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Abstract
Grazed pastures are susceptible to N loss from urine/manure additions, which
increases eutrophication, affecting the global N cycle. Plant secondary metabo-
lites (PSM), such as condensed tannins (CT) and terpenes, influence silvicul-
ture soil dynamics by generally decreasing N mineralization. We investigated
whether cattle-grazed pastures of non-traditional grass and legume foragemono-
culture strips including CT-containing sainfoin (Onobrychis viciifolia Scop.) and
tall fescue (TF) [Schedonorus arundinaceus (Schreb.) Dumort.] influenced soil
dynamics compared with traditional grass and legume forage monoculture
strips of alfalfa (Medicago sativa L.), without tannins, and TF. Throughout the
study, CT in sainfoin averaged 58.9 g kg−1 whereas alfalfa saponins averaged
5.7 g kg−1. We observed greater soil microbial respiration (p = .01) in TF strips
than legume strips, indicating greater microbial activity, and between legumes
we found greater soil NO3 (p = .01) in alfalfa than in sainfoin, although above-
ground biomass and N differences were negligible. We also conducted a labora-
tory soil-feces incubation study to determine if feces from cattle foraging diets
of legumes with or without CT influenced soil dynamics. Both feces treatments
showed lower NO3 (p < .001) than without feces, suggesting microbial inhibi-
tion. Dehydrogenase activity (DHEA) was lower (p= .03) in sainfoin than alfalfa
feces, suggesting CT from sainfoin inhibit DHEA. To our knowledge this study
is the first considering whether CT-containing sainfoin and saponin-containing
alfalfa influence soil dynamics by assessing general differences in soil parame-
ters. More research is needed to determine whether specific PSMmitigate N loss
in pasture systems by slowing N mineralization.

Abbreviations: CT, condensed tannins; DHEA, dehydrogenase
enzyme activity; PSM, plant secondary metabolites; TF, tall fescue.
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1 INTRODUCTION

Incorporating forages containing different PSM, such
as CT and terpenes (i.e., saponins), may benefit animal
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agricultural systems. When animals graze diverse forages,
the different chemicals ingested in the process improves
animal production while enhancing soil quality and
nutrient cycling (Tracy et al., 2018). Diverse patchworks
of vegetation containing PSM increase the rate of gain in
foraging animals (Meuret & Provenza, 2015) while plant
diversity, with inherently diverse biochemistries, increases
the resilience of agroecosystems (Tracy et al., 2018). Poten-
tial mechanisms span from complementarities among
resources to nutrient-cycling feedbacks, which increase
nutrients in soils (Tilman & Snell-Rood, 2014; Tilman,
Isbell, & Cowles, 2014). In addition, tannin-containing
forages reduce methane emissions from grazing animals
(Beauchemin, McGinn, Martinez, & McAllister, 2007;
Boadi, Benchaar, Chiquette, & Massé, 2004; Pinares-
Patiño et al., 2003; Woodward, Waghorn, & Laboyrie,
2004a, 2004b).
Nitrogen loss in agroecosystems is widespread, and the

potential for NO3 leaching under grazed pastures is greater
than that ofmowed pastures. This is because 60–90% of the
ingestedN is returned to the soil viamanure andurine, cre-
ating hotspots of N in the soil that are prone to N loss (Di &
Cameron, 2002; Haynes &Williams, 1993). The presence of
CT or triterpenes in plants may ameliorate this problem as
tannins and saponins bind to proteins in the gastrointesti-
nal tract, increasing the ratio of fecal to urinary N (Barry
& McNabb, 1999; Livingston et al., 1979; Waghorn, Shel-
ton, McNabb, & McCutcheon, 1994), which slows release
and leaching of N in pastures (Powell, Broderick, Grabber,
& Hymes-Fecht, 2009). Condensed tannins are large polar
molecules that remain in the gastrointestinal tract and are
excreted in feces (Waghorn, 2008), whichmay then pose as
recalcitrant substrate for soil microorganisms (Smolander,
Kanerva, Adamczyk, & Kitunen, 2012).
The tannin content of detritus in forest systems is not

easily decomposed, and heavily influences C and Nminer-
alization (Kraus, Dahlgren,&Zasoski, 2003). In addition to
CT, triterpenes affect both C and N cycling in soil (Adam-
czyk, Kiikkilä, Kitunen, & Smolander, 2013; Bradley, Titus,
& Preston, 2000; Smolander et al., 2012). Carbon-based
compounds such as tannins and terpenes generally inhibit
N mineralization thereby increasing N immobilization
(Adamczyk et al., 2013; Smolander et al., 2012; Winder,
Lamarche, Constabel, & Hamelin, 2013). Research in silvi-
cultural soil systems also shows thesemetabolites decrease
decomposition rates and inhibit soil mesofauna and soil
enzymatic activity (Adamczyk, Kitunen, & Smolander,
2009, 2011; Bradley et al., 2000; Joanisse, Bradley, Pre-
ston, & Munson, 2007; Lorenz, Preston, Raspe, Morrison,
& Feger, 2000; Smolander et al., 2012; Adamczyk et al.,
2013; Madritch & Lindroth, 2015). Research on how tan-
nins and terpenes affect soil dynamics, conducted mainly
in boreal forests, suggests these metabolites either bind to

Core Ideas

∙ Pasture soil systems may benefit from tannifer-
ous or saponin-containing forages.

∙ Soil microbial activity decreased under tannifer-
ous and saponin-containing forages.

∙ Pastures with tanniferous sainfoin contained
lower soil nitrate levels than alfalfa pastures.

proteinaceous or other organic N compounds (offering an
increased C resource for soil microbes), adsorb to soil min-
erals, transform, or become toxic to microbes - although
their specific roles are not fully elucidated (Kelleher, Simp-
son, & Simpson, 2006; Smolander et al., 2012).
Soil research involving PSM has increased over the

past decade, particularly in silviculture, though the only
research we are aware of regarding the influence of PSM-
containing forages on pasture soils is with ergot alka-
loids, with inconclusive results suggesting reduced soil
microbial activity (Franzluebbers, 2006; Franzluebbers &
Hill, 2005; Franzluebbers & Stuedemann, 2005; Franzlueb-
bers et al., 1999; Omacini, Chaneton, Ghersa, & Otero,
2004). Leshem and Levin (1978) found decreased NO3 in
peat soils with alfalfa under laboratory conditions, sug-
gesting this was due to “substances originating in the
plant and released by the roots”. To our knowledge no
research has been done determining the effects of tan-
niferous or saponin-containing forages on pasture agri-
cultural soil processes. Reduced N mineralization would
benefit pasture systems in reducing N loss. We explored
whether the same phenomena that appear in silvicultural
soil occur in pasture soils with forages containing CT and
saponins.
The objective of this study was to determine if

extractable condensed tannins from sainfoin and/or
saponins from alfalfa influence soil nutrient cycling in pas-
ture systems. Although both sainfoin and alfalfa contain
additional types of secondary metabolites (Barrau, Fabre,
Fouraste, & Hoste, 2005; Rafińska, Pomastowski, Wrona,
Górecki, & Buszewski, 2017), the focus of our study was
limited to CT and saponins. We measured the concentra-
tion of extractable CT in sainfoin plant samples, saponins
in alfalfa samples, and soil parameters such as inorganic N,
soil respiration, and enzyme activity.We hypothesized that
cattle-grazed pastures of non-traditional grass and legume
monoculture strips including CT-containing sainfoin and
TF would influence soil microbial activity to a greater
extent than “traditional” grass and legume monoculture
strips of saponin-containing alfalfa, without tannins, and
TF. To illuminate the effects of manure on soil nutrient
cycling, we performed a soil incubation study with cattle
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feces from two different diets consisting of TF with either
CT-containing sainfoin, or saponin-containing alfalfa.

2 MATERIALS ANDMETHODS

2.1 Field experiment

2.1.1 Plot establishment

Plots were established in spring 2009 at Utah State Univer-
sity’s Agriculture Research Field Station in Lewiston, UT
at 41◦57′4″ N, 111◦52′26″ W. The study site consisted of (i)
Kidman fine sandy loam (coarse-loamy, mixed, mesic Cal-
cic Haploxeroll) and (ii) Lewiston fine sandy loam (coarse-
loamy, mixed, mesic Aeric Calciaquoll). Part of one block
was in the Kidman fine sandy loam, while the remaining
blocks were in Lewiston fine sandy loam soil. Block effect
was tested using SAS PROC SGPANEL (SAS Institute,
Cary, NC), and we conclude that our measured responses
were not affected by the difference in soil type. Average
annual precipitation is 52.6 cm, with an average annual
high and low temperatures of 16.2 and 1.14 ◦C, respec-
tively (Utah Climate Center, 2019). Total annual precipi-
tation during the four sample collection years (2009, 2010,
2011, and 2012) was 36.8, 42.6, 35.2, and 45.7 cm, respec-
tively, while the average maximum andminimum temper-
atures, respectively, for each season (May through Octo-
ber) for each year were 23.8 and 6.56 ◦C, 23.8 and 6.39 ◦C,
23.3 and 6.61 ◦C, and 27.0 and 9.26 ◦C (Utah Climate Cen-
ter, 2019).
The field experiment was designed around a grazing

choice experiment (Maughan et al., 2014) where three
3.6-ha blocks were each divided into two 1.8-ha plots,
one seeded with novel-endophyte TF variety ‘Max Q’
at 28 kg ha−1 and inoculated alfalfa variety ‘Vernal’ at
11 kg ha−1, and the other seeded with TF and inoculated
sainfoin variety ‘Shoshone’ at 33 kg ha−1. Within each
1.8-ha plot there were three planting strips, each approx-
imately 30.5 m wide and 132.6 m long, seeded with TF,
legume, andTF/legumemixture (30:70 grass/legume rate),
all of which were grazed as one unit. The mixture treat-
ment did not persist and therefore was removed from the
study, leavingmonoculture strips of TF and legume in each
plot. Thus, the design employed a blocked split-plot design
with three blocks. The whole plot factor was legume type
(tannin-containing sainfoin/saponin-containing alfalfa),
with forage type as the subplot factor (tall fescue/legume).
Pastures were grazed as described by Maughan et al.
(2014). Briefly, Angus fall-born calves strip-grazed either
TF-sainfoin or TF-alfalfa plots fromMay–September 2010,
with 12 calves per plot, and June–September 2012, with
8 calves per plot. Strip-grazing was managed using tem-
porary electric fencing which was moved daily, allowing

access to new forage every day. The pastures were irrigated
using hand-line sprinkler sets running in 12-h cycleswhich
applied approximately 10.5 cm ofwater every 2wk. Tall fes-
cue variety Kentucky 31 was the intended variety, yet after
failed attempts to detect ergovaline, the seed was tested
revealing the identity of cultivar ‘Max Q’.
Due to over-winter crop failure in 2010–2011 (i.e.,Micro-

tus pennsylvanicus infestation) of alfalfa and sainfoin
strips, the two legumes over all 3 blocks were reseeded in
spring 2011 using a no-till drill at the aforementioned rates.
Tall fescue strips were not affected by the rodent infesta-
tion. From June–September 2011 plots were swathed and
baled. The project resumed after healthy regrowth in 2012.

2.1.2 Soil sample collection and analysis

Previous to seeding and before irrigation commenced,
in summer (July 6–7) 2009, ten baseline soil subsam-
ples were composited after being collected in a zigzag
pattern along each strip using a 5-cm diameter Gid-
dings probe at depths of 0 to 30, 30 to 60, and 60 to
90 cm. Soil samples were sieved to pass a 2-mm screen
and stored at 4 ◦C until analysis. Samples were analyzed
within 2wk according to recommendations for thewestern
region (Gavlak et al., 2003) for nitrate-nitrogen (NO3-N;
using the CadmiumReductionMethod S-3.10) and ammo-
nium (NH4-N; Method S-3.50). A subset of these samples
(0–30 cmdepth)was analyzed forDHEA (Tabatabai, 1994).
Soil samples were then air-dried and analyzed (Gavlak
et al., 2003) for soil pH (Method S-2.20), electrical con-
ductivity (EC; Method S-2.30), Olsen extractable P and K
(Method S-4.10), andDTPA-extractable Fe, Zn, Cu, andMn
(Method S-6.10). Total and organic C was analyzed using
a Skalar Primacs SLC model CS22 (Breda, Netherlands),
using the two temperature (575–1035 ◦C) method (Chich-
ester &Chaison, 1992). Total Nwas analyzed using a Skalar
Primacs Solid Sample TN Analyzer (Breda, Netherlands).
Baseline soil samples included 36 composite samples for
analysis (2 legume types × 2 forage types × 3 depths × 3
blocks).
In spring (May 2–5) 2011 before irrigation commenced,

soil samples were collected to determine treatment effects
two years after plot establishment. Ten subsamples were
composited after being collected in a zigzag pattern in each
strip using a 2.5-cm diameter soil probe at depths of 0 to 10,
10 to 20, and 20 to 30 cm. Soil samples were sieved to pass a
2-mm screen and stored at 4 ◦C until analysis within 2 wk
for NO3-N, NH4-N, and the top 10-cm increments analyzed
for DHEA, as previously described.
In fall (October 9–19) 2012, end-of-study soil samples

were collected. Five soil subsamples were collected in a
zigzag pattern in each strip using a 5-cm diameter Gid-
dings probe to a depth of 90 cm, and split into five
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increments (0 to 10, 10 to 20, 20 to 30, 30 to 60, and 60 to
90 cm), each subsample composited for all five increments.
Soil samples were sieved to pass a 2-mm screen and stored
at 4 ◦C until analysis for NO3-N and NH4-N at increments
of 0 to 30, 30 to 60, and 60 to 90 cm, and a subset (0–30
cm) was analyzed for pH, EC, total N, total and organic
C, P, K, Zn, Fe, Cu, and Mn as described above. Dehydro-
genase was analyzed at 0 to 10, 10 to 20, and 20 to 30 cm
increments. A subset (0–10 cm) was analyzed for phenol
oxidase (Prosser, Speir, & Stott, 2011) and soil respiration
(Anderson&Domsch, 1978; Davidson, Galloway, & Strand,
1987; Smith, McNeal, & Cheng, 1985; Sparling, 1992), with
ratios between microbial biomass to organic C calculated
to determine metabolic efficiencies. Soil samples included
60 composite samples for analysis (2 legume types × 2 for-
age types × 5 depths × 3 blocks).
In November 2012, soil samples were collected, using

260-ml tins, from each strip (n = 12), weighed, then soil
bulk density was measured, and soil porosity calculated,
using methods developed by Blake (1965) and described by
USDA ARS NRCS Soil Quality Institute (2001).

2.1.3 Plant sample collection
and analysis

In spring (May 14–19) 2010, before grazing commenced and
7 d between the 2-wk irrigation cycle, baseline samples
from each plant species (alfalfa, sainfoin, and TF) were
collected randomly within each monoculture strip when
developmental morphology was similar for each species,
at late vegetative growth (Flick and Mueller, 1989; Moore
& Moser, 1995; Moore et al., 1991). Briefly, ten subsam-
ples of each species (sainfoin, alfalfa, and TF), clipped at
5-cm above ground, were collected in each strip in a sim-
ple random approach. Composite samples were collected
from each strip, in each plot, in each block, comprising six
TF samples (2 legumes × 3 blocks), three alfalfa samples,
and three sainfoin samples (3 blocks). Given that CT may
be labile molecules (Mehansho, Butler, & Carlson, 1987),
sainfoin samples were placed on dry ice in the field, then
stored at −20 ◦C until freeze-dried. Alfalfa and TF sam-
ples were placed in drying ovens at 30 ◦C. Dried plant sam-
ples were ground to pass a 1-mm screen with a Wiley mill
grinder (Thomas Scientific, Swedesboro, NJ), then stored
in sealed plastic bags at −20 ◦C until chemical analyses.
In 2012 plant samples were collected 3 times (26 June,

14 August, and 18 September) from each plant species
as described above. After sampling periods, plots were
grazed, then regrowth was allowed between collections.
Plant samples included 18 composite TF samples (2
legumes × 3 collection times × 3 blocks), nine compos-
ite alfalfa samples, and nine composite sainfoin samples
(3 collection times × 3 blocks).

Each composite plant sample was analyzed for total
N using a Skalar Primacs Solid Sample TN Analyzer
(Breda, Netherlands). Sainfoin samples were analyzed
for extractable CT as described by Mantz, Villalba, and
Provenza (2008) and Clemensen et al. (2017), using
butanol-HCl methods developed by Reed (1986). Alfalfa
samples were analyzed for saponins using a modification
of Lee, Vogel, Gardner, and Stegelmeier (2001) as described
by Clemensen et al. (2017) using a foam test procedure, fol-
lowingmethods developed by Patamalai, Hill, Camp, Hejt-
mancik, and Bridges (1990) and Wall, Eddy, McClennan,
and Klumpp (1952).
Our field experiment had an overlapping grazing com-

ponent discussed in Maughan et al. (2014) where plant
sampleswere collected and analyzed for plant biomass and
crude protein (CP). We present plant biomass and CP data
fromMaughan et al. (2014) after statistically analyzing the
data using the experimental design and model described
for the present study.

2.1.4 Statistical analyses

Soil data from 2009, 2011, and 2012 were analyzed using
ANOVA with a blocked split-plot design. The log trans-
formation was used for organic C where normality and
homogeneity of variance was not met, the untransformed
data is presented. The whole plot factor was legume type
(sainfoin and alfalfa), with forage type as the subplot fac-
tor (tall fescue and legume) with all treatments as fixed
and blocks as random effects. Soil data for each year
(2009, 2011, and 2012) were analyzed separately. Using a
three-way factorial treatment structure (forage × legume
× depth), main effects for soil depth were assessed for
NO3-N and NH4-N at 0 to 30, 30 to 60, and 60 to 90
cm (from 2009 and 2012, year analyzed separately), and
for DHEA at 0 to 10, 10 to 20, and 20 to 30 cm (from
2012). To assess differences in soil response variables over
time, we compared means from baseline 2009 (0–30 cm
depth) data to 2012 (0–30 cm) data for each measured
variable.
For plant analyses, extractable CT and total N data

from sainfoin, and saponins and total N data from alfalfa
were analyzed using ANOVA of a randomized complete
block design (RCBD) with one factor, time (June, July, and
August 2012). Assumptions for normality and homogene-
ity of variance were met. Total N from tall fescue data were
analyzed using ANOVA of a blocked split-plot design, with
repeatedmeasures (June, July, and August 2012), where all
treatments as fixed and blocks as random effects. Assump-
tions for normality and homogeneity of variance weremet.
Total N andCP in legumes (alfalfa and sainfoin) were com-
pared using ANOVA of a RCBD.
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All statistical models were fitted using the GLIMMIX
procedure in SAS/STAT Version 13.2 in the SAS System for
Windows Version 9.4 (SAS Institute, Cary, NC). Tukey’s
test was used to adjust pairwise mean comparisons for
family-wise Type I error. P < .05 was considered to be sta-
tistically significant.

2.2 Laboratory incubation study

2.2.1 Soil and feces collection
and analysis

Soil for the incubation study was collected from the top
30 cm of an ungrazed grass pasture from the previously
described field experiment site, air dried, then sieved
through a 2-mm screen (Baitilwake, Salomez, Mrema,
& De Neve, 2012). Fresh cattle feces was collected from
the aforementioned grazing experiments (Maughan et al.,
2014) of calves eatingmonoculture strips of either saponin-
containing alfalfa or CT-containing sainfoin, both with
monoculture strips of TF. Feces was collected after calves
consumed monoculture strips of either sainfoin and TF,
or alfalfa and TF, for two weeks. Fresh fecal samples were
put on ice in the field, then triplicate subsamples of each
feces type (alfalfa-TF and sainfoin-TF) were air-dried and
analyzed for pH as described above, and total N and C
using Leco FP-528 total combustion (St. Joseph, MI). The
remaining composite fresh fecal samples were then stored
at −20 ◦C until freeze dried to best preserve potential tan-
nins (Terrill, Windham, Evans, & Hoveland, 1990) in the
feces (Waghorn, 2008). To obtain uniformity fecal samples
were then ground and sieved through a 2-mm screen to be
used in the soil incubation experiment.

2.2.2 Experimental design and analysis

The incubation study employed a RCBD with repeated
measures, where feces from two different diets (alfalfa-
TF or sainfoin-TF) were mixed with soil and incubated at
24 ◦C for 56 d. Each treatment had four replicates con-
taining 500 g of air-dried soil, in addition to control treat-
ments without addition of feces to baseline potential N
flushing effects, as we did not pre-incubate soil used in this
study.
Determining the amount of feces to apply was based on

N content in the feces and applied at a rate of 350 kg total
N ha−1 with 1.3 g cm−3 soil bulk density (the average soil
bulk density of the field site) (Honeycutt et al., 2005). Feces
from sainfoin diets contained slightly greater N than feces
from alfalfa diets. Therefore, we averaged the amount of
feces to be added from each diet, so each feces treatment

had the same amount of feces applied, totaling 4.19 g per
subsample of soil (Equation 1).

350 kg N

Hectare − furrow slice
×

cm3

1.3 g soil
×

100 kg DM

2.14 kg N

×
500 g soil

subsample
(1)

On day 0, distilled water was added to each treatment
to reach 18% moisture by slowly misting while mix-
ing. Percent moisture was dependent on our soil type
and the observable maximum moisture content before
oversaturation-induced soil structure collapse. Samples
were placed in sealed quart-size Ziploc bags with protrud-
ing straws to allow exchange of gases and minimize water
loss, then compacted to reach a bulk density of roughly
1.3 g cm−3, and incubated for 56 d at 24 ◦C. The initial
weight of all samples was recorded and moisture content
monitored, adding distilled water when evaporation loss
was> 5% (relative) of 18%moisture (Baitilwake et al., 2012;
Honeycutt et al., 2005).
Sampling for analyses occurred at days 0, 3, 7, 14, 21, 28,

42, and 56. Samples were analyzed for NO3, NH4, DHEA,
organic C, and total N as described above. Total N and
organic C was measured at the beginning and end of the
incubation period (days 0 and 56). Two feces types with a
control treatment totaled 96 samples for analysis (3 treat-
ments × 4 replications × 8 sample days).

2.2.3 Statistical analysis

Soil data were analyzed using anANOVAby SAS 9.4 PROC
GLIMMIX (SAS Institute, Cary, NC) of a RCBDwith a sin-
gle factor (alfalfa-TF or sainfoin-TF diet) using repeated
measures (days 0, 3, 7, 14, 21, 28, 42, and 56). Tukey’s test
was used for mean comparisons. P < .05 was considered to
be statistically significant.

3 RESULTS AND DISCUSSION

3.1 Field experiment

Baseline soil samples taken in 2009 before experimental
plots were seeded showed no differences among response
variables between impending treatment plots (Table 1). In
spring 2011, after two growing seasons, there were no dif-
ferences in soil parameters between alfalfa and sainfoin
plots, nor between TF or legume plots.
Our end-of-study October 2012 data showed legume for-

age strips having 4.2-fold greater (p = .05; Table 2) soil
NO3 at 0 to 30 cm than TF strips. These results support
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TABLE 1 Soil results presented from baseline 2009 field experiment, prior to planting. Main effect means and standard errors (SE) for
forage type (grass vs legume) and legume type (tannin-containing sainfoin vs saponin-containing alfalfa, without tannins) are shown. There
were no interaction effects for any soil variables, nor depth interaction effects

Forage Legume
Soil property, g−1 soil Grass Legume SE Alfalfa Sainfoin SE
Ammonium, μg (0-30 cm depth) NDb ND ND ND
Ammonium, μg (30-60 cm depth) 1.05 1.41 0.28 1.36 1.09 0.63
Ammonium, μg (60-90 cm depth) 2.86 3.31 0.40 3.26 2.91 0.59
Nitrate, μg (0-30 cm depth) 2.11 2.29 0.12 2.28 2.12 0.11
Nitrate, μg (30-60 cm depth) 0.67 0.50 0.11 0.64 0.54 0.17
Nitrate, μg (60-90 cm depth) 0.51 0.50 0.08 0.49 0.52 0.17
Dehydrogenase, μg TPFa 2.75 2.82 0.16 2.88 2.69 0.06
Total N, mg 0.74 0.70 0.04 0.75 0.69 0.04
Organic C, mg 7.25 7.83 0.50 7.60 7.48 0.41
Olsen P, μg 13.6 13.7 1.09 14.8 12.5 2.35
Olsen K, μg 182 187 12.3 194 175 11.5
Zinc, μg 1.74 1.34 0.48 1.36 1.72 0.51
Iron, μg 8.03 8.06 0.04 8.38 7.71 0.37
Copper, μg 0.77 0.77 0.03 0.81 0.74 0.06
Manganese, μg 9.35 9.58 0.36 9.79 9.14 0.85
Soil property
C to N ratio 9.87 11.4 0.66 10.4 10.8 0.32
pH 8.19 8.21 0.03 8.21 8.18 0.02
EC, dS m−1 0.28 0.29 0.01 0.29 0.28 0.03

aTPF = triphenyl formazan
bND = no detection

other studies showing greater N-availability in legumi-
nous systems (Cadisch, Schunke, & Giller, 1994), yet con-
tradict results discussed by Hooper and Vitousek (1998)
where they expected greater N immobilization in peren-
nial bunchgrasses but observed varying results, which
were largely dependent on season, and in some cases (i.e.,
November) N-fixing legumes showed greater immobiliza-
tion than bunchgrasses. Supporting other grazing pref-
erence observations (Rutter, 2006), the grazing portion
of this study (Maughan et al., 2014) showed preference
for legumes, which could explain greater soil NO3 in the
legume strips. However, separate from scanning observa-
tions of forage preference, overall time calves spent in plots
was quite evenly distributed as observed in the field, and by
indication of fecal spots.
Interestingly, we observed 3.4-fold greater soil NO3

(p = .01) in saponin-containing alfalfa plots than in CT-
containing sainfoin plots at 0 to 30 cm depth (Table 2).
Both sainfoin and alfalfa fix N efficiently, yet Krall and
Delaney (1982) found sainfoin was more proficient at N-
fixation, which implies there would subsequently be more
available soil N in sainfoin plots. Plant biomass over the
2012 season was greater in sainfoin than in alfalfa (p< .01),
with no differences in September 2012 (p = .93), which
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F IGURE 1 Main effect means and standard error bars from
plant tissue responses shown over the 2012 growing season (June,
August, and September) including condensed tannins (CT) and total
N in sainfoin, saponins and total N in alfalfa, and total N in tall fes-
cue (TF) monoculture strips growing in the alfalfa (Alf) or sainfoin
(Sain) plots

was nearer to the time of our soil collection (data not
shown; see Maughan et al., 2014). Moreover, differences in
soil total N between legume plots was negligible (p = .75;
Table 2), as were differences in plant tissue total N between
alfalfa and sainfoin (p= .07; Figure 1) over the 2012 season.
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TABLE 2 Soil results presented from the end-of-study October 2012 field experiment. Main effect means and standard errors (SE) for
forage type (grass vs legume) and legume type (tannin-containing sainfoin vs saponin-containing alfalfa, without tannins) are shown. There
were no interaction effects for any soil variables, nor depth interaction effects

Forage Legume
Soil property, g−1 soil Grass Legume SE Alfalfa Sainfoin SE
Ammonium, μg (0-30 cm depth) 0.33 0.00 0.22 0.00 0.30 0.33
Ammonium, μg (30-60 cm depth) 0.17 0.04 0.16 0.00 0.31 0.24
Ammonium, μg (60-90 cm depth) 0.00 0.00 0.13 0.00 0.02 0.03
Nitrate, μg (0-30 cm depth) 1.54 * 8.06 * 2.36 7.82 ** 1.78 ** 0.74
Nitrate, μg (30-60 cm depth) 0.81 1.43 0.52 1.48 0.77 0.78
Nitrate, μg (60-90 cm depth) 0.00 0.87 0.40 0.59 0.24 0.40
Dehydrogenase, μg TPF (0-10 cm depth)a 10.3 9.86 0.85 9.44 10.7 0.89
Dehydrogenase, μg TPF (10-20 cm depth) 5.43 4.34 0.48 4.79 4.97 0.26
Dehydrogenase, μg TPF (20-30 cm depth) 3.70 3.24 0.35 3.44 3.50 0.15
Total N, mg 1.23 1.25 0.05 1.24 1.25 0.04
Organic C, mg 7.82 7.12 0.51 7.68 7.25 0.49
Olsen P, μg 7.77 * 10.20 * 1.55 9.03 8.92 1.60
Olsen K, μg 199 * 140 * 17.8 177 162 19.2
Zinc, μg 1.40 1.43 0.26 1.41 1.42 0.24
Iron, μg 10.7 9.86 0.87 10.4 10.2 0.86
Copper, μg 1.32 1.49 0.45 1.57 1.23 0.45
Manganese, μg 10.1 9.74 0.64 9.85 10.0 0.64
Phenol Oxidase, μg Dopachrome 1.28 ** 1.44 ** 0.05 1.33 1.39 0.06
Microbial respiration, μg 4.41 ** 2.96 ** 0.33 3.56 3.81 0.36
Microbial biomass, μg 649 668 46.8 653 664 54.3
Readily Mineralizable C, μg 28.0 ** 21.6 ** 2.07 25.3 24.3 2.09
Microbial biomass C/Organic C 836 951 69.4 864 922 79.8
qCO2 (Mic. respiration Mic. Biomass−1)

b 0.007 * 0.005* 0.001 0.005 0.006 0.001
Porosity, mg 5.18 4.97 0.14 5.12 5.03 0.13
Soil property
C to N ratio 6.38 5.69 0.42 6.21 * 5.85 * 0.40
pH 8.42 8.40 0.02 8.41 8.41 0.02
EC, dS m−1 0.22 0.21 0.03 0.23 0.20 0.03
Bulk Density, g cm−3 1.28 1.33 0.04 1.29 1.32 0.03

*Significant at the .05 probability level
**Significant at the .01 probability level
aTPF = triphenyl formazan
bqCO2 =microbial efficiency

We extracted CP data from the overlapping grazing study
(Maughan et al., 2014), which showed greater CP concen-
tration (p = .001) in alfalfa than in sainfoin over the 2012
season. This could explain the greater soil NO3 in alfalfa
plots. However, when each collection time was compared,
only one time (15 August) showed significant differences
between alfalfa and sainfoin (Table 3), and differences in
CP were less pronounced in September, nearer the time of
our soil collection.
Furthermore, total N content in TF was greater (p= .04)

in TF monoculture strips growing in saponin-containing

alfalfa plots than in CT-containing sainfoin plots in 2012
(Figure 1), indicating greater plant-available N in alfalfa
plots. Prior research conducted by Ta andFaris (1987) using
the 15N dilutionmethod showed that alfalfa ‘excretes’more
N than red clover and birdsfoot trefoil legumes, yet there
was no comparison to sainfoin in the study. Dubach and
Russelle (1994) compare alfalfa and birdsfoot trefoil and
conclude that these two legumes differ in their mecha-
nisms of N contributions to soil, alfalfa transferring more
through root decomposition while trefoil transfers more
through nodule decomposition, but differences between
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TABLE 3 Compiled data extracted from overlapping grazing
study (Maughan et al., 2014) showing crude protein differences
between alfalfa and sainfoin legumes in 2012

Crude proteinCollection
date Alfalfa Sainfoin p-value

mg g−1

6 June 192 167 0.98
3 July 166 140 0.97
25 July 249 179 0.07
15 Aug. 227 151 0.04
5 Sept. 216 168 0.46
11 Sept. 203 189 1.00

the two legumes were negligible. Although we did not
assess root:shoot, a study comparing alfalfa and sainfoin
showed that root:shoot biomass was significantly greater
in sainfoin than alfalfa (Bingcheng, Shan, Li, & Jiang,
2007).
In 2012, combinedmeans of soil NO3 in sainfoin legume

strips (3.03 μg g−1) were not significantly different to
soil NO3 in TF monoculture strips growing in sainfoin
plots (0.53 μg g−1; p = .40; SE = 1.73) nor TF monocul-
ture strips growing in alfalfa plots (2.55 μg g−1; p = .96;
SE = 1.73). From baseline soil results in 2009 to end-of-
study soil results in 2012, alfalfa plots increased in soil
NO3 (p < .001) but sainfoin plots showed no differences
(p = .99). This may suggest CT-containing sainfoin for-
ages inhibited nitrification, which would support studies
in boreal forest soils (Adamczyk et al., 2013, 2019; Smolan-
der et al., 2012). However, ourmeasurements did not assess
denitrification as it was outside the scope of our exper-
imental capacity. Tannins may precipitate proteinaceous
substances such as organic N compounds, typically at
low to neutral pH (Adamczyk, Salminen, Smolander, &
Kitunen, 2012; Salminen & Karonen, 2011), yet soil from
our study plots was more alkaline (pH > 7). Therefore,
if CT-containing sainfoin forages inhibited nitrification, it
may be due to providing more recalcitrant C substrate for
soil microbes, and/or being toxic to soil microbes (Smolan-
der et al., 2012).
In a review of studies evaluating the influence of CT

on C and N mineralization and soil microbial commu-
nities, Smolander et al. (2012) found CT have mostly
inhibitory effects. Yet, apart from soil NO3, our 2012
data revealed no differences in microbial activity between
saponin-containing alfalfa and CT-containing sainfoin
plots (Table 2). However, TF monoculture strips had
greater soil microbial respiration (p= .01) and readilymin-
eralizable C (p = .01; Table 2) than legume strips, which
may indicate microbial inhibition from both the legumes.
Alternatively, lowermicrobial respiration in legumes could

indicate C-limitation, as readily mineralized C was greater
in TF monoculture strips than legume strips. Though
lower microbial respiration in legumes could be due to the
soil disturbance during the reseeding event in the legume
strips in early summer 2011. Zak, Holmes, White, Peacock,
and Tilman (2003) evaluated soil microbial activity with
different plant species and found greater microbial respi-
ration with increased plant diversity, which was largely
due to increased plant production. The studies of Zak et al.
(2003) included Lespedeza capitata, known to contain CT,
among other legumes, grasses, forbs, and trees, yet the
study did not distinguish between individual species or
inherent PSM and the potential ensuing effects on soil
microbial activities.
Both legumes showed greater (p= .02; Table 2)microbial

efficiency (qCO2) than TF monoculture strips, indicating
greater substrate quality (e.g. nutrient availability) in
legumes. Consistent with our data, in plant-biodiverse
experimental plots, Eisenhauer et al. (2010) found overall
greater microbial respiration and microbial biomass in
plots containing grasses than plots containing legumes,
while the plots with legumes had greater microbial effi-
ciency. The lack of difference (p = .68) in qCO2 between
CT-containing sainfoin plots and saponin-containing
alfalfa plots may suggest that CT-containing sainfoin did
not affect the ability of microbes to process organic matter
anymore than saponin-containing alfalfa forages. This
could imply soil microbial inhibition by both CT and
saponins, consistent with other studies showing terpenes
and CT having similar effects on soil nutrient cycling
(Adamczyk et al., 2013). Supporting this hypothesis,
legumes showed greater phenol oxidase activity (p = .001;
Table 2) than TF monoculture strips, indicating the
presence of phenolic molecules (Sinsabaugh, 2010) in the
legumes.
Covariate analyses showed similar soil organic C from

2009 to 2012 between TF and legume strips, and between
alfalfa and sainfoin legumes. Yet total soil N increased
(p < .0001) from 2009 to 2012 in all treatments. Thus, C
to N ratio decreased in all treatments from 2009 to 2012
(p < .0001). Between legumes, results from 2012 showed
saponin-containing alfalfa plots having greater ratio of C
to N than CT-containing sainfoin plots (p = .04; Table 2),
yet total N differences were negligible (p = .75), as were
organic C differences (p = .17; Table 2). Variation in soil K
between TF and legume strips widened from 2009 (p= .99)
to 2012 (p = .01). As legumes use more soil K, unsurpris-
ingly soil K in TF strips was greater (p= .02) than legumes.
Soil P decreased from 2009 to 2012 (p < .001), particularly
in TF strips (p = .001) and alfalfa strips (p = .01). Results
from 2012 showed greater soil P in legume than TF mono-
culture strips (p = .05; Table 2).
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F IGURE 2 Incubation study – Main effect means and stan-
dard error bars fromdehydrogenase activity (DHEA),measured in μg
triphenyl formazan (TPF) g−1 hr−1, from cattle feces from two differ-
ent diets of eitherCT-containing sainfoin, saponin-containing alfalfa,
and a controlwithout the addition of feces,measured eight times over
56 d

Plant secondary metabolites and total N in plants
typically fluctuate over time (Cheeke, 1998; Clemensen
et al., 2017; Tava, Odoardi, & Oleszek, 1999). However,
throughout this study alfalfa, sainfoin, and TF, respec-
tively, showed no differences over time in N (p = .47;
Figure 1) or saponin concentration (p = .51); N (p = .56) or
CT (p = .07); or N (p = .71), with no interaction effects for
each variable within each species. The lack of differences
among species could be due to a small sample size.
S. Adamczyk et al. (2013) found that larger terpenes such

as saponins show similar patterns of decreased soil Nmin-
eralization and nitrification as seen with monoterpenes
and with tannins. In our study, CT in sainfoin legumes
averaged 58.9 g kg−1 whereas saponins in alfalfa aver-
aged 5.7 g kg−1 during the 2012 grazing season (Figure 1).
This substantial difference in PSM concentration between
alfalfa and sainfoin could help explain the considerable
difference in soil NO3 concentration between plots of the
two legumes, indicating greater saponin concentrations
in alfalfa may influence soil nutrient cycling more. How-
ever, Lu and Jorgensen (1987) reported impacts of alfalfa
saponins on rumen microbes at 2 and 4% concentration.

3.2 Laboratory incubation study

Feces from alfalfa-TF diets had 7.28 pH, 3.0 mg N g−1,
and 47.8 mg C g−1. Feces from sainfoin-TF diets had
7.26 pH, 3.6 mg N g−1, and 44.8 mg C g−1. We hypothe-
sized that feces from CT-containing sainfoin diets would
inhibit microbial activity more than feces from saponin-
containing alfalfa diets, without tannins. Supporting our
hypothesis, combined means of DHEA during our incuba-
tion study were greater (p = .03) in feces treatments from
alfalfa diets than from sainfoin diets (Figure 2), indicating
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F IGURE 3 Incubation study – Main effect means and standard
error bars from NO3 results from cattle feces additions from two dif-
ferent diets of either CT-containing sainfoin or saponin-containing
alfalfa (without tannins), and a control without the addition of feces,
measured eight times over 56 d

reduced microbial activity in feces treatments from CT-
containing sainfoin diets. However, this difference could
be because of greater CT concentration in sainfoin than
saponin concentration in alfalfa, as shown in the field
data results. Dehydrogenase activity fluctuated through-
out the incubation in both feces treatments (alfalfa-TF and
sainfoin-TF) and the control (soil without feces) (p< .001),
while both feces treatments showed greater (p < .001; Fig-
ure 2) DHEA than the control, supporting other studies
showing increased DHEA with N inputs (Chu et al., 2007;
Cooper & Warman, 1997). Dehydrogenase enzyme activ-
ity may indicate overall soil microbial activity (Wolinska &
Stepniewsk, 2012), and represents a biological indicator of
soil health (Chellemi & Porter, 2001). Although we did not
measure CT in fecal samples, recent results suggest that
the concentration of CT in cattle feces is proportional to
the concentration of CT in the forage consumed (Stewart
et al., 2019).
Cattle feces collected from both the alfalfa and sainfoin

diets had relatively low C to N ratio (< 18), which generally
results in greater mineralization (Robertson & Groffman,
2007). On day 0 there were no differences in C to N ratio
(p ≥ .97), organic carbon (p ≥ .18), or total N (p ≥ .99)
between both feces treatments and the no feces con-
trol. From day 0 to day 3 there were no differences
in NO3 between treatments (p = 1.0; Figure 3), yet
from day 7 through 28 the control treatment showed
greater NO3 (p < .001) than both feces treatments. This
may suggest nitrification inhibition from treatments with
feces of both diets (CT-containing sainfoin and saponin-
containing alfalfa). Our results support other soil manure
incubation studies showing initial immobilization of N
with feces additions (Abbasi, Hina, Khalique, & Khan,
2007; Baitilwake et al., 2012; Probert, Delve, Kimani, &
Dimes, 2005). LowerNO3 in both feces treatments could be
explained simply by fecalmanure havingmore recalcitrant
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F IGURE 4 Incubation study –Main effect means and standard
error bars from NH4 results from cattle feces additions from two dif-
ferent diets of either CT-containing sainfoin or saponin-containing
alfalfa (without tannins), and a control without the addition of feces,
measured eight times over 56 d

substrate which is digested (mineralized) more slowly,
releasing available N more gradually. Towards the end of
the incubation study NO3 appeared to increase in alfalfa
feces treatments while appearing to decrease in sainfoin
feces and control treatments. Unfortunately, the incuba-
tion study ended at day 56 when shifts in NO3 levels may
have been emerging, withNO3 appearing to increase in the
alfalfa diet treatment.
Decreased nitrification in both feces treatments sug-

gests that feces from CT-containing sainfoin and saponin-
containing alfalfa diets may inhibit nitrification, which
may thereby increase N immobilization. Delve et al. (2001)
emphasize how the quality of manure is greatly influenced
by what animals consume, including how diets with CT
render feces with greater and more recalcitrant N. This
may suggest that incorporating CT- or saponin-containing
forages into pasture systems may slow the release of plant-
available N, reducing the potential loss of N in pasture agri-
cultural systems.
Ammoniumconcentration on day 0was greater (p≤ .05)

in both the feces treatments than the control, with no dif-
ference between feces type (p= .67; Figure 4). Ammonium
then decreased to undetectable levels from day 3 to day 42,
except for the sainfoin diet treatment which showed traces
(0.02 μg NH4 g−1) on day 14. Proceeding day 0, NH4 was
most likely nitrified to NO3, due to the observed increase
in NO3 concentration for all treatments from days 0 to 3, or
immobilized by microorganisms, fixed to exchange sites,
or volatilized. Unfortunately, our measurements did not
assess denitrification as it was outside the scope of our
experimental capacity. Traces of NH4 (0.02–0.04 μg g−1)
were then observed in all treatments on days 42 and 56,
suggesting NH4 was released from exchange sites and/or
the immobilizedNwasmineralized at this point during the
incubation period. Interestingly, when the sainfoin feces

treatment showed traces of NH4 on day 14, NO3 in this
treatment was at its lowest point (4.14 μg NO3 g−1).
From the beginning (day 0) of the incubation study to

the end (day 56), total N means in all treatments increased
(p = .0003) from 1.10 to 4.26 mg g−1, yet there were no
differences between treatments (p = 1.0), nor interaction
effects (p = .92). Our observed increase in N over the incu-
bation study is consistent with other incubation studies
(Abbasi et al., 2007; Baitilwake et al., 2012), showing an
overall increase in total N.
There were no differences (p = .90) in organic C from

day 0 to 56 (11.3 to 11.2 mg g−1), with no interaction effects
between treatment and day (p= .81). Organic Cwas greater
(p = .02) in the alfalfa feces treatment (12.8 mg organic C
g−1) than the control treatment (9.59 mg organic C g−1).
The increased organicmatter content from the alfalfa feces
treatment enhancing DHEA supports observed correla-
tions between DHEA and soil organic C (Burgos, Made-
jón, & Cabrera, 2002), although incubation studies are not
representative of field studies. As total N increased and
organic C remained constant in all treatments, C to N
ratio decreased (p < .0001) from day 0 to 56 in all treat-
ments (10.7 to 3.02), with no differences between treat-
ments (p = .53) and no interaction effects between treat-
ment and day (p = .92).

4 CONCLUSIONS

We hypothesized that the presence of CT in grass-legume
systems would inhibit N nitrification, which could then
mitigate soil N loss in pasture systems. Our results show
greater soil NO3 in alfalfa plots than in tanniferous sain-
foin plots, suggesting nitrification inhibition from tan-
nins in the sainfoin pasture system. However, more rigor-
ous experiments are required to support our hypotheses.
This study had the challenges inherent of grazing experi-
ments (i.e., reduced sample size) aimed at illuminating soil
responses to shifts in plant species and/or management.
An additional layer of complexity arises when delving into
the potential effects PSM may have amid soil systems in
field experiments. This research requires further testing
which could include more specific soil incubation studies
involving particular PSM. It may also be of interest to stan-
dardize the influence of PSM on soil processes, by evaluat-
ing a gradient of particular metabolites to determine quan-
tifiable thresholdswhich prompt changes in soil dynamics.
Field experimentsmight include comparisons between dif-
ferent cultivars of each legume, such as comparing alfalfa
varieties Vernal and Lahontan (a low saponin variety)
to distinguish the possible influence of saponins on pas-
ture soil. The use of resin bags and/or Plant Root Simu-
lator Probes (PRS probes) may also help elucidate these
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processes. Additionally, responses may not be attributable
to just one specific metabolite but to different mixtures of
metabolites. We did not examine the effects of other PSM
in this study, nor the influence ofwhat the novel endophyte
from TF may have on soil processes.
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