
Stimulus complexity and chunk tightness interact to impede

perceptual restructuring during problem solving

Zhonglu Zhanga,b*, Christopher M. Warrenc*, Yi Leib,d,e*, Qiang Xinga*, Hong Lib,d,e

a Department of Psychology, School of Education, Guangzhou University, Guangzhou

510006, China

bResearch Centre for Brain Function and Psychological Science, Shenzhen University, 

Shenzhen 518060, China

c Department of Psychology, Utah State University, Logan UT, United States of 

America

d Shenzhen Institute of Neuroscience, Shenzhen, China

e Institute of Affective and Social Neuroscience, Shenzhen University, Shenzhen, China

Running Head: Neural underpinnings of perceptual restructuring

*The correspondence should be sent to Yi Lei (leiyi821@vip.sina.com), Christopher

M. Warren (chris.warren@usu.edu), Qiang Xing (qiang_xingpsy@126.com) or

Zhonglu Zhang (zzllzz_2005@126.com)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/334990762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract: The mutual influence of stimulus complexity and chunk tightness on 

perceptual restructuring was examined using a chunk decomposition task 

(CDT).  Participants attempted to remove components of Chinese characters in order 

to produce new, valid characters. Participants had their electroencephalogram 

recorded while completing a CDT in conditions of low or high stimulus complexity, 

crossed with two levels of chunk tightness. Tight chunks overlapped spatially whereas 

loose chunks did not. Both increasing chunk tightness and increasing stimulus 

complexity impaired performance (lower accuracy, longer reaction times), and these 

factors interacted such that highly complex, tight chunks produced the worst 

performance. These factors also had interacting effects on the late positive complex 

(LPC). The LPC amplitude was reduced by increasing chunk tightness, but this effect 

was attenuated for highly complex stimuli. These results suggest that though chunk 

tightness and stimulus complexity impair performance in the CDT, they have 

dissociable neural underpinnings. 
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1. Background 

Mental restructuring is essential to insight problem solving, allowing people to 

quickly adapt to new circumstances. An impasse describes the moment when 

individuals are unable to make progress with a problem, and are unaware of how to 

proceed (Cranford & Moss, 2012; Knoblich, Ohlsson, Haider, & Rhenius, 1999). In 

order to overcome the impasse, restructuring allows the problem solver to see the 

problem in a novel way, facilitating new progress (Duncker, 1945; Kounios & 

Beeman, 2014; Öllinger & Knoblich, 2009; Wagner et al., 2004; Wertheimer, 1959). 

Restructuring can be realized through constraint relaxation (Huang et al., 2018; 

Knoblich et al., 1999), when problem solving is impeded by experience-based factors 

such as a mental set or functional fixedness (e.g., Duncker, 1945; Kershaw & Ohlsson, 

2004; Knoblich et al., 1999, 2001; Luchins, 1942; Ohlsson, 1984; Smith, 1995; Storm 

& Angello, 2010; Wu et al., 2013). Restructuring can also be realized through chunk 

decomposition (Knoblich et al., 1999; Luo et al., 2006), especially when problem 

solving is impeded by stimulus features such as when the features have a 

tightly-organized spatial relationship (Huang, He, & Luo, 2017; Knoblich et al., 1999; 

Tang et al., 2016; Zhang et al., 2015, 2019). The current study focuses on chunk 

decomposition. In contrast to “chunking”, which refers to integrating pieces of 

information into chunks to improve memory (Miller, 1956), chunk decomposition 

involves restructuring a stimulus by decomposing a “chunk” into smaller components 

to form new combinations (Knoblich et al., 1999; Luo et al., 2006; Tang et al., 2016; 

Zhang et al., 2015). 



A basic question in the study of problem solving is what makes problems difficult 

to solve. Overcoming an impasse in problem solving has been studied extensively in 

the chunk decomposition context by Knoblich and colleagues (Knoblich et al., 1999, 

2001). According to Knoblich et al. (1999), the difficulty of chunk decomposition is 

largely determined by chunk tightness. They specified a conceptual definition of 

chunk tightness whereby a chunk is tight when none of its components carry 

individual meaning, and a chunk is loose when it can be decomposed into components 

that have meaning on their own (Knoblich et al., 1999, 2001; Luo et al., 2006). For 

example, the chunk “X” (meaning ten in Roman numerals) is tight because the 

components “/” or “\” have no meaning in the Roman mathematical system. In 

contrast, the chunk “VI” (meaning six) is loose because the component “V” (five) and 

“I” (one) are meaningful chunks. A wealth of previous studies has demonstrated that 

conceptually tight chunks are more difficult to decompose than conceptually loose 

chunks (Knoblich et al., 1999, 2001; Luo et al., 2006; Wu, Knoblich, & Luo, 2013; 

Wu, Knoblich, Wei, & Luo, 2009). Behaviorally, problem solvers spend more time 

and solve fewer problems when problems involve tight chunks relative to loose 

chunks during chunk decomposition of both Roman symbols (Knoblich et al., 1999) 

and Chinese characters (Luo et al., 2006; Wu, Knoblich, Wei, & Luo, 2009). In 

addition, eye-tracking data shows that solvers fixate longer on tight chunks than loose 

chunks (Knoblich et al., 2001). 

Neuroimaging studies have demonstrated that the decomposition of tight chunks 

(relative to loose chunks) recruits executive control networks including the right 



lateral prefrontal cortex and the anterior cingulate cortex (Huang et al., 2015; Luo et 

al., 2006; Tang et al., 2016; Wu, Knoblich, & Luo, 2013). In addition, decomposing 

tight chunks elicits increased alpha oscillations in the EEG, as well as deactivation of 

the primary visual cortex, both of which are associated with the suppression of visual 

information (Luo et al., 2006; Tang et al., 2016; Wu, Knoblich, Wei, & Luo, 2009). 

Examining chunk decomposition entirely in terms of conceptual chunk tightness 

raises two critical issues. First, though previous studies have demonstrated that chunk 

tightness has a fundamental influence on the difficulty of chunk decomposition 

problem solving, they did not distinguish between perceptual characteristics and 

conceptual characteristics in defining chunk tightness. Zhang and colleagues (2015) 

showed that perceptual chunk tightness can confound conceptual manipulations of 

chunk tightness. A chunk is perceptually tight when its components intersect in space, 

and loose when they do not. Several recent studies have now shown that perceptual 

characteristics are more influential in determining the difficulty of chunk 

decomposition problems than conceptual characteristics (Tang et al., 2016; Zhang et 

al., 2015, 2019). Specifically, Zhang and colleagues (2015) demonstrated that 

perceptually tight chunks were more difficult to decompose than conceptually tight 

chunks, and further, that perceptual tightness had a more consistent effect on 

performance in a chunk decomposition task (CDT) than conceptual tightness. 

Similarly, Tang and colleagues (2016) showed that increasing perceptual tightness not 

only increased difficulty, but also increased brain activity (as indexed by fMRI) in a 

network of regions across the frontal, parietal, and dorsal occipital cortices. 



Second, stimulus complexity has not been considered nor well controlled in 

previous chunk decomposition studies (e.g., Knoblich et al., 1999, 2001; Luo et al., 

2006; Tang et al., 2016; Wu, Knoblich, & Luo, 2013; Wu, Knoblich, Wei, & Luo, 

2009). This is problematic given that many studies have confirmed that stimulus 

complexity, as described by the local details and/or intricacy of a visual pattern 

(Snodgrass & Vanderwart, 1980), has a pervasively negative influence on cognitive 

performance during a large range of tasks such as feature classification (Ullman, 

Vidalnaquet, & Sali, 2002), object recognition (Ellis & Morrison, 1998; Gerlach & 

Marques, 2014), perception (Bradley, Hamby, Löw, & Lang, 2007; Folta-Schoofs, 

Wolf, Treue, & Schoofs, 2014), reading (Hsu, Lee, & Marantz, 2011; Li, Bicknell, Liu, 

Wei, & Rayner, 2014; Liversedge et al., 2014; Ma & Li, 2015), and learning (Chang, 

Plaut, & Perfetti, 2016). Given that chunk decomposition requires decomposing a 

perceptual chunk into its local parts (Knoblich et al., 1999), and may require the 

suppression of irrelevant visual information (Luo et al., 2006; Tang et al., 2016; Wu et 

al., 2009), one may hypothesize that stimulus complexity should impede chunk 

decomposition.  

To this end, we investigated how chunk tightness and stimulus complexity impact 

perceptual restructuring using a Chinese character decomposition task adapted from 

previous studies (Wu et al., 2013; Tang et al., 2016). Participants were presented with 

a probe cueing the component that should be removed from a subsequently presented 

source character. The target was a valid character that would be produced when the 

probe was removed from the source. We manipulated chunk tightness in the source 



character as the degree of spatial intersection between the probe and the other 

elements in the source character (Tang et al., 2016; Zhang et al., 2015, 2019). Tight 

chunks were formed when both the probe and the target were intersecting with each 

other within the source character, hidden in a manner very similar to camouflage 

(Ludmer, Dudai, & Rubin, 2011). By contrast, loose chunk decomposition is 

relatively easy due to spatial separation between the probe and the target in the source 

character (see examples in Figure 1). In addition, we manipulated stimulus 

complexity following previous work, based on the number of strokes in the source 

character (Coney, 1998; Ma, & Li, 2015; Li et al., 2014; Liversedge et al., 2014). 

Finally, previous work has demonstrated that whether the to-be-removed component 

is itself a meaningful chunk or a set of strokes has a limited influence on the difficulty 

of chunk decomposition (Zhang et al., 2015). We therefore balanced this variable in 

our design, but did not include probe type as a factor in our statistical analysis. 

In this study, we examined the effect of stimulus complexity and chunk tightness on 

chunk decomposition by focusing on behavioral indices of difficulty (accuracy and 

response times) and on a neural marker previously shown to be sensitive to chunk 

tightness: the late positive complex (LPC) component of the event-related potential 

(Wu et al., 2013; Zhang et al., 2019). Behaviorally, we hypothesized that both 

stimulus complexity and chunk tightness would impact task difficulty, with high 

complexity and tight chunks leading to lower accuracy and longer response times, 

relative to low complexity or loose chunks, respectively. The LPC is a positive 

deflection broadly distributed over the parietal cortex that is sensitive to the chunk 



decomposition task (Wu et al., 2013; Zhang et al., 2019). Bilateral parietal areas are 

sensitive to manipulations of visuospatial processing, such as during mental rotation 

(Harris et al., 2000; Harris & Miniussi, 2003) and perceptual reversal of the Necker 

cube (Pitts et al., 2009). In addition, fMRI studies have shown increased activation of 

parietal areas during the chunk decomposition task (Huang et al., 2015; Luo et al., 

2006; Wu et al., 2013; Tang et al., 2016), and LPC amplitude is reduced when 

participants decompose tight chunks relative to loose chunks (Zhang et al., 2019; but 

see Wu et al., 2013). Thus, though parietal regions may be engaged by the 

visuospatial transformation required during chunk decomposition, the difficulty of 

chunk decomposition may be reflected by the amplitude of the LPC, whereby as 

transformation gets more difficult, the LPC is reduced. Within this framework, the 

current research has two goals. First, to determine if stimulus complexity affects the 

difficulty of chunk decomposition, which if so, would indicate that it should be 

controlled in future chunk decomposition studies. Second, to replicate and extend 

previous findings associating the LPC with chunk decomposition. A key question is 

whether chunk tightness and stimulus complexity affect the difficulty of chunk 

decomposition through a common neural mechanism. That is, superficially, spatial 

intersection and number of strokes could seem to be similar contributions to the 

general visual “chaos” that makes a chunk decomposition problem difficult. An 

interaction of chunk tightness and stimulus complexity on the amplitude of the LPC 

would suggest that the neural generator(s) of the LPC react differently to these 

sources of difficulty in chunk decomposition problems. 



2. Method 

2.1 Participants 

Twenty-six participants took part in this experiment (12 males, mean age = 20.26, 

SD = 1.74). All participants were right-handed and had normal or corrected-to-normal 

vision, with Chinese as their native language. They did not report any brain damage or 

psychiatric history. All participants gave informed consent and received monetary 

compensation for participating ( 50 yuan per person). This study was in accordance 

with the Declaration of Helsinki, and approved by Shenzhen university ethics 

committee. 

2.2 Stimuli 

One hundred and sixty normal Chinese characters were collected as the source 

characters. Chinese characters are perceptual chunks (Fu et al., 2002), and have been 

used previously for chunk decomposition tasks (e.g. Luo et al., 2006). All the source 

characters were comprised of subcomponents whereby a probe component (a 

character or stroke) could be removed to create a valid character (see procedure and 

task). Chunk tightness was defined by whether the probe/to-be-removed part was 

spatially intersecting or non-intersecting with the remaining part in the source 

characters (Zhang et al., 2015, 2019). Stimulus complexity was defined by the number 

of strokes in the source characters (Li et al., 2014; Liversedge et al., 2014). The 160 

characters were pooled into four tightness by complexity conditions (see descriptions 

in Table 1 and examples in Figure 1). In Condition 1, the source characters were of 

loose chunk and low complexity. For example, the stroke number of the source 



character “ ” was relatively less and the probe and the remaining part “ ” were in 

spatially non-intersecting relationship with each other. In Condition 2, the source 

characters were of loose chunk and high complexity. For example, the stroke number 

of the source characters “ ” was relatively more and the probe and the remaining 

part “ ” were in non-intersecting relationship with each other. In condition 3, the 

source characters were of tight chunk and low complexity. For example, the stroke 

number of the source characters “ ” was relatively less and the probe and the 

remaining part “ ” were in intersecting relationship with each other. In condition 4, 

the source characters were of tight chunk and high complexity. For example, the 

stroke number of the source characters “ ” was relatively less and the probe and the 

remaining part “ ” were in intersecting relationship with each other.  

 

Table 1. Stroke number and spatial relationships in the four stimulus complexity by 
chunk tightness conditions  

Condition Type Average stroke number 
of the source character 

Spatial relationships between probe 
and target in the source character 

Condition 1 loose chunk and low 
complexity (LL) 

5.5 Non-intersecting 

Condition 2 loose chunk and high 
complexity (LH) 

7.8 Non-intersecting 

Condition 3 tight chunk and low 
complexity (TL) 

5.15 Intersecting 

Condition 4 tight chunk and high 
complexity (TH) 

8.15 Intersecting 

There were 40 source characters in each condition, with half of the probes 

characters and half strokes. To balance response tendency, there were another 160 

source characters serving as foils, from which no valid character could be formed by 

removing the probe part. The foils were constructed to conform to the four experiment 



conditions, matching the critical stimuli for tightness crossed with complexity. All the 

stimuli were stored in .bmp file format and presented in their original size (166 * 166 

pixels), with visual angle subtending 3.3 * 3.3°. 

2.3 Procedure and task 

Participants completed the character decomposition task individually in a silent 

room, sitting approximately 100 cm from the display monitor (Dell 22, refresh rate = 

60 Hz, resolution = 1280 * 1024). Trials began with a 1 s fixation, followed by the 

presentation of the probe for 1 s. There was a randomized blank interval ranging from 

0.8 s to 1.2 s, followed by the presentation of the source character for 3 s. Participants 

were instructed to mentally remove the probe from the source character in order to get 

a valid (target) character. Participants pressed either the 1 or 2 on the keyboard to 

indicate if they had found the solution (the identity of the valid target character), or to 

indicate they could not find a valid solution (the target was not a valid Chinese 

character). Key mapping was counterbalanced across participants. A 0.8 s blank 

interval followed the source presentation, and then the target character (valid or 

invalid) was shown for 1 s. Trials ended with a blank inter-trial interval of 2.5 s. The 

experiment was programmed in E-prime 2.0 (Psychology software tools). All of the 

320 trials were presented in completely random order. Participants were given a 

self-paced break every 64 trials. In addition, there were 32 practice trials (16 trials 

involving valid characters and another 16 trials involving invalid characters) before 

the formal experiment, that were exactly like the formal trials. 



 
Figure 1. Examples of the character decomposition task and the sequence of one 

exemplary trial. (A): Examples of character decomposition tasks in the four complexity by 
tightness conditions. Individuals have to remove the previously-presented probe (a character 
or strokes) from the source character in order to get a valid character (the target). Chunk 
tightness is crossed with low or high stimulus complexity. Note that these source characters 
all carry meaning to the Chinese participants. (B): The sequence of one exemplary trial. Trials 

began with a 1 s fixation followed by presentation of the probe stimulus (the to-be-removed part) 

for 1 s. The screen then went blank for a jittered interval between 0.8-1.2 s). Next the source 

character from which the probe should be removed was shown for 3 s. During this time, 

participants were required to indicate if removal of the probe from the source character would 

result in a valid Chinese character. Trials concluded with a brief (.8 s) blank interval, presentation 

of the correct resulting character (valid or invalid) for 1 s, and finally, a 2.5 s blank screen. 

2.4 EEG recording and analysis 

EEG activity was recorded from 64 scalp sites using tin electrodes mounted in an 

elastic cap (Brain Products). The electrodes were placed according to the international 

10-20 system. The EEG was referenced to TP9 during recording. The ground 

electrode was placed at AFz. The vertical electrooculograph (EOG) was recorded 

from approximately 1 cm below the left eye, and the horizontal EOG was recorded 

from approximately 1 cm to the right side of the right eye. Impedance was kept equal 

to or below 5 kΩ. EEG and EOG signals were amplified, band-pass filtered at 

0.01-100 Hz and sampled at 500 Hz per channel. The EEG was re-referenced offline 



to the average of the left and right mastoids (TP9 and TP10). Artifacts caused by 

blinks and eye movement were removed by the algorithm recommended by Gratton, 

Coles, and Donchin (1983) using the horizontal and vertical EOG with the common 

reference. EEG below 0.1Hz and higher than 30 Hz were filtered by using IIR Filters: 

Zero Phase Shift Butterworth Filters (order was set at 4). EEG data was notch-filtered 

at 50Hz. Trials contaminated by large artifacts (with amplitudes greater than +60μV 

or less than -60 μV) were automatically removed, resulting in 2.97 % data loss. The 

event-related potential (ERP) was time-locked to the onset of the source character. 

Correct trials were segmented into 1000 ms epochs including a 200 ms baseline. The 

parietal late positive complex (LPC) was quantified as the average amplitude across 

10 central and parietal electrode sites (CP1/2/3/4, CPz, P1/2/3/4, Pz) within the time 

window of 500 ms to 700 ms after stimulus onset, in line with previous studies (Wu et 

al., 2013; Zhang et al., 2019). 

2.5 Statistical analysis 

Behavioral data (accuracy and response times) and LPC amplitude (pooled across 

10 electrodes) were all analyzed using two-way ANOVAs with stimulus complexity 

(low vs. high) and chunk tightness (loose vs. tight) as repeated measures. Results with 

p<.05 were reported as significant. Where appropriate, p values were corrected using 

the Greenhouse-Geisser method. The Bonferroni method was used to control for 

multiple comparisons, where appropriate. Only correct trials were included in the 

analysis of reaction time and LPC amplitude, and no outlier trimming was performed. 

Trials where the participant did not respond at all were counted as incorrect. Partial 



eta squared (ηp²) was given to estimate the effect size of the omnibus ANOVA results 

(Cohen, 1973; Pierce, Block, & Aguinis, 2004). According to Cohen (1988), effect 

sizes in the current study were interpreted as small when ηp² was smaller or equal 

to .02; medium when ηp² was between .02 and .26, large when ηp² was larger or equal 

to .26. The above principles and criteria were applied to the results reported for both 

behavioral and EEG data. 

3. Results 

3.1 Behavioral results 

A 2 * 2 repeated-measured ANOVA showed that there was a significant main effect 

of both factors on accuracy (see Figure 2A): chunk tightness (F (1, 25) = 147.57, p 

<.001, ηp² =.86), stimulus complexity (F (1, 25) = 14.79, p <.001, ηp² =.37). The 

interaction effect was also significant, F (1, 25) = 18.11, p <.001, ηp² =.42. Follow-up 

analyses indicated that there was no significant difference in accuracy between high 

and low stimulus complexity in the loose chunk condition, F (1, 25) = .05, p = .830, 

ηp² =. 002. However, in the tight chunk condition, there was a lower solution rate 

(accuracy) for the high complexity trials than for the low complexity trials, F (1, 25) = 

20.37, p <.001, ηp² =.45. Chunk tightness exhibited a significant effect on accuracy in 

both the low stimulus complexity (F (1, 25) = 79.54, p < .001, ηp² = .76) and high 

stimulus complexity (F (1, 25) = 131.73, p < .001, ηp² = .84) conditions. 

Only correct trials were included to calculate the response times. Response times 

(see Figure 2B) were similarly affected by both chunk tightness (F (1, 25) = 434.26, p 

<.001, ηp² =.95) and stimulus complexity (F (1, 25) = 117.02, p <.001, ηp² =.82). 



There was also an interaction of stimulus complexity with chunk tightness (F (1, 25) 

= 132.91, p <.001, ηp² =.84). Simple effects analysis indicated that there was no 

significant difference between high and low complexity in the loose chunk condition, 

F(1, 25) = 0.45, p =.507, ηp² =.02, but, for the tight chunk condition response times 

were longer in the high complexity than that in the low complexity condition, F (1, 25) 

= 154.20, p <.001, ηp² =.86. Again, Chunk tightness exhibited a significant effect on 

response times in both the low stimulus complexity, F (1, 25) = 278.21, p < .001, ηp² 

=.92) and high stimulus complexity conditions, F (1, 25) = 383.56, p <.001, ηp² =.94. 

 
Figure 2. The effects of chunk tightness and stimulus complexity on mean solution rates (A), 
mean response times (B) and mean amplitude of the late positive component (C). Error bar 
denotes 95% confidence interval (CI). 

3.2 ERP results 

Tight chunks elicited a smaller LPC than loose chunks, F (1, 25) = 17.80, p <.001, 

ηp² = .42. There was no main effect of stimulus complexity on LPC amplitude. 

Critically, there was an interaction of chunk tightness and stimulus complexity on 

LPC amplitude (see Figure 2C, Figure 3 and 4), F (1, 25) = 6.36, p =.018, ηp² = .20, 

suggesting that though chunk tightness reduced LPC amplitude, this effect was 

attenuated in the high stimulus complexity condition. This was confirmed by 



follow-up simple effects analysis. Follow-up simple effect analysis showed that, in the 

loose chunk condition, there was no significant difference between high and low 

stimulus complexity, F (1, 25) = .14, p =.713, ηp² = .006, whereas in the tight chunk 

condition, high stimulus complexity elicited a more positive LPC than low stimulus 

complexity, F (1, 25) = 5.19, p =.031, ηp² = .17. By comparison, tight chunk 

decomposition induced smaller LPC amplitude than loose chunk decomposition in 

both the low complexity, F (1, 25) = 28.15, p <.001, ηp² = .53, and high stimulus 

complexity conditions, F (1, 25) = 4.68, p =.040, ηp² = .16. 

 
Figure 3. Grand average of LPC (500-700ms) deflections in four conditions across all 
subjects. 

 
Figure 4. Topography for difference waves of LPC. Topographies show the distribution of 
voltage differences between conditions across the scalp. Scalp topographies of the difference 
waves created by subtracting tight trials from loose trials in each complexity condition (left) 
and by subtracting low complexity trials from high complexity trials in each chunk tightness 
condition (right). Topographies were created using interpolation by spherical splines with an 



order of 4. 

Note that VanRullen (2011) has argued that excluding incorrect trials from 

EEG/ERP analyses can lead to artifactual differences between conditions due to 

response bias. That is, VanRullen (2011) shows that if neural activity independent of 

the task biased a participant to respond in one way or another on a particular set of 

trials when the participant was undecided on the correct, task-based response, then 

including only accurate trials would prevent that independent activity from being 

averaged out of the task-related brain signal (see VanRullen 2011 for detailed 

examples). To account for this concern, we re-analyzed our ERP data including 

incorrect trials. This check did not meaningfully affect the pattern of our significant 

findings.  

4. Discussion 

The current study examined two sources of difficulty in chunk decomposition 

problems. Behaviorally, chunk tightness and stimulus complexity both influenced the 

difficulty of chunk decomposition and interacted such that stimulus complexity 

affected the behavioral measures of problem difficulty only in the tight chunk 

condition. A similar interaction was shown at the electrophysiological level. Chunk 

tightness and stimulus complexity interacted such that LPC amplitude was affected by 

stimulus complexity only in the tight chunk condition. However, LPC amplitude was 

smaller for tight relative to loose chunks, but greater for high relative to low visual 

complexity. This pattern of results suggests that though chunk tightness and stimulus 

complexity both contribute to the difficulty of chunk decomposition problems, these 



factors are dealt with differently at the neural level. 

4.1 Multiple interacting sources of difficulty in chunk decomposition 

One challenge in the domain of problem solving is to understand why individuals 

often get stuck on problems that require restructuring a representation (Knoblich et al., 

1999, 2001). According to the view of multiple, interacting sources of difficulty 

(Kershaw & Ohlsson, 2004; Wu et al., 2013), the cause of an impasse involves 

multiple factors, such as perceptual, and conceptual bias (Kershaw & Ohlsson, 2004), 

as well as basic sensory qualities of the stimulus. Moreover, these factors may interact, 

thereby creating greater obstacles in problem solving (Wu et al., 2013). The 

behavioral results in the current study support this view by revealing that a single 

thinking step in problem solving can be simultaneously impeded by multiple and 

interacting sources of difficulty. This point is particularly important when designing 

and interpreting problem solving experiments. Though substantial research has shown 

that chunk tightness significantly affects the difficulty of chunk decomposition 

problems, most previous studies have ignored the influence of stimulus complexity 

(e.g. Knoblich et al., 1999, 2001; Luo et al., 2006; Tang et al., 2016; Wu, Knoblich, & 

Luo, 2013; Wu, Knoblich, Wei, & Luo, 2009; Zhang et al., 2015, 2019). The effect of 

stimulus complexity on problem solving reported here suggests that controlling for 

stimulus complexity in future work, and taking the larger view that multiple sources 

of difficulty could be at play in these types of problems could give a clearer picture 

into the cognitive and neural processes involved in problem solving. 

4.2 Dissociable neural underpinnings engaged by chunk tightness and stimulus 



complexity 

The current study suggests that chunk tightness and stimulus complexity are two 

distinct but interacting sources of difficulty in chunk decomposition problems. On the 

one hand, though increasing chunk tightness and increasing stimulus complexity both 

increased difficulty as measured by behavioral performance, these factors had 

opposite effects on the LPC. This result dissociates these sources of difficulty in the 

neural signal. Whereas the LPC has been interpreted as a manifestation of mentally 

transforming the stimulus (Wu et al., 2013; Zhang et al., 2019), stimulus complexity 

in this task may engage a different process directed at suppressing distracting 

information. Indeed, demand on short-term memory resources, and the need to 

suppress distracting information have been dissociated in the EEG signal in previous 

work (Sauseng et al., 2009). Thus, we speculate that the LPC was pushed more 

positive by complex stimuli due to overlapping neural activity related to managing the 

complexity. Regardless, complexity and chunk tightness interact to impede problem 

solving during chunk decomposition. This finding is similar to those presented by Wu 

and colleagues (2013), who demonstrated that chunk familiarity, which was defined 

by whether the to-be-decomposed character is an existing Chinese character (the 

familiar condition) or a pseudo character (the unfamiliar condition), and chunk 

tightness were associated with distinct underlying neural mechanisms, yet interact to 

amplify the difficulty of chunk decomposition.  

4.3 Neural underpinning of the LPC in chunk decomposition problems 

The electrophysiological results revealed that the decomposition of tight (vs. loose) 



chunks attenuated the LPC, consistent with previous work (Zhang et al., 2019; but see 

Wu et al., 2003 and discussion below). The LPC is likely generated at least in part in 

bilateral parietal areas, that are also activated in chunk decomposition tasks (Huang et 

al., 2015; Luo et al., 2006; Wu et al., 2013; Tang et al., 2016), and during mental 

rotation (Harris et al., 2000; Harris & Miniussi, 2003). In addition, when visuospatial 

transformation occurs during the perceptual reversal of a Necker cube, LPC amplitude 

is increased (Pitt et al., 2009). Taken together, these findings suggest that the LPC 

exhibited in chunk decomposition tasks reflects the visuospatial transformation from 

the source character to the target character. From the perspective of the current 

findings, the LPC may reflect activity associated with remapping neural patterns of 

activity to the new percept, such that it is reduced in the tight chunk condition because 

the process is less robust, or potentially more smeared out in time. This explanation is 

in line with the finding that LPC amplitude is attenuated by increasing mental load 

(Johnson, 1986; reviewed in Kok, 2001). However, Wu and Colleagues (2013) found 

that LPC amplitude was increased in the tight chunk condition, not attenuated. They 

speculated that the LPC reflected activity in the parietal cortex associated with 

mentally manipulating the source character, and that greater exertion was required for 

tight chunks. This explanation aligns with the interpretation presented here, except 

that the LPC findings are opposite between studies. In this work, and in previous work 

(Zhang et al. 2019), the LPC was attenuated in the tight chunk condition, which can 

be interpreted as a more difficult, less robust transformation process. In contrast, Wu 

and colleagues (2013) demonstrate an enhanced LPC in the tight chunk condition, and 



interpret the effect as a more difficult, more effortful exertion. Though Wu and 

colleagues also used a Chinese character chunk decomposition task, there are 

important differences between experiment designs. Most notably, Wu and colleagues 

presented the source character and probe character together on the screen at the same 

time, whereas in this work the probe was presented in isolation, and the participants 

were required to hold the source character in memory. Given that visuospatial 

transformation necessarily engages working memory, this difference in memory 

requirements between tasks could be the cause of difference in LPC findings. It is 

possible that when the task requires less memory resources, increasing chunk 

tightness increases exertion (and activation) but is still fluent and fast enough to 

produce a robust LPC. However, as more memory resources are required to perform 

the manipulation, the LPC becomes less prominent, following an inverted U-shape 

pattern akin to the Yerkes-Dodson curve (Yerkes & Dodson, 1908). It is worth noting 

that though we (and many others) hold that the LPC is a distinct component from the 

P300, the two ERP components share many similarities, and the inverted U-shape 

curve has been referenced in relation to the P300 as well (e.g. Murphy, Robertson, 

Balsters, & O’Connell, 2011). Further research is needed to fully investigate this 

explanation. 

4.4 Limitations 

One limitation of these findings is that the effect of stimulus complexity could 

be confounded by luminance differences between the high complexity and low 

complexity stimuli. Specifically, because the source characters were white on black 



background, high complexity stimuli were brighter than low complexity stimuli due to 

differences in stroke number. The possibility that luminance differences are driving 

the observed stimulus complexity effects cannot be ruled out, however, luminance 

differences typically affect ERP components over occipital cortex within the first 200 

ms, and no such effects were observed in this study. In addition, slightly brighter 

luminance does not typically increase the difficulty of visual tasks, whereas stimulus 

complexity usually does (Bradley, Hamby, Löw, & Lang, 2007; Ellis & Morrison, 

1998; Folta-Schoofs, Wolf, Treue, & Schoofs, 2014; Gerlach & Marques, 2014). 

A second issue to consider is the potential role of floor and ceiling effects in 

driving the interaction between chunk tightness and stimulus complexity on problem 

reaction time, and accuracy. In particular, accuracy in the loose chunk condition was 

quite close to 100%. Thus, it may be that the interaction was caused by a restricted 

range of accuracy scores in the loose chunk condition, constraining any ability to see 

effect of stimulus complexity. This explanation cannot be ruled out, however, the 

relatively high average reaction time (~1000 ms) in the loose chunk condition 

suggests that no floor effects were at play with the reaction time data, which also 

show the interaction of chunk tightness with stimulus complexity. Furthermore, the 

LPC data also exhibited this interaction, and there is no reason to worry about floor or 

ceiling effects there. Even so, future research should attempt to make the loose chunk 

decomposition problems more difficult, to bring accuracy down from ceiling and 

potential reveal further effects to consider. 

4.5 Conclusion 



 Chunk decomposition problems were developed to study the mechanism of 

restructuring during problem solving (Knoblich et al., 1999). The work reported here 

shows that perceptual features of the stimuli in such tasks are important determinants 

of problem difficulty. The moment of finding the solution is made more difficult to 

achieve when stimulus complexity is increased, and when chunks must be extracted 

from other spatially overlapping chunks. Both factors impede breaking the impasse, 

but dealing with these two sources of difficulty appears to rely on different neural 

mechanisms. 
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