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Abstract 14 

Temperate fruit trees require chilling for rest completion, followed by sufficient heat 15 

accumulation for onset of growth and bloom. The application of phenological models to 16 

predict bloom dates has been widely used in orchard management. Examples of such 17 

application include selecting adapted cultivars less prone to early bloom, predicting needs 18 

for frost protection, and preventing damage from late spring freezes. This study merged the 19 

Utah (chill) and ASYMCUR (forcing) phenological models by combining chill units and 20 

heat units (measured in growing degree hours) to predict bloom dates of tart cherries (Prunus 21 

cerasus L.) in Utah and Michigan, the top producing states of the USA. It was found that the 22 

modified Utah model improves the estimation of chill units compared to the original one, 23 

while the original Utah model may still be suitable for use in the colder winter of Michigan 24 

(with its later bloom dates than Utah). The combined models were applied with the 25 

temperature predicted by the Climate Forecast System v2 (CFSv2) model. The prediction 26 

was applied twice a month, starting from 1 February to 1 May. The Utah-ASYMCUR model 27 

using the forecasted temperature from CFSv2 exhibits subseasonal performance in 28 

predicting the bloom dates for 6 weeks in advance. The prediction can offer growers a way 29 

to mitigate extreme climate anomalies.  30 

Keywords: chill models, heat models, bloom dates, tart cherries, CFSv2, subseasonal 31 

prediction  32 
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1. Introduction 33 

Temperate fruit crops are most susceptible to cold temperature damage during the 34 

period near full bloom. For tart cherry (Prunus cerasus L.) near bloom, the critical 35 

temperatures at which 10% and 90% of fruiting buds are killed are -2.2oC and -4.4oC 36 

respectively (Longstroth 2007). In 2012, the Michigan tart cherry industry, typically the 37 

largest in the United States, experienced catastrophic crop losses (USDA 2017; Fig. 1a) due 38 

to a combination of an anomalously warm spring that brought on early bloom followed by 39 

consecutive days of freezing temperatures during bloom (Ault et al. 2013; Rill 2016). In 40 

Utah, the second largest tart cherry producing state, damage from freeze events near bloom 41 

is also common, as was the case in May 2002 (Fig. 1b; NASS 2002). Much of the commercial 42 

fruit production in Utah is situated in high elevation mountain valleys (1,400 to 1,525 m 43 

elevation) with a semi-arid climate, with wide temperature fluctuations in late winter and 44 

early spring. These temperature fluctuations can result in crop failure when they occur during 45 

bloom.    46 

Understanding the frequency of and predicting crop losses due to spring frost is an 47 

important step in sustaining the fruit industry under the warming climate. Observational 48 

analysis shows that the onset of spring across western North America has advanced at a rate 49 

ranging from 1.5 to 3 days per decade (Schwartz et al. 2006, 2013), accompanied by a large 50 

yearly fluctuation up to 30 days (Ault et al. 2013).  Springtime warming is accompanied by 51 

a pronounced declining trend in the snowpack and earlier snowmelt in the western US 52 

(Cayan et al. 2001; Dettinger et al. 2004; Hamlet et al. 2005; McCabe and Wolock 2007) 53 

including Utah (Gillies et al. 2012). These phenomena have accelerated bloom of many tree 54 
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species (i.e., Ault et al. 2013; Ellwood et al. 2013) while increasing the risk of spring freeze 55 

damage (Augspurger 2013). Subsequently, developing an extended forecast for spring 56 

climate and full bloom date of crops is a necessary next step to help mitigate risk of damage 57 

in the fruit industry. To the authors’ knowledge, there is no subseasonal prediction (2 weeks 58 

to 2 months lead time) of bloom dates for tart cherries in Utah and Michigan. 59 

The objective of this study is to test the feasibility of subseasonal prediction by 60 

combining common phenological models for tart cherries with climate model forecasts.  We 61 

combined two different models, i.e. the Utah-chill model and the ASYMCUR-forcing 62 

model, which were developed based on peach and cherry trees in Utah and Michigan 63 

(Richardson et al. 1974; Anderson et al. 1986). These models have been widely tested for a 64 

variety of fruit and forest trees (Cesaraccio et al. 2004; Melo-Abreu et al. 2004; Pérez et al. 65 

2008; Luedeling and Brown 2011; Miranda et al. 2013; Maulión et al. 2014). In our analysis, 66 

we evaluate the prediction of bloom dates using a subseasonal climate prediction model. 67 

Phenological and meteorological datasets were obtained from sites in Michigan and Utah, 68 

representing each state’s most important tart cherry growing region. The details of these 69 

models and the data used are introduced in section 2. Section 3 provides the results and 70 

discussion in the two parts: section 3.1 presents the modeling and validation analysis results, 71 

and section 3.2 presents the subseasonal forecast results. Discussion and conclusion are 72 

given in section 4 and 5, respectively. 73 

2. Materials and methods 74 

2.1 Bloom date and meteorological data 75 
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Dates of full bloom (BBCH65) of ‘Montmorency’ tart cherries were collected from 76 

a commercial orchard near West Payson, Utah, and from Michigan State University’s 77 

Northwest MI Horticultural Research Center, Traverse City, Michigan (location in Fig. 1c). 78 

The datasets cover the periods of 1983-2014 for Traverse City, Michigan (TC-MI) and 1986-79 

2016 for West Payson, Utah (WP-UT). Temperature data were obtained from automated 80 

weather stations located within the orchards (WP-UT, 40.135oN, -111.820oW, 1404.5 m 81 

a.s.l.; and TC-MI 44.8831oN, -85.6777oW, 247 m a.s.l.) and data stored and managed by the 82 

Utah Climate Center (https://climate.usu.edu) for Utah and by the Enviro-weather 83 

Automated Weather Station Network (https://mawn.geo.msu.edu) for Michigan, 84 

respectively. The Utah data set contains hourly records for 2010-2017, with 7.1% of missing 85 

values, and daily data for 2004-2017, with 0.25% (0.29%) of missing Tmax (Tmin). The 86 

Michigan data set includes both hourly and daily data for 2000-2017, with missing values 87 

for hourly, daily-Tmax and daily-Tmin data at rates of 0.12%, 0.19% and 0.66%, 88 

respectively. Missing values of temperature were estimated by using linear interpolation. 89 

Since phenological models (chill and heat models) require hourly data as inputs, 90 

daily minimum temperature (Tmin) and maximum temperature (Tmax) during 2004-2017 91 

for WP-UT and 2000-2017 for TC-MC were converted to hourly temperature by using two 92 

methods, the triangular approximation (Cortázar-Atauri et al. 2009) and Linvill’s method 93 

(Linvill 1990), as follows:  94 

● Triangular approximation: The method consists of linear interpolation between 95 

Tmax/Tmin of day n [Tmax(n) / Tmin(n)] and Tmin of day n+1 [Tmin(n+1)]. It 96 
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assumes a daylength of 12 hours and calculates hourly temperature of each day n at 97 

time h [T(h,n)] based on Eq.1 and Eq.2: 98 

if h ≤ 12   then   T(h,n) = Tmin(n) + h [(Tmax(n) – Tmin(n))/12]           (1) 99 

if h > 12   then   T(h,n) = Tmax(n) – (h-12) [(Tmax(n) – Tmin(n+1))/12]          (2) 100 

● Linvill’s method: The model development is based on daytime solar cycle and 101 

nighttime cooling curve. Hourly temperature from sunrise to sunset was estimated 102 

using Eq.3; where T(t) is temperature at time t after sunrise and DL is daylength (in 103 

hours). The nighttime hourly temperature was estimated by using Eq.4; where T(t) 104 

is temperature at time t > 1 hour after sunset and Ts is the sunset temperature obtained 105 

from Eq.3. The first method requires only temperature data while the second method 106 

requires datasets of temperature, sunrise-sunset times and day lengths for the 107 

calculation. Sunrise and sunset times are obtained from US Navy website 108 

(htpps://aa.usno.navy.mil/ data/docs/RS_OneDay.php). Daylength is the difference 109 

between sunrise and sunset times. 110 

T(t)  =  (Tmax – Tmin) x sin[(π x t)/(DL + 4)] + Tmin            (3) 111 

T(t)  =  Ts – [(Ts – Tmin)/ ln(24 – DL)] x ln(t)             (4) 112 

We compared these two methods and found Linville’s method to perform more 113 

realistically, concerning daylength variation in each season and location than the hourly data. 114 

Nonetheless, the triangular approximation is a simpler method and was also used. 115 

2.2 Phenological models  116 
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Phenological models predict bud development through two phenological phases: 117 

endodormancy and ecodormancy. The process of endodormancy release (rest completion) 118 

requires chilling temperature for a sufficient period of time and can be predicted by several 119 

chill models (i.e. Bennett 1949; Weinberger 1950; Richardson et al. 1974; Fishman et al. 120 

1987a, b; Erez et al. 1990). After rest completion, warm spring temperatures (heat 121 

accumulation) release ecodormancy and buds resume growth. The heat accumulation can be 122 

estimated by forcing or heat models (i.e. Richardson et al. 1982; Anderson et al. 1986; 123 

Bonhomme 2000). Spring heat accumulation alone has been used to predict bloom dates of 124 

woody trees (Hänninen 1995; Fu et al. 2012) but the prediction is more precise when both 125 

chilling and heat accumulation are included (i.e., Melo-Abreu et al. 2004; Miranda et al. 126 

2013; Maulión et al. 2014; Chuine et al. 2016). Hereafter, combined chill and heat models 127 

were used to predict bloom dates. 128 

The methodological steps for estimating and predicting bloom dates in WP-UT and 129 

TC-MI are described in Figs. 2a and 2b respectively. We used the Utah model to estimate 130 

end date of endodormancy based on chill units (CH; Fig. 3; Richardson et al. 1974) and 131 

sequentially used the asymmetric curvilinear model (ASYMCUR model) to estimate 132 

budburst (Fig. 2 Steps A and B) based on heat units in growing degree hours (GDH) 133 

(Richardson et al. 1982; Anderson et al. 1986). ASYMCUR requires hourly temperature 134 

(TH), with 4 oC as base temperature (TB), 25 oC as optimum temperature (TO) and 36 oC as 135 

the maximum critical temperature (TM), TO-TB represents the amplitude of the growth 136 

curve (A), and 1.0 as a stress factor of the fruit tree (F) for the computation. See the following 137 

two equations (Fig. 2 steps B and C; see Table 1 for abbreviations): 138 
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if TH ≤ TO   then   GDH = F�A/2 [1 + cosine (! + ! (TH-TB)/(TO-TB))]          (5) 139 

if TH > TO   then   GDH = F�A [1 + cosine (!/2 + !/2 (TH-TO)/(TM-TO))]         (6) 140 

The combined Utah-ASYMCUR models (hereafter “Utah-ASYMCUR”) were 141 

validated using the phenoclimatography values distributed by Anderson et al. (1986) and 142 

updated here with the new datasets of weather and bloom dates for the Montmorency tart 143 

cherry.  By using the Utah-ASYMCUR combined model, date of chilling inception of each 144 

year was specified by the maximum negative number of chill unit accumulation. Rest 145 

completion date was the date when chill accumulation reached 954 units (Anderson et al. 146 

1986). Thereafter GDH was calculated. Full bloom date was indicated when 6130 GDH 147 

(Anderson et al. 1986) were accumulated.  148 

The two models were subsequently modified before being used to predict bloom 149 

dates (Fig. 2 Step C) because the original combined model produced a late estimation of 150 

bloom dates. This assumes the models under-estimate either chill or heat unit accumulation.  151 

For the Utah(modified) model (Fig. 3), temperature scales for chill unit contribution were 152 

adjusted based on the temperature curves reported by Anderson et al. (1986), while 153 

temperatures below 0 oC would not accumulate chill units. Likewise, temperatures 14 oC and 154 

above would reduce chill units. This is similar to modifications previously reported for 155 

improved estimates for blueberries and blackberries (Warmund and Krumme 2005; 156 

Warmund 2015). Here we tested incremental changes in the TB used in the ASYMCUR 157 

model (Eq.3) at  0.5 oC increments from 0 oC to 4 oC. We found that  2 oC TB  better predicted 158 

heat accumulation during the early phase in the ASYMCUR curve (compared to 4 oC TB).  159 
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This finding is similar to the correction for heat unit accumulation during the lag phase in a 160 

curvilinear model reported by Black et al. (2008).  161 

Accordingly, we selected the modified combined models (Utah(modified)-ASYMCUR) 162 

to predict bloom dates for WP-UT, whereas the combined original-Utah and modified-163 

ASYMCUR models (Utah-ASYMCUR(Tbase-2)) was used for TC-MI (Fig. 2 Step C).  164 

2.4 Model validation  165 

The performance of phenological models to estimate bloom dates was evaluated by 166 

comparing the observation values (O) with the modeled estimation (P). The indices are 167 

correlation coefficients (r or CORR), root mean square error (RMSE), and model efficiency 168 

(EF; Eq. 7) (Nash and Sutcliffe, 1970). Here, r reflects whether the observations and 169 

predicted values are trending in the same direction while RMSE and EF quantify the bias. 170 

The EF can be from -∞ to +1 with +1 indicating a perfect fit, 0 indicating the predictions are 171 

as accurate as the observed mean (so-called the climatology), while a negative number 172 

indicates that the model prediction is lower than using the observed mean as a predictor. 173 

$% = 1 −	∑ (#!$%!)"#
!$%

∑ (#!$#&''')"#
!$%

		                   (7) 174 

2.3 Climate prediction: CFSv2 Model 175 

Climate hindcast data are outputs from the NCEP Climate Forecast System version 176 

2 (CFSv2) (Saha et al. 2014) referring to “past prediction” made with the past observations 177 

in order to compare the model forecast with the actual events. These past predictions were 178 

generated for different lead times before actual bloom dates, which were then compared with 179 

the observed bloom dates; these are outlined in Fig. 2 Steps D and E. Two CFSv2 datasets 180 
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with a near 1o long. x lat. resolution were used, the CFS Reforecast “High-Priority” subset 181 

(CFS-R; 2000-2011) and the CFSv2 Operational Forecasts (CFS-OF; 2011-2017). Data of 182 

maximum and minimum surface air temperature (Tmax and Tmin) at 2-meter above ground 183 

over the period 2000-2017 were used. We obtained the time series of Tmax and Tmin from 184 

the nearest model grid points of the WP-UT weather station (40.157oN, -111.562oW) and 185 

the TC-MI weather station (44.882oN, -85.312oW).  186 

The bloom date prediction was applied twice each month with forecasts initiated on 187 

1st and 15th of each month. For CFS-R that was available every 5 days, the initialization date 188 

nearest to the start of the month and the nearest date to 15th were used. The CFSv2 model 189 

was run in 6-hour intervals (00, 06, 12, 18Z) per day so each daily CFSv2 ensemble 190 

contained four members. CFSv2-air temperature has a cold bias from the observed dataset 191 

and this cold bias is greater in Tmax than in Tmin (example shown in Fig. S1). Thus, using 192 

this dataset, the highest value of Tmax from all ensemble members was selected to represent 193 

the daily Tmax. To obtain daily Tmin, we averaged all Tmin values from every ensemble 194 

and members. These methods provided low RMSE and mean difference between the CFSv2 195 

and the observed daily Tmax/Tmin.  196 

We evaluated the prediction starting approximately 3 months before the bloom dates 197 

(Fig. 2 Step E): 1 February (CFS0201), 15 February (CFS0215), 1 March (CFS0301), 15 198 

March (CFS0315), 1 April (CFS0401), 15 April (CFS0415), and 1 May (CFS0501). The 199 

average bloom dates (± standard deviation) were designated as 11 May for TC-MI (± 9 days; 200 

standard deviation; 2001-2014)  for TC-MI and 28 April for WP-UT (± 9 days; 2005-2016) 201 

for WP-UT. The actual bloom dates were designated as day-0 (no lead time). Thus, we 202 
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forecasted on seven lead times (day-10, day-26, day-40, day-57, day-71, day-85, and day-203 

99) for TC-MI and six lead times (day-13, 27-day, day-44, day-58, day-72, and day-86) for 204 

WP-UT. The CFSv2 forecast skills (alternatively “model performance” or “predictability”) 205 

were validated by comparing to the day-0 prediction (Fig. 2 Step D).  206 

Daily Tmax and Tmin from CFSv2 forecasts were statistically downscaled through 207 

common bias correction approaches (Hawkins et al. 2013; Navarro-Racines and Tarapues-208 

Montenero 2015), by adjusting the means and variability in each month to be nearest to the 209 

observation. The calculation is described in Eq.8, where TCFSadj is adjusted-CFSv2 210 

temperature,	*()  is the mean of observed temperature (Tob), **+, is mean of original-CFSv2 211 

temperature (TCFS), RMSEob and RMSECFS are root mean square errors of Tob and TCFS. The 212 

period to calculate mean and RMSE are 2004-2017 and 2001-2017 for WP and TC, 213 

respectively. The RMSE is calculated by using Eq.9; where Oi are observed values and Pi 214 

are predicted values derived based on linear regression model. 215 

**+,-./ = *() +	 01,2'(01,2)*+
		× 	(**+,	 −	**+,	)              (8) 216 

/01$ = 	2∑ (#!$%!)"#
!$%

4 		                (9) 217 

3. Results  218 

3.1 Modeled bloom dates 219 

3.1.1 Original models  220 

Performance of the Utah-ASYMCUR model in estimating bloom dates of tart 221 

cherries is displayed in Fig. 4a for TC-MI and Fig. 5a for WP-UT. Panels a1 show the 222 
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comparison among observed dates and estimated dates from observed-hourly temperature 223 

(T), estimated-hourly T from daily T by using Linvill’s method (daily-Linvill) and 224 

Triangular approximation (daily-Triangular). Bias of the estimation from hourly, daily-225 

Linvill and daily-Triangular data is given in panels a2, a3 and a4, respectively. Bars depict 226 

the difference in days between the estimated and observed dates, where positive bars indicate 227 

a late bias and negative bars indicate an early bias. Model biases are also expressed by 228 

correlation coefficients (r), efficiency (EF), and root mean square error (RMSE) that are 229 

given in brackets at the top of each panel. Figs. 4a1 and 5a1 illustrate interannual variability 230 

of the observed bloom dates and show no clear trends during the study periods for either 231 

location.  232 

As shown in Figs. 4a2–a4, the estimated bloom dates for TC-MI agree across the 233 

three datasets and are highly correlated with the observations (r = 0.95). Nonetheless, the 234 

models estimated bloom dates are 8.79, 6.17 and 7.46 days behind with the use of hourly, 235 

daily-Linvill and daily-Triangular datasets, respectively, accompanying large biases with 236 

low EF scores of 0.05, 0.53, and 0.31.  Both models estimated the bloom dates well for WP-237 

UT based on their high correlations with the observations (r = 0.93 to 0.94) (Figs. 5a2-a4).  238 

The biases of using hourly, daily-Linvill and daily-Triangular datasets are 8.28, 4.74, and 239 

5.97 days, respectively, with the EF scores of 0.09, 0.70, and 0.52. The lower EF and higher 240 

RMSE (i.e. larger bias) when using hourly temperature compared to the daily model reflect 241 

the effect of missing hourly observations, particularly in 2011 (7.1%). The significant 242 

correlation coefficients suggest that Utah-ASYMCUR can predict the interannual variation 243 

of bloom dates, albeit with a relatively high bias.  244 
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3.1.2 Modified models 245 

Figure 4b displays the performance of Utah-ASYMCUR(Tbase-2), which modified 246 

ASYMCUR using a base temperature of 2oC, to estimate bloom dates of tart cherries for 247 

TC-MI. The time series of estimated dates from all three datasets fit well with the observed 248 

dates (Fig. 4b1). It is noteworthy that the Utah-ASYMCUR(Tbase-2) significantly improved 249 

the model efficiency (0.89 to 0.93) and correlation coefficients (0.98 to 0.99) (Figs. 4b2-b4). 250 

The estimation is early, yet the bias from using hourly, daily-Linvill and daily-Triangular 251 

data are reduced to 2.31, 2.95, and 2.78 days, respectively.  252 

The estimated bloom dates for WP-UT are noticeably improved in the Utah(modified)-253 

ASYMCUR model (Fig. 5b). The time series of observed and estimated dates from the 254 

hourly, daily-Linvill and daily-Triangular consistently trend together (Fig. 5b1). The EF 255 

scores (0.63, 0.57) and RMSE (5.24, 5.71) are similarly improved for the hourly and daily-256 

Triangular data, compared to those from the original model (Figs. 5b2, 5b4). Note that the 257 

difference between estimated and observed dates remain high in some years (i.e., 2005, 258 

2010, 2011, 2012) according to their high RMSE (4.82-5.71 days) and low EF scores (0.57-259 

0.69) (Figs. 5b2-b4).   260 

Comparison of the modified models (Figs. 4b, 5b) suggests that the daily-Linvill 261 

outperforms the daily-Triangular. Additionally, either the daily-Linvill or daily-Triangular 262 

datasets can substitute for the hourly record, leading support to the widely used daily 263 

temperature substitution in fruit-tree phenological models.  264 

3.2 Climate prediction of bloom dates  265 

3.2.1 Predictability of unadjusted-CFSv2 data 266 
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To predict bloom dates, we ran the Utah(modified)-ASYMCUR model for WP-UT and 267 

Utah-ASYMCUR(Tbase-2) for TC-MI with the unadjusted CFSv2 hindcast temperature (both 268 

daily-Linvill and daily-Triangular datasets). We determined the CFSv2 hindcast skills at 269 

different lead times by using three indicators: correlation coefficient (r), model efficiency 270 

score (EF), and RMSE. These indicator scores were computed between the predicted bloom 271 

dates and the observation. The CFSv2 exhibits a subseasonal hindcast in bloom dates up to 272 

6 weeks for both locations as described by r, EF, and RMSE in Table 2 and Fig. 6. However, 273 

the CFSv2 correlations are persistently high (above 0.75) and significant, exceeding the 99% 274 

confidence level up to the 44-day (40-day) lead time at WP-UT (TC-MI). Overall, these 275 

performance metrics suggest a poor prediction skill beyond 6 weeks.  276 

The CFSv2 forecast skills were validated with the hindcast at 0-day lead time (which 277 

only used the observed temperature) (Fig. 2 Steps D and E). The CFSv2 shows a good 278 

performance in predicting bloom dates up to 13-days in advance at WP-UT and 10-days in 279 

advance at TC-MI (Figs. 6a, 6b), with an error of 5 days for WP-UT and 4 days for TC-MI. 280 

Beyond the 6-week lead time, the CFSv2 forecast skills in terms of r, EF, and RMSE are 281 

consistent with the ability for the CFSv2 to predict the winter air temperature as shown in 282 

Saha et al. (2014). 283 

We present the time series of observed and predicted bloom dates to validate the 284 

CFSv2 predictability using daily-Linvill and daily-Triangular datasets (Fig. 7). Figures 7a1 285 

and 7b1 confirm the high forecast skill of CFSv2 for up to a 2-week lead time for predicted 286 

bloom dates which are comparable to the observed bloom dates and predicted bloom dates 287 

by using observed temperature data. The moderate predictability is presented by Figs. 7a2-288 
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a3 and 7b2-b3 and shows large errors in some years with EF ≥ 0.5. Large deviations between 289 

the predicted bloom dates and observations are frequently observed when lead times are 290 

beyond 6 weeks (Figs. 7a4, 7b4), suggesting poor predictability (EF < 0.5). The prediction 291 

using daily-Linvill shows slightly higher performance than those of daily-Triangular for 292 

WP-UT and vice versa for the TC-MI (Table 2). Nonetheless, the performance of using both 293 

datasets is consistent across lead times (Figs. 7a1-a4, 7b1-b4).  294 

3.2.2 Predictability of adjusted-CFSv2 data 295 

The CFSv2 model provides low resolution (> 50 km). Thus, we needed to adjust 296 

means and variation to be close to the observed data before incorporating into the 297 

phenological models. We tested the prediction by using only the daily-Linvill dataset and 298 

present the results in Table 2 and Fig. 6. The prediction was successfully improved by using 299 

adjusted-CFSv2 data (CFSadj) up to a 40-day lead time for TC-MI as indicated by reduced 300 

RMSE and increases in EF (dotted lines, Fig. 6b). The error decreased approximately by 1 301 

day and the EF increased to 0.90 (0.53) for the 10-day (40-day) lead time. This provides a 302 

higher confidence to predicting bloom dates compared to the unadjusted CFSv2 forecast 303 

skills. In contrast, the CFSadj forecast skills for WP-UT are lower than those of the unadjusted 304 

CFSv2 throughout the 44-day lead times (dotted lines, Fig. 6a).  305 

The results suggest that CFSadj can be used for predicting bloom dates in TC-MI 306 

while the unadjusted CFSv2 is appropriate for use in WP-UT. It might be inappropriate to 307 

downscale the CFSv2 output using the aforementioned bias correction approaches for Utah 308 

because the observed and CFSv2 data did not correlate well for the entire time series. The 309 

intervening contradiction of the two datasets likely enlarges the differences in mean and 310 
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variation (black-dash boxes, Fig. S2). The deviation of CFSv2 data from the observation 311 

may be caused by its low forecast skill for mountainous terrain like Utah with respect to the 312 

higher skill in a Midwest region like Michigan (e.g. Tian et al., 2017). Thus, most CFSv2 313 

data likely show better correlations in Michigan than those Utah (Fig. S3). At each study 314 

location, deviation of the two datasets are similar for the other lead times and years (Figs. 315 

S4–S17).  316 

4. Discussion 317 

Even though the Utah model is widely used and was validated in both Utah and 318 

Michigan, we found that the prediction of bloom dates at West Payson, Utah was improved 319 

using modified Utah and original ASYMCUR models whereas adjusted Tbase in ASYMCUR 320 

model is better suited for Traverse City, Michigan. The modification of the Utah model may 321 

be necessary because of the marked winter and spring warming trends in the current decade 322 

(Cayan et al. 2001; Dettinger et al. 2004; Hamlet et al. 2005; McCabe and Wolock 2007; 323 

Gillies et al. 2012). There are several studies of inaccurate use of the Utah model in warm 324 

climate (Pérez et al., 2008; Luedeling et al., 2011; Zhang et al., 2011) and these all showed 325 

that the model has to be modified (e.g. Positive Utah Model, Linsley-Noakes et al., 1995;  326 

North Carolina Model, Shaltout and Unrath, 1983). It appears that the extended temperature 327 

scales for chill unit contribution of 1.0 in Utah(modified) model (Fig. 3) improves the estimation 328 

of chill units compared to the original Utah model. On the other hand, the original Utah 329 

model may still be suitable for use in the colder winter temperature in Michigan (with its 330 

later bloom dates than Utah).  331 
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Because of the small temperature ranges for the study sites, we analyzed temperature 332 

trends during 1980–2016 using daily temperature data from nearby stations (Provo BYU, 333 

West Payson, Utah, 40.245oN, -111.651oW, 1392.9 m a.s.l.; Traverse City Cherry CPTL AP, 334 

Traverse City, Michigan, 40.740oN, -85.582oW, 188.4 m a.s.l). The frequency of daily 335 

minimum temperature within the 1.5–12.4 oC range (temperature scale for positive chill unit, 336 

see Fig. 3) and 2.9–9.1 oC range (temperature scale for maximum positive chill unit—1.0, 337 

see Fig.3) decreased in September for Utah while slightly changed in Michigan (Fig. S18). 338 

Likewise, the frequency of daily maximum temperatures in those ranges decreased in 339 

December for Utah and increased in Michigan (Fig. S18). These results lend support to the 340 

use of Utah(modified) model in Utah by expanding the temperature range for 1.0 chill unit (see 341 

Fig. 3), otherwise the model prediction in some years could not obtain the 954 chill 342 

accumulation that is required for the rest completion of tart cherry. While both study areas 343 

undergo a warming trend in winter (Figs. S19, S22), their temperature distributions are 344 

different (Figs. S18–S24). 345 

While the adjusted ASYMCUR model also predicts Michigan’s bloom dates well, it 346 

is not clear if a 2 oC base temperature is physiologically realistic. The phenological models 347 

are based on air temperature; nonetheless, temperature-related humidity might be the main 348 

trigger of the spring budburst of trees (Laube et al., 2014). The primary meteorological 349 

difference between study sites during the period when heat accumulation starts (February–350 

March) were air temperature and humidity. Michigan is colder and more humid than Utah 351 

(Figs. S25–S27). Laube et al. (2014) conducted controlled-environment studies and 352 

observed that higher humidity during forcing advanced bud break in a number of deciduous 353 
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tree species. From this, they hypothesized that bud rehydration is important in the forcing 354 

phase and absolute air humidity lead to phenological responses. The role of rehydration in 355 

the heat requirements is unclear. Additional field data are required for validation. 356 

5. Conclusion 357 

The prevailing trends of early onset and anomalously warm springs can lead to early 358 

blossoming of tart cherry and increasing risk to production from late spring freezes. In the 359 

goal of reducing risk, our study presents the first subseasonal prediction of bloom dates for 360 

Utah and Michigan. We applied a hybrid forecast approach which combines chill-forcing 361 

models with CFSv2 temperature forecasts. The Utah and ASYMCUR models, originally 362 

developed for fruit trees in Utah and Michigan, were modified to improve the bloom date 363 

depiction. Depicting bloom dates in Michigan were most successful with the original Utah 364 

and ASYMCUR(Tbase-2) models, whereas the Utah(modified)-ASYMCUR model outperforms 365 

the original models in Utah. This difference may reflect the different winter climate in the 366 

two places. 367 

The CFSv2 can predict bloom dates of tart cherries for 6 weeks in advance, exhibiting 368 

a reliable predictability for up to 2 weeks prior to the bloom dates with an error range within 369 

4 days. This result suggests a potentially useful prediction to be implemented starting on 15 370 

March for Utah and 1 April for Michigan, allowing extra time for growers to prepare and 371 

manage their orchards for possible freezes in order to  reduce the risk of damage. Given the 372 

mountainous terrain in northern Utah, application of dynamical downscaling methods (e.g., 373 

application of regional climate model) may improve the predictive capabilities of CFSv2.  374 
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Table 1 List of abbreviations used for phenological models. 

Abbreviation Description 

a. Parameters 

A Amplitude of the growth curve (TO-TB) 

CH Chill units  

DL Daylength (in hour) 

F Stress factor of fruit tree (1.0) 

GDH Growing degree hours  

T Temperature (oC) 

TB Base temperature (original TB is 4 oC; adjusted TB is 2 oC) 

TH Hourly temperature (oC) 

TM Maximum critical temperature (36 oC) 

Tmax Daily maximum temperature (oC) 

Tmin Daily minimum temperature (oC) 

TO Optimum temperature (25 oC) 

Ts Sunset temperature (oC) 

b. Models   

ASYMCUR Original Asymmetric curvilinear model (heat or forcing 
model) with using 4 oC as TB 

ASYMCUR(Tbase-2) Modified ASYMCUR model with using 2 oC as TB 

Utah Original Utah model (Chill model) 

Utah(modified) Modified Utah model 

 

 



Table 2 Performance of the Utah(modified)-ASYMCUR and Utah-ASYMCUR(Tbase-2) to predict bloom dates for West Payson and 

Traverse City by using observed and unadjusted-CFS (CFS)/adjusted-CFS (CFSadj) temperature (daily-Linvill and daily-Triangular 

datasets); CORR is correlation coefficient, EF is model efficiency; RMSE is root mean square error. 

Location Dataset  
[Lead time]* 

CFS (Triangular)  CFS (Linvill)  CFSadj (Linvill) 
CORR EF RMSE  CORR EF RMSE  CORR EF RMSE 

West 
Payson, 

Observation (OB) [0d] 0.93 0.57 5.71  0.94 0.69 4.82  0.94 0.69 4.82 
OB+CFS0415[13d] 0.90 0.64 5.22  0.89 0.70 4.79  0.91 0.66 5.03 

UT OB+CFS0401[28d] 0.69 0.25 7.51  0.73 0.46 6.40  0.67 0.29 7.30 
 OB+CFS0315[44d] 0.81 0.44 6.49  0.78 0.56 5.73  0.70 0.32 7.16 
 OB+CFS0301[59d] 0.51 -1.42 13.5  0.49 -0.84 11.8  0.41 -0.38 10.2 
 OB+CFS0215[72d] 0.40 -1.55 13.9  0.38 -0.89 11.9  0.57 -0.43 10.4 
 OB+CFS0201[87d] 0.67 -0.16 9.36  0.62 0.09 8.28  0.68 -0.03 8.82 

Traverse 
City, 

Observation (OB) [0d] 0.99 0.91 2.78  0.99 0.89 2.95  0.99 0.89 2.95 
OB+CFS0501[11d] 0.96 0.80 4.01  0.96 0.78 4.25  0.98 0.90 2.87 

MI OB+CFS0415[26d] 0.85 0.41 6.94  0.87 0.38 7.11  0.85 0.55 6.07 
 OB+CFS0401[41d] 0.91 0.54 6.11  0.92 0.46 6.60  0.89 0.53 6.20 
 OB+CFS0315[57d] 0.75 0.09 8.61  0.74 0.00 9.01  0.73 -0.22 9.95 
 OB+CFS0301[72d] 0.57 0.26 7.78  0.59 0.31 7.50  0.56 0.02 8.91 
 OB+CFS0215[85d] 0.48 0.06 8.75  0.48 0.09 8.61  0.51 -0.47 10.9 
 OB+CFS0201[100d] 0.54 -0.02 9.11  0.61 0.25 7.79  0.62 -0.01 9.09 

* Lead time (days) before bloom dates [Lincoln Point: 28 April (averaged 2005-2016), Traverse City: 11 May (averaged 2001-2014)] 
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Fig. 1 Observed bloom dates, last freeze dates and state’s cherry production (2001-2017) for (a) 

Traverse City, Michigan and (b) West Payson, Utah. (c) Study locations indicated by red circles 

(UT: Utah and MI: Michigan). [Cherry production data are from USDA, 2017]. 
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Fig. 2 Diagrams of methodological approaches to predict bloom dates by merging phenological 

models with CFSv2 forecast constructed for (a) West Payson, Utah and (b) Traverse City, 

Michigan; step (A) presents phenological phases, step (B) presents original chill-heat models, step 

(C) presents modified chill-heat models, step (D) presents hindcast validation using observed 

temperature as input, and step (E) presents bloom date prediction using observed temperature and 

CFSv2-forecast temperature.    
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Fig. 3 Chill unit contribution (-1.0 to 1.0) from different temperature scales of Utah Model and 

Modified Utah Model. 
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Fig. 4 (a1) Observed (OBS) and estimated (EST) bloom dates for Michigan computed by using 

Utah-ASYMCUR and three hourly-temperature datasets: observation (EST:HR) and estimation by 

using Linvill’s method [EST:DY(L)] and Triangular method [EST:DY(T)]; (a2)-(a4) the 

estimation bias (EST-OBS) of EST:HR, EST:DY(L), and EST:DY(T). (b1)-(b4) are the same as 

(a1)-(a4) but the EST computed by using Utah-ASYMCUR(Tbase-2). Numbers in parentheses 

indicate correlation coefficients (CORR), model efficiency (EF), and root mean square error 

(RMSE), respectively.      
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Figure 5  (a1) Observed (OBS) and estimated (EST) bloom dates for Utah computed by using 

Utah-ASYMCUR and three hourly-temperature datasets: observation (EST:HR) and estimation by 

using Linvill’s method [EST:DY(L)] and Triangular method [EST:DY(T)]; (a2)-(a4) the 

estimation bias (EST-OBS) of EST:HR, EST:DY(L), and EST:DY(T). (b1)-(b4) are the same as 

(a1)-(a4) but the EST computed by using combined Utah(modified)-ASYMCUR. Numbers in 

parentheses indicate correlation coefficients (CORR), model efficiency (EF), and root mean square 

error (RMSE), respectively.        
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Fig. 6 Prediction performance for bloom dates indicated by correlation coefficient (CORR), model 

efficiency (EF), and root mean square error (RMSE) as a function of forecast time for the 

unadjusted-CFS (CFS; solid lines) and adjusted-CFS (CFSadj; dashed lines) constructed for (a) 

West Payson, UT and (b) Traverse City, MI. [The hourly temperature was estimated by using 

Linvill’s method]. 
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Fig. 7 Observed (OBS) and predicted (EST) bloom dates for (a) Utah and (b) Michigan computed 

by using estimated-hourly temperature (L: Linvill’s method, T: Triangular method) from weather 

station and unadjusted-CFS datasets for different lead times (day); EST:ST represents 0-day lead 

time, EST:CFS represents lead times from 13-day (a1) or 11-day (b1) to 87-day (a4) or 100-day 

(b4). [Average of observed bloom date for UT is 28 April and MI is 11 May]. 
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