
 

Couchman-Crook 1 34th Annual  

Small Satellite Conference 

SSC20-III-07 

NovaSAR and SSTL S1-4: SAR and EO Data Fusion 
 

Rebecca Couchman-Crook, Avyaya Kolhatkar, Tobie Carman 

Defence Science and Technology Laboratory 

DSTL Portsdown West, Portsdown Hill Road, Fareham, Hampshire, PO17 6AD  

novasar-s1@dstl.gov.uk 

 

Jess Park, James Lambert, Claire Morris 

Defence Science and Technology Laboratory 

RAF Wyton, Huntingdon, Cambridgeshire PE28 2EA 

 

 

ABSTRACT 

 

The NovaSAR and SSTL S1-4 satellites were launched into a 580 km sun-synchronous orbit on 16th September 

20181. NovaSAR is an S-band Synthetic Aperture Radar (SAR) platform, and SSTL S1-4 hosts a multi-spectral 

(RGB, NIR) and panchromatic electro-optical (EO) high-resolution payload1. As the satellites are adjacent in orbit, 

with NovaSAR leading SSTL S1-4 by ~15 minutes, this provides an opportunity to demonstrate the benefits of using 

SAR and EO data together. The key demonstration principles are: to show the complementary nature of near-

contemporaneous SAR and EO data, tipping and cueing opportunities of a tandem sensor, and to demonstrate the 

superiority of one technology for a specific application. The ability to undertake enhanced vessel detection using 

machine learning algorithms, to use bathymetry with EO and SAR imagery to get a more complete picture, and to 

detect oil spills in SAR imagery have been demonstrated. This proves the capability of the technologies, and their 

strengths as joint and separate data sources, helping to inform future mission concepts.  

 

 

1   SATELLITES – NOVASAR AND SSTL S1-4 

Launched on the Polar Satellite Launch Vehicle (PSLV) 

into a Sun-synchronous orbit (SSO) from India, 

NovaSAR and SSTL S1-4 are currently adjacent, 15 

minutes apart, in their position 580 km above the 

Earth.1  

1.1   NovaSAR 

 

NovaSAR is a SAR platform, designed as a small low-

cost satellite, able to support an S-band SAR payload.3 

The mission has a 7 year lifetime, of which, for the first 

year or so, it has been in tandem with the SSTL S1-4.3  

 

NovaSAR carries an Automatic Identification System 

(AIS) receiver that can be used to detect signals from 

ships, with information on their location and identity. 

This could be used to validate ship detections within the 

SAR maritime surveillance images.3  

 

It is capable of imaging with single and dual 

polarisation in StripMap and Maritime modes, and 

these in addition to tri-polar in ScanSAR. Stripmap 

mode has the best resolution of 6 m, with ScanSAR 

achieving 20 m resolution. The Maritime mode is a 400 

km-wide swath, designed for the observation of larger 

expanses of water, and subsequent vessel detection.3 

  

1.2   SSTL S1-4   

 

SSTL S1-4 is an electro-optical platform, designed to 

observe land for disaster monitoring. It uses the same 

design as the UK-DMC satellites launched previous to 

it.4   

 

The imager is capable of <1 m GSD in panchromatic 

mode and <4 m GSD in multispectral mode (Red: 600-

670nm, Green: 510-590nm, Blue: 440-510nm, NIR: 

760-910nm). It has the capability of area, strip and 

stereo imaging modes, with a swath of around 21 km.2  

 

2   NEAR-CONTEMPORANEOUS SAR AND EO 

DATA 

With SSTL S1-4 ~15 minutes behind NovaSAR, this 

provides an excellent opportunity to demonstrate the 

complementary nature of having SAR and EO data 

alongside one another, capturing the same scenes ~15 

minutes apart. This section covers a few potential 

examples of uses that would exploit this capability.  

2.1   Camouflage 

 

It is possible to see how targets look in both visible 

bands and SAR, and with the closeness of the 

acquisitions, it allows for validation of potential target 

identifications in SAR imagery, such as ships. This can 
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be acted on as more accurate information than just the 

one data type on its own.  

2.2   Bathymetry 

 

Using multi-spectral EO for bathymetry has been done 

previously, and there is merit in examining how SAR 

data complements these bathymetric estimates. The 

acquisition of images at near-enough the same time for 

bathymetric purposes allows a useful comparison to be 

drawn.  

2.3   Machine Learning 

 

Building a set of near-contemporaneous images allows 

for a training set of images to be made to facilitate 

machine learning of targets. This lends itself to creating 

a better set of training data to aid vessel detection, and 

in theory would allow for training on one set to be 

tested on another, to see if this gave better recognition 

of targets.  

2.4   Vessel Detection and Ship Wakes 

Ship wakes are visible at multiple wavelengths, and 

they show particularly well in S-band SAR, seen in 

multiple NovaSAR acquisitions. They can show 

movement on the water, even when an accompanying 

vessel is not clear. SSTL S1-4 imagery taken not long 

after the NovaSAR acquisition can help to show vessels 

in more detail at a finer resolution than SAR. 

Given the all-weather day/night capability of SAR, ship 

detection from SAR imagery is well established for 

maritime surveillance applications. In benign weather 

conditions with calm sea states the radar backscatter 

from the sea surface is typically low when compared to 

the radar cross section of a large vessel, making vessel 

detection achievable with a simple constant false alarm 

rate (CFAR) detector. However, maritime surveillance 

modes are typically wide swath and reasonably low 

resolution for maximum coverage. This mode may not 

be available for the entire duration, so instead high sea 

states and ScanSAR can prove the same principles. This 

means that small vessels, or vessels with low radar 

cross section, may be difficult to detect.  SSTL S1-4 EO 

imagery is collected at a higher resolution and thus 

more likely to detect small vessels or vessels of low 

radar cross section. Furthermore, the spectral response 

of the vessel may help aid identification.  

2.5   Topography Correction of SAR using EO Stereo 

 

Features of SAR images that make interpretation more 

complicated are foreshortening and layover. They arise 

due to variations in local topography particularly in 

mountainous regions. For example, two points on a 

mountain slope facing the SAR platform have a shorter 

slant range distance between them than two points in a 

valley. This leads to the compression of backscattered 

information in the range direction from the mountain 

slope faces in the ground-projected image and is known 

as foreshortening. If the slope face is particularly steep, 

there may be ambiguous returns whereby a point on the 

slope face has the same slant range distance as a point 

on the valley floor and in this case the return from the 

slope face is laid over on the return from the valley 

floor in the ground-projected image. Foreshortening 

effects are correctable in post-processing and geo-

coding with a suitable digital terrain model.  

SSTL S1-4 has the capability of collecting an along 

track (single pass) high resolution stereo scene pair of a 

target location. Standard photogrammetric procedures 

can be used to orientate the images and extract a digital 

surface model for the target location. This surface 

model could then be used to correct the foreshortening 

effects seen in the SAR image collected for the same 

area.  

2.6   Confirm Target Authenticity  

 

Each sensor provides validation for the other if a target 

looks suspicious. Additionally, with the AIS sensor on 

board NovaSAR, vessel identities can be shown in more 

detail, and this can give greater assurance. This can also 

be aided by ground-truth data.  

2.7   Landing Strip Availability and Quality  

 

In the SAR and EO images, the appearance of the 

landing strips can be compared, to see how features in 

the runway appear in both. The availability of the 

airstrip can also be determined and checked, and any 

subsequent movement of planes and vehicles in the 

intervening ~15 minutes, by comparing the images.  

2.8   Coherent Change Detection using EO to Fill 

Shadows 

 

A SAR sensor is an active sensor, meaning that RF 

illumination of a target is provided by the sensor itself.  

Depending upon the acquisition geometry this can 

result is some shadowing effects within the collected 

image region. 

 

With a passive EO sensor, the illumination is from the 

Sun, which, depending on the Sun angle, will result in 

either no shadow, or shadow in different places to those 

that exist in the SAR image. The equator crossover time 
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for SSTL S1-4 is 10:30, so shadows are likely to be 

minimal for most of the year. Therefore, the additional 

information from the EO sensor can be used to “fill” 

any shadows from the SAR image taken, and allow for 

greater detail to be seen. Vice versa, one can use SAR 

to fill in information for cloudy regions in EO data7.  

 

3    CUEING A TANDEM SENSOR 

With NovaSAR in front of SSTL S1-4, having two 

images taken ~15 minutes helps to validate findings 

from one scene to another. While the satellites do not 

have a cueing feature, due to no intersatellite links, we 

trialled how each sensor compliments the other, to 

unlock new utilities using this feature of the satellites’ 

positons in space. This demonstrates the potential a 

tipping and cueing system could have. This section will 

show some of the applications this could have if 

intersatellite links existed between the sensors.  

3.1   Camouflage 

 

If a target is camouflaged in one sensor, perhaps 

information about how it is camouflaged, could be 

found by cueing a following sensor to image the same 

scene if it was suspected there was a camouflaged 

object in it. The Near Infra-Red (NIR) band on-board 

SSTL S1-4 could potentially show if any natural 

camouflage was used.   

3.2   Dark Vessel Detection 

 

AIS technology is well utilised for Maritime Domain 

Awareness, with transceivers sending data regarding a 

vessel’s name, type, position, heading, velocity etc. 

every 2 to 10 seconds. However, the system is 

vulnerable to both spoofing and disablement.  The large 

swath coverage and all weather day/night operation of 

SAR sensors and the ability to detect ships within SAR 

imagery makes it a valuable source of intelligence for 

comparison and combination with AIS data. Anomalous 

vessels can be identified if they are detected in a SAR 

image but cannot be associated with a ship location or 

ship track derived from contemporaneous AIS data. 

Understanding the limitations of space-based AIS is key 

for this; it is known that it is best used in open waters.  

 

Cueing and tasking of SSTL S1-4 behind NovaSAR, 

would allow for better identification of what the 

identity of any “dark vessel” might be, especially with 

the finer resolution available from the Panchromatic 

mode of <1 m.  

 

3.3   Landing Strip Availability and Quality  

 

If an airstrip was imaged in SAR, showing as a long 

dark straight line, any planes will also be detected, with 

their metallic structures showing as bright points.6  

 

Using detection of them to cue SSTL S1-4, would allow 

for the finer resolution EO imagery to help in 

identifying plane type, number of planes and the quality 

of a landing strip.  

3.4   Movement of a Target 

 

If a target is observable in the SAR data from 

NovaSAR, it might be then possible to monitor its 

movement in the intervening 15 minutes, when SSTL 

S1-4 would pass overhead and be able to image the 

target. This application would pose some difficulties, as 

moving targets in SAR are displaced, and this would 

need correcting before comparison. From this, direction 

and speed of motion could be determined, therefore, 

this might show where a target was ultimately heading.  

 

4   SUPERIORITY OF SAR AND EO FOR 

DIFFERENT APPLICATIONS 

Some applications lend themselves well to a particular 

technology, either because of the wavelength used and 

its interactions with the atmosphere, or due to some 

things simply not being visible using that method of 

detection because of the materials they are made from. 

This section explores some of the benefits and 

limitations of SAR and EO imagers for these tasks.  

 

4.1   Camouflage  

 

Particularly in defence settings, many targets are largely 

metal-based or concrete buildings. These show up very 

clearly in SAR images. Therefore, corners and walls of 

camouflaged buildings and vehicles may be uncovered 

by using SAR, whereas they may be hidden in EO 

imagery.  

 

4.2   Bathymetry 

 

The penetration of SAR into water bodies is not 

extensive, perhaps a few 10s of metres, and water is 

often black in SAR images, especially if it has an 

undisturbed surface, due to the forward scatter on the 

smooth surface. Thus, we can struggle to tell much 

depth information from just a SAR image, though this 
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might be possible from gravity and Bragg wave 

structures on the sea surface.  

 

EO imagery, taken at differing wavelengths will show 

different features with each wavelength due to the 

varying water penetration by them, especially with the 

addition of blue and green bands. EO has greater 

sensitivity at shallower depths than SAR S-band, but 

SAR has a greater range of depth.  Together they can 

provide more complete bathymetric information, and 

separately provide depths when there’s cloud cover 

(obscuring an EO image) or rough sea states (SAR is 

unable to retrieve depths in these conditions).  

 

4.3   Hidden Objects and Forest Penetration 

 

Canopy penetration will be greatest with S-band SAR. 

EO imagery cannot ‘see’ through the layers of leaves, 

but can give an indication of vegetation health, through 

the Normalised Differentiation Vegetation Index 

(NDVI).  

 

SAR on the other hand, can show the structure of what 

lies underneath, with X-band showing canopy/low 

penetration detail, and L-band giving more details of 

the ground surface as it is higher penetration. Therefore, 

the S-band payload on-board NovaSAR can show detail 

down to trunk-level in a forest.  

 

4.4   Oil Spills  

 

SAR has been used to identify oil spills, with 

algorithms in place for their detection, such as in the 

Sentinel Applications Toolbox (SNAP) from ESA. As 

oil disrupts the wave pattern on the water’s surface, 

reducing the surface roughness, it will stand out against 

the noisier surroundings due to a chaotic sea state. It 

also offers the opportunity to detect image spills 

through cloud and at night. This gives it an advantage 

over EO imagery, but MSI imagery has been used to 

detect this.5  

 

4.5   Time and Weather Dependency 

 

In inclement weather, particularly in cloudy conditions 

and moderate rainfall, SAR will have the upper-hand as 

it can detect through cloud, whereas an EO system 

would just take a white scene.  

 

SAR also has the benefit of being able to image at 

night, as it is a passive technology, so it is not reliant on 

illumination from other sources, like electro-optical 

imagers. Though night-time optical imaging may be a 

useful avenue for some use cases.  

 

4.6   Wavelength and Colour Detection  

 

For colour detection. EO would have the clear 

advantage, as the EO payload can image in different 

wavelengths (Red, Green Blue and NIR). Some targets 

imaged may have unique spectral characteristics which 

will show with different combinations.  

 

5   DEMONSTRATED UTILITIES 

Using the data from NovaSAR and SSTL S1-4, we 

have explored some of these use cases, to see what 

advantages the near contemporaneous collection gives, 

and prove that these sensors have the capability to 

support these research objectives.  

5.1   Scene Interpretation   

 

The wavelength buildings and objects are imaged in, 

and the material they are made of, can influence 

whether they seemingly appear or disappear in SAR 

and EO images.  

Figure 1: A view of Toronto Train Station, showing 

the natural RGB image from SSTL S1-4 on the left 

and the SAR image from NovaSAR on the right, 

where the detail of the train carriages is lost in the S-

band wavelength when compared to the RGB image.  

© SSTL 

 

This can act as a kind of camouflage in different 

wavelengths, additionally obscuring the outline of an 
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object, so only part is visible. This can make 

interpretation of a scene difficult.  

 

A high presence of “bright” objects in SAR imagery 

can oversaturate the received signals and mask out 

details of the shape of an object in an area. This can be 

seen by a number of train carriages present in Fig. 1 

that blur any details as to the number of carriages and 

their shape. The source of the bright objects can clearly 

be seen as individual train carriages in the EO image of 

the same scene; however, some of the image is 

obscured by clouds, which is not a feature in the SAR 

image. This shows that both bring different information 

about a scene that add to the interpretation of what is 

contained in the image.  

5.2   Vessel Detection 

Two automated ship detection approaches were trialled 

on the source data from NovaSAR. The first, a 

traditional method of land-masking, modelling sea 

surface clutter and applying a Constant False Alarm 

Rate (CFAR) algorithm. The second, training a 

RetinaNet-based Convolutional Neural Network (CNN) 

with S-band and C-band data to detect ships.   

The CNN method used one set of training data from 

Sentinel-1 and Gaofen-3, which are C-band SAR 

sensors. This was applied to the NovaSAR testing set of 

imagery. It was verified that non-native training data 

could be used to detect ships in S-band data. Further to 

this, the CNN method of ship detection out-performed 

the CFAR method in the absence of native training 

data, and also with and without landmasks applied. It 

was also noted that the RetinaNet CNN could detect 

ships based on their wake alone, when the ships 

themselves were hard to see.  

The conclusions from this work are tentatively drawn, 

due to a small dataset to test on, with lack of variety of 

sea states. Importantly however, the findings of a CNN 

method of detection working better than a CFAR 

method with no native training data, suggests that this 

technology could provide an integrated ship detection 

capability from the start of operations in something akin 

to the NovaSAR platform, avoiding the need of 

amassing training sets first.  

(Additional details as to this work may be found in 

Carman, T. and Kolhatkar, A., 2020, A Comparison of 

CFAR and CNN vessel detection methods for S-band 

NovaSAR images.) 

5.3   Dark Vessel Detection 

Combining SAR images from NovaSAR with AIS data 

received from NovaSAR allows for the identification of 

dark vessels.  

In practice, the combining of the data in congested 

waterways was a challenge, as it was harder to attribute 

signals to ship, and their AIS broadcasts may not have 

been received, even though they were transmitted.  

In less crowded waters, images have been tagged with 

the corresponding AIS data, and ships without 

information are much more easily identified (see 

bottom left bright pixels with no orange label in Fig. 2).  

This could be taken further by combining with 

knowledge of water depth (potentially utilising the 

bathymetry work) to provide evidence of illicit activity, 

i.e. something labelled as a tanker should not be in very 

shallow waters.  

 

Figure 2: A NovaSAR SAR image with NovaSAR 

AIS data overlaid, denoted by orange dots. © SSTL 

 

5.4   Target Movement  

Using images from both NovaSAR and SSTL S1-4 we 

have been able to track the movement of vessels in the 

~15 minute window between the two images (see Fig. 

3). The speed (and distance) at which the vessel is 

going can be determined by using the time interval 

between acquisitions and the distance covered by the 

ship. Additionally, this technique can be used against 

accompanying AIS data to verify the identity and 

intentions of vessels.  

 

 

 



 

Couchman-Crook 6 34th Annual  

Small Satellite Conference 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A view of British waters, where a boat is 

seen moving into the area outlined in the white box 

on the NovaSAR SAR image (top), in the SSTL S1-4 

natural colour RGB image taken ~15 minutes later 

(bottom). © SSTL 

5.5   Vegetation Index 

By using the different bands in the multi-spectral 

images from SSTL 1-4, we are able to create a variety 

of vegetation indices. Health of the vegetation can be 

seen by the classic NDVI (Near-Infrared band minus 

Red band, divided by Near-Infrared band plus Red 

band). Using two other band combinations we have 

shown utility for classifying vegetation coverage and 

ground type.  

The combination of Near Infra-Red, Red and Green, 

assigned to Red, Green, Blue respectively, can provide 

a similar indicator as to what is vegetation, what is 

water and what is bare land, (see Fig. 4).  

Comparing this band combination with the NovaSAR 

image provided clarification as to rectangular features 

that were visible in SAR, but had differing levels of 

reflectivity. It was seen that this was due to the level of 

vegetation in those areas.  

Another useful combination that gives indication as to 

the ground cover and the vegetation that is at that 

location is provided by the band combination Near 

Infra-Red, NDVI and Green, as Red, Green and Blue 

respectively.  (see Fig. 5). In this band variation, non-

vegetated land appears in magenta (commonly 

buildings and sand) and dark blue (commonly water). 

Vegetation coverage can be classified with greener 

areas being closed canopy, acid yellow being open 

canopy or shrubs, and golden yellow shows areas of 

grass.  

 

 

Figure 4: A view of the Everglades, US. The natural 

colour RGB on the left and NIR-R-G band 

combination on the right, both from SSTL S1-4. 

Below is the NovaSAR image of the same scene.  

© SSTL  

 

Figure 5: A view of the Bay of Bengal, India. The 

natural colour RGB on the left and NIR-NDVI-G 

band combination on the right, both from SSTL S1-

4. © SSTL 

 

5.6   Bathymetry 

The bathymetry of shallow coastal areas was 

investigated for both SAR and EO data. There is an 

existing methodology for the extraction of water depth 

from EO imagery, which allowed for the depths to be 

extracted from SSTL S1-4 imagery. However, the 

processing of the NovaSAR imagery required a new 

methodology to output water depths from SAR data.  

For the purposes of bathymetry, the images can be 

considered contemporaneous, due to the long period of 

any bathymetric changes. This use case explored 

whether SAR or EO gave more accurate estimates, 
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based on ground-truth data, and if when combined, the 

results could provide better accuracy.  

5.6.1 SAR Bathymetry 

SAR bathymetry data extraction requires a fully 

calibrated and georeferenced file, exhibiting Bragg 

scattering and with given swell data. Wave directions 

are estimated across the image by overlapping subsets 

of the image and 2D FFTs, to produce power spectrum 

estimates. These give a peak in wavenumber that are 

translated to a local peak wavelength for each subset.8 

The wavelengths are combined with the linear wave 

dispersion relation to estimate the local depth, h, at each 

point on the image. The angular frequency of the 

waves, w, is calculated by using a known value for a 

point of deep water in the image (from ground-truth) 

(see Eqn. 1).9 The depths for each point calculated 

across the different sub-images will then be averaged.10  

               (1) 

Fig. 6 gives an example of the output from this method. 

The systematic error from the SAR output, comparing 

the estimated depth with the local charted depth, is in 

line with other reported errors in S-band SAR 

bathymetry studies, at 25%.  

Figure 6: This graph shows the estimated depth for 

each point in the image subset for SAR data taken of 

Princess Cays, Bahamas. The red area denotes a 

landmask.  

5.6.2 Electro-Optical Bathymetry  

Electro-optical bathymetry data extraction requires 

measurement of the depth that different wavelengths of 

light detected by the sensor can penetrate to. This 

requires a land mask to be applied, using data from the 

NIR band, though clouds and boats can cause issues in 

this method.  

The depth of each pixel is found by applying the 

Stumpf formula (Eqn. 2) to the green and blue bands.11 

This is applied using the Marlin Water Depth Tool in 

the ENVI platform (not part of the standard ENVI 

package).  

             (2) 

With Lobs is the observed radiance for each band, and m1 

and m0 are the offset and gain.  

The Lyzenga algorithm can also be used, which uses 

the log-linear relationship of reflectance and depth, 

considering the total reflectance from all bands in the 

image.12  

Analysis on an example EO image of Princess Cays, 

Bahamas, showed that the Stumpf method performed 

better with areas containing obstacles like reefs. The 

Lyzenga method produced lower errors by comparison 

over smooth areas. Both methods were limited to a 

depth of 20 m due to the penetration of the ocean by 

optical wavelengths.  

When the bathymetric data has been extracted from the 

EO and SAR images, they can be compared to ground-

truthing data. They can then provide alternative 

methods of bathymetric data retrieval, when another 

method is not viable. SAR may be unusable in chaotic 

sea states, and EO would not work in cloud covered 

scenes. SAR has a greater range in depth, but EO data 

provides greater sensitivity at shallow depths. The data 

could also be combined to minimize errors in values 

obtained from a scene, where the depth estimates 

overlap in the 10-20 m range.  

5.8   Oil Spill Detection 

Oil spills appear dark in SAR imagery, as they alter the 

surface texture of the water.13 Two methods were 

employed to extract oil spill information from an image, 

these were a texture analysis GLCM method, and 

another was an in-built oil spill detection algorithm in 

the Sentinel Applications Toolbox (SNAP). The 

methods were used on an oil spill image of Nigeria, and 

trialled in HH and VV polarisations.  

In the GLCM (Grey Level Co-occurrence Matrix) 

method, the image was speckle filtered and multi-

looked to reduce noise and speckle in the image. Then, 

using the SNAP Toolbox inbuilt GLCM, a variety of 

textural analyses can be retrieved.14 From these, the 

Entropy image provides the greatest contrast for picking 

out the oil spill from the image. 
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Figure 7: Images detailing an oil spill near Nigeria, 

in HH polarisation, with (a) the original speckle 

filtered and multi-looked image, (b) the GLCM 

entropy image, (c) the K-means cluster image with 

the oil spills picked out in green. © SSTL 

 

Then an unsupervised K-Means classification was 

implemented, and by colouring the clusters white, the 

oil spill was picked out from the background by 

colouring one cluster green (or any other colour). Some 

anomalous pixels are notable (see Fig. 7), but the 

application of a land mask would help to omit many of 

these. 

The second method uses the inbuilt SNAP Oil Spill 

Detection tool. The scenes were landmasked, then a 

scene-specific threshold was used to detect points, and 

then a clustering algorithm was used to classify these as 

a spill if the area was over a certain amount. Less 

anomalous pixels were visible, but the extent of the oil 

spill is poorly defined (see Fig. 8).  

A near-contemporaneous EO image of the oil spill 

scene was not retrieved, so comparisons for EO and 

SAR for oil spill detection could not be tested in this 

study. However, it is likely that together, the EO and 

SAR would show the oil spill’s greatest extent when 

processed images were overlaid, though SAR is 

generally favoured for this application, 

 

 

 

 

 

 

 

 

Figure 8: Images detailing an oil spill near Nigeria, 

in HH polarisation, with (a) the original speckle 

filtered image, (b) the SNAP inbuilt oil spill 

detection with default settings, (c) the SNAP inbuilt 

oil spill detection with readjusted variables. © SSTL 

 

 

CONCLUSION 

Utility has been demonstrated in a variety of areas for 

near contemporaneous EO and SAR imagery, combined 

with AIS data. This has much to recommend it as a 

sensor combination for future mission concepts. The 

benefits of particular sensors for certain applications 

has also been investigated, that might help to focus 

future mission sensor decisions depending on their 

intended use cases. The addition of Machine Learning 

to the data fusion process greatly amplifies the utility 

and speed with which identification algorithms can be 

undertaken, and is an indicator of the direction much 

SAR and EO research will take in the future. This 

would also open the pathway for on-board algorithms 

for detection.  
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