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ABSTRACT

Payload operations for small satellites are often impacted by the need to allocate time for modifying the attitude
to perform power generation or orbit maneuvering. A typical small satellite design would consist of a single rigid
body with body-mounted solar cells, making the power generation subject to the spacecraft’s attitude. Often to
achieve the high power generation that is required to enable the payload function, the attitude must be specifically
set to maximize the solar cell area facing the Sun, which typically means diverting it from an attitude that
is useful for payload operations for some period of time. At the scale of modern global constellations, these
downtimes in the payload operation schedule can greatly reduce the overall capability of the system. By including
deployable, articulating solar arrays in the design of small spacecraft, array pointing can be decoupled from the main
payload pointing operations. With these pieces decoupled, payload operations can proceed uninterrupted while the
articulating arrays ensure sufficient power generation. In this paper, the dynamic equations of the multibody system
are derived, and guidance, navigation, and control (GNC) considerations are presented for achieving decoupled
attitude and articulation objectives. Results from simulation of a sample mission show that agile target tracking
attitude maneuvers can be performed together with array solar tracking with negligible impact on overall payload
pointing performance.

I. INTRODUCTION

A limiting factor in any small satellite mission design
is the amount of power that can be generated to enable
the spacecraft’s operations. Payload operations schedul-
ing is often constrained by the need to periodically
modify the attitude to perform dedicated Sun tracking
operations for power generation. This is because small
satellites are often designed with a fixed topology, which
generally means that there are certain attitudes that are
more favourable for power generation due to the number
of solar cells that are pointed at the Sun, and these
Sun-pointing attitudes are not generally compatible with
more dynamic attitude trajectories needed for pointing
the body-fixed payloads at Earth targets. These fixed
topologies are favorable from a conventional small satel-
lite design standpoint because they reduce the number
of moving parts and thus, the potential failure points.
For example, a science mission with a low payload duty
cycle may opt for such a design as it can afford to
spend large periods of its operations schedule focusing
on power generation.

With the rise of the commercial small satellite in-
dustry, missions are being pursued with increasingly
demanding operational profiles. Current and upcoming
constellations aim to establish global communications
networks, or to perform Earth observation with rapid
revisit times. To achieve these goals, higher payload

duty cycles are required for each spacecraft in the
constellation. The conservative approach of relying on
fixed spacecraft topologies with body fixed solar cells
will not work when the mission cannot afford to allocate
large fractions of the orbit to power generation. The
approach then is to use a variable topology; articulating
solar arrays can be made to track the Sun while the
payload fixed to the main body tracks its target, to
maximize power generation continuously.

The dynamics and control of multibody systems has
been well studied for spacecraft and robotics appli-
cations. The use of Natural Orthogonal Complement
(NOC) methodologies for reducing the multibody equa-
tions of motion into the joint space was initiated by
Angeles and Lee [1], then later expanded on by Angeles
and Ma [2] and Saha [3] [4]. These methodologies were
applied to a space context by Virgili-Llop et al. [5] who
released an open-source software toolkit for simulating
spacecraft with attached robotic arms based on NOC
dynamics. Attitude and shape control (i.e., articulation)
of a spacecraft with reaction wheels has been addressed
by Rui et al. [6], who focused on the underactuated case.

This paper focuses on the development of multibody
models and guidance, navigation, and control (GNC)
techniques that employ maximal reuse of heritage soft-
ware systems for single body spacecraft. The heritage
Space Flight Laboratory (SFL) attitude determination
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Fig. 1: Depiction of sample spacecraft using
articulating solar arrays to enable a high-powered

payload

and control system (ADCS) is leveraged for primary
GNC of the spacecraft’s main payload-carrying body,
whereas new systems are added that provide articulation
GNC for the appendages, and feed relevant updates back
into the main ADCS for compensation due to multibody
couplings.

Sample Mission
In this paper a generic mission concept is defined

for the purpose of demonstrating the technology. The
sample mission employs SFL’s DEFIANT platform [7].
The spacecraft’s primary operations consist of tracking
Earth-fixed targets with a payload fixed to the main body
(for example an imager or an antenna). Two deployable
and articulating solar array appendages are coupled to
the main body via stepper motor-driven revolute joints.
The simple mechanical configuration has the joint axes
orthogonal to the payload axis; as is shown in the
depiction in Figure 1, the joint axes both point along the
body X-axis, whereas the payload points along the body
Z-axis. On the appendage side, the solar array’s primary
power generating surface is again orthogonal to the joint
axis. While the main body attitude is governed to achieve
the payload target tracking objectives, the articulation of
the appendages will aim to maximize power generation.

II. NATURAL ORTHOGONAL COMPLEMENT
DYNAMIC MODEL

For a system of n rigid bodies, the dynamics of
each body i can be modelled with the Newton-Euler
equations, expressed in its own body fixed frame:

Ii 9ωi ` ω
ˆ
i Iiωi “ τi (1a)
mi 9vi “ fi (1b)

Where Ii is the body’s moment of inertia about its center
of mass, mi is its mass, vi and ωi are the translational

and angular velocities, respectively, and fi and τi are the
forces and torques about the center of mass, respectively.
Note that Eqn. (1) gives a total of 6n equations for the
n-body system. The n-body systems that are considered
here, however, are kinematic chains having m degrees of
freedom, where in general m ă 6n due to joint coupling
between adjacent bodies. For the case of a rotational
joint connecting body i with body i` 1, the bodies can
rotate with respect to each other about the joint axis, but
are constrained in the transverse axes.

For the purpose of computing the system’s motion
over time, we are primarily concerned with the forward
dynamics, i.e., solving for the accelerations based on
pre-computed forces and torques. Forces and torques
from actuation and external disturbances can be readily
computed using models of the disturbing environment
and the actuator behaviour given an input control signal.
On the other hand, the constraint forces and torques
are unknowns, without already having knowledge of the
inverse dynamics of the system.

We circumvent this issue by reducing the system using
the Natural Orthogonal Complement (NOC). This for-
mulation converts the 6n equations of motion expressed
in the operational space (i.e., the combined Cartesian
state space of all bodies) into an m-dimensional system
of equations to fully model the joint space forward
dynamics.

Unconstrained Operational Space Newton-Euler
Equations

For ease of manipulation, the Newton-Euler equations
(Eqn. 1) are reformulated into a more compact expres-
sion. To start, the robotic twist, t, and wrench, w are
defined as:

t “
“

tT1 , . . . , tTn
‰T

where ti “

„

ωi
vi



(2)

w “
“

wT1 , . . . ,wTn
‰T

where wi “

„

τi
fi



(3)

Then, the generalized mass matrix M and generalized
angular velocity matrix W are given by:

M “ diag
“

M1, . . . ,Mn
‰

, where Mi “

„

Ii 0
0 mi13x3



(4)

W “ diag
“

W1, . . . ,Wn
‰

, where Wi “

„

ωˆ
i 0

0 0



(5)

Where 1mxm is the m-by-m identity matrix. Using the
above definitions the operational space dynamics for the
entire system are expressed as:

M 9t `WMt “ w (6)
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Kinematic Constraints in the Case of Two Rotating
Appendages

The multibody system that this paper will focus on
consists of three bodies: the main spacecraft body, and
two solar arrays. The main spacecraft body is a floating
base which means that it is a base body that is not rigidly
fixed to an inertial frame. The two array appendages are
each coupled to the main spacecraft with revolute joints.
In the single body spacecraft attitude problem the motion
is solved by integrating a forward-dynamics expression
of Eqn. (1), then translational position can be solved
through simple integration of the velocity whereas the
attitude can be solved integrating the quaternion kine-
matics:

9qbi “
1

2

„

ηω ´ ωˆε
´ωT ε



(7)

Where qbi “
“

εT η
‰T

is the inertial-to-body quater-
nion, and the Euler’s parameters ε “ a sinpφ2 q, η “

cospφ2 q describe the Eigen-axis rotation of angle φ about
axis a [8].

It would be possible to assign this representation
to each of the three bodies, where there would then
be 9 rotational and 9 translational velocities, then 9
translational center of mass positions and 12 total quater-
nion elements. As mentioned previously, the problem
that is encountered here is in the calculation of the
forward dynamics the constraint forces and torques are
unknown, as they depend on the inverse dynamics of
the next linked body. Instead, the constraints that the
couplings place on the kinematics are invoked to reduce
the dynamic equations. Letting the subscript 0 refer to
the main body/floating base, then 1 and 2 refer to the
two respective bodies coupled to the base via revolute
joints, the following relations are found (note that the
first two equalities are redundant, but are kept track of
for the coming manipulations):

ω0 “ ω0

v0,i “ v0,i

ω1 “ ω0 ` e1 9θ1

v1,i “ v0,i ` eˆ
1,ir1,i 9θ1

ω2 “ ω0 ` e2 9θ2

v2,i “ v0,i ` eˆ
2,ir2,i 9θ2

(8)

Where θj is the joint j rotation angle measured from
some datum, rj is the vector from c0 to cj, the center
of masses of body 0 and body j, respectively, and ej
is the axis of rotation of the joint j. Note that ωj is
expressed in the j body frame, and the bodies’ frames
are defined by convention such that the rotation axes are
expressed the same between adjacent frames e.g. e1 “

θ2

θ1

�
e1

�
e2

�
r1

�
r2

c1

c2

c0

csys

Fig. 2: Depiction of the 3 body system topology

e1,0 “ e1,1. Furthermore, note here that when present, the
second subscript denotes frame. When there is only one
subscript, that subscript denotes the body to which that
value pertains, and the vector is assumed to be expressed
in that body’s frame.

In compact form, Eqn. (8) is expressed as:

t “ N 9Θ (9)

Where:

N “

»

—

—

—

—

–

16x6 06x1 06x1
L3x6 e1 03x1

L3x6 eˆ
1,ir1,i 03x1

L3x6 03x1 e1

L3x6 03x1 eˆ
2,ir2,i

fi

ffi

ffi

ffi

ffi

fl

, (10)

9Θ “

»

—

—

–

ω0
v0,i
9θ1
9θ2

fi

ffi

ffi

fl

(11)

And where 0mxn is the n-by-m matrix of zeros, and
Lmxn, n ą m is the matrix whose left square is the m-
by-m identity:

Lmxn “
“

1mxm 0mx(n-m)
‰

(12)

Thus, the NOC matrix N provides a mapping from the
18D operational space velocities to the 8D joint space
velocities which represent the actual system’s 8 degrees
of freedom. Furthermore, for acceleration mappings, we
find by differentiation:

9t “ N :Θ ` 9N 9Θ (13)
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Where:

9N “

»

—

—

—

—

–

06x6 06x1 06x1
03x6 03x6 03x1

03x6 wˆ
0 eˆ

1,ir1,i ` eˆ
1,i 9r1,i 03x1

L3x6 03x1 03x6

L3x6 03x1 wˆ
0 eˆ

2,ir2,i ` eˆ
1,i 9r2,i

fi

ffi

ffi

ffi

ffi

fl

(14)

Joint Space Dynamics

Before using the NOC to reduce the dynamic equa-
tions, one further note is made, which is that the
constraint forces and torques produce no work. The total
wrench can be split into two parts:

w “ wA ` wC (15)

Where wA is active wrench (the forces and torques
from actuators or external disturbances) and wC is the
constraint wrench (the forces and torques from one
body onto another via their couplings). The fact that
the constraints produce no work is expressed as:

tTwC “ 0 (16)

Subbing in Eqn. (9):

pN 9ΘqTwC “ 0 (17)

And since this holds for all 9Θ:

NTwC “ 0 (18)

Returning to the system’s operational space dynamic
equations as given in Eqn. (6), both sides are multiplied
by NT to find:

NTM 9t ` NTWMt “ NTwA ` NTwC (19)

Using Eqns. (9) and (18) this is reduced to:

H :Θ ` C 9Θ “ T (20)

Where:
H “ NTMN,
C “ NTM 9N ` NTWMN,
T “ NTwA

(21)

Eqn (20) and its constituent matrices gives the joint
space dynamics. Having models of the active forces and
torques, standard integration techniques can be used to
solve the forward dynamics in the joint space to describe
the multibody spacecraft motion.

III. GUIDANCE, NAVIGATION, AND CONTROL
APPROACHES

The GNC system is designed such that the articulation
functionality is added onto existing ADCS which has
substantial heritage on past single-body SFL spacecraft.
Figure 3 gives a high-level overview of the system’s
architecture in block diagram form. The solid lines in
Figure 3 represent components and connections forming
the existing single body ADCS loop.

For the sample mission, the main body is equipped
with reaction wheels and magnetorquers for attitude
actuation, and an attitude sensor suite consisting of Sun
sensors, a three axis rate sensor, a magnetometer, and
a star tracker which provides a fine level of attitude
determination for accurate payload pointing operations.
A GPS receiver provides the system with orbit deter-
mination along with onboard two-line elements (TLE).
Existing flight software running on the spacecraft’s
onboard computers takes in sensor measurements and
begins by performing attitude determination. The at-
titude estimate is then used along with attitude path
planning or guidance to derive an attitude error which
is used to inform the control which ultimately generates
actuator commands to drive the attitude towards the
desired trajectory.

In parallel to the main ADCS loop, the new articula-
tion loop uses hardware consisting of joint motors for ac-
tuation and encoders for sensing. Similar to the software
in the main loop, the articulation GNC portion of the
software takes in sensor measurements and ultimately
produces actuator commands. Notably, the objectives of
the articulation guidance are generally decoupled from
those of the attitude guidance. In other words, while the
attitude trajectory may try to point the main body at
some target (e.g. a point on the ground), the articulation
guidance tries to point the appendages at a separate
target (e.g. the Sun).

Sun Tracking
The particular case that will be discussed here is

the case where the articulation guidance objective is
to track the Sun with the power generating face of a
pair of solar arrays, as depicted in Figure 1. In the
topology of the sample spacecraft, both joint axes lie
on the body X-axis (e1 “ e2 “ r1, 0, 0s

T ). As stated in
section II, by convention the appendage body frames are
defined so that a given axis vector is expressed equally
in both adjacent body frames, thus the X-axes of the
array frames are also along the joint axes. We define
the Z-axes of the array frames to point normal to the
power generating faces, with the Y-axis completing a
right-handed triad. For the two arrays a “ 1, 2, the
articulation angle θa is defined as the angle between
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Fig. 3: High-level GNC architecture

Ñ
b̂3 and

Ñ̂
a3 and the body-to-array rotation Cab is thus a

principle rotation about the X-axis by θa:

Cab “ C1pθaq “

»

–

1 0 0
0 cospθaq sinpθaq
0 ´ sinpθaq cospθaq

fi

fl (22)

The attitude determination provides an estimate of the
body Sun vector sb,est. This is mapped into the given
array frame using that array’s rotation estimate (θa,est):

sa,est “ Cabsb,est “
»

–

sb,1
cospθa,estqsb,2 ` sinpθa,estqsb,3
´ sinpθa,estqsb,2 ` cospθa,estqsb,3

fi

fl (23)

The articulation error θa,error is then the angle between
the normal of the power generating face (in this case
the array Z-axis) and the projection of sa,est onto the
plane which that vector rotates on, (in this case the array
YZ-plane). Through some manipulations, the following
expression is found:

θa,desired “ cos´1

˜

cospθa,estqsb,3 ´ sinpθa,estqsb,2
b

s2b,2 ` s
2
b,3

¸

` θa,est (24)

Where
θa,error “ θa,desired ´ θa,est (25)

Note that in general, even with perfect articulation
control (i.e., θa,error “ 0 at all times), the array normal
may not be perfectly aligned with the Sun due to the
Sun being out of the YZ-plane. Due to the single degree
of articulation control, the appendages can at best track
the projection of a vector onto the plane to which the
joint axis is normal. However, the out-of-plane angle
can be minimized by defining the attitude trajectory with
both objectives in mind. On the sample spacecraft the
payload axis (say, the boresight of an imager) is aligned
with the body Z-axis. The attitude for payload operations
will require that payload to be pointed at some external
target. This objective will constrain two degrees of
freedom in the attitude, but it will be unconstrained in
the third, which is the roll of the main body about the
payload axis. To aid in the articulation objective, the
roll about the payload axis can be defined to maintain
orthogonality between the joint axis and the Sun. To this
end, an align-constrain formulation, as described in [9],
can be used to set an attitude trajectory that aligns the
payload towards its target and constrains the body Y-axis
towards the Sun. In this attitude, the Sun inherently lies
somewhere on the YZ-plane, and thus, the array normal
can be brought in direct alignment with the Sun, subject
only to control errors.

Compensation for Effect of Articulation on Attitude
As stated previously, the design employed here lever-

ages heritage ADCS elements for single body spacecraft.
The heritage software elements, notably the Extended
Kalman Filter (EKF) determination and the control
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algorithms rely on the spacecraft being a single rigid
body in their usage of a single inertia matrix in dynamic
state propagation, gain tuning, and feedforward torque
computations. With the addition of the articulating ap-
pendages, the inertia of the entire spacecraft now varies
as the panels articulate. For these ADCS uses, the
inertia is approximated at each timestep by lumping
the bodies together at their current positions. Instead
of a constant single rigid body inertia Ib, the lumped
systems’ inertia is used, which is dependant on the time-
varying articulation states:

Isyspθ1ptq, θ2ptqq “ Jbpθ1ptq, θ2ptqq ` J1pθ1ptq, θ2ptqq

` J2pθ1ptq, θ2ptqq (26)

Where at time t the lumped systems center of mass
is computed based on the current articulation state
csyspθ1ptq, θ2ptqq, then Jb, J1, and J2 are the main body,
and first and second appendage inertias, respectively,
expressed about csys. Expressions for these component
inertias are readily obtained using frame rotations and
parallel axis theorem, knowing the constant inertia of
each body about its own center of mass and in it’s
own frame, then using the articulation state and the
mechanical geometries to shift and rotate each into a
common frame. The updated value of Isys at each control
cycle can then be used in the EKF state propagation and
in order to actively re-tune control gains that are selected
based on inertia.

Using only the above inertia update technique to
modify the ADCS would not fully address the multibody
effects. The system does not in reality become a single
body system of inertia Isys at each control step, but
in reality the appendages move continuously at some
velocity inducing some torque on the main body due
to coupling dynamics, not to mention the torque of the
motors themselves. The coupling or constraint torques
can be evaluated using a rearrangement of Eqns. (6, 15)
to find wc. Whereas in section II a joint-space forward
dynamics expression was required for the purposes of
simulation, here estimates of the velocities and acceler-
ations are used in addition to the active torques based
on models of the joint motors and attitude actuators to
back out the constraint torques.

IV. SIMULATION RESULTS

Simulations of the sample mission have been run
using SFL’s in-house high-fidelity ADCS simulation
environment updated to address the multibody dynamics.
A 525 km Sun-synchronous orbit with a 15:00 LTAN
was selected as representative for a typical LEO target
tracking mission. The spacecraft mass properties and
the geometries of the panels and associated linkages

are based on a hypothetical DEFIANT structural design.
Targets were scattered across the globe, and the mission
concept of operations tasks the spacecraft with tracking
a given target until it disappears over the horizon, and
then rapidly slewing to acquire the next target in its
schedule, regardless of whether or not that target is
in view. Meanwhile, the attitude Sun constraint and
Sun tracking articulation as discussed in section III is
implemented.

Figures 4 and 5 show results for the cases where
the spacecraft has appendages fixed in place, and where
the appendages are articulating to perform Sun tracking,
respectively. The top plot of each shows the profile of
the spacecraft rate magnitude over a sample time period.
The payload is operating as the spacecraft passes over
a visible target, and the rate goes up to about 1 ˝{s
when the target is right below, and slower when it is
further off-track. Immediately after a payload operation,
the spacecraft slews at a specified rate of 1.5 ˝{s to
acquire the next target attitude. Slightly more jitter is
noted in the rate profile of the articulating case due
to the effect of the motor torques and reaction torques
and the errors in their compensation. The second plot
in each case shows the corresponding payload vector
pointing error with respect to the true desired trajectory.
There are large spikes in error when the high rate
transition slews occur, but those errors settle out well
before another payload operation needs to occur and
are thus not of concern. During payload operations the
error generally stays below 0.5 ˝ in the fixed appendage
case, and 0.6 ˝ in the articulating case, spiking up to at
worst 1.2 ˝ or 1.4 ˝ in each. As with the rate profile, we
note qualitatively the presence of some additional jitter
in the motion. The 2σ payload pointing error during
all payload operations periods over a 24 hr simulation
is found to be 0.55 ˝ in the fixed appendage case and
0.62 ˝ in the articulating case. Although the targets in the
period shown are spaced by about 15´ 20min, there is
no reason they can’t be placed closer together, down to
about 3min apart to allow for the slew and settling.

Figure 6 shows the results associated with the articu-
lation during the same time period, for one of the two
appendages (the results are virtually identical between
the two). A desired trajectory is set in order to minimize
the angle from the power generating surface to the Sun
as described in section III. The sample mission space-
craft uses a stepper motor for the articulation actuation
and is only actuated on discrete increments of 4 ˝ in
articulation error. The callout box which zooms in on a
small time region shows this behaviour with respect to
the smooth desired Sun-tracking trajectory. Aside from
this behaviour, the trajectory is well followed.

The second plot in Figure 6 shows the control error
and angle between the solar array normal and the Sun.
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Fig. 4: Simulated body rate magnitude and pointing error during operations with appendages fixed

Fig. 5: Simulated body rate magnitude and pointing error during operations with Sun-tracking articulation enabled

For the most part, due to the Sun-constrained attitude
that brings the Sun within the plane to which the joint
axis is normal, the two quantities are the same. It
is only the articulation control error that contributes
to the θarray´to´Sun angle because the out-of-plane
errors are near zero. We see the control error profile
primarily consists of the repeating 4 ˝ increments as
discussed above. Periodically, however, θarray´to´Sun

grows much larger and drifts away from the θerror term.
These instances are during the transition slews between
targets. Whereas during the payload operations periods,
the main body Y-axis-to-Sun constraint is being adhered
to by the attitude guidance, during these transition slews
no such constraint is used, and the attitude is governed
by an optimal slew maneuver between initial and final
states [10]. Because of this, the Sun drifts out of the

YZ-plane, and even though the control is still keeping
the angle to the Sun projection low, the actual angle
to Sun grows larger. These slew periods are quite short
overall (generally about 180 s or less), and therefore have
minimal impact on the whole orbit power generation.

Figure 7 shows power generation characteristics over
a longer period of operations of 24 hrs. The top plot
shows the power generation coefficient 0 ď γ ď 1,
which depends on the solar incident angle β according
to the Kelly Cosine [11], and which relates the actual
generated power Pgenpβq to the max power that is
generated at zero incident angle Pmax “ Pgenp0q:

Pgenpβq “ γpβqPmax (27)

It is apparent that the articulation control keeps the
power generation coefficient very near 1 overall, with
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Fig. 6: Sun tracking appendage articulation angle compared to desired trajectory and articulation control errors
during operations; callout box highlights stepping profile

Fig. 7: Solar array power generation coefficient and battery depth-of-discharge over 24hr simulation

the notable dips that occur during slews for reasons
discussed above. The second plot in Figure 7 shows
battery depth-of-discharge. For this, we assume a con-
tinuous bus power consumption of 50W, a battery with
capacity of 200Wh, and power generation based on
arrays each with five strings of standard satellite solar
cells. We initialize the battery at a depth-of-discharge of
18% and set an allowable limit of 20% beyond which
the battery performance may be impacted. During the
first sunlit period the depth-of-discharge drops from
18% to 5%, and by the next sunlit period it reaches
full charge. During each eclipse the depth-of-discharge
grows linearly due to zero power generation, but then
back in sunlight the high generation reliably drops it to
zero well before the next eclipse period is reached.

V. CONCLUSION

The multibody dynamics governing small spacecraft
with articulating arrays have been outlined in the paper.
In addition, GNC considerations for achieving decou-
pled payload and array tracking objectives have been
presented. A sample mission using SFL’s DEFIANT bus
with two deployable articulating arrays has been used
to validate the GNC design. Results from simulation
indicate that pointing error of 0.62 ˝, 2σ can be achieved
during payload operations with concurrent articulation,
in comparison with 0.55 ˝, 2σ error for the equivalent
fixed, single body case. For the vast majority of practical
cases this 0.07 ˝ increase would be of little consequence,
and likely it could be further reduce through controller
optimization. The Sun-tracking articulation tracks the
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Sun sufficiently to maintain a high power generation
coefficient throughout operations. This technology thus
enables a new class of mission demanding high power
generation for payloads with high consumption and
operational duty cycle.
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