition in 2015.

By implementing this idea, they were able to create an architecture, identical in composi-

tion to the VGGNet, with the sole addition of the identity connection. This new architecture

was able to achieve greater accuracy than VGG. Additionally, they were able to create archi-

tectures much deeper in which performance continued to improve with the depth. Figure D.5

shows the VGG network, a VGG style network of depth 34, and a 34-layer residual network.

The identity connection is shown in Figure D.6. The identity connection is a simple

connection from the input of the block, which is summed with the output. While the identity

connection added a trivial amount of additional computation, the results were significant.

Identity connections have allowed much deeper, trainable architectures to be created.

D.5 XCeption

The XCeption (40) network was a modification of the Inception network. They took the

exact layout of the Inception model, and replaced the 3x3 kernels with depthwise separable

convolutions. By using the exact model, with this sole adjustment they were able to achieve

a slight improvement in performance, but significant improvement in training speed and

reduction in parameter count.

A depthwise convolution performs a convolution on each layer, the results of which are

mapped to an output feature map. In a standard convolution, the output feature map will

have only one layer for an input of depth M. However, in a depthwise convolution, the output

has the same depth as the input.

A pointwise convolution is a 1x1 kernel that is convolved with a feature map set that

yields a single layered output for an input set of depth M.
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Fig. D.5: ResNet architecture.
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Fig. D.6: Identity connection.

XCeption was able to beat ResNet results in ImageNet by including identity connections

in its architecture.

D.6 ResNeXt

ResNeXt (41) is an extension of the ResNet architecture. They postulated that gains

could be made through widening the architecture. They introduced the idea of cardinality,

where N branches were introduced and each branch contained a small number of kernels as

shown in Figure D.7.

Fig. D.7: ResNeXt block connection.

D.7 DenseNet

DenseNets (42) are inspired by identity connections. The difference from ResNet and

its variants, lies in how it propagates information forward. Rather than using an identity
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connection, it feeds the output from each convolution into the input of all future convolutions.

This process is illustrated in Figure D.8.

Fig. D.8: Dense block connection.

Consequently, the deeper we go into the convolution series, the higher the number of

feature maps. This feature map density helps to alleviate vanishing gradients, encourages

feature reuse, and substantially reduces the number of features needed. They showed state

of the art performance on several data sets, including ImageNet.
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APPENDIX E

Primer on Neural Networks

E.1 History

Early work in neuroscience suggested that neurons fire and propagate their signals on to

other neurons. From this idea came the advent of artificial neural networks (ANN). ANNs are

patterned loosely off of these initial theories. That is, a neuron receives signals from external

sources, they are combined together, and an output signal is generated and passed on.

In 1943 Warren McCulloch and Walter Pitts published a paper on how they thought

neurons in the brain might work (43). This was the seminal work that neural networks

sprung from. Their approach took N inputs multiplied by N weights, summed them together,

and then passed them through a threshold function to produce a binary value. Their model

was unable to learn.

In 1958, Frank Rosenblatt published the idea of a perceptron and presented the first

model that could learn weights (44). In 1961 Widrow and his students (45) developed Mada-

line Rule 1 that allowed learning in neural networks.

During these early years neural nets fell out of favor due to hype and an influential book

written by Marvin Minsky in 1969 (46). In this book he wrote a compelling argument against

the practicality of neural networks due to the prohibitive amount of time required to train

them. His work put a chill on research in neural networks for some 12 years.

In 1971 Paul Werdos developed backpropagation for multilayer neural networks (47) in

his dissertation. Backpropagation provides a way to calculate the error on the output of the

neural network, and then adjust weights in the neural network to minimize that error. This

method will find a local minima, but isn’t guaranteed to find the global minima.

In 1982 John Hopfield helped reignite some interest in neural networks in academic

circles through his paper (48). He effectively created a recurrent neural network. Werdos’

work remained a hidden gem until discovered later by Romelhart, Hinton and Williams in
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1986 (45). They brought these ideas into the mainstream with an article published in Nature.

This article discussed backpropagation with gradient descent as a way to train neurons.

In 1969 LeCunn was able to show neural networks could identify handwritten digits from

a handwritten data set provided by the US Postal Service (49). This work used convolutional

neural networks. Today’s basic feed forward ANNs are composed of perceptrons that have the

following components: a set of inputs, weights, a summing function, an activation function,

and an output. An example of this is shown in Figure E.1, which has all of these elements.

Many perceptrons are often combined together in layers like Figure E.7. The outputs from

one layer of perceptrons will form either the inputs to the next layer of perceptrons or produce

the outputs from the neural network. A neural network is considered to be ‘deep’if it has

more more than an input layer and an output layer. Middle layers are often called hidden

layers. The perceptron will be discussed in greater detail shortly.

E.2 Basic Building Blocks

E.1 Perceptrons

Fully connected neural networks are built using perceptrons and are generally trained

with stochastic gradient descent or one of its variants.

Perceptrons are fundamental building blocks of fully connected neural networks. Figure

E.1 shows the structure of a perceptron. On the left are the perceptron inputs. The top

input, ‘1’, is a bias term. ‘X1’ through ‘Xm’ are other inputs. These inputs might be from a

data source, such as an image, or from a previous layer. ‘w1’ through ‘w1’ are weights applied

to each input. These products are then summed together and passed through an activation

function. The result is then passed on as the output.

The basic perceptron is able to represent a linear equation of arbitrary length. For

example, Equation E.1 represents a line and can be represented with a very basic, one input

perceptron with a bias as shown in Figure E.2.

y = mx+ b (E.1)
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Fig. E.1: Basic perceptron.

Fig. E.2: Perceptron that can learn a linear equation.



131

In order to represent more complex equations, a nonlinear element is added to the per-

ceptron. Figure E.3 shows a perceptron with an activation function right before the output.

A common activation function is a sigmoid, which has the shape shown in Figure E.4. The

sigmoid function maps the linear equation to an output bounded between zero and one.

Fig. E.3: Basic perceptron.

Fig. E.4: Graph and equation of a sigmoid function. (Describe pieces of diagram.)

An important characteristic for any function that serves as an activation function is

that it be easily differentiable. This characteristic is critical for gradient descent to work.

Additional commonly used activation functions include sigmoid, tanh, and ReLU.

E.2 Gradient Descent

Cost functions enable us to measure the error between expected and actual results. A
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common cost function is the sum of squared errors (SSE). SSE is shown in Equation E.2. In

this equation, ‘i’ represents the ith sample, where ‘output’ is a prediction generated by the

perceptron and ‘target’is the actual value. For example, then network predicted output might

be ‘1.0’when the actual value was supposed to be ‘1.5’. The output value produced by the

network is a function of the weights, ω. Thus the SSE, J, is a function of ω.

J(ω) = 1
2
∑
i

(target(i) − output(i))2 (E.2)

In order to minimize SSE, we can use gradient descent (GD). Gradient descent will allow

the weights to be adjusted such that the error is minimized. Figure E.5 shows a convex cost

function representing a single weight. The x-axis represents values assigned to the weight,

while the y-axis represents the cost function in Equation E.2.

Fig. E.5: Gradient descent.

On the right side of the graph, the gradient for the weight is positive, but we need the

weight to drop in value. Consequently, our weight update needs to move in the opposite

direction of the gradient. This case also holds if the gradient is on the left side of the graph.

Here the gradient is negative, but the weight needs to be increased in order to reach the

minimum.

In gradient descent we’re interested in adjusting each weight such that the cost function

is minimized. To accomplish this, we determine the contribution of each weight to the value
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of the cost function. This is conveniently accomplished using partial derivatives as shown in

Equation E.3. This equation calculates the delta by which to adjust a specific weight.

∆ωj = −η dJ
dωj

(E.3)

ωj := ωj + ∆ωj (E.4)

In Equation E.3, ωj is the jth weight in a perceptron. ∆ωj is the amount by which we

want to update ωj. η is the learning rate and can take on values between 0.0 and 1.0. dJ
dωi

is

the partial derivative of the cost function with respect to the weight (ωi).

When the weight is actually updated, Equation E.4 is used. dωj is updated to its previous

value plus the delta calculated in Equation E.3.

To solve Equation E.3, we substitute the equation for SSE (E.2) for ‘J’. The derivation

for the partial derivative of SSE with respect to (ωi) is as follows:

dJ

dωj
= d

dωj

1
2
∑
i

(target(i) − output(i))2

= 1
m

m∑
i

d

dωj
(target(i) − output(i))2

= 1
m

m∑
i

2(target(i) − output(i)) d

dωj
(target(i) − output(i))

= 1
m

m∑
i

(target(i) − output(i)) d

dωj
(target(i) −

∑
i

ωjxj
(i))

= 2
m

m∑
i

(target(i) − output(i))

dJ

dωj
=

m∑
i

(target(i) − output(i))(−xj
(i)) (E.5)
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Applying this result back to the learning rate we get:

∆ωj = −η dJ
dωj

= −η
∑
i

(target(i) − output(i))(−xj
(i)) = η

∑
i

(xj
(i)) (E.6)

This method is called ”batch” gradient descent because it can take a batch of inputs and

their corresponding outputs, indexed by i, and update the weights based on results from the

entire batch, rather than one sample at a time.

E.3 Learning Rates

An important consideration when performing GD is selecting the learning rate. If the

learning rate is too high, we can wind up with wildly swinging values resulting in divergence,

as illustrated in Figure E.6. Conversely, if the learning rate is too small it can take a very

long time for the weights to converge on their optimal values. Picking good values for the

learning rate can reduce training time significantly.

Fig. E.6: Divergence in weights when learning rates are too high.

E.4 Weight Initialization

Another important consideration is how weights are initialized. If weights are initialized

to the same value, then when they are updated with GD, they will track each other. A common
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way to initialize weights is to use random uniform distribution. This breaks symmetry between

weights. Simple random uniform initialization works well for shallow networks, but for deep

networks, there are better initialization methods.

Xavier initialization, (50), is frequently used to initialize weights of deep networks. This

method creates a distribution of weights based for a learnable parameter, based on the number

of neurons feeding into the node, plus the number of neurons it feeds into. Equation (E.7)

shows this relationship where nin is the number of inputs coming into the neuron and nout

is the number of neuron outputs to the next layer. ‘Var’ is the variance to be applied to the

neuron weights, ‘W’, when initialized.

V ar(W ) = 2
nin + nout

(E.7)

(51) introduce the PReLU and added to the process for initializing weights. These

methods were found to improve the classification performance of the networks and surpassed

human-level performance.

E.5 Normalization

Another common operation is batch normalization. Batch normalization is the process

where inputs to a layer are normalized using Equation E.8, where x̄ is calculated from all

inputs to neurons in the current layer for a single instance.

x̂ = x+mean(x̄)
std(x̄) (E.8)

The purpose of normalization is to help with vanishing and exploding gradients (52).

Batch normalization is used in various portions of this work.

E.3 Fully Connected, Deep Networks

Perceptrons provide the building block to fully connected networks (FCN). Figure E.7

shows a simple example of a FCN. It has three inputs, 5 perceptrons in the input layer, and

two perceptrons in the output layer. The network is considered to be ‘fully connected’ because
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each perceptron receives inputs from all sources in the previous layer. Each perceptron also

sources its output to all perceptrons in the subsequent layer.

Fig. E.7: Basic fully connected network.

A ”deep” neural network is simply a FCN that has additional layers between the in-

put layer and the output layer. Any layer between the input layer and the output layer is

considered to be ‘hidden’. For example Figure E.8 is a deep network with one hidden layer.

Generally the input and output dimensions are dictated and fixed by the application. For

example the MNIST data set has ten numbers or classes (0-9) and will, therefore, require ten

outputs from the network. However, the number of perceptrons in a hidden layer and the

number of hidden layers in a FCN may vary according to the design of the network architect.

It is rarely known beforehand what configuration is best for a particular application. In

practice, a variety of architectures are tried and the best one is selected for use.
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Fig. E.8: Basic fully connected ’deep’ network.

E.4 Convolutional Neural Networks

In the context of neural networks, a convolution is a mathematical operation applied to

data presented to the network. Convolutional neural networks are often used with imagery.

Given the 6x6 ’image’, 2x2 filter, and 5x5 feature map shown in Figure E.9, we will explore

how convolutions work. Filters are also referred to as kernels in the literature.

Fig. E.9: Basic convolution of filter with image.

To convolve the filter with the image, the filter slides over the top of the image. The

overlapping area is called the receptive field. Starting in the upper left-hand corner, the filter

is moved left to right and then dropped to the next set of rows. The values of the overlapping

cells are multiplied together and then the products are summed. The result is placed in the
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feature map and the filter is moved to the right.

Generally, there is more than just one layer that is being evaluated. For example, images

consist of three channels (red, green, and blue). When a 3x3x3 (width, height, depth) filter is

convolved with the image, the output feature map has only one layer. In this example, three

3x3 filters are convolved, one with each layer. This results in 27 numbers that are all added

together. The summed value is passed through an activation function and then placed in the

new feature map.

The number of columns that the filter slides after each operation is called the horizontal

stride. When the filter reaches the right boundary of the image it is moved back to the far

left and then drops the number of rows specified by the vertical stride.

As may be noted from Figure E.9, the final matrix in this example will be 3x3 and thus

smaller than the original. The reduction in size corresponds to the filter size, stride, and

padding. For a stride of one, the horizontal and vertical dimensions will be reduced to one.

If the filter size was 3x3, the final image dimensions would be reduced by 2. In Equation

E.9 Iw is the input image width, Fw is the filter width, Sw is the horizontal stride, Pw is the

number of padded columns added, and Ow is the feature map width. The following is true

for calculating both the output width and height:

Ow = (Iw − Fw + 2 ∗ Pw)
Sw + 1 (E.9)

If it is desired to keep the feature map and input dimensions equal, then padding has to

be added to the input matrix. Figure E.10 shows and example of the original image with zero

padding added to retain the original dimensions. This 2x2 filter in this figure has a horizontal

stride of 1. The calculation for each convolution is shown and the results are placed in the

feature map.

E.1 Filters

Each individual filter is tuned to pull out specific features in an image. For example,

filters may identify horizontal and vertical features in an image. Generally, deeper layers are

able to identify more complex patterns and objects within an image.
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Fig. E.10: Basic convolution of filter with padded image.

Multiple filters can be used in each layer of a convolutional network. In Figure E.10, one

filter was applied to an image and generated one feature map. If two filters were used on the

image, then two maps would be generated, and so on.

E.2 Pooling

There are a wide variety of ways to modify ConvNet architectures. Two common opera-

tions are pooling and normalization.

Pooling is a process that helps reduce feature map dimensions in the ConvNet. Two

common types of pooling include max pooling and average pooling. Max pooling takes the

maximum value in a defined region, while average pooling averages over all values in a region.

Generally, when pooling is applied, a 2x2 or 3x3 shape to slide over a feature map. The

pooling shape is moved over the image slice and the maximum or average pixel value of the

area within the shape is passed to a receptive field. Figure E.11 provides an example of this

operation.

In Figure E.11, max pooling is shown. Max pooling takes the maximum value from each

yellow and white blocked section, and writes that value out to the feature map. Different

pooling sizes can be selected, but in practice pooling sizes are generally 2x2 or 3x3.

E.3 Fully Connected Layer

On the output of the last convolutional layer, there is usually a fully connected network.

More than one fully connected layer may be present. FCLs have the role of identifying
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Fig. E.11: Basic pooling of a convolution layer.

patterns and predicting results. FCLs can take on any number of layers and any number of

perceptrons in each layer.
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Abstract— Signal attenuation, resulting in low signal to noise 
ratio (SNR), in underwater optical communications (UWOC) is a 
problem that degrades classification performance.  We develop 
and contrast several novel ways to create machine learning (ML) 
and optimal transport-based attenuation models and insert these 
models in a convolutional neural network (CNN) classification 
training pipeline.  We show that including these ML-based 
attenuation models in the CNN classifier training, significantly 
improves classification performance.   

Keywords— optimal transport; machine learning models; 
underwater OAM communications;  

I. INTRODUCTION  

OAM communications have great potential in free space or 
underwater environments to increase communication 
bandwidth by multiplexing modes together. The idea behind 
such schemes is to equate the intensity patterns associated with 
each mode to a particular bit pattern. Messages can then be 
sent between the source (laser) and receiver (imager) provided 
that one can successfully recognize the image that was sent.   

While strides have been made toward developing a free 
space OAM communication link, a number of issues remain in 
the underwater domain. For example, the signal to noise ratio 
(SNR) between a laser source and an imager can change due to 
water turbidity.  

In this presentation, we discuss a classifier capable of 
recognizing an attenuated, noisy OAM mode. The classifier is 
based on prior work [1]. The prior work applied deep learning 
to a collection of OAM images as a way to learn multiplexed 
OAM modes in a free space channel corrupted by turbulence 
(but no attenuation). They used a custom shallow CNN as well 
as AlexNet for OAM mode classification. Here we extend this 
work to a signal attenuated in the underwater domain, and use 
the shallow CNN they presented as a baseline architecture. We 
are specifically interested in creating machine learning-based 
models of the attenuated signals, and using those models 
during training of a classifier, with the intent of improving 
classifier robustness in a low SNR environment.. 

II. APPROACH 

Four sets of underwater OAM data were collected at 
varying attenuation lengths (0, 4, 8, and 12).  Attenuation 
length was calculated according to i=i0e^(-AL), where AL is 
the attenuation length, i is attenuation intensity, and i0 is the 
initial intensity.  The data sets were divided into training, 
validation, and test sets (70%, 15%, 15%). 

Two machine learning-based models were created, one 
using a CNN and the other using optimal transport [2] and the 
Radon-cumulative distribution transform (R-CDT).  As the 
models are trained, they are able to use all information in the 
AL0-AL12 training sets. 

After the ML-based models are trained, they are inserted 
into the classifier training pipeline.  The CNN-based classifier 
is trained using only data from the AL0 training set. 

In evaluating classifier performance, test data from each of 
the attenuation length sets (AL0-AL12) is presented to the 
classifier, and their results are aggregated and compared.   

III. RESULTS 

A CNN classifier is trained without a ML-based attenuation 
model in the training pipeline.  For AL0 it has great results.  As 
the SNR drops with AL4-AL12, accuracy drops sharply.  With 
the CNN ML-model in the loop, results improve significantly.  
The most compelling results are, however, with the optimal 
transport/R-CDT-based model.   

IV. REFERENCES 

[1] Timothy Doster and Abbie T. Watnik. Measuring 
multiplexed OAM modes with convolutional neural networks. 
In Lasers Congress 2016.  doi: 10.1364/LSC.2016.LTh3B.2. 

[2] J. M. Nichols, T. H. Emerson, L. Cattell, S. Park, A. 
Kanaev, F. Bucholtz, A. Watnik, T. Doster, and G. K. Rohde. 
Transport-based model for turbulence-corrupted imagery.  doi: 
10.1364/AO.57.004524. 
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Turbulence and attenuation are signal degrading factors that can severely hinder free-space and under-
water OAM optical pattern demultiplexing. A variety of state-of-the-art convolutional neural network
architectures are explored to identify which, if any, provide optimal performance under these non-ideal
environmental conditions. Hyperparameter searches are performed on the architectures to ensure that
near-ideal settings are used for training. Architectures are compared in various scenarios and the best
performing, with their settings, are provided. We show that from the current state-of-the-art architectures,
DenseNet outperforms all others when memory is not a constraint. When memory footprint is a factor,
ShuffleNet is shown to performed the best.
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1. INTRODUCTION

In 2017, Doster and Watnik explored the use of machine learning
(ML) to demultiplex OAM beam patterns for free-space optical
communications [1]. Since then, ML techniques have been ap-
plied in a variety of ways to improve communication accuracy
and bit error rates (BER) in free-space turbulent conditions [2, 3].

In OAM communications, turbulence and attenuation can
cause significant degradation of signal integrity and lowering
of the signal to noise ratio (SNR) [4, 5]. These disturbances can
displace spatial patterns, thereby causing crosstalk, or scatter
the signals such that only a portion of the original intensity
distribution makes it to the receiver.

One of the unresolved questions from Ref. [1] is with re-
gards to which, if any, of the state-of-the-art convolutional neu-
ral network (CNN) architectures performs best for OAM pattern
demultiplexing in signal degrading environments. This paper
explores turbulent free-space and attenuated underwater OAM
optical communications with the state-of-the-art deep convolu-
tional neural networks to answer this question.

Several data sets under varying environmental conditions are
used for this effort. In free-space, three sets of data are collected
at different simulated turbulence levels. In water, four sets of
data are collected at various attenuation levels. All tests are
performed on specific combinations of these data sets.

Contributions of this paper include a comparison of recent,
state-of-the-art CNN architecture in both turbulent free-space
and attenuated underwater OAM communications. Baseline
performance, inter-set performance, and parameter count are
analyzed. At the end of the analysis, the best performing archi-
tectures, along with their parameters, are provided.

2. BACKGROUND AND PRIOR ART

In the following sections OAM communications, hyperparame-
ter tuning, and an overview of some of the current state-of-the-
art CNNs are covered.

A. Orbital Angular Momentum
Orbital angular momentum (OAM) in electric fields was discov-
ered by Allen et al. [6]. They found that under certain conditions,
the Laguerre-Gauss beam could transition from a standard plane
wave propagation to a helical path. Consequently, the Gaussian-
shaped distribution frequently exhibited by lasers becomes a
doughnut shaped pattern when an OAM mode is adopted. The
OAM azimuthal dependency is expressed by exp(i�φ), where
� is the topological charge or mode number. When � = 0, the
wavefront is a plane. When |�| > 0, the wavefront travels in a
helical path, where the direction of rotation about the z-axis is
controlled by the sign on �. The radial distance from the z-axis
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