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ABSTRACT 

Mitigating climate change and achieving food security are two of the key 

challenges of the twenty-first century. By 2050 the world’s population is forecast to 

be over a third larger than at present and cereal demand is predicted to increase by 

60%. Pronounced intensification of cereal production is expected to take place in 

Oxisol-dominated tropical and subtropical regions (Smith et al., 2007), identifying 

the need for more nitrogen (N) to be supplied to these agroecosystems. It is 

established however that boosting food production though an increased use of 

synthetic N fertilisers will result in sharp increases in greenhouse gas emissions, 

especially N2O. It is therefore critical to identify alternative N management strategies 

aimed at supporting future intensification of tropical and subtropical agricultural 

systems without provoking an increase of N2O emissions from these agroecosystems. 

A unique dataset of high-frequency observations and N recovery data referring to 

multiple cropping seasons, crop rotations and N fertiliser strategies was gathered in 

this study using a fully automated greenhouse gas measuring system, 15N-tracer 

techniques and a process-based biogeochemical model. The aim was to define 

profitable, agronomically viable and environmentally sustainable N management 

strategies to support future intensification of cereal production on subtropical 

Oxisols. This study also aimed to improve the current understanding of 

environmental factors influencing N2O emissions in fertilised Oxisols and to assess 

the magnitude and main pathways of fertiliser N losses that limit crop yields in these 

agroecosystems. These aims were achieved by way of the following three research 

objectives: 

• Evaluating the use of urea coated with the DMPP nitrification inhibitor to 

limit N2O emissions and increase grain yields compared to conventional 

urea.  

• Evaluating whether the introduction of a legume phase in a cereal-based 

crop rotation can reduce the reliance of cereal crops on synthetic N 

fertilisers and minimise N2O emissions during the cereal cropping phase. 
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• Use model simulations to test the hypotheses underlining the first two 

objectives and assess the sustainability of the N management practices 

investigated under a broader spectrum of environmental conditions. 

The results of this study indicate that in subtropical Oxisol-based cereal cropping 

systems there is significant scope for limiting N2O losses and improving the fertiliser 

N use efficiency, especially during the summer cropping season. The warm and 

humid soil conditions of subtropical summers, associated with the higher N fertiliser 

rates applied to summer crops, were conducive for greater nitrification and 

denitrification rates compared to winter. Among the N management strategies tested, 

the application of DMPP urea was the most effective in minimising N2O losses 

during a summer crop.  

The slower nitrification rates of DMPP urea enabled a better match between the 

NO3
- released by the fertiliser and plant N uptake, resulting in almost no 

accumulation of NO3
- in the topsoil and therefore effectively limiting denitrification. 

As a result, the use of DMPP urea on average abated N2O emissions by 65% 

compared to the same N rate with conventional urea. However, the enhanced 

synchrony of DMPP urea was limited to the top soil and DMPP did not increase crop 

productivity compared to conventional urea. The high clay content of the soil 

prevented fertiliser N losses via deep leaching, while the low soil C and the short-

lived periods of soil saturation limited N2 emissions. Consequently, a good 

synchrony between fertiliser N supply and plant uptake was achieved with 

conventional urea and DMPP had limited scope to increase the N use efficiency of 

the urea-based fertiliser.  

The introduction of a legume phase in a cereal-based crop rotation showed 

multiple environmental and agronomic advantages. Planting the cereal crop shortly 

after incorporating legume residues ensured the synchrony between the crop N 

uptake and the mineral N progressively released by the decomposition of the 

residues. This practice avoided the accumulation of relevant amounts of N in the soil 

that would have been available to nitrifying and denitrifying microorganisms, and 

N2O emissions were primarily a function of the N fertiliser rate applied. As a result, 

decreasing the synthetic N rates applied to the cereal in the legume crop rotation led 

on average to a 35% reduction of N2O losses. Concurrently, the incorporation of 
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legume residues provided enough readily available N to support crop development 

and grain yields were not affected by the reduction of synthetic N.  

Overall, the results of this study reveal that the use of DMPP urea in subtropical 

Oxisols cannot be regarded as an economically viable standard farming practice to 

reduce N2O emissions unless governmental incentive policies are established. 

Conversely, introducing a legume phase in cereal-based crop rotations is the most 

effective N management practice under the environmental and agronomical 

perspective. If properly implemented, this strategy enables to significantly reduce 

N2O emissions, achieve high yields, reduce the costs associated with N fertilisation 

and provides greater flexibility to the farmer in terms of timing and rate of fertiliser 

application. The results of this study will contribute to define N management 

practices for the sustainable intensification of subtropical cereal production. 
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Chapter 1: Introduction 

 

1.1 Background and significance  

Agriculture in the twenty-first century faces unprecedented challenges. The 

coming decades will demand agricultural systems to provide adequate food supply to 

a growing world population without increasing the already elevated anthropic 

pressure on natural resources. Increasing food production without provoking 

unacceptable levels of environmental damage is not however just an extremely 

complex problem, is also a matter of urgency. By 2050, less than forty years from 

now, global agricultural production will have to double to meet the increasing 

demand of a world population forecast to be over a third larger than at present 

(Godfray et al., 2010; Tilman et al., 2011). 

A major contribution to the increased global calorie demand will come from 

cereals, which contribute 50% of daily energy intake worldwide and up to 70% in 

some developing countries (Kearney, 2010). As a result, global cereal demand is 

predicted to increase by 60% (FAO, 2009). Specifically, virtually all the increase in 

cereal consumption will come from the tropical and subtropical regions of Africa, 

South America and Asia (Alexandratos and Bruinsma, 2012), where the vast 

majority of future global demographic growth is projected to take place (UNFPA, 

2011).  

It is recognised that future increases in cereal production should be achieved 

through augmenting current crop yields (intensification) rather than converting more 

land to cultivation (extensification) (Godfray et al., 2010; Foley et al., 2011; Phalan 

et al., 2011). This will result in increasing pressure on cereal cropping systems in the 

tropics and subtropics, where productivity will need to be maximised to meet the 

needs of those countries. The increase in tropical and subtropical cereal production 

will be supported largely by farming systems conducted in Oxisols (USDA Soil 

Taxonomy), the most common soil type in these regions (Fageria and Baligar, 2008). 
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Oxisols occupy 46% and 23% of soil area in the tropics and subtropics, 

respectively (von Uexküll and Mutert, 1995; Buol and Eswaran, 1999; Thomas and 

Ayarza, 1999) and, together with Ultisols, are the soil type where half of the world’s 

population currently lives (Yang et al., 2004). The fact that Oxisols have low natural 

fertility and moderately high susceptibility to degradation can limit crop yields in 

these agricultural systems. However, many of these constraints can be amended with 

modern technologies and, when managed with correct agronomic practices, Oxisols 

are capable of high productivity levels. This, in conjunction with the favourable 

climatic conditions of tropics and subtropics, makes Oxisols capable of supporting 

multiple cropping cycles each year. 

Due to their extent and potential productivity, Oxisols are today regarded as the 

most extensive agricultural frontier in the world (Borlaug and Dowswell, 1997), 

which means that if appropriate agronomic techniques are implemented, the quantity 

of cereal produced in these soils will significantly contribute to meeting future grain 

demand.  

1.2 The problem statement 

Nitrogen (N) deficiency is one of the major factors limiting crop production in 

Oxisols. For example, Sánchez and Salinas (1981) have estimated that in tropical and 

subtropical regions of the American continent soil N deficiency is a major 

agricultural constraint in over 90% of Oxisols. N deficiency results in an inability of 

Oxisols to sustain continuous crop production (Fageria and Baligar, 1995) and as 

such the addition of sufficient quantities of fertiliser N becomes a key factor to 

enable the intensification of cereal production in these agroecosystems. 

It is widely recognised that both the manufacture and use of synthetic N fertilisers 

in crop production generate substantial environmental threats (Tilman et al., 2002; 

Crews and Peoples, 2004; Jensen et al., 2012). The synthesis and transport of N 

fertilisers are associated with high fossil fuel requirements and every year are 

responsible for the emission of over 300 Tg of carbon dioxide (CO2), the primary 

greenhouse gas emitted through human activities (Barker et al., 2007). Once applied 

in the field, fertiliser N can be lost via soil erosion, runoff, nitrate (NO3
-) leaching or 
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gaseous emissions into the atmosphere in the form of ammonia (NH3), mono-

nitrogen oxides (NOx), dinitrogen (N2) and nitrous oxide (N2O). The majority of 

these compounds are identified as pollutants and their emissions in the environment 

can cause severe damage both on a local and global scale (Crews and Peoples, 2004; 

Goulding, 2004).  

Amongst these environmental threats, the emission of significant amounts of N2O 

is arguably one of the most important. The environmental relevance of N2O 

emissions resides both in terms of its elevated global warming potential (298 times 

that of CO2 over a 100 year time horizon (Myhre et al., 2013)) and its contribution to 

the depletion of the ozone layer in the stratosphere (Ravishankara et al., 2009). 

Agricultural soils are the main anthropogenic source of N2O emissions, contributing 

approximately 50% of the global human-derived N2O emissions (Ehhalt et al., 2001; 

Syakila and Kroeze, 2011; Smith et al., 2012). Numerous studies on agricultural soils 

have proven a clear correlation between N2O emissions and N fertilisation, with 

increasing N2O fluxes corresponding to increasing N fertilisation rates (Matthews, 

1994; Kroeze et al., 1999; Bouwman et al., 2002a; Del Grosso, 2006; Butterbach-

Bahl et al., 2013; Shcherbak et al., 2014).  

Reducing the contribution of agriculture to global warming is paramount since 

numerous studies indicate that increased temperatures and climate change will likely 

have a negative impact on tropical and subtropical agriculture and therefore food 

production in these regions (Alexandratos and Bruinsma, 2012; Hoffmann and 

UNCTAD secretariat, 2013). In fact, if specific mitigation strategies are not 

implemented, climate change is expected to cause a decrease in average yields 

ranging between 15% and 30% in the next 70 years (Hoffmann and UNCTAD 

secretariat, 2013). This decline will be particularly acute in the tropical and 

subtropical regions of Sub-Saharan Africa, South Asia and Central America, the 

territories that are most exposed to climate change (Ericksen et al., 2011). It is 

critical therefore to identify alternative N management strategies to support future 

intensification of tropical and subtropical agricultural systems without exacerbating 

N2O emissions from these agroecosystems. Critically, these strategies will have to be 

profitable for the farmer and transferable to both low- and high-income cropping 

systems in order to guarantee their widespread adoption.  
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One proposed method to sustain high crop productivity while limiting N2O 

emissions is the application of fertilisers coated with nitrification inhibitors. Coating 

urea-based fertilisers with nitrification inhibitors has been shown in some cases to 

improve yields through reducing the amount of N lost via leaching, nitrification or 

denitrification (Linzmeier et al., 2001a; Pasda et al., 2001; Hatch et al., 2005). On 

the other hand, nitrification inhibitors are expensive and on average increase 

fertilisation costs by 10% (Weiske, 2006; Eagle et al., 2012). Moreover, their 

agronomic efficiency is affected by soil properties and climatic conditions, and 

several authors have reported no significant yield increase when using fertilisers 

coated with nitrification inhibitors (Díez López and Hernaiz, 2008; Liu et al., 2013).  

Alternatively, the reintroduction of legumes in cereal-based cropping systems has 

been suggested as one possible strategy to reduce the synthetic N inputs required and 

consequently to decrease N2O emissions due to synthetic N fertilisers (Jensen and 

Hauggaard-Nielsen, 2003; Emerich and Krishnan, 2009). However, the efficacy of 

this strategy depends on site-specific environmental conditions and in some cases 

elevated N2O emissions have been reported after the incorporation of legume 

residues (Jensen et al., 2012).  

To date, research has focused primarily on the agronomic and environmental 

efficacy of these N management strategies in temperate agroecosystems. Even 

though the technical feasibility of increasing cereal production in Oxisols has 

attracted considerable research interest over the last decade (Fageria and Baligar, 

2001; Calegari et al., 2008; Fageria and Baligar, 2008), efforts have focused on the 

correction of the key constraints of these soils (soil acidity, available phosphorus and 

soil organic matter). This means that data on N2O emissions from tropical and 

subtropical cereal systems in Oxisols are still sparse and the efficacy of the 

abovementioned N management strategies in these environments remains unclear. 

Quantifying N2O emissions in these agroecosystems is made even more critical by 

the fact that the warm and humid conditions typical of tropical and subtropical 

summers can potentially exacerbate N2O losses from fertilised soils (Bouwman et al., 

2002b; Stehfest and Bouwman, 2006). Together, these issues confirm that research 

on alternative means of intensification is crucial to avoid the increase of future 

tropical and subtropical cereal production through an overuse of synthetic N, which 

will increase N2O emissions from these agroecosystems. 
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1.3 Research aim and objectives  

The primary aim of this study was to define profitable, agronomically viable and 

environmentally sustainable N management strategies to support future 

intensification of cereal production in Oxisols. Established with a focus on 

subtropical conditions, this study also aimed to extend the current understanding of 

environmental factors influencing N2O emissions in fertilised Oxisols and to 

determine the magnitude and main pathways of fertiliser N losses that limit crop 

yields in these agroecosystems. These aims were achieved by way of the following 

three research objectives. 

 

Objective 1 – Evaluate the use of urea coated with a nitrification inhibitor to 

limit N2O emissions and increase grain yields compared to conventional urea.  

The hypothesis underlying this objective was that nitrification inhibitors decrease 

N2O emissions both directly, via slowing the nitrification rates, and indirectly, by 

reducing the amount of NO3
- available to denitrifying microorganisms. By reducing 

N movements beyond the rooting zone, nitrification inhibitors can increase the 

synchrony between fertiliser-derived NO3
- and plant uptake, and therefore increase 

yields compared to conventional urea. 

 

Objective 2 – Evaluate whether the introduction of a legume phase in a cereal-

based crop rotation can reduce the reliance of cereal crops on synthetic N fertilisers 

and minimise N2O emissions during the cereal cropping phase. 

In this case, the hypotheses were: i) the N mineralised from legume residues can 

substantially reduce the synthetic N input required by the following cereal crop and 

therefore limit the “direct” N2O emissions due to mineral fertilisation, and ii) N2O 

losses due to the mineralisation of legume residues can be minimised via 

synchronising the release of N derived from the residues with the N demand of the 

subsequent cereal crop. 
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Objective 3 – Assess the sustainability of the N management practices 

investigated in Objectives 1 and 2 under a broader spectrum of fertiliser N rates and 

environmental conditions. 

This objective was identified by the fact that the data collected in this study were 

influenced by the specific seasonal weather conditions encountered during the 

monitored cropping seasons. Moreover, some of the abovementioned hypotheses 

could not be completely verified using only field measurements. The hypothesis 

underlying this objective were that a simulation approach can be used to i) assess the 

validity and robustness of the hypotheses underlying the previous two objectives, and 

ii) improve the understanding of the environmental factors driving N2O emissions 

and crop productivity in subtropical cereal cropping systems. 

 

This study was conducted at a research station managed by the Australian 

Department of Agriculture, Fisheries and Forestry in South-East Queensland, 

Australia, in consideration of three main factors. In the first instance, the 

experimental site needed to be located in a region dominated by Oxisol-type soils. 

Secondly, the necessity of replicating the farming practices adopted in cereal-based 

agroecosystems required the experiments to be performed in close collaboration with 

an organisation able to perform field operations. Lastly, the constant maintenance 

needed by the instruments used in this study required the field study to be located in 

close proximity to the Queensland University of Technology. 

The study, funded by the Australian Grains Research and Development 

Corporation, involved two years of field experiments carried out in close 

collaboration with local research structures and agronomists. While conducted in a 

subtropical region (Cfa, according to Köppen climate taxonomy (Peel et al., 2007)), 

the insight into N fertiliser dynamics and N2O losses provided by this study is also 

valid for tropical cereal production systems in Oxisols. This is because the mild, dry 

winters and the warm, humid summers typical of Cfa-type climate are very similar to 

the tropical Aw-type, the climate where the vast majority of tropical cereal 

production is carried out globally (Chapter 2.2). Significantly, the two summer 

seasons monitored in this study were characterised by exceptionally elevated rainfall 
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events (Chapters 3.4.1 and 4.4.1), providing even greater similarity to tropical 

summer cropping conditions and increasing the possibility of elevated N losses.  

This is the first study on subtropical Oxisols to establish a comprehensive dataset 

on N2O emissions and fertiliser N dynamics referring to multiple cropping seasons, 

crop rotations and N fertilisation strategies. This research constitutes a unique 

framework aimed at establishing agronomically viable and environmentally 

sustainable N management strategies to support future intensification of subtropical 

cereal production. The results of this study are largely transferable to similar 

cropping systems in tropical regions and as such can contribute to define sustainable 

N management practices valid for these environments.  

1.4 Thesis outline 

The investigation on N2O emissions and fertiliser N dynamics presented in this 

thesis consists of seven chapters. Chapter 2 follows the introduction and sets the 

context of this study, analysing the topics related to N2O emissions and sustainable 

intensification of cereal production in the subtropics. The thesis is based on 

publications, and following is a description of the four papers that together address 

the overall objectives of the study.  

The first paper (Chapter 3) addresses the first objective of the study and compares 

the influence of conventional urea and urea coated with a nitrification inhibitor on 

seasonal N2O emissions and grain yields. The efficacy of these fertilisation strategies 

was tested under different environmental conditions by applying the two fertilisers to 

a winter and a summer cereal crops. The outcomes of the study were threefold, 

namely to: 

1. Generate baseline information on environmental factors influencing N2O 

emissions, to be used as a reference case to define operational details for the 

design of the experiments addressing objective 2. 

2. Quantify the magnitude of seasonal N2O emissions in these agroecosystems 

using different synthetic N fertilisers. 
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3. Determine which cropping season presents the greatest scope for limiting 

N2O emissions in these agroecosystems. 

 

The results of this first study were published in: 

De Antoni Migliorati M, Scheer C, Grace PR, Rowlings DW, Bell M, McGree J 

(2014). Influence of different nitrogen rates and DMPP nitrification inhibitor on 

annual N2O emissions from a subtropical wheat–maize cropping system. Agriculture, 

Ecosystems & Environment, 186, 33-43. 

 

 

The second paper (Chapter 4) addresses the second objective of the study and 

evaluates the reintroduction of legumes in cereal cropping systems as a strategy to 

reduce synthetic N inputs and diminish the N2O intensity of the cereal phase. The 

results described in the first paper (Chapter 3) highlighted that N2O emissions during 

the winter season were minimal. The second paper therefore focused exclusively on 

evaluating alternative N management practices in a summer cereal crop. The cereal 

crop was planted after a legume pasture, and N2O emissions and yields were 

compared to those of the same cereal in rotation with a non-leguminous pasture. The 

outcomes of this experiment were to: 

1. Confirm the average magnitude of seasonal N2O intensities in these 

agroecosystems when legumes are not included in the crop rotation. 

2. Assess the environmental and agronomic advantages and limitations of using 

legumes in the crop rotation to reduce the synthetic N requirements of the 

cereal. 

 

The results of this second study were published in: 

De Antoni Migliorati M, Bell M, Grace PR, Scheer C, Rowlings DW, Liu S 

(2015). Legume pastures can reduce N2O emissions intensity in subtropical cereal 

cropping systems. Agriculture, Ecosystems & Environment, 204, 27-39. 
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The third paper (Chapter 5) complements the previous two papers by assessing the 

N recoveries of the N managements strategies investigated. This paper analyses the 

results of a multi-season 15N tracer recovery experiment conducted on the same 

cereal crops monitored in the investigations described in the first and second papers 

(Chapter 4 and 5, respectively). The outcomes of the field study described in this 

paper were to: 

1. Compare the fertiliser N recoveries of the different fertilisation strategies 

tested in this study. 

2. Determine the main pathways of fertiliser N losses that limit N recovery in 

subtropical Oxisols. 

3. Identify the most effective strategies to reduce fertiliser N losses and increase 

fertiliser N recovery in these agroecosystems. 

 

The results of the third paper were published in: 

De Antoni Migliorati M, Bell M, Grace PR, Rowlings DW, Scheer C, 

Strazzabosco A (2014). Assessing the agronomic and environmental implications of 

different N fertilisation strategies in subtropical grain cropping systems in Oxisols. 

Nutrient Cycling in Agroecosystems, 100, 369-382. 

 

 

The fourth paper (Chapter 6) addresses the third objective of the study. In this 

paper, the entire dataset collected during this multi-season study was used to validate 

the DAYCENT biogeochemical model and evaluate how variations in seasonal 

weather conditions and fertiliser N rates can affect the agronomic and environmental 

performances of these N management practices. The aim of the investigation was to 

provide agronomists, researchers and policy-makers with an exhaustive evaluation of 

the N management strategies assessed in this study. 
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The results of this study have been submitted to: 

De Antoni Migliorati M, Parton WJ, Del Grosso SJ, Grace PR, Bell M, Rowlings 

DW, Scheer C. Legumes or nitrification inhibitors to reduce N2O emissions in 

subtropical cereal cropping systems? Agriculture, Ecosystems & Environment on 24 

February 2015. 

 

The thesis closes with Chapter 7, which synthesises the outcomes from all four 

papers and discusses the overall study findings. The practical implications and 

limitations of the study are analysed, discussing also the future research needs and 

the main findings of this study.  
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Chapter 2: Background and Literature 
Review  

 

 

The release of vast amounts of N2O in the atmosphere has significant 

repercussions on the environment. The relevance of this molecule in terms of climate 

change is analysed in section 2.1, with special focus on its impacts on global 

warming (section 2.1.2) and the factors regulating its emissions in the atmosphere 

(section 2.1.3). Specifically, N fertilisation plays a fundamental role in the increase 

of N2O in the atmosphere, making agricultural soils the main contributor to 

anthropogenic N2O emissions. Worldwide, the vast majority of fertiliser N is used to 

grow cereals, which demand is predicted to escalate in tropical and subtropical 

regions in response to future demographic growth. The challenges of enabling the 

intensification of agricultural systems in the tropics and subtropics without 

exacerbating N2O emissions from these agroecosystems are identified in section 

section 2.2.  

N2O emissions represent a loss of fertiliser N and indicate inefficiency in the 

fertilisation process. Consequently, N management strategies aimed at minimising 

N2O losses collimate with those aimed at maximising the recovery efficiency of 

fertiliser N in the crop (REfN). Achieving elevated REfN is therefore paramount for 

the sustainability and profitability of these strategies, a claim examined in section 

2.3.  

The use of nitrification inhibitors (section 2.3.1) and introduction of legumes in 

the crop rotation (section 2.3.2) are among the most promising N management 

strategies to maximise REfN. However, these strategies are highly dependent on local 

climate and soil conditions, and little data are available for tropical and subtropical 

regions. The accurate quantification of N2O losses and REfN in tropical and 

subtropical cereal cropping systems is therefore crucial to assess the sustainability 

and profitability of N management strategies. The different approaches for measuring 

N2O emissions and REfN values at field scale are analysed in section 2.4, where the 
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potential of process-based models in testing the N management strategies at greater 

temporal and spatial scales is also examined.  

The key points of the review are summarised in section 2.5, focusing on the 

implications of future intensification of cereal production in the subtropics and the 

urgent need for research to develop sustainable and profitable N management 

practices for these agroecosystems. 

2.1 N2O and global warming 

2.1.1 Global warming: trends and predicted impacts on 
agriculture  

Tropospheric air temperatures over land and oceans have increased dramatically 

over the last 100 years (Figure 2-1) and analyses of the Planet’s radiative budget 

indicate a net positive energy imbalance resulting in an increased global heat content 

of the Earth system. In its latest report (Hartmann et al., 2013), the International 

Panel for Climate Change (IPCC) corrected the previous analysis, stating that the 

total increase between the average temperature of the 1850–1900 period and the 

2003–2012 period was 0.78 [0.72 to 0.85] °C. This was a further increment of 

+0.04°C and +0.18°C compared to the estimates presented in the previous IPCC 

reports for the period 1906-2005 (Forster et al., 2007) and 1901-2000 (Ehhalt et al., 

2001), respectively. Critically, these results highlight that the average tropospheric 

temperature of the last three decades has been successively higher than that of any 

preceding decade since 1850. 
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Figure 2-1 - (a) Observed global mean temperature anomalies (relative to the 
mean of 1961−1990) calculated from 1850 to 2012 using three independents 
datasets. Top panel reports annual mean values, while in the bottom panel are 
depicted the 10-year average values including the estimates of uncertainty. (b) Map 
representing the observed surface temperature changes from 1901 to 2012. 
(Hartmann et al., 2013). 
  



 

40  

Importantly, IPCC projections indicate with a high confidence that the average 

temperature of the troposphere will continue to increase in the 21st century. 

Predictions of changes in the climate system are made using different climate models 

that simulate changes based on a set of scenarios called Representative Concentration 

Pathways (RCPs). For example, the tropospheric temperature increase for the period 

2016–2035 is expected to be in the range of 0.3°C to 0.7°C relative to 1986–2005. 

Compared to the same reference period, the surface temperature increase for the 

interval 2081–2100 is projected to vary between 0.3°C and 4.8°C, depending on the 

RCP employed for the simulation (Figure 2-2). Overall, almost all RCP scenarios 

predict the global surface temperature of the end of the 21st century to exceed at least 

1.5°C relative to the period 1850 to 1900. Importantly, all RCP scenarios except one 

predict that global surface warming will continue beyond 2100. 

 

 

 

Figure 2-2 - Predicted variations in global surface temperature for the rest of the 
21st century relative to the period 1986–2005. (IPCC, 2013). 

 

 

The variations in atmospheric average temperatures have caused a series of 

modifications in various aspects of climate, a global phenomenon defined as Climate 

Change. These alterations include changes in the hydrogeological cycle, the 

occurrence of more frequent extreme meteorological events, or variations in 
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atmospheric circulation patterns. For example, there is substantial evidence that on 

the global scale the number of cold days and nights has decreased and the number of 

warm days and nights has increased since the 1950s. Over the same period, the 

incidence of heat waves and extended periods of drought have increased in large 

parts of the European, Asian and Australian continents, while the extension of land 

areas subject to heavy precipitation events has considerably expanded. Importantly, 

many of these changes are projected to intensify in the next decades (Cubasch et al., 

2013). 

In tropical and subtropical regions, significant variations are expected to occur in 

the Monsoon, El Niño-Southern Oscillation and Tropical Cyclone systems. Global 

monsoon precipitation is likely to strengthen in the 21st century, with sharp increases 

in terms of area and intensity. Meteorological extremes, such as precipitation 

intensity and consecutive dry days, are expected to augment while the overall 

duration of the monsoon season will expand. Additionally, rainfall variability due to 

El Niño-Southern Oscillation will intensify and the frequency of intense storms is 

projected to substantially increase (Christensen et al., 2013). 

Collectively, these changes will have a significant impact on agricultural systems. 

Increases of surface temperature exceeding 2°C compared to those of the late 20th 

century are predicted to have negative effects on yields for the three major world 

crops (wheat, rice and maize) in both tropical and temperate regions (IPCC, 2014). 

These effects will vary among regions and will include increased occurrence of pest 

diseases, reduced water supplies and higher ozone concentration in the troposphere 

(Hoffmann and UNCTAD secretariat, 2013). If mitigation strategies are not 

implemented, significant negative impacts on average yields are considered likely to 

occur from the 2030s. Median yield impacts up to -2% per decade will continue for 

the rest of the century and after 2050 the risk of more severe impacts will intensify, 

especially in the tropics and subtropics (Porter et al., 2014).  

2.1.2 Causes of global warming and relevance of N2O  

The Earth’s climate is determined by the energy radiated by the Sun and the 

properties that influence the absorption, reflection and emission of this energy within 

the Earth’s surface and atmosphere. Although changes in incoming solar energy, due 

for example to variations of the Solar activity, can substantially affect the Earth’s 
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energy budget, the magnitude of these changes in the last two centuries has not been 

sufficient to determine the tropospheric temperature increase described in section 

2.1.1 (Cubasch et al., 2013). Changes in the properties of the Earth’s atmosphere and 

surface have instead been dramatic in the last 200 years (Barker et al., 2007; 

Cubasch et al., 2013). Variations in the composition of the atmosphere or alterations 

of land, ocean, biosphere and cryosphere conditions can alter the Earth’s radiation 

budget, producing a radiative forcing that affects climate. Radiative forcing is a 

measure of the influence of a given factor in altering the balance of incoming and 

outgoing energy in the Earth-atmosphere system. Positive forcing means a warming 

effect, while negative a cooling effect.  

Radiative forcing has increased more rapidly since the 1970s and the value 

measured in 2011 was 2.29 W m-2 higher than in 1750, the year used to indicate the 

beginning of the industrial revolution. It is now established with high confidence that 

this increase has been caused primarily by the emission in the atmosphere of four 

principal greenhouse gases (GHG): carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O), and hydrochlorofluorocarbons (HCFCs) (Solomon et al., 2007; 

Cubasch et al., 2013). HCFCs emissions have however declined in the last two 

decades due to their phase-out under the Montreal Protocol (1989), and their role in 

the global warming will not be further examined in this study.  

CO2, CH4 and N2O are defined as long-lived GHGs since their chemical stability 

allows them to persist in the atmosphere over time scales of a decade to centuries. 

These gases adsorb thermal radiation emitted from the Earth surface and re-radiate it 

in multiple directions. The fraction of this re-radiation scattered downward conveys 

heat to the lower layers of the atmosphere and to the Earth’s surface via the 

mechanism called the greenhouse effect. The result is an elevation of the average 

surface temperature above what it would be in the absence of the gases. The 

concentration of CO2 CH4 and N2O has markedly increased in the terrestrial 

atmosphere since the beginning of the industrial era (Figure 2-3), reaching levels that 

substantially exceed the highest concentrations recorded in ice cores during the past 

800,000 years (Trenberth et al., 2007).  
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Figure 2-3 - Atmospheric concentrations of the three main long-lived greenhouse 
gases over the last 2000 years. Increases since about 1750 are attributed to human 
activities in the industrial era. (Cubasch et al., 2001). 

 

 

The concept of Global Warming Potential (GWP) was first introduced in 1990 by 

IPCC to compare the contribution of different gases to global warming. GWP is 

calculated over a specific period, typically 20, 100 and 500 years, and relates the 

radiative forcing of a mass of a specific gas to that of the same mass of CO2. The 

relevance of N2O in terms of global warming resides both in its elevated GWP and 

its increasing emission rates.  

N2O has the highest GWP among long-lived GHGs, i.e. 298 times that of CO2 and 

almost 14 times that of CH4 over a 100-year time horizon (Myhre et al., 2013). The 

high GWP potential of N2O is due to the elevated chemical stability of this molecule, 

which results in a lifetime of 114 years in the atmosphere (Montzka and Fraser, 

2003), and to the high radiative forcing of N2O (Forster et al., 2007). As a result, 

N2O presently contributes approximately 8.1% to the global warming effect caused 

by GHGs (Myhre et al., 2013). Studies (Crutzen, 1981; Ravishankara et al., 2009) 

have shown that N2O is also involved in the depletion of the stratospheric ozone 
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layer, which plays an essential role in protecting the terrestrial biosphere from the 

mutagenic and carcinogenic effects of solar ultraviolet radiation.  

N2O atmospheric concentration has exponentially increased in the last two 

centuries (Figure 2-3): globally averaged atmospheric N2O concentration was 324.2 

ppb in 2011 (Hartmann et al., 2013), a 20% increase over the value of 270 ± 7 ppb 

estimated for pre-industrial levels (Prather et al., 2012). Importantly, projections 

indicate that N2O concentrations will continue to rise linearly in the next decades, 

unless mitigation strategies are implemented (Figure 2-4). 

 

 

 

Figure 2-4 - Observed and predicted globally averaged N2O concentrations from 
1950 to 2035. The shading shows the largest model projected range of global annual 
N2O concentrations from the first IPCC assessment report (FAR, 1990), second 
IPCC assessment report (SAR, 1996), third IPCC assessment report (TAR, 2001), 
and from three different emission scenarios presented in the fourth IPCC assessment 
report (AR4, 2007). (Cubasch et al., 2013). 
  



Background and Literature Review 

 45 

2.1.3 Factors controlling N2O production  

N2O is produced both by anthropogenic and natural sources, the latter being 

estimated to contribute between 60% and 64 % to the total N2O emissions worldwide 

(Forster et al., 2007; US-EPA, 2010). Soils are the largest direct source of N2O 

emissions, emitting approximately 60% of N2O produced by natural sources (US-

EPA, 2010).  

In soils, N2O is produced as an obligate intermediate or a by-product of two 

microbial-mediated mechanisms: nitrification and denitrification (Figure 2-5). 

Nitrification occurs in aerobic conditions and consists of the oxidation of ammonium 

(NH4
+) to nitrate (NO3

-), while denitrification - the reduction of NO3
- to nitrogen gas 

(N2) - takes place in anaerobic environments. During nitrification, chemoautotrophic 

bacteria oxidise N through a two-step aerobic process. In the first step bacteria of the 

genera Nitrosomonas and Nitrospira oxidise NH4
+ to nitrogen dioxide (NO2

-) by 

using the enzyme ammonia-monooxygenase, then in the second step NO2
- is 

converted into NO3
- by bacteria of the genus Nitrobacter (Conrad, 2001). Although 

studies have shown that under certain conditions heterotrophic bacteria can be a 

source of N2O, in most soils chemoautotrophic microorganisms are largely, if not 

entirely, responsible for N2O losses due to nitrification (Hutchinson and Davidson, 

1993; Bremner, 1997). 

During denitrification, heterotrophic bacteria (such as Paracoccus denitrificans 

and various species of Pseudomonas) use NO3
- as a substitute of oxygen for terminal 

electron acceptor, reducing NO3
- to N2 (Bollmann and Conrad, 1998). N2O losses 

due to denitrification can be significantly larger than those due to nitrification. 

During nitrification, small amounts of N2O can be lost as a by-product of the first 

step of the process, when the organisms use NO2
- as an alternative electron acceptor. 

During denitrification N2O is instead produced as an obligate intermediate, meaning 

that if conditions are not favourable for the completion of the process, large amounts 

of nitrified N can be lost as N2O and not as N2.  

The nitrification and denitrification processes, and therefore the magnitude of 

N2O emitted by soil, is affected by three levels of regulation (Firestone, 1989; 

Bouwman, 1998a). The first level comprises the factors influencing the size of the 

microbial pool, which are primarily soil N and carbon (C) availability, and soil 
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temperature. The second level includes the factors controlling the partitioning of soil 

N into NO, N2O or N2, i.e. soil moisture and pH. The final level consists of those soil 

properties that effect the diffusion of the gases produced in the previous steps. 

 

 

 

Figure 2-5 - The processes of nitrification and denitrification. The numbers 
indicate enzyme reactions, i.e., 1: ammonium monooxygenase; 2: hydroxylamine 
oxidoreductase; 3: nitrite oxidoreductase; 4: nitrate reductase; 5: nitrite reductase; 6: 
NO reductase; 7: N2O reductase. (Conrad, 2001). 

 

 

Among first-level controllers, soil N is usually the main factor limiting N2O 

production. In these environments nitrification rates are in fact limited by the slow 

mineralisation of N produced by the decomposition of plant and animal residues 

(Dalal et al., 2003). This process is however substantially accelerated in agricultural 

soils, where the addition of rapidly nitrifiable forms of N (especially NH4
+-based 

fertilisers such as urea) and the soil aeration caused by tillage increase the amounts 

of N available to nitrifiers (Robertson and Groffman, 2007). N2O emissions due to 

denitrification are instead mainly controlled by the size of the soil NO3
- pool. Low 

concentrations of NO3
- prolong the reduction of N2O to N2 performed by denitrifying 

microorganisms, decreasing therefore N2O:N2 ratio. Conversely, elevated 

concentrations of NO3
- almost completely inhibit this process, resulting in larger 

amounts of N lost as N2O instead of N2. Denitrification rates are also affected by soil 
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organic carbon, since denitrifying bacteria are heterotrophic and use C as a source of 

energy. In anaerobic conditions therefore, the presence of high contents of soluble C 

or readily decomposable organic matter can significantly increase denitrification 

rates (Dalal et al., 2003; Li et al., 2005a). The effects of organic materials on 

denitrification varies with their resistance to decomposition and easily decomposable 

substrates such as glucose increase denitrification rates more than materials that 

decompose with difficulty such as lignin (Bremner, 1997). As with other biological 

processes, nitrification and denitrification are positively influenced by temperature. 

Moreover the chemical processes conducted by nitrifying bacteria are slightly 

modified at higher temperatures and enhanced N2O emissions have been observed at 

temperatures exceeding 25°C (Dalal et al., 2003). 

Amongst second-level controllers, the amount of water in the soil is the 

predominant factor regulating the activity of nitrifying and denitrifying bacteria. 

Nitrification is typically the main source of N2O emissions when water-filled pore 

space (WFPS) is below 40% (Figure 2-6), while denitrification rates rapidly intensify 

with increasing water content, becoming the predominant process over 70% WFPS 

(Bouwman, 1998a; Kiese and Butterbach-Bahl, 2002; Werner et al., 2006). Above 

65%-75% WFPS anaerobic conditions start to occur in the soil, promoting 

denitrification and therefore the production of both N2O and N2 (Panek et al., 2000). 

When soil water content exceeds 80%-90% WFPS, denitrifying bacteria can 

complete the reduction of NO3
-, emitting predominantly N2 as the end product of the 

reaction. Consequently, the N2O:N2 ratio starts to decrease as the soil water content 

exceeds 75% WFPS (Dalal et al., 2003). 
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Figure 2-6 - Relationship between water-filled pore space (WFPS) of soils and the 
relative fluxes of nitrogen gases from nitrification and denitrification. (Bouwman, 
1998b). 

 

 

The metabolic activity of both nitrification and denitrification bacteria is 

negatively affected by acid soil conditions and generally highest N2O production 

rates are observed at pH values between 7 and 8.5. The inhibitory effect of low pH 

on the bacterial metabolic activity have been associated with the decreased 

availability of organic C and mineral N under acid conditions (ŠImek and Cooper, 

2002). Although the net N2O production tend to diminish at low soil pH values, 

several studies (Dalal et al., 2003; Liu et al., 2010a) have reported increased N2O:N2 

production ratios when soil pH was below 7. Acid soil conditions inhibit the 

reduction of N2O to N2 more than the reduction of NO3
- to N2O, favouring in this 

way the emission of N2O over N2. Consequently, as pH increases, denitrification 

products tend more or completely towards N2 production (Chapuis-Lardy et al., 

2007).  

Among third-level controllers are those factors that determine the volume of soil 

pores, such as texture, bulk density, aggregate stability and organic matter content. 

These parameters are pivotal in regulating the soil water content and therefore soil 

aeration, gas production and diffusion. For example, the higher amount of air present 

in coarser soils (e.g. sandy soils) tends to favour nitrification, while the greater 

quantity of water that can be stored in fine-textured soils (e.g. clay soils) promotes 

denitrification (Bollmann and Conrad, 1998). The smaller pore size of fine-textured 

soils also reduce the soils hydraulic conductivity, creating more persistent 
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waterlogging conditions (Granli, 1995). Moreover, smaller pores rapidly fill with 

water, creating anaerobic microsites that enable denitrification to occur at lower soil 

water contents than coarse-textured soils (Parton et al., 2001).  

2.2 N2O emissions from tropical and subtropical 

cereal cropping systems  

Agricultural soils play a fundamental role in the increase of N2O in the 

atmosphere, contributing approximately 50% of global anthropogenic N2O emissions 

(Smith et al., 2007). The reason for the importance of agricultural soils as a source of 

N2O resides in the addition of N to support crop production. As described in section 

2.1.3, the factor most commonly limiting nitrification and denitrification rates is soil 

N availability. In agricultural fields, this limitation is substantially overcome when N 

is supplied in the form of synthetic fertiliser, animal manure or N fixed by 

leguminous crops, promoting therefore elevated N2O emission rates.  

Many studies have shown a direct correlation between N2O emissions and 

synthetic N fertilisation, measuring increasing N2O fluxes when agricultural soils are 

fertilised with higher N rates (Bouwman et al., 2002a; Del Grosso, 2006; Shcherbak 

et al., 2014). Synthetic fertiliser N can be lost from the soil-crop system also via soil 

erosion, runoff and NO3
- leaching, causing the hypertrophication of water bodies and 

promoting indirect N2O emissions from these sources (Tilman et al., 2002; Crews 

and Peoples, 2004; Jensen et al., 2012). Consequently, it is now established that the 

augmented global N fertiliser use observed in the last decades played a central role in 

the increase of N2O concentration the atmosphere (Penman et al., 2000; Smith et al., 

2007; Smith et al., 2014). 

2.2.1 Intensification of tropical and subtropical cereal 
production  

Worldwide consumption of synthetic N fertilisers has increased by 332% in the 

last 40 years, expanding from 32 Mt yr-1 in 1970 to 106 Mt yr-1 in 2010 (FAOSTAT 

website, accessed October 2014). Critically, almost 60% of worldwide N fertiliser is 

used to crop cereals (Ladha et al., 2005), which are by far the world's most important 
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sources of food, via both direct human consumption and input for livestock 

production (FAO, 2012). Specifically, cereals contribute on average 50% of daily 

energy intake, reaching levels close to 70% in some developing countries (Kearney, 

2010).  

Global cereal demand is predicted to increase by 60% in the next 40 years (FAO, 

2009). Nearly all of the increase in cereal consumption will come from the tropical 

and subtropical regions of Africa, South America and Asia (Alexandratos and 

Bruinsma, 2012), where the vast majority of future global demographic growth is 

projected to take place (UNFPA, 2011). This increased demand translates into a need 

to increase current tropical and subtropical cereal production by at least 60% 

(Alexandratos and Bruinsma, 2012).  

There is consensus that this target should be pursued though augmenting current 

cereal yields to minimise the need for expanding cropland, a strategy that would 

cause habitat loss and reduce biodiversity (Godfray et al., 2010; Foley et al., 2011; 

Phalan et al., 2011). Average cereal yields are presently low in most tropical and 

subtropical countries (Figure 2-7). This means that if future food security targets are 

to be achieved, in the next decades the productivity of these cereals will need to 

increase between 1.2% and 2.4% every year (Alexandratos and Bruinsma, 2012; Ray 

et al., 2013).  
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Figure 2-7 - Current maize (above), sorghum (centre) and wheat (below) yields in 
tropical and subtropical countries of Central and Latin America, Africa and Asia. 
Yields are expressed in Mt ha-1. (Ericksen et al., 2011). 

 

 

Currently, tropical and subtropical cereal production occurs largely in Oxisols, the 

most common soil type in these regions (Figure 2-8). Grain yields in Oxisol regions 

are often limited by the constraints of these soils, namely low native N content, 

reduced natural fertility, soil acidity and low levels of soil organic matter. However, 

many of the chemical constraints of Oxisols can be amended with modern agronomic 

technologies and since Oxisols are characterised by a favourable topography for 

agriculture, suitable temperatures and sufficient moisture availability for crop growth 

throughout the year, the potential productivity of these agroecosystems is among the 

highest in the world (Figure 2-9). 
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Figure 2-8 - Global distribution of Oxisols. (USDA-NRCS). 
 

 

 

 

Figure 2-9 - Cultivation potential for drier-climate cereal crops (e.g. maize, 
sorghum and wheat) in the tropics. Cultivation potential is calculated as the ‘‘agro-
climatically attainable yield’’ for each rainfed crop as a percentage of the global 
maximum for that crop. (Phalan et al., 2013). 

N fertilisation is a key factor to enable the intensification of cereal production in 

Oxisols. Several studies have highlighted that N deficiency is usually the major 

agricultural constraint limiting crop production in these agroecosystems (Sánchez 

and Salinas, 1981), resulting in the inability of Oxisols to sustain continuous cereal 

production without the provision of adequate amounts of N (Fageria and Baligar, 

1995).  
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Current N management strategies in Oxisols vary largely depending on the scale 

of farming operations. For example, fertiliser N inputs are usually elevated in the 

large commercial farms of central Brazil (Fageria and Baligar, 2001; Gitti et al., 

2012), North-Eastern Australia (Angus, 2001; Chen et al., 2008b) or, in some cases, 

Central Africa (Cheru and Modi, 2013). On the contrary, N inputs are extremely 

limited and usually insufficient in African and South American smallholder farms 

due to the socioeconomic constraints that prevent smallholders to access synthetic N 

fertiliser (Sánchez and Salinas, 1981; Crawford et al., 2003). Regardless of farm 

scale however, in the absence of alternative N management strategies there will be 

pressure to apply more synthetic N fertiliser in the attempt to boost cereal production 

and meet a pressing grain demand (Denning et al., 2009; Alexandratos and 

Bruinsma, 2012; Branca et al., 2013). This intensification of synthetic N fertiliser use 

will result in increased N2O emissions from these agroecosystems, undermining 

global efforts to limit global warming.  

It is therefore critical to identify alternative N management strategies aimed at 

supporting future intensification of tropical and subtropical cereal production without 

causing an increase of N2O emissions from these agroecosystems. Although largely 

valid also for tropical conditions, the N management strategies described in the 

following sections have been selected among the most promising to support the 

sustainable intensification of subtropical cereal cropping systems in Oxisols.  

2.3 Alternative N management strategies to reduce 

N2O emissions and sustain subtropical cereal 

production 

N2O emissions represent a loss of fertiliser N and indicate inefficiency in the 

fertilisation process. Consequently, N management strategies aimed at minimising 

N2O losses collimate with those aimed at maximising the efficiency of fertiliser N 

recovery in the crop (REfN). The REfN is defined as the percentage of fertiliser N that 

is taken by the crop (Ladha et al., 2005) and is intimately connected to the concept of 

synchrony. Synchrony is a condition that occurs when the N released by the fertiliser 

coincides with crop demand in terms of timing and amount (Figure 2-10a).  
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Asynchrony between fertiliser N supply and crop demand can result in temporary 

N deficiency or in mineral N excess in the soil, resulting in conditions that can limit 

crop growth or enhance N losses (Figure 2-10b). Nitrification, denitrification, 

ammonia volatilisation and NO3
- leaching are the major contributors to N losses 

(Mosier et al., 2004a).  

 

 

Figure 2-10 - Example of synchrony (a) and asynchrony (b) between crop N 
demand (grey line) and N supply (black line). Adapted from Crews and Peoples 
(2005). 

 

 

Synchronising fertiliser N supply with crop uptake is therefore a key factor in 

defining sustainable N management strategies to achieve the potential productivity of 

subtropical cereal cropping systems. To enable their widespread adoption, these 

strategies will have to be profitable for the farmer and transferable also to low-

income cropping systems, where investments and research have often been neglected 

(Alexandratos, 2009; Branca et al., 2011). Urea is by far the dominant formulation 

used in agriculture, due to its low costs of production, distribution, storage and 

handling per unit of N (Figure 2-11). It is for this reason that this study focused on 

assessing the environmental and agronomic performances of N management systems 

based on the use of urea.  
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Figure 2-11 - Global N fertiliser consumption by product. (IAEA, 2008). 
 

 

2.3.1 Nitrification inhibitors  

One method to synchronise fertiliser N release with the estimated plant N uptake 

is the addition of nitrification inhibitors to NH4
+-based fertilisers. Nitrification 

inhibitors are antibiotics that slow the activity of the Nitrosomonas bacter, the genus 

responsible for the oxidation of NH4
+ to NO2

-. Maintaining fertiliser N in the NH4
+ 

form reduces the chances of N to be lost via leaching or denitrification when soil 

moisture conditions are elevated. Nitrification inhibitors have been reported by 

several studies to substantially decrease N2O emissions and increase crop yields in 

humid, high rainfall environments (Prasad and Power, 1995; Linzmeier et al., 2001a; 

Pasda et al., 2001; Hatch et al., 2005). Importantly, these are the environmental 

conditions that are prevalent during subtropical summers.  

Among nitrification inhibitors, 3,4-dimethylpyrazole phosphate (DMPP) has been 

reported as one of the most efficient in slowing nitrification and reducing N2O losses 

(Weiske et al., 2001a; Weiske et al., 2001b; Liu et al., 2013). DMPP is the result of a 

joint research project lead by BASF in the early 1990s to develop a new inhibitor 

capable of effectively limit nitrification even when applied at low concentrations 

(Zerulla et al., 2001). DMPP is usually applied at a rate of 6 g of DMPP per kg of 

urea and, depending on environmental conditions, is effective in inhibiting 

nitrification for a period of 4 to 10 weeks (Barth et al., 2001; Pasda et al., 2001). 
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Nitrification inhibitors though are expensive and, on average, increase fertilisation 

costs by 10% (Weiske, 2006; Eagle et al., 2012). Moreover, their agronomic 

efficiency is affected by soil properties and climatic conditions, and the effects on 

yields have been contrasting. Positive yield responses to application of nitrification 

inhibitors have been reported under conditions that favour high drainage rates (e.g. 

cropping systems with intense rainfall patterns during the fertilisation period) or that 

limit the synchronisation between fertiliser release and plant N uptake (e.g. when 

high N fertiliser inputs are applied) (Majumdar et al., 2002; Di and Cameron, 2005; 

Ma et al., 2013). Conversely, no significant yield increase with fertilisers coated with 

nitrification inhibitors have been reported for fine-texture soils or low-rainfall 

cropping systems even when high N fertiliser inputs were applied (Arregui and 

Quemada, 2006; Díez López and Hernaiz, 2008; Liu et al., 2013).  

In addition to the conflicting results on the agronomic efficiency of nitrification 

inhibitors in cereal cropping systems, the vast majority of data on their effect on N2O 

emissions refer to temperate regions (Linzmeier et al., 2001b; Weiske et al., 2001a) 

or laboratory conditions (Khalil et al., 2009; Suter et al., 2010). As a result, the 

efficacy of this fertilisation strategy in increasing cereal production and reducing 

N2O emissions in subtropical environments is unclear. 

2.3.2 Introducing legumes in cereal-based cropping systems  

The reintroduction of legumes in cereal-based cropping systems has been 

proposed as one possible strategy to reduce the environmental threats associated with 

synthetic N fertiliser use and sustain cereal production (Crews and Peoples, 2004; 

Jensen et al., 2012). Legume rotations have progressively become less common in 

the last decades, as farmers in many regions of the world have increased their 

reliance upon synthetic N fertilisers. Synthetic N fertilisers are crucial in supporting 

high yields and reducing the uncertainties related to plant development by 

empowering farmers with a high level of flexibility in terms of timing and amount of 

N application. They also reduce the planning required by the farmer to manage the N 

supplied to a given crop by enabling the elimination of the fertility-generating stage 

of a rotation sequence.  

Legumes however offer multiple agronomic and environmental advantages due to 

their unique ability to fix atmospheric N2 in symbiosis with rhizobia bacteria. The 
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incorporation of legume residues releases the nutrients accumulated during the 

cropping phase and can therefore reduce the fertiliser N demand of the following 

cereal crop, consequently decreasing N2O emissions associated with synthetic N 

fertilisation. Overall, legumes are economically accessible and their use is 

technically adoptable in both low- and high-income subtropical cropping systems.  

An extensive review on the use of legumes to mitigate climate change (Jensen et 

al., 2012) concluded that N2O emissions during the legume growing season did not 

differ substantially from unplanted or non-fertilised soils. However, elevated N2O 

losses were sometimes reported after the termination of legume-based ley pastures, 

when crop residues were returned to the soil (Gomes et al., 2009; Pappa et al., 2011). 

The low C:N ratio of legume tissues can lead to rapid mineralisation rates once 

residues are incorporated into the soil. As a result, accumulation of mineral N can 

occur in the soil and the readily mineralisable C from the legume residues becomes 

available to support elevated denitrification rates (Jensen et al., 2012). 

These N2O emissions were often measured when the field site had been left fallow 

for long periods (Wagner-Riddle et al., 1997; Wagner-Riddle and Thurtell, 1998; 

Pappa et al., 2011). The risk for low levels of synchronicity between N supply and 

crop demand is highest when an extended fallow period follows a legume, as either 

no plants are present to utilize the NO3
- generated by the legumes or the demand for 

N by newly sown crops is small. As a result, high amounts of mineral N can 

accumulate in the soil, increasing the possibility of elevated denitrification losses. 

The most viable strategy for reducing N2O emissions after the termination of 

legume-based ley pastures is therefore to minimise the time that fields are left 

uncropped. Typically, the highest N mineralisation rates from most legume residues 

are reported to occur six weeks from incorporating the residues into the soil (Fox et 

al., 1990; Becker and Ladha, 1997; Robertson, 1997; Park et al., 2010), a timeframe 

that well matches the crop requirements of most subtropical cereal crops.  

It must be highlighted however that the N mineralisation rates of legume residues 

and the associated N2O losses are highly dependent on local climate and soil 

conditions (Rochette et al., 2004), and while numerous studies have investigated 

N2O emissions after the termination of legume ley pastures prior to a return to 

cropping, the vast majority were conducted in temperate regions. Consequently, 

scant data are available on the application of this N management strategy in Oxisols-
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based cereal cropping systems (Wagner-Riddle and Thurtell, 1998; Baggs et al., 

2000; Robertson et al., 2000; Rochette et al., 2004; Schwenke et al., 2010).  

2.4 Quantifying N2O emissions and REfN in 

subtropical cereal agroecosystems  

N2O fluxes and REfN are highly variable in croplands. N2O fluxes are a result of 

soil microbial activity, which is influenced by site-specific soil properties, climatic 

conditions and agricultural management, such as fertilisation, tillage and irrigation 

practices. Significant emissions of N2O typically occur between 0 and 30 days after 

applying N fertiliser and are often triggered by rain or irrigation events (Eagle et al., 

2012). Liu et al. (2010b) for example observed that almost 30% of annual N2O 

emissions in cotton occurred in the one-month period following N fertilisation, while 

in maize Parkin and Kaspar (2006) measured almost 50% of the cumulative annual 

N2O flux during two emission pulses that followed rainfall. At a plot scale, the 

spatial and temporal occurrence of N2O emissions is further complicated by the 

method of fertiliser application (e.g. broadcasting vs. banding) and the type of 

fertiliser used (e.g. ammonium- vs. nitrate-based, conventional vs. enhanced 

efficiency fertilisers) (Eagle et al., 2012). The combination of different factors can 

therefore have a considerably greater influence on N2O fluxes than the fertiliser N 

rate itself, and predicting emissions merely on the basis of N input can lead to 

significant errors.  

As for N2O fluxes, the REfN of a given N management practice is influenced by 

many factors. REfN can vary substantially among cereal cropping systems depending 

on climate, crop, soil conditions as well as the rate, source, placement and timing of 

fertiliser application (Ladha et al., 2005; Bruulsema et al., 2011). Obtaining accurate 

measurements of N2O losses and REfN in subtropical cereal cropping systems in 

Oxisols is therefore crucial to define profitable, agronomically viable and 

environmentally sustainable N management strategies to support future 

intensification of these agroecosystems. 
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2.4.1 Measuring N2O emissions 

N2O fluxes at a field scale can be measured using micrometeorological and 

chamber-based techniques (FAO, 2001). Micrometeorological techniques allow for 

great spatial integration, with fluxes typically measured for areas as large as 1-10 

km2 (Dalal et al., 2003). On the other hand, these systems require large areas of a 

uniformly treated crop, a feature that prevents their use for measuring emissions form 

small-scale plots under different treatments. Moreover, micrometeorological 

techniques are less sensitive that chamber-based techniques in measuring low fluxes 

and their detection limit is affected by weather conditions. 

Chamber-based techniques can be applied to fragmental landscapes and field 

experiments with multiple small plots. Importantly, they are relatively inexpensive, 

versatile and can measure fluxes under unstable meteorological conditions. For this 

reason chambers have been the most commonly used method for measuring N2O 

fluxes from agricultural soils (Denmead, 1979; Rochette et al., 1997; Breuer et al., 

2000; Kiese and Butterbach-Bahl, 2002). Chamber-based techniques can employ 

either flow through or non-flow through designs, the latter being however the most 

widespread (Bouwman et al., 2002a). 

Non-flow through chambers, often referred to as “static chambers”, rely on the 

accumulation of N2O within an open-bottomed chamber placed on the soil surface. 

Gas samples are taken periodically and analysed using gas chromatographic 

techniques to determine the variation of N2O concentration in time. Gas sample 

collection can be conducted either manually, with samples analysed in the laboratory 

(manual chamber systems), or automatically, with samples analysed directly in the 

field (automated chamber systems). 

Manual chamber systems have the disadvantage of being highly labour intense 

and can cover relatively short measuring periods with low time resolution (at most 

few daily measures per week). Automated chamber systems are capable of 

measuring fluxes for an entire cropping season with sub-daily resolution. These 

systems are also adaptable to a wide range of conditions and can analyse emission 

rates ranging from the order of 1 μ g m-2 h-1 to more than 10 mg m-2 h-1 (Hensen et 

al., 2013). 
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Briefly, automated chamber systems consist of multiple mechanically-operated 

chambers linked to a sampling unit that collects and conveys the gas samples from 

the chambers to an in-situ gas chromatograph (Figure 2-12). The functioning of the 

automated chamber system employed in this study is detailed in Chapter 3.3.3. 

 

 

Figure 2-12 - Automated closed static chamber during the sampling campaign in 
wheat (see Chapter 3). The automated sampling unit and the analytical equipment are 
both housed in the white trailer seen in the background. Photo credit: Massimiliano 
De Antoni Migliorati. 

 

 

Automated chamber systems have the ability to capture diurnal variations in 

emissions. Diurnal fluctuations in N2O emissions are affected by soil temperature 

variations (Christensen, 1983; Maljanen et al., 2002) and lags of several hours 

between maximum flux and maximum temperature have been reported in studies 

using automated chambers. For example, Scheer et al. (2012) observed that the 

diurnal variations of N2O fluxes from subtropical irrigated wheat was greater than 

10-fold for some chambers. The high temporal variability of N2O emissions means 

that the sampling frequency throughout a cropping season can have a profound effect 
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on the calculation of cumulative emissions. Consequently, automated chamber 

systems greatly improve the ability to measure the effects of different N management 

practices.  

2.4.2 Measuring REfN 

The REfN of a given fertilisation strategy can be assessed using two procedures: 

estimating the agronomic efficiency of fertiliser N use (AEfN) or using the 15N-tracer 

technique. The AEfN procedure, also referred to as the difference method, is defined 

as the extra grain yield obtained per kg of fertiliser N applied (Ladha et al., 2005). 

The major limitaton of this method is the assumption that the N uptake patterns are 

similar in fertilised and non-fertilised plants (IAEA, 2008), disregarding the 

influence of N availability on root development (Olson and Swallow, 1984; Belford 

et al., 1986). This technique also does not allow the discrimination between fractions 

of the plant N originating from applied fertiliser, soil supply or irrigation water 

(Smith et al., 1989). 

Precise REfN measurements can be obtained using the 15N-tracer technique, also 

known as 15N dilution method. This technique demands extreme accuracy during 

sampling and computations, the collection of large numbers of samples, and the 

availability of expensive laboratory equipment. Importantly, this method does not 

need control plots and enables to distinguish between fertiliser- and soil-N taken by 

the crop. In this approach, a fertiliser labelled with the 15N isotope (tracer) is added to 

the soil and the percentage of fertiliser N recovered in the plant tissues or in the soil 

is determined with mass spectrometry methods (IAEA, 2001). Fertiliser N losses are 

calculated by subtracting the N recovered in the soil-plant system from the amount of 
15N-labelled fertiliser originally applied. The amount of N that cannot be accounted 

for in the monitored soil-plant system is assumed to be lost in the atmosphere (as N2, 

N2O, NH3 or NOx) or via runoff and deep leaching (NO3
-). It must be acknowledged 

however that part of the unaccounted N can be due to errors associated with each of 

the measured N sinks, resulting therefore in slight under- or overestimations of the N 

losses.  

When using the 15N-tracer technique, losses via NH3 volatilisation or runoff can 

be minimised with the adoption of specific experimental set-ups. In this way the 

amount of N lost via deep leaching can be estimated by interpolating soil water 
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content data with the fertiliser N amounts recovered in the lower layers of the soil 

profile. Using these techniques, the bulk of unaccounted fertiliser N can be therefore 

limited to N2O, N2 and NOx emissions, the latter being negligible from a N balance 

perspective.  

The adoption of the 15N-tracer technique in this study, together with the use of an 

automated chamber system to determine N2O emissions, constituted a powerful 

technique to calculate the overall fertiliser N budget and compare the REfN of 

different N management strategies. Details on the methodology and calculations used 

in this study are provided in 5.2.6.  

2.4.3 Modelling N2O emissions and cereal production 

Field experiments are crucial to deepen the understanding of factors regulating 

N2O emissions and limiting crop production. Experiments are however conducted at 

particular points in time and space and the results obtained can be generalised only to 

a certain extent. Moreover, field experiments are time-consuming and expensive, and 

can investigate only a limited number of treatments (Jones et al., 2003). Simulation 

models have been developed to overcome these limitations so to predict nutrient 

flows in the soil-plant-atmosphere system at temporal and spatial scales where it 

would not be possible to implement the required measurement intensity.  

Numerous approaches have been adopted for the development of models able to 

predict nutrient dynamics in agroecosystems, and processed-based models are among 

the most accurate. These models use a mechanistic approach to represent the 

complex biophysical processes that influence greenhouse gas emissions and plant 

growth, such as soil organic matter, soil water content, fertiliser N management and 

plant N availability (Del Grosso et al., 2009). Processed-based models enable to 

simulate N losses and assess the REfN of different fertilisation strategies, as well as to 

quantify the gap between potential and actual yields (Boote et al., 1996; Ladha et al., 

2005). In this respect, models have become indispensable tools to investigate how 

variations in N management practices and different environmental circumstances can 

affect crop production and N2O emissions. 

Few processed-based models can simulate crop yields and N2O emissions at the 

field-scale (Chen et al., 2008a). Among these, only a limited number have been 

tested under different environmental conditions around the globe and have potential 
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relevance to Australian agroecosystems. For example, models such as WNMM (Li et 

al., 2007; Li et al., 2008; Li et al., 2013) have been tested under Australian and 

Chinese conditions but, to present, have not been extensively used in other 

environments. This section examines the structure, strengths and limitations of the 

three most extensively tested soil and plant simulation models currently used in the 

Agricultural Model Intercomparison and Improvement Project (AgMIP website): 

DNDC, APSIM and DAYCENT.  

DNDC 

The DeNitrification-DeComposition (DNDC) model was first developed by Li et 

al. (1992) to model N2O emissions from agricultural soils in the United States (US-

EPA, 1995) and consists of two main components (Figure 2-13). The first comprises 

soil climate, crop growth and decomposition submodels, and calculates soil 

temperature, water content, pH fluctuations, redox potential (Eh), and nutrient 

dynamics based on environmental drivers such as climate, soil properties, vegetation 

and anthropogenic activity. The second component consists of the nitrification, 

denitrification and fermentation submodels and simulates NO, N2O, and NH3 fluxes 

based on soil variables (Chen et al., 2008a). 
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Figure 2-13 - Schematic diagram of DNDC model structure. (Giltrap et al., 2010). 
 

 

The nitrification submodel controls the ratio of NH4
+ nitrified to NO3

- and predicts 

N losses via NO and N2O, or via plant uptake, leaching, transformation to NH3 (and 

subsequent volatilisation) or adsorption onto soil clay minerals. The hourly-time-step 

denitrification submodel of DNDC is activated by rain/irrigation events and 

increments in soil temperatures, and simulates NO and N2O emissions based on soil 

Eh, pH, dissolved organic carbon and soil NO3
- (Chen et al., 2008a). Crop 

development is modelled using crop-specific daily crop growth curves and is subject 

to the modelled availability of water and N in the rooting zone (Li et al., 1994). 

The default soil parameters in DNDC have been optimised for North-American 

agroecosystems, and re-parameterisation of soil properties or even modification of 

the model equations is frequently necessary when modelling cropping systems in 

other regions of the world (Giltrap et al., 2010). These limitations forced many 

research groups to create DNDC variants optimised for specific regions (i.e. NZ-

DNDC, UK-DNDC, China-DNDC, DNDC- Europe, BE-DNDC), cropping systems 
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(i.e. Crop-DNDC, Rice-DNDC, Forest-DNDC) or fertiliser sources (Manure-

DNDC), resulting in 18 different versions of the same model (Global Research 

Alliance Modeling Platform).  

To date the DNDC model has been tested on several cropping systems in more 

than 15 countries and the agreement between simulated and measured data has been 

reported to vary significantly depending on climate, soil, and crop conditions (Giltrap 

et al., 2010). For example, Frolking et al. (1998) observed that DNDC substantially 

over- or under-predicted N2O emissions when the standard model parameterisation 

was used in arid and temperate cropping systems, respectively. Overall, the main 

shortcoming of the DNDC model is its high geographical specificity and the results 

obtained with this model often cannot be transferred to similar cropping systems in 

different climatic regions.  

APSIM 

The Agricultural Production Systems Simulator (APSIM) is a modelling 

framework first started in 1991 with the aim of developing a farming systems 

simulator able to accurately estimate crop yields and predict the long-term 

consequences of farming practice on soil properties (Keating et al., 2003).  

APSIM contains an array of modules for simulating crop development and yield 

dynamics as well as their interactions with the soil. The APSIM‐SoilN and 

SurfaceOM modules simulate the N and C dynamics at daily time-steps. N 

mineralisation, N immobilisation, nitrification, denitrification, and NO3
- and NH4

+ 

adsorption and movement are explicitly simulated in each soil layer. These N 

processes are controlled by the soil water content and water movements through the 

soil profile, which are simulated by the APSIM-SoilWat (Probert et al., 1998) or 

APSWIM (Verburg et al., 1996) submodels (Figure 2-14).  

Nitrification rates are calculated as a proportion of nitrified N by the APSIM‐

SoilN submodel and follow the Michaelis–Menten response to available soil 

ammonium (Parton et al., 2001). Denitrification is modelled with the algorithm used 

in the DAYCENT model (Del Grosso et al., 2000), which calculates N2O emissions 

based on an N2 to N2O ratio (Thorburn et al., 2010). 
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The plant submodel simulates key physiological processes and operates on a daily 

time step in response to daily weather data, soil characteristics and crop management 

events. The physiological principles are the same among all plant species and only 

differ in regard to the thresholds and shapes of their response functions to varying 

environmental conditions (Wang et al., 2002).  

 

 

 

Figure 2-14 - Visual representation of the APSIM simulation framework with 
individual crop and soil modules, module interfaces and the simulation engine. 
(Keating et al., 2003). 

 

The comparison of APSIM simulations with observed crop production and soil 

nutrient dynamics has been performed by many model users under a wide range of 

conditions (Asseng et al., 1998; Hammer et al., 2010; Mohanty et al., 2012; Luo et 

al., 2014). To date however, APSIM validation has focused mainly on the effects on 

different farming practices on crop development and soil properties (Holzworth et 

al., 2014). Little research has instead been conducted to test the nitrification and 

denitrification components of the APSIM-SoilN model using field measurements 

(Huth et al., 2010; Thorburn et al., 2010).  
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DAYCENT 

DAYCENT was first developed in 1998 as the daily time-step version of the 

CENTURY biogeochemical model to explicitly represent the nitrification and 

denitrification processes that lead to N2O, NOx, and N2 emissions (Parton et al., 

1998; Kelly et al., 2000; Del Grosso et al., 2001).  

DAYCENT simulates exchanges of C, N and other nutrients among the 

atmosphere, soil, and plants as well as farming management practices such as 

cultivation, stubble management and fertiliser addition. DAYCENT includes 

submodels for plant productivity, decomposition of dead plant material and soil 

organic matter, soil water and temperature dynamics, and N gas fluxes (Figure 2-15).  

The N gas submodel of DAYCENT simulates soil N2O and NOx gas emissions 

from nitrification and denitrification as well as N2 emissions from denitrification. N 

gas flux from nitrification is assumed to be a function of soil NH4
+ concentration, 

water content, temperature, and pH (Parton et al., 1996; Parton et al., 2001). 

Nitrification increases exponentially with temperature and stabilises when soil 

temperature exceeds the site-specific average high temperature for the warmest 

month of the year. Nitrification rates increase linearly with soil NH4
+ concentration 

and a maximum of 10% of soil NH4
+ can be nitrified in a day.  
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Figure 2-15 - Conceptual diagram of the DAYCENT ecosystem model. (Del Grosso 
et al., 2011). 

 

Denitrification is a function of soil NO3
- concentration, labile C availability, 

WFPS, and soil physical properties related to texture that influence gas diffusivity 

(Parton et al., 1996; Del Grosso et al., 2000). No denitrification is assumed to occur 

until WFPS values exceed 50% to 60%, then denitrification increases exponentially 

until WFPS reaches 70% to 80%, and stabilises as soil water content approaches 

saturation. N2 and N2O emissions from denitrification are regulated by the parameter 

(NO3
-, labile C, WFPS) that is most limiting. Maximum daily denitrification rates 

range from approximately 15% to almost 100% of soil NO3
- depending on soil NO3

- 

concentration. N2O emissions are calculated from total N losses due to denitrification 

using a N2:N2O ratio function. 

Crop growth and development are functions of nutrient availability, soil water and 

temperature, shading, vegetation type, and plant phenology (Metherell et al., 1993). 
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Net primary productivity is a function of soil water content and nutrient availability 

and is divided among leafy, woody, and root compartments on the basis of plant type 

and phenology.  

DAYCENT was chosen for the purposes of this study because it is currently the 

model that has been most extensively tested to simulate both crop production and 

N2O emissions in cereal cropping systems (Del Grosso et al., 2002; Del Grosso et 

al., 2005; Del Grosso et al., 2006; Del Grosso et al., 2008; Halvorson et al., 2008; 

Scheer et al., 2013a) and it is currently used to estimate N2O emissions for the U.S. 

National GHG Inventory (US-EPA, 2014) under the United Nations Framework 

Convention on Climate Change (Del Grosso et al., 2006). 

2.5 Summary and implications  

Warming of the climate system is unequivocal and many of the changes observed 

since the 1950s are unprecedented over decades to millennia (IPCC, 2013). 

Paradoxically, agriculture is simultaneously a key driver and a major victim of global 

warming. The increased average temperature of the atmosphere has already modified 

various aspects of climate, such as precipitation patterns and frequency of extreme 

weather events (Christensen et al., 2013). This trend is predicted to continue and 

have particularly dramatic effects on tropical and subtropical agricultural systems 

(Alexandratos and Bruinsma, 2012; Hoffmann and UNCTAD secretariat, 2013).  

Global warming is caused by the increased concentration in the atmosphere of the 

four principal greenhouse gases: CO2, CH4, N2O and CFCs. Among them, N2O has 

the highest global warming potential and its emissions in the atmosphere are 

constantly increasing. The application of N fertilisers is the main factor stimulating 

nitrification and denitrification rates in agroecosystems (Robertson and Groffman, 

2007), making agricultural soils the main anthropogenic source of N2O (Smith et al., 

2007). Worldwide consumption of synthetic N fertilisers has increased by 332% in 

the last 40 years (Ladha et al., 2005) and is predicted to increase in the future, further 

exacerbating N2O emissions and therefore global warming.  

By 2050, global cereal demand is estimated to increase by 50% to meet the food 

demand of a world population 30% larger that at present (Ray et al., 2013). Virtually 
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all the increment in cereal consumption will come from tropical and subtropical 

countries (Alexandratos and Bruinsma, 2012), creating an urgent need to increase 

productivity levels in these regions. This increase will be extensively sustained by 

agricultural systems in Oxisols, which are the most common soil type in these 

regions (von Uexküll and Mutert, 1995; Buol and Eswaran, 1999). 

There is consensus that pursuing food security through a further increase in 

synthetic N use would result in unacceptable levels of environmental damage (FAO, 

2010; Foley et al., 2011; Tilman et al., 2011). It is therefore critical to identify 

alternative N management strategies aimed at supporting future intensification of 

tropical and subtropical agricultural systems without provoking an increase of N2O 

emissions from these agroecosystems. 

To be successful both environmentally and agronomically, these strategies will 

have to maximise the recovery efficiency of fertiliser N in the crop (REfN) and, 

ultimately, yield production. One proposed method to maximise REfN and minimise 

N2O emissions from agricultural soils is the application of fertilisers coated with 

nitrification inhibitors. Nitrification inhibitors reduce N losses both directly, via 

slowing the nitrification rates and, indirectly, by reducing the amount of NO3
- 

available for denitrification. Among them, DMPP (3,4-dimethylpyrazole phosphate) 

has often been reported to be one of the most efficient in slowing nitrification and 

reducing N2O fluxes (Weiske et al., 2001a; Liu et al., 2013). Nitrification inhibitors 

are however expensive and, on average, increase fertilisation costs by 10% (Weiske, 

2006), while their agronomic efficiency is affected by environmental conditions and 

N management practices. In fact, several authors have reported no significant yield 

increase with fertilisers coated with nitrification inhibitors (Díez López and Hernaiz, 

2008; Liu et al., 2013).  

Alternatively, the reintroduction of legumes in cereal-based cropping systems has 

been suggested as one possible strategy to reduce the amount of synthetic N required 

and consequently decrease N use inefficiencies associated with elevated fertiliser N 

rates (Jensen and Hauggaard-Nielsen, 2003; Emerich and Krishnan, 2009). However, 

the efficacy of this strategy also depends on site-specific conditions and in some 

cases elevated N2O emissions have been reported after the incorporation of legume 

residues (Jensen et al., 2012).  
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Research to date has primarily focused on assessing these N management 

strategies in different soils under temperate climatic conditions. Data on REfN and 

N2O emissions in tropical and subtropical cereal systems in Oxisols are therefore still 

sparse and there is a urgent need for research to develop N management practices 

that are environmentally sound and economically viable for the intensification of 

cereal production in these agroecosystems (Fageria and Baligar, 2008). 

The availability of precise N2O and N recovery field measurements, in 

combination with the use of process-based biogeochemical models, is instrumental to 

rigorously assess different N management strategies under varying seasonal 

conditions. This study, through the use of state of the art technology, adopts a holistic 

approach to investigate the environmental and agronomic implications of using 

fertilisers coated with nitrification inhibitors and reintroducing legumes in crop 

rotations to enable a sustainable intensification of cereal production in the subtropics.  
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Chapter 3: Influence of different nitrogen 
rates and DMPP nitrification 
inhibitor on annual N2O 
emissions from a subtropical 
wheat-maize cropping system 
(Paper 1) 

 

3.1 Abstract 

Global cereal production will need to increase by 50 to 70% to feed a world 

population of about 9 billion by 2050. This intensification is forecast to occur mostly 

in tropical and subtropical regions, where warm and humid conditions can promote 

high N2O losses from cropped soils. New nitrogen (N) fertiliser management 

strategies are necessary to secure high crop production without exacerbating N2O 

emissions in these regions. This one-year study evaluated the efficacy of a 

nitrification inhibitor (3,4-dimethylpyrazole phosphate - DMPP) and different N 

fertiliser rates to reduce N2O emissions in a wheat-maize rotation in subtropical 

Australia. N2O emissions were monitored for the entire duration of the experiment 

using a fully automated greenhouse gas measuring system. Four treatments were 

fertilised with different rates of urea, including a control (40 kg-N ha-1 year-1), a 

conventional N fertiliser rate adjusted on estimated residual soil mineral N (120 kg-N 

ha-1 year-1), a conventional N fertiliser rate (240 kg-N ha-1 year-1) and a conventional 

N fertiliser rate (240 kg-N ha-1 year-1) with nitrification inhibitor (DMPP) applied to 

both crops at top dressing. The maize season was by far the main contributor to 

annual N2O emissions due to the high soil moisture and temperature conditions, as 

well as the elevated N rates applied. Annual N2O emissions in the four treatments 

amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O-N ha-1 year-1 respectively, and 

corresponded to emission factors of 0.29, 0.39, 0.69 and 0.16% of total N applied. 
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Halving the annual conventional N fertiliser rate in the adjusted N treatment led to 

N2O emissions comparable to the DMPP treatment but extensively penalised maize 

yield. The application of DMPP produced a significant reduction in N2O emissions 

only in the maize season. The use of DMPP with urea at the conventional N rate 

reduced annual N2O emissions by more than 60% but did not affect crop yields. The 

results of this study indicate that: i) future strategies aimed at securing cereal 

production while limiting N2O emissions in the subtropics should focus on the 

fertilisation of the summer crop; ii) adjusting conventional N fertiliser rates on 

estimated residual soil N is an effective practice to reduce N2O emissions but can 

lead to substantial yield losses if the residual soil N is not assessed correctly; iii) the 

application of DMPP is a feasible strategy to reduce annual N2O emissions from 

subtropical wheat-maize rotations. However, at the N rates tested in this study DMPP 

urea did not increase crop yields, making it impossible to recoup the additional costs 

associated with this fertiliser. The findings of this study will support farmers and 

policy makers to define effective fertilisation strategies to reduce N2O emissions 

from subtropical cereal cropping systems while maintaining high crop productivity. 

More research is needed to assess the use of DMPP urea in terms of reducing 

conventional N fertiliser rates and subsequently enable a decrease of fertilisation 

costs and a further abatement of fertiliser-induced N2O emissions. 

3.2 Introduction 

Agricultural soils play a fundamental role in the increase of nitrous oxide (N2O) 

in the atmosphere, contributing approximately 50% of the global anthropogenic N2O 

emissions (Ehhalt et al., 2001). The environmental relevance of increasing 

concentrations of N2O in the atmosphere resides both in the elevated global warming 

potential of N2O (298 CO2-eq over a 100 year time horizon) and its contribution to 

the depletion of the ozone layer in the stratosphere (Ravishankara et al., 2009). 

The increase of N2O emissions from agricultural soils is directly connected to 

the increment in worldwide nitrogen (N) fertiliser use (Bouwman, 1990; Kroeze et 

al., 1999). About 60% of worldwide N fertiliser is presently used to crop cereals 

(Ladha et al., 2005). However, more fertiliser N is expected to be used in cereal 

cropping systems to meet the cereal demand of 9 billion people in 2050 (Ladha et al., 
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2005; UNFPA, 2011). This intensification of cereal production is forecast to occur 

mostly in tropical and subtropical regions (Smith et al., 2007), where warm and 

humid climatic conditions can promote high N2O losses from fertilised soils 

(Bouwman et al., 2002b). New fertiliser management strategies are necessary to 

secure future cereal production in the tropics without increasing N fertiliser use and 

therefore N2O emissions.  

Conventional N fertiliser rates used in subtropical cereal systems are often 

defined without taking into account the N left in the soil profile by the previous crop 

(called residual soil N). Many studies have observed that the proportion of N2O 

losses as a function of N fertiliser rates rise in nonlinear patterns when soil N 

amounts exceed plant need (Van Groenigen et al., 2010; Grace et al., 2011). The 

application of excessive amounts of fertiliser N rates can be avoided by taking into 

account site-specific conditions affecting residual soil N, such as crop management 

and crop rotations (Dobermann and Cassman, 2002; Pampolino et al., 2007). The 

fertiliser N rates necessary to reach maximum yield potential can be therefore 

calibrated taking into account the amount of N left by the previous crop.  

As a result, our first hypothesis in this study was that by reducing conventional 

N rates after accounting for residual soil N, N2O emissions can be abated without 

significantly penalising yields. The second hypothesis of this research was that N2O 

emissions generated by the application of conventional fertiliser rates can be 

effectively reduced by nitrification inhibitors. The application of nitrification 

inhibitors to urea-based fertilisers has been shown to decrease N2O emissions both 

directly, via slowing the nitrification rates and, indirectly, by reducing the amount of 

NO3
- available to denitrifying microorganisms (Linzmeier et al., 2001a; Hatch et al., 

2005; Suter et al., 2010). Among nitrification inhibitors, 3,4-dimethylpyrazole 

phosphate (DMPP) has been reported by many authors as the most efficient in 

slowing nitrification and reducing N2O losses (Weiske et al., 2001a; Weiske et al., 

2001b; Liu et al., 2013).  

However, the vast majority of data on N2O emissions from fertilised cereal 

systems refer to temperate regions or laboratory conditions and the efficacy of these 

fertilisation strategies in reducing N2O emissions in the subtropics still remains 

unknown. The efficiency of DMPP in reducing N2O emissions from urea can be 
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strongly influenced by site-specific conditions such as soil temperature and soil water 

content (Chen et al., 2010; Menéndez et al., 2012). 

The overall aims of this study were therefore to: i) determine whether a 

reduction in conventional N fertiliser rates according to local crop history can reduce 

N2O emissions without affecting crop yields; ii) evaluate the effects of DMPP urea 

applied at conventional rates on N2O emissions and crop yields; iii) improve the 

understanding of environmental factors influencing N2O emissions from subtropical 

cereal cropping systems. 

In this study N2O emissions from a wheat-maize crop rotation in subtropical 

Queensland (Australia) were monitored for one year using a fully automated 

greenhouse gas measuring system. Both crops were fertilised with different rates of 

urea, including a control, a conventional N fertiliser rate adjusted according to 

estimated residual soil N, a conventional N fertiliser rate and the conventional rate 

with DMPP urea. 

This is the first study to report annual N2O emissions from a cereal cropping 

system under subtropical conditions, the results of which will help to define 

fertilisation strategies aimed at reducing N2O emissions from subtropical cereal 

cropping systems while maintaining high crop productivity.  

3.3 Materials and Methods 

3.3.1 Study site 

Annual N2O fluxes were measured from wheat (July to November 2011) in 

rotation with maize (December 2011 to June 2012) at the J. Bjelke Petersen Research 

Station of the Department of Agriculture, Fisheries and Forestry (DAFF). The 

research site is located in Taabinga (26°34’54,3’’ Latitude South, 151°49’43.3’’ 

Longitude East, altitude 441 m a.s.l), near Kingaroy, in the southern inland Burnett 

region of southeast Queensland, Australia. The climate is classified as subtropical 

(Figure 3-1), with warm, humid summers and mild winters. Monthly mean maximum 

and minimum temperatures are 18.9°C and 4.0°C in winter and 29.6°C and 16.5°C in 

summer, respectively (Figure 3-2). Mean annual precipitation is 776.2 mm and varies 
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from a minimum of 28.6 mm in August to a maximum of 114.1 mm in January 

(Figure 3-3) (Australian Bureau of Meteorology website).  
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Figure 3-1 - Global distribution of humid subtropical climate zones. The red mark 

indicates the location on the experiment. (Peel et al., 2007). 

 

 

 

Figure 3-2 - Monthly mean maximum and minimum temperatures at Kingaroy 
research station. Values are calculated using observations from 1905 to present. 
(Australian Bureau of Meteorology website). 
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Figure 3-3 - Mean monthly rainfall (mm) at Kingaroy research station. Values are 
calculated using observations from 1905 to present. (Australian Bureau of 
Meteorology website). 

 

 

The soil is classified as Tropeptic Eutrustox Oxisol (USDA Soil Taxonomy, 

USDA (1998)) or as a Brown Ferrosol (Australian Soil Classification, Isbell (2002)), 

is moderately permeable, with a high clay content (50-65% clay) in 1.2 m of 

effective rooting zone and a water holding capacity of 100 mm. Physical and 

chemical soil properties are listed in Table 3-1. 

 

 

Table 3-1 - Main soil physical and chemical properties of the experimental site at 

Kingaroy research station, Queensland, Australia. 

Soil Property 0-10 cm 10-20 cm 20-30 cm 

Carbon (g kg-1) 14.67 ± 1.36 14.07 ± 0.55 10.82 ± 2.41 

Total N (g kg-1) 0.92 ± 0.09 0.86 ±0.06 0.57 ± 0.04 

pH (H2O) 5.50 ± 0.08 5.57 ± 0.03 5.66 ± 0.05 

Texture (USDA) Clay Clay Clay 

CEC (meq+/100g) 14.14 ± 0.10 14.71 ± 0.45 15.54 ± 2.29 

Bulk density (g cm-3) 1.23 1.40 1.36 

Clay (%) 50 55 60 

Silt (%) 17 14 10 

Sand (%) 33 31 30 
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3.3.2 Experimental design 

The field study was a randomised complete block design with three replicates per 

treatment. Each plot measured 13 m in length x 6 m in width, with crop rows 

oriented NNW-SSE. To avoid edge effects, each plot was separated by a buffer of 6 

m and 0.8 m along the width and length, respectively.  

The field was cropped to wheat (Triticum aestivum L., cultivar Hartog) from 6 

July to 29 November 2011 and to maize (Zea mays L., cultivar 32P55) from 21 

December 2011 to 20 June 2012. Local farmer practice was followed and during the 

early stages of crop development the entire field study was sprinkler irrigated with 

surface stored dam water. All treatments received the same amount of water 

simultaneously at each event. Irrigation was applied at a rate of 10 mm h-1 when 

water filled pore space (WFPS) values approached 40%. This method avoided water 

stress limiting the potential yields and prevented fertiliser N to be leached beyond the 

rooting zone.  

As reported in Table 3-2, throughout the duration of the experiment four 

fertilisation treatments were tested:  

• Control test (CNT): no N fertiliser applied to wheat, N fertiliser applied at rate of 

40 kg N ha-1 to maize to guarantee a minimum crop establishment. 

• Conventional N fertiliser rate adjusted according to estimated residual soil N 

(CONV-ADJ): N applied at rates of 20 and 100 kg N ha-1 to wheat and maize, 

respectively. Seasonal rates were defined to avoid the build-up of high levels of 

soil N following fertilisation events and to obtain average crop yields. The annual 

fertiliser rate was reduced to half of the conventional treatment. 

• Conventional fertiliser rate (CONV): N applied at rates of 80 and 160 kg N ha-1 to 

wheat and maize, respectively. Rates were similar to local farmer practice and 

designed to achieve maximum yield potential. 

• Conventional fertiliser rate using urea coated with DMPP nitrification inhibitor 

(CONV-DMPP): N applied at rates of 80 and 160 kg N ha-1 to wheat and maize, 

respectively. In each season DMPP urea was only applied at top dressing (60 kg N 

ha-1 to wheat and 120 kg N ha-1 to maize), when higher amounts of seasonal N 
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were applied to the crop. DMPP urea, commercially available as Entec® (Incitec 

Pivot fertiliser, Australia) was applied as prills. 

The decision of applying DMPP urea only at top dressing was due to the high cost 

of this product. Since DMPP urea was 30% more expensive than conventional urea, a 

double application was not considered economically viable as standard farming 

practice. For this reason, DMPP urea was only used at top dressing, when the bulk of 

fertiliser N was applied to the crop. 

 

 

Table 3-2 - N fertilisation rates and amount of irrigation water applied on a wheat-

maize rotation at Kingaroy research station in 2011 -2012. 

Date Crop Fertilisation [kg-N ha-1] Irrigation  

[mm]  CNT CONV-ADJ CONV CONV-DMPP 

06/07/2011 Wheat  20 (DAP) 20 (DAP) 20 (DAP)  

11/08/2011     40 

15/09/2011   60 (urea) 60 (DMPP urea) 21 

27/09/2011     30 

05/10/2011     45 

21/12/2011 Maize 40 (MAP) 40 (MAP) 40 (MAP) 40 (MAP)  

05/01/2012     26 

19/01/2012  60 (urea) 120 (urea) 120 (DMPP urea)  

23/01/2012     40 

 

Wheat season 

The cropping history for the five years before the commencement of this 

experiment is listed below (seasons and yields are reported within brackets): Peanuts 

(Arachis hypogaea L., summer 2005/2006, 1.5 Mg ha-1), peanuts (summer 

2006/2007, 1.4 Mg ha-1), maize (Zea mays L., 2007/2008, 3.1 Mg ha-1), peanuts 

(summer 2008/2009, 1.5 Mg ha-1), barley (Hordeum vulgare L., winter 2009, crop 

not harvested, all 1.3 Mg ha-1 of biomass ploughed in), maize (summer 2009/2010, 

3.0 Mg ha-1) and mungbean (Vigna radiata L., summer 2010/2011, 0.66 Mg ha-1). 

Before sowing wheat, mungbean residues were incorporated and the seedbed was 
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prepared with three cultivations: chisel plough (20 cm), offset discs (20 cm) and 

rotary hoe (15 cm). 

Wheat was planted 6 July (inter-row 15 cm, intra-row plant space 9 cm, seed 

planting density of 140 seeds m-2) and harvested 29 November 2011. Emergence was 

observed 20 July 2011 with an average plant density of 125 plants m-2 while anthesis 

started 6 October 2011. Average soil mineral N content prior to planting (0-30 cm) 

was approximately 60 kg N ha-1 across the field study (Figure 3-4a and Figure 3-4b). 

Taking into account an average N content of 1.5% in the stover (Bushby and Lawn, 

1992; Thomas et al., 2004), it was estimated that the incorporation of 1.32 Mg ha-1 of 

mungbean residues would have provided a further 20 kg N ha-1 to the soil. Although 

it was estimated that a total of 80 kg N ha-1 would have been available to the crop 

throughout the wheat season, a conservative approach was taken and the N fertiliser 

rate in the CONV-ADJ treatment was reduced by 60 kg N ha-1 (75%) compared to 

CONV. Over the season the plots were irrigated on four occasions: 40 mm on 11 

August, 21 mm on 15 September, 30 mm on 27 September and 45 mm on 5 October.  

At planting, treatments CONV-ADJ, CONV and CONV-DMPP received 20 kg N 

ha-1 by banding 110 kg of diammonium phosphate (DAP, 18-20-0). The CNT 

treatment was instead base dressed with 100 kg ha-1 of Triple Super Phosphate (TSP, 

0-46-0) to supply a source of phosphorus without adding N. At booting stage the 

CONV and CONV-DMPP treatments were manually top dressed with 60 kg N ha-1 

to meet maximum yield potential. The two treatments were broadcasted with 

conventional urea and DMPP urea, respectively. Since chambers were moved every 

two weeks to a different frame (see section 3.3.3), at top dressing the exact 

proportion of urea was weighed separately and then manually distributed within all 

frames of the CONV and CONV-DMPP treatments. Fertilisation and irrigation 

amounts and timing are shown in Table 3-2. 
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Figure 3-4 - Soil ammonium and nitrate contents (0-30 cm) for four fertilisation 

treatments during the wheat (a, b) and maize (c, d) seasons in Kingaroy (Queensland, 

Australia) in 2011/12. Arrows indicate the timing of N fertiliser applications. 
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Maize season 

After the wheat harvest all residue was slashed and mulched. The entire trial field 

was broadcasted with lime (2500 kg ha-1) before being cultivated with chisel plough 

(to 20 cm), offset discs (20 cm) and rotary hoe (15 cm). The seedbed was finally 

prepared with offset discs (20 cm) and tyned harrows after being spread with muriate 

of potash (120 kg ha-1). Maize was planted 21 December 2011 with an inter-row of 

93 cm (intra-row plant space 23 cm, seed density: 6 seeds m-2) and irrigated on two 

occasions: 26 mm on 5 January and 40 mm on 23 January (Table 3-2). Emergence 

was first observed 28 December 2011 at a density of 5 plants m-2 while tasseling 

started 13 February 2012.  

Due to the high initial N requirement of maize, supplying no N to this crop during 

the early stages of crop development could potentially have caused an uneven or 

poor crop establishment. For this reason, a zero N treatment was not considered 

possible and all treatments (including control) were base dressed by banding 40 kg N 

ha-1 with monoammonium phosphate (MAP, 11-52-0, Incitec Pivot fertiliser). At the 

end of the wheat season the average soil mineral N content (0-30 cm) in the CONV-

ADJ plots was approximately 35 kg N ha-1 (Figure 3-4a and Figure 3-4b) and the 

wheat straw contained an average N content of 0.48%. It was estimated that the 

mineralisation of the 5.3 Mg ha-1 of wheat residues incorporated in the soil before 

planting maize would have provided an extra 25 kg N ha-1 throughout the maize 

season. A total of 60 kg N ha-1 was therefore expected to become available to the 

maize plants during the cropping season. During the maize season the N fertiliser 

rate in the CONV-ADJ treatment was cut by 60 kg N ha-1 (40%) compared to CONV 

to better evaluate the feasibility of reducing the fertiliser N rate in accordance with 

estimated residual soil N. 

At V10 physiological stage (beginning of tenth leaf) treatments CONV-ADJ, 

CONV and CONV-DMPP were side dressed and inter-row cultivated to supply N 

during the period of maximum crop demand (Miller et al., 1975; Binder et al., 2000): 

CONV-ADJ received 60 kg N ha-1 using conventional urea while 120 kg N ha-1 was 

applied to the CONV and CONV-DMPP treatments using conventional urea and urea 

coated with DMPP, respectively. The crop was harvested 20 June 2012. 
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3.3.3 Continuous N2O measurements 

During each cropping season N2O measurements were automatically taken using 

one acrylic sampling chamber per plot. During the wheat season the chambers were 

located randomly inside each plot since the crop inter-row (15 cm) was smaller than 

the chamber side (50 cm). This approach was not possible with maize, where the 

crop inter-row was 90 cm, so to provide a good representation of the soil spatial 

variability the chamber placement was based on the methodology established by 

Kusa et al. (2006) and Parkin and Kaspar (2006). For each treatment two of the three 

replicate chambers were positioned over the crop row and the third one in the inter 

row. Chambers were positioned over the crop row to guarantee the banded fertiliser 

(4 cm from the plant row) was included in the chamber area. 

Each chamber measured 50 cm x 50 cm x 15 cm and was clipped via a rubber seal 

to stainless steel frames inserted 10 cm into the ground. The chambers were equipped 

with lids operated by pneumatic pistons and connected to a fully automated system 

composed of a sampling unit and a gas chromatograph. During a normal 

measurement cycle (60 min) one set of four chambers closed at one time and four gas 

samples were taken from each chamber at 15 min intervals. The chambers were 

reopened at the end of the cycle and the next replicate set of four chambers closed to 

be sampled. A full measuring cycle of twelve chambers took 180 min to complete, 

allowing up to 8 single fluxes to be determined per chamber per day. The air samples 

taken from each chamber were automatically pumped through a 3 ml sample loop 

and injected into a gas chromatograph (Model 8610C, SRI Instruments, USA) 

equipped with a 63Ni electron capture detector (ECD) for N2O analysis. A column 

filter containing sodium hydroxide-coated silica (Ascarite, Sigma-Aldrich, St. Louis, 

MO, USA) was installed upstream of the ECD to adsorb CO2 and water vapour that 

could interfere with N2O measurements. The system was automatically calibrated 

twelve times every measurement cycle by a single point calibration using certified 

gas standard of 500 ppb N2O (BOC –Munich, Germany- and Air Liquide –Dallas, 

TX, USA). A multi-point calibration was performed using certified gas standards of 

500, 980, 5030 ppb N2O (BOC –Munich, Germany) and the GC response over this 

range was determined to be linear. 

The detection limit of the system with and without chamber extensions, based on 

the methodology described by Parkin et al. (2012), was approximately 2 and 0.5 g 
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N2O-N ha-1 day -1 for N2O. The design and operation details of the automated gas 

measuring system can be found in Scheer et al. (2013b) and Rowlings et al. (2012). 

The whole system was constantly checked for leaks throughout each season, making 

the sample dilution due to leakage negligible.  

Chambers were programmed to open if a rain event exceeded 5 mm or the internal 

air temperature within the chamber exceeded a threshold value of 55 °C. During 

irrigation events the system was stopped and all chamber lids were opened to allow 

water to reach the soil surface covered by the chambers. The measuring system was 

deployed immediately after planting at the beginning of each cropping season and 

temporarily withdrawn to permit farming operations.  

During the wheat season, the chamber height was increased to 75 cm using clear 

acrylic extensions to accommodate the crop growth. This strategy was not applicable 

during the maize season, when plant size exceeded the extension height. The plant 

inside each chamber situated in the inter row was therefore cut over the brace roots at 

V1 stage, as practiced in other studies (Drury et al., 2008; Halvorson et al., 2008; Hu 

et al., 2013).  

Chambers were relocated to another position within the plot every two weeks, a 

practice recommended by several authors (Barton et al., 2011; Scheer et al., 2012; 

Liu et al., 2013) to minimise the impact of the chamber on plant growth and soil 

processes. To meet this requirement, two different strategies were adopted for the 

two seasons. During the wheat season two frames were located in each plot and 

chambers were shifted between the two frames every two weeks. During the maize 

season cutting the plant inside the chamber over the crop row was considered to have 

marginal impacts on soil C and N dynamics. The practice was limited to the plant 

inside the chamber while plants adjacent the chambers were left undisturbed. 

Nevertheless, to further reduce the possible side effects of this practice during the 

entire maize season, chambers and frames were moved to a completely new position 

every two weeks. 

3.3.4 Ancillary measurements 

Chamber air temperatures and soil temperatures (buried at 10 cm, 20 cm, 30 cm in 

the proximities of three chambers) were measured every 5 minutes using resistance 

temperature detectors (RTD, Temperature Controls Pty Ltd, Australia). The soil 
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water content of the top 10 cm of soil was measured every 30 minutes with four time 

domain reflectometers (TDR, MP406 probes, ICT International, Australia) buried 

inside the measuring chambers. Four frequency domain reflectometers (FDR, 

EnviroScan probes, Sentek Sensor Technologies, Australia) were installed at the 

field site to assess the water dynamics throughout the soil profiles. After calibration, 

the FDR were inserted in the ground to measure the volumetric soil water content at 

three depths (0-10 cm, 10-20 cm, 20-30 cm) at 30 minute intervals. Water-filled pore 

space (WFPS) was determined for each depth using a particle density of 2.79 g cm-3 

and the bulk density was calculated by the arithmetic mean of four samples collected 

at the beginning of each season.  

At the beginning and end of each cropping season soil cores were collected from 

every plot with a manual open-faced bucket auger (10 cm diameter) at three depths 

(0-10, 10-20, 20-30 cm) and analysed for texture (hydrometer method as described 

by Carter and Gregorich (2007)), total carbon (C%) and total nitrogen (N%) (TruMac 

Series Macro Determinator, LECO Corporation, St Joseph, MI, USA), pH, Cation 

Exchange Capacity (ICP, Varian Vista-MPX), NH4-N and NO3-N. NH4
+ and NO3

- 

were extracted from the soil samples by adding 100 mL of 1M KCl to 20g of soil and 

shaking the solution for 1 hour. The solution was then filtered and stored in a freezer 

until analysed colorimetrically for NH4-N and NO3-N using an AQ2+ discrete 

analyser (SEAL Analytical WI, USA). Routine soil sampling was conducted every 

two weeks during each season. Soil samples were taken at three depths (0-10, 10-20, 

20-30 cm) and analysed for NH4-N and NO3-N. At harvest, grain yield was measured 

in each plot by harvesting two strips 1.65 m wide for the plot length using a plot 

combine. Total N content of grain, wheat straw and maize stover samples was 

measured using a 20-22 isotope ratio mass spectrometer (Sercon Limited, UK). 

3.3.5 Calculations and statistical analysis 

N2O fluxes were calculated to determine the slope of the linear increase or 

decrease in gas concentration during the 60 minutes of chamber closure period using 

the method described by Barton et al. (2008) . The obtained data were corrected for 

internal air temperature, atmospheric pressure and ratio of chamber volume and soil 

area. Measurements were quality-checked using the Pearson correlation and fluxes 

above the detection limit discarded if the regression coefficient (r2) was < 0.80. For 
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each treatment, mean daily N2O fluxes [g N2O-N ha-1 d-1] were calculated 

performing a weighted average of the two chambers over the crop row and the 

chamber placed in the inter row. Cumulative N2O fluxes [kg N2O-N ha-1] were 

determined by summing the mean daily N2O fluxes for each season, and for the 

entire study period.  

Daily N2O fluxes missing due to occasional failures of the measuring system, and 

between wheat harvest and maize planting, were simulated using the Amelia II 

multiple imputation model (Honaker and King, 2010) using daily values of WFPS 

(0-10 cm, 10-20 cm and 20-30 cm) and mineral N content (0-30 cm). Statistical 

analyses were performed within the R 2.15 environment (R Development CoreTeam, 

2008). The temporal patterns of daily N2O emissions were analysed with the 

autoregressive integrated moving average (ARIMA) model to assess differences 

between treatments (Box and Pierce, 1970). The Tukey post hoc test was used to 

compare cumulative N2O emissions and N2O emissions occurred after top dressing, 

while yields were compared with the Bonferroni test. Correlations between N2O 

emissions and soil parameters were examined with the Pearson correlation analysis.  

Emission factors, expressed as a percentage of N fertiliser lost as N2O, were 

corrected for background emissions by subtracting the total amount of N2O-N lost in 

the non-fertilised treatment from the total N2O-N emitted by each fertilised treatment 

(Kroeze et al., 1997). For the maize season, where an non-fertilised treatment was 

not present, seasonal background emissions were estimated using the methodology 

described by Liu et al. (2010b). The cumulative emissions from a hypothetical non-

fertilised soil were estimated using the seasonal N2O fluxes of the CNT treatment 

minus those emissions exceeding 1 g N2O-N ha-1 d-1 that were measured during the 

16 days after 21 January 2012. Emissions during this time gap were simulated using 

the Amelia II multiple imputation model fed with a dataset including soil 

temperatures and WFPS values (0-10 cm, 10-20 cm and 20-30 cm) for the whole 

season, plus N2O fluxes and mineral N contents (average 0-30 cm) measured prior to, 

and 16 days after 21 January 2012. The model was calibrated for site-specific 

conditions using measured annual N2O fluxes, Mineral N contents, soil temperatures 

and WFPS values from all treatments. To validate the precision of the calibrated 

model in predicting missing N2O emissions, 16 day gaps were simulated in the other 

treatments. Simulated emissions in all treatments fell within the confidence interval 

http://en.wikipedia.org/wiki/Mathematical_model
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calculated with the ARIMA model. The overall seasonal emissions from the non-

fertilised maize field, estimated to be 0.12 kg-N ha-1, are confirmed by similar 

studies (Cai et al., 2002b; Pelster et al., 2011). 

3.4 Results 

3.4.1 Environmental and soil conditions 

The weather conditions recorded during this study, characterised by cool dry 

winters (June-August) and hot humid summers (December-February), were in line 

with the historic subtropical climate. Soil conditions were substantially warmer and 

moister during the summer season, especially at the beginning of the maize season 

(Figure 3-5). 

 

 

Figure 3-5 - Minimum and maximum daily air temperatures, soil temperatures (0-
30 cm), rainfall and irrigation events at Kingaroy (Queensland, Australia) in 
2011/12.  
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Throughout the wheat season soil NH4
+ levels in the CNT and CONV-ADJ 

treatments varied little (Figure 3-4a). Soil NH4
+ levels in the CONV and CONV-

DMPP treatments were similar to those of the CNT and CONV-ADJ treatments until 

top dressing, after which they increased to 64.6 and 82.1 kg N ha-1, respectively. Soil 

NO3
- contents in all treatments were relatively high at planting (average 35.6 kg N     

ha-1) and did not vary substantially over the course of the wheat season (Figure 3-4b). 

Soil NH4
+ levels were similar across all treatments at the beginning of the maize 

season. NH4
+ levels in CONV-ADJ and CONV peaked within 10 days from side 

dressing, while in CONV-DMPP culminated 20 days later (Figure 3-4c). Soil NO3
- 

levels varied little across treatments during the entire season, with the exception of 

the CONV treatment, where NO3
- concentrations reached the seasonal maximum 20 

days after side dressing (Figure 3-4d). 

3.4.2 N2O emissions  

Throughout this one-year experiment an average of 5600 valid N2O fluxes for 

each treatment were obtained. Patterns and magnitudes of N2O emissions varied 

significantly over time in response to seasonal weather and soil conditions, N 

fertilisation rates and fertiliser type.  

During the wheat season N2O emissions varied little across treatments. Two 

“emissions pulses” occurred in all treatments before top dressing in response to a 

rainfall event (July 16, 12 mm) and an irrigation event (August 11, 40 mm). A third, 

more sizeable emission pulse was measured in CONV and CONV-DMPP after 

September 15, when the entire trial was irrigated with 21 mm and the two treatments 

were top dressed with 60 kg N ha-1 (Figure 3-6a).  

N2O emissions over the maize season showed a more pronounced increase 

corresponding to increased N fertiliser rates (Figure 3-6b). Daily fluxes following 

base dressing, when all treatments were fertilised with 40 kg N ha-1, remained 

relatively low (<10 g N ha-1 day-1) and did not vary significantly between treatments. 

In the ten days following side dressing a total of 172 mm of rain fell over the trial, 

causing soil WFPS in the first 30 cm to stay over 80% for 5 consecutive days. N2O 

emission dynamics differed significantly across treatments after this event. In the 

CNT treatment a relatively minor peak (<17 g N ha-1) lasted for 16 days. The highest 

N2O fluxes in CONV-DMPP were similar to those measured in CONV-ADJ. In the 
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CONV-DMPP treatment high fluxes lasted for 9 days, whereas in CONV-ADJ 

persisted for 21 days. In the CONV treatment N2O emissions continued to increase 

until mid-February, to a maximum of 73.2g N ha-1 day-1. Emissions in the CONV 

treatment returned to background levels by mid-March 2012. After that event, daily 

N2O emissions in all treatments never exceeded 0.6 g N ha-1 day-1 despite several 

rain events in April, May and June 2012. In the wheat season cumulative emissions 

from the CONV treatment only were significantly higher than those measured in the 

other treatments (Table 3-3).  
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Figure 3-6 - Daily soil N2O fluxes and water-filled pore space (WFPS, 0-30 cm) 

for Control (CNT), Adjusted N fertiliser rate (CONV-ADJ), Conventional (CONV) 

and Conventional with DMPP (CONV-DMPP) treatments during the wheat (a) and 

maize (b) seasons in Kingaroy (Queensland, Australia). Arrows indicate the timing 

of N fertiliser applications. N2O emissions in panel (a) and (b) are reported using 

different scales. 
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Table 3-3 - Seasonal and estimated annual N2O average fluxes, N2O cumulative 
fluxes, emission factors, plant N uptake, grain yield and N2O intensities (mean ± SE, 
n=3) as a function of the four fertilisation treatments. Means denoted by a different 
letter indicate significant differences between treatments (p<0.05). 

Measurement Season Fertilisation Treatment 

CNT CONV-ADJ CONV CONV-

DMPP 

Average Flux [g N2O-N ha-1 d-1] Wheat 1.74 ± 0.59 a 1.34 ±0.41 a 2.83 ±0.84 b 1.71 ± 0.68 a 

Cumulative Flux [kg N2O-N ha-1 season-1] 0.25 ± 0.04 a 0.19 ± 0.02 a 0.40 ± 0.02 b 0.25 ± 0.01 a 

Emissions after top dressing [kg N2O-N ha-1]* - - 0.13  ± 0.01 a 0.12  ± 0.01 a 

Emission Factor [%] - -0.29 0.19 -0.005 

Grain Yield (12.5% moisture) [Mg ha-1]  4.4 ± 0.32 a 5.1 ± 0.10 a 5.8 ± 0.11 a 5.5 ± 0.09 a 

Total plant N uptake [kg N ha-1] 134.2 ± 9.6 154.9 ± 3.1 173.8 ±3.3 165.6 ± 2.7 

N2O Intensity [kg N2O-N t-yield-1] 0.06 0.04 0.07 0.04 

Average Flux [g N2O-N ha-1 d-1] Maize  1.22 ± 0.91 a 3.51 ± 2.56 ac 8.77 ± 5.57 b 2.71 ± 1.69 c 

Cumulative Flux [kg N2O-N ha-1 season-1] 0.22 ± 0.03 a 0.65 ± 0.15 ac 1.61 ± 0.49 b 0.50 ± 0.12 c 

Emissions after top dressing [kg N2O-N ha-1]* - 0.52 a 1.42± 0.37  b 0.33± 0.10 a 

Emission Factor [%] 0.26 0.53 0.93 0.24 

Grain Yield (14% moisture)  [Mg ha-1] 2.6 ± 0.11 a 6.1 ± 0.26 b 8.5 ± 0.12 c 8.4 ± 0.18 c 

Total plant N uptake [kg N ha-1] 39.2 ± 1.7 92.3 ± 3.9 130.2 ± 1.8 128.1 ± 2.7 

N2O Intensity [kg-N2O-N t-yield-1] 0.09 0.11 0.19 0.06 

Average Flux [g N2O-N ha-1 d-1] Annual 1.40 ± 0.77 a 2.45 ± 1.91 ac 5.87 ± 4.21 b 2.22 ± 1.31 c 

Cumulative Flux [kg N2O-N ha-1 season-1] 0.49 ± 0.04 a 0.84 ± 0.14 a 2.02 ± 0.48 b 0.74 ± 0.13 a 

Emission Factor [%] 0.29 0.39 0.69 0.16 

Grain Yield [Mg ha-1] 7.01 ± 0.40 a 11.18 ± 0.24a 14.29 ± 0.52 b 13.89 ± 0.55 b 

N2O Intensity [kg-N2O-N t-yield-1] 0.07 0.07 0.14 0.05 

*- sum of N2O emissions measured within 10 days after top dressing (wheat) and 40 days after side dressing 

(maize)  
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The time series analysis showed that N2O emissions in the CONV and CONV-

DMPP treatments were significantly higher than those in CNT and CONV-ADJ only 

during the 10 days following top dressing. No significant difference was detected 

when comparing the CONV and CONV-DMPP treatments. The N2O losses from the 

CONV treatment in maize were significantly higher than in the other treatments, 

while N2O fluxes observed in the CONV-DMPP treatment did not differ significantly 

from those in CONV-ADJ (Table 3-3). The temporal pattern of N2O emissions in the 

CONV treatment differed significantly from the others only during the 40 day 

emission pulse following side dressing. Compared to the CNT treatment, a 

significant difference in N2O emissions from CONV-ADJ and CONV-DMPP was 

limited to the first 20 days of emission pulse. Annual N2O emissions (inclusive of the 

22 days between wheat harvest and maize planting) and emissions factors are also 

reported in Table 3-3. 

3.4.3 Plant yields and plant N contents 

There was no distinct treatment effect on yields during the wheat season (Table 

3-3). In contrast, the Bonferroni test revealed a significant (p < 0.01) linear response 

of maize grain yield to increasing N fertiliser application. In both crops the addition 

of DMPP to urea did not affect grain yields compared to the same rate with 

conventional urea (Table 3-3). Annual grain yields in the CONV treatment were 

similar to those in CONV-DMPP and both were significantly higher (p < 0.05) than 

those in CNT and CONV-ADJ. N content in grain and plant tissues did not differ 

significantly across treatments. Total plant N uptake values measured for the four 

treatments during the two seasons are reported in Table 3-3.  

3.5 Discussion 

3.5.1 Factors influencing N2O emissions in wheat and maize 

In this study N2O fluxes occurred during the maize season were the main 

contributor to annual emissions in all treatments except CNT (Figure 3-7a), 

accounting for 46, 77, 80 and 67% of total N2O losses in CNT, CONV-ADJ, CONV 

and CONV-DMPP, respectively (Table 3-3). The higher N2O emission measured in 
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maize can be explained considering the different soil physical conditions and N 

fertiliser rates compared to the wheat season. That is, during the wheat season when 

CONV and CONV-DMPP were top dressed with 60 kg N ha-1, soil temperature was 

14.8 °C and WFPS was 40.3%, while in the maize season, when CONV and CONV-

DMPP were side dressed with 120 kg N ha-1, soil temperature was 25.8 °C and 

WFPS was 64.9 % (Figure 3-7b).  

 

 
Figure 3-7 - Cumulative N2O fluxes (a) and daily soil N2O fluxes, water-filled 

pore space (WFPS, 0-30 cm), soil temperatures (0-30 cm) (b) for the four fertilisation 

treatments in a wheat-maize rotation at Kingaroy (Queensland, Australia) in 2011/12. 

Arrows indicate the of N fertiliser applications. 
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Daily N2O emissions correlated mainly to soil NO3
- and NH4

+ contents and, to a 

lesser extent, soil temperature, WFPS and rainfall/irrigation events (Table 3-4). 

Therefore, the warmer and moister soil conditions after the side dressing of maize, 

together with the higher NO3
- and NH4

+ levels, would have significantly stimulated 

the activity of nitrifying and denitrifying microorganisms. That is, after top dressing 

wheat with 60 kg N ha-1 (CONV) the N2O losses occurring during the subsequent 

emission pulse amounted to 134 g N2O-N ha-1. Instead in summer, after side dressing 

CONV-ADJ with the same amount of N total N2O losses amounted to 524 g N2O-N 

ha-1. These results highlight the importance of the summer season in determining 

annual N2O emissions in subtropical cereal systems and suggest that fertilisation 

strategies designed to secure subtropical cereal production without increasing N2O 

emissions should focus on the fertilisation of the summer crop.  

 

 

Table 3-4 - Correlation between daily N2O emissions and measured 

soil/environmental parameters for the wheat and maize season. Soil parameters refer 

to the first 30 cm of soil profile. 

Season Variable n N2O flux [g N2O-N ha-1 d-1] 

Wheat Soil NO3
- [kg-N ha-1] 32 .40** 

 Soil NH4
+ [kg-N ha-1] 32 .26** 

 Soil temperature [°C] 143 -.43** 

 WFPS [%] 143 .08 

 Rainfall/irrigation [mm] 143 -.05 

Maize Soil NO3
- [kg-N ha-1] 28 .84** 

 Soil NH4
+ [kg-N ha-1] 28 .52** 

 WFPS [%] 184 .37** 

 Soil temperature [°C] 184 .30** 

 Rainfall/irrigation [mm] 184 .12** 

** Correlation is significant at the 0.01 level (2-tailed). 
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Average N2O emissions measured during this study were at the lower end of 

reported emissions from wheat (Pathak et al., 2002; Bhatia et al., 2010; Scheer et al., 

2012; Hu et al., 2013; Liu et al., 2013) and maize (Van Groenigen et al., 2004; Ding 

et al., 2007; Liu et al., 2011; Liu et al., 2013). Only Pathak et al. (2002); Bhatia et al. 

(2010); Scheer et al. (2012) and Ding et al. (2007) however measured N2O emissions 

under subtropical conditions. The low emissions can be attributed mainly to the 

smaller N rates applied in this study and to the limited availability of soil organic 

carbon at the experimental site. Nitrification and especially denitrification rates are 

tightly connected to soil labile carbon content and numerous studies have identified 

this parameter as a key factor regulating N2O production (Bouwman et al., 2002b; 

De Wever et al., 2002; Khalil et al., 2002). Soil organic carbon levels are low in the 

study region as a consequence of intensive conventional farming practices (Bell et 

al., 1995) and elevated temperatures associated with high soil moisture levels during 

the summer months, factors that can significantly accelerate SOC mineralisation 

(Mann, 1986; West and Post, 2002; Lal, 2004). Accordingly, the soil N2O emissions 

measured in maize during this experiment where in close agreement with those 

reported for cotton by Sheer (2012) in an experiment conducted in Australia on a soil 

with similar carbon contents. 

3.5.2 Effects of reduced N fertiliser rates on N2O emissions and 
yields 

Compared to the CONV treatment, the reduced N fertiliser application in the 

CONV-ADJ treatment decreased N2O emissions by almost 60% both in wheat and 

maize. On the other hand, the two crops reacted differently to the reduction of N 

fertiliser. Despite a 75% reduction of applied N compared to the CONV treatment, 

wheat grain yields in CONV-ADJ were comparable to those in CONV. In maize 

instead, a reduction of 40% in N fertiliser corresponded to approximately a 30% 

decrease in grain yield (Table 3-3). 

At the experimental site mungbean residues were incorporated in the soil a few 

weeks before the sowing of the wheat trial. Predictably, this increased the soil 

organic N that would have been slowly mineralised, compensating for the N 

deficiency observed in the CNT and CONV-ADJ treatments. This hypothesis would 

also explain the high NO3
- contents that were measured across all treatments in the 
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first two months of the wheat season (Figure 3-4b). The high crop productions 

measured in CONV-ADJ during wheat can therefore be attributed mostly to the 

mineralisation of plant residue of the previous legume crop.  

Even though the percentage reduction of fertiliser N in the maize CONV-ADJ 

treatment was smaller than in wheat, it ultimately proved excessive and the maize 

yield was severely restricted. This was due to an overestimation of the availability of 

the soil residual N during the first stages of the maize season. The high C:N ratio of 

the wheat straw potentially caused a substantial microbial immobilisation of both soil 

mineral N and applied N (Van Den Bossche et al., 2009), leaving the maize plants 

without an adequate N supply during the early stages of crop growth. This is 

supported by the lack of increase in soil NO3
- and NH4

+ contents observed in all 

treatments during the period following base dressing (Figure 3-4c and Figure 3-4d). 

The reduction of N fertiliser tested in wheat was therefore well calibrated, but 

excessive in maize. These results indicate that there can be substantial scope for 

reducing conventional N fertiliser rates in cereals following a legume crop. However, 

the possible immobilisation of substantial amounts of soil N has to be taken into 

account when planting a cereal after a crop with high C:N residues. Further research 

would be useful to investigate whether conventional N fertiliser rates in maize could 

be reduced to a lesser extent to abate N2O losses without affecting yields. 

3.5.3 Effects of DMPP application on soil mineral N and N2O 
emissions 

The application of DMPP urea influenced the dynamics of mineral N in the soil 

profile (0-30 cm). In both seasons the use of DMPP urea in the CONV-DMPP 

treatment compared to CONV inhibited the oxidation of NH4
+ to NO3

- and 

consequently extended the longevity of N fertiliser in the NH4
+ form (Figure 3-4a 

and Figure 3-4c). However, soil NO3
- contents in CONV-DMPP differed 

substantially from those in the CONV treatment only in the maize season. The low 

soil temperature and moisture conditions during the wheat season might have 

retarded nitrification, leading to a gradual release of NO3
- in the CONV treatment as 

well. Taking into account also the small quantity of N applied, in both CONV and 

CONV-DMPP treatments plants might have been able to efficiently uptake most of 

the NO3
- and thus prevent its accumulation in the soil profile. This hypothesis is 
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supported by the N2O emissions measured in CONV and CONV-DMPP after top 

dressing, which remained relatively low and did not differ significantly either in 

terms of temporal pattern or magnitude (Figure 3-6a).  

Table 3-3 highlights that the greater seasonal N2O emissions measured in the 

CONV treatment compared to CONV-DMPP were not due to the emissions 

measured after top dressing, but to higher N2O losses that occurred prior to the top 

dressing event. Therefore, the higher emission factor of the CONV treatment for the 

wheat season is not directly related to a treatment effect, but to spatial variability in 

NH4
+ and NO3

- contents prior to top dressing (Figure 3-4a and Figure 3-4b) or to 

different soil physical conditions in the proximities of the chambers.  

On the other hand, the warm and moist soil conditions measured after side 

dressing maize are likely to have promoted a rapid nitrification of the high amount of 

applied NH4
+. At this physiological stage (V10) the maize plants were only able to 

use a fraction of the NO3
- present in the soil. Asynchrony between N supply and 

plant N uptake resulted therefore in high soil NO3
- levels and in the high N2O 

emissions observed in the CONV treatment during this period (Figure 3-6b). 

Conversely, the slower nitrification rate observed in the CONV-DMPP treatment 

avoided the accumulation of high amounts of NO3
- in the soil, resulting in 

significantly lower N2O losses. As a result, the largest N2O fluxes after side dressing 

the CONV treatment were double the magnitude and longer in duration compared to 

those in CONV-DMPP (Figure 3-6b). The amount of N lost as N2O from CONV-

DMPP was reduced by 77% compared to CONV (Table 3-3) and is in close 

agreement with several incubation studies (Chen et al., 2010; Suter et al., 2010) that 

reported average abatement rates of DMPP ranging approximately from 60% to 90% 

under warm and humid conditions (>25°, WFPS 60%). In line with the results of this 

study, Liu et al. (2013) reported significantly higher N2O abatement rates of DMPP 

urea in maize compared to wheat.  

These findings indicate that under subtropical conditions applying DMPP urea has 

substantial scope to abate N2O emissions mainly in the summer season, when the 

warm and humid soil conditions can promote high nitrification and denitrification 

rates. 
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3.5.4 N2O emission factors and N2O intensities 

The emission factors reported in this study refer to a one year dataset and are 

influenced by site-specific conditions. Even if the unpredictability of N2O emissions 

is taken into account, general evaluations regarding emission factors for subtropical 

cereal-based systems can be established. 

Over the winter season (wheat) emission factors were remarkably low (Table 3-3), 

suggesting relatively high background emissions. Indeed, N2O emissions measured 

in the non-fertilised treatment (CNT) did not differ significantly from those in 

CONV-ADJ and CONV-DMPP. The elevated background emissions were most 

likely due to the mineralisation of the mungbean residues incorporated before sowing 

wheat and are in line with the results reported for cereals following a legume crop by 

Baggs et al. (2003); Barton et al. (2008) and Gomes et al. (2009). The high 

background emissions measured in wheat resulted in negative emission factors 

determined for the CONV-ADJ and CONV-DMPP treatments. These values cannot 

be explained biologically but are due to the methodology used for the calculation of 

emission factors. That is, the cumulative N2O emissions from CONV-ADJ and 

CONV-DMPP did not differ significantly from the CNT treatment and therefore 

emission factors for CONV-ADJ and CONV-DMPP should be considered as zero. 

These results highlight the importance of taking into account local crop management 

practices when calculating emission factors and confirm that relatively small 

quantities of N are lost as N2O in subtropical cereal systems over winter.  

During the maize season the highest emission factor (0.93%) was measured in the 

CONV treatment, while the lowest (0.24%) was measured in CONV-DMPP (Table 

3-3), suggesting that DMPP can effectively reduce N2O emissions when the soil 

conditions are highly conducive for denitrification.  

The annual emission factor measured in the CONV treatment (0.69%) was lower 

than reported emission factors from Ding et al. (2007) (0.77%) and Cai et al. (2013) 

(0.82%) for wheat-maize cropping systems fertilised with similar N rates. The 

efficacy of DMPP in abating N2O emissions was confirmed by the annual emission 

factor of 0.16% measured in the CONV-DMPP treatment. This represents one of the 

lowest annual emission factors reported from fertilised subtropical cereal systems. 
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Overall, annual emission factors in all treatments were lower than the default 

values of 1% and 2.1% of applied N suggested by De Klein et al. (2006) and by the 

Australian National Greenhouse Accounts (2010) for irrigated crops, respectively. 

However, this comparison has to be treated with caution since the emission factors 

reported in this study refer to only one year of data and are influenced by crop 

management and site-specific conditions. 

The efficacy of management strategies in maximising crop yield and reducing 

N2O losses is assessed through “N2O intensities”, defined as the ratio of N2O emitted 

and grain produced. Even though N2O intensities did not differ significantly across 

treatments, compared to conventional urea DMPP urea significantly reduced annual 

N2O emissions without negatively impacting cumulative yields (Table 3-3). This was 

due primarily to the results observed in CONV-DMPP during the summer season, 

when yields were comparable to CONV and total N2O emissions were lower than the 

CONV-ADJ treatment. These findings indicate that the application of DMPP urea is 

a feasible strategy to reduce absolute N2O emissions without compromising crop 

production. The inhibitory effect of DMPP has been reported to last only for several 

weeks (Pasda et al., 2001). Therefore, to achieve results similar to those reported in 

this study, DMPP urea would have to be applied annually at least to the summer 

crop. 

Fertilising with DMPP urea added an extra cost of approximately USD 50 ha-1 but 

did not provide an increase in yield compared to the same N rate with conventional 

urea. This result was also observed by Díez López and Hernaiz (2008) and Weiske et 

al. (2001a), while Liu et al. (2013) reported that the yield increase in the DMPP 

treatment compared to the urea treatment was limited to 9.1%. However, it must be 

considered that in the CONV-DMPP treatment and in the abovementioned studies 

the crops were fertilised with high amounts of N. Most likely in these treatments N 

was not a limiting factor for plant development and therefore there was no significant 

scope for DMPP urea to better match plant N demand and thus increase crop yield.  
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3.6 Conclusions 

Data gathered in this study indicate that in subtropical cereal systems the 

summer crop is the main contributor to annual N2O emissions. The hot and humid 

conditions, associated with the high N fertiliser rates usually applied in this season 

can indeed promote emission rates up to fivefold those measured in winter. Future 

strategies aimed at securing subtropical cereal production without increasing N2O 

emissions should therefore focus on the fertilisation of the summer crop. 

Adjusting conventional N fertiliser rates according to the estimation of residual 

soil N can be an effective practice to reduce N2O emissions. On the other hand, this 

strategy entails the substantial risk of yield loss if residual soil N availability is not 

estimated correctly. This limitation can be overcome by taking into account possible 

immobilisation of soil N following the incorporation of crop residues and therefore 

allowing for a margin of uncertainty when defining the adjusted N rate. 

The application of DMPP urea proved to be effective in abating N2O emissions 

only in the summer season, when conditions are favourable for high nitrification and 

denitrification rates. Critically, the additional cost of using this fertiliser was not 

compensated by an increase in yields, meaning that for farmers the use of DMPP 

urea cannot be regarded as a feasible fertilisation strategy unless governmental 

incentive policies are established. 

Further research is proposed to investigate whether the lower N2O losses 

observed with DMPP urea are an indicator of an improved synchrony between crop 

N demand and fertiliser supply compared to conventional urea. The enhanced 

synchrony obtained with DMPP urea would enable to decrease the N rates tested in 

this study, reducing therefore the costs associated with fertilisation and further 

abating N2O emissions due to the lower soil N content. 
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Chapter 4: Legume pastures can reduce 
N2O emissions intensity in 
subtropical cereal cropping 
systems (Paper 2) 

 

4.1 Abstract 

Alternative sources of N are required to bolster tropical and subtropical cereal 

production without increasing N2O emissions from these agroecosystems. The 

reintroduction of legumes in cereal cropping systems is a possible strategy to reduce 

synthetic N inputs but elevated N2O losses have sometimes been observed after the 

incorporation of legume residues. However, the magnitude of these losses is highly 

dependent on local conditions and very scarce data are available for subtropical 

regions. The aim of this study was to assess whether, under subtropical conditions, 

the N mineralised from legume residues can substantially decrease the synthetic N 

input required by the subsequent cereal crop and reduce overall N2O emissions 

during the cereal cropping phase. Using a fully automated measuring system, N2O 

emissions were monitored in a cereal crop (sorghum) following a legume pasture and 

compared to the same crop in rotation with a grass pasture. Each crop rotation 

included a nil and a fertilised treatment to assess the N availability of the residues. 

The incorporation of legumes provided enough readily available N to effectively 

support crop development but the low labile C left by these residues is likely to have 

limited denitrification and therefore N2O emissions. As a result, N2O emissions 

intensities (kg N2O-N yield-1 ha-1) were considerably lower in the legume histories 

than in the grass. Overall, these findings indicate that the C supplied by the crop 

residue can be more important than the soil NO3
- content in stimulating 

denitrification and that introducing a legume pasture in a subtropical cereal cropping 

system is a sustainable practice from both environmental and agronomic 

perspectives. 
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4.2 Introduction 

Mitigating climate change and achieving food security are two of the key 

challenges of the twenty-first century. Cereals are by far the world's most important 

food source, contributing on average 50% of daily energy intake and up to 70% in 

some developing countries (Kearney, 2010). By 2050 the world’s population is 

forecast to be over a third larger than at present (UNFPA, 2011) and cereal demand 

is predicted to increase by 60% (FAO, 2009). Pronounced intensification of cereal 

production is expected to take place in tropical and subtropical regions (Smith et al., 

2007), identifying the need for more nitrogen (N) to be supplied to these 

agroecosystems.  

There is consensus (e.g. Tilman et al. (2002); Crews and Peoples (2004); Jensen 

et al. (2012)) that both the manufacture and use of synthetic N fertilisers in crop 

production generate substantial environmental threats, with the emission of 

significant amounts of nitrous oxide (N2O) arguably one of the most important. N2O 

is a potent greenhouse gas (298 CO2-eq over a 100 year time horizon (Myhre et al., 

2013)) associated also with the depletion of the ozone layer in the stratosphere 

(Ravishankara et al., 2009). Together, these issues confirm that alternative means of 

intensification must be implemented to avoid the increase of tropical and subtropical 

cereal production through an overuse of synthetic N. If not, the result would be a net 

increase in N2O emission rates from these agroecosystems. 

The introduction, or in many cases, reintroduction, of legumes in crop rotations is 

one possible strategy to reduce synthetic N inputs whilst sustaining grain yields 

(Crews and Peoples, 2004; Jensen et al., 2012). Owing to their ability to fix 

atmospheric N2 in symbiosis with rhizobia bacteria, legumes can reduce N demand 

of the subsequent crop, and consequently decrease N2O emissions associated with 

synthetic N fertilisers. In an extensive review on the use of legumes to mitigate 

climate change, Jensen et al. (2012) concluded that N2O emissions during the legume 

growing season did not differ substantially from unplanted or non-fertilised soils. 

However, elevated N2O losses were sometimes reported after the termination of 

legume-based ley pastures, when crop residues were returned to the soil (Gomes et 

al., 2009; Pappa et al., 2011). The low C:N ratio of legume residues can indeed lead 

to rapid tissue mineralisation once incorporated into the soil. As a result, 
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accumulation of mineral N can occur in the soil, increasing the potential for 

substantial amounts of N to be lost as N2O via nitrification and denitrification 

(Jensen et al., 2012). 

The magnitude of N2O losses in response to legume residue incorporation is, 

however, highly dependent on local climate and soil conditions (Rochette et al., 

2004). Subtropical cropping systems are characterised by intense and frequent 

rainfall events during the summer months. The warm and moist soil conditions 

during these periods can accelerate legume tissue mineralisation compared to 

temperate environments, leading to ideal conditions for nitrifying and denitrifying 

bacteria and therefore magnifying the risk of high N2O emissions (Granli and 

Bøckman, 1995; Skiba et al., 1997). 

However, little data are available for tropical and subtropical regions (Mosier et 

al., 2004b), where warm, humid summer conditions could promote high N2O losses 

from cropped soils (Bouwman et al., 2002b). Although numerous studies have 

investigated N2O emissions after the termination of legume ley pastures prior to a 

return to cropping, the vast majority were conducted in temperate regions (Wagner-

Riddle and Thurtell, 1998; Baggs et al., 2000; Robertson et al., 2000; Rochette et al., 

2004; Schwenke et al., 2010).  

The overall aims of this study were therefore to assess whether, under subtropical 

conditions: i) the N mineralised from legume residues can substantially reduce the 

synthetic N input required by the subsequent cereal crop; ii) N2O losses occurring 

after the incorporation of legume residues can be minimised via synchronising the 

release of N derived from the residues with the N demand of the subsequent crop; iii) 

reducing the synthetic N input applied to a cereal in rotation with a legume crop can 

significantly decrease overall seasonal N2O during the cereal phase. 

In this study seasonal N2O emissions and yields were monitored in a cereal crop 

(sorghum) following a legume (legume-ley pasture) and compared to the same cereal 

crop in rotation with a non-leguminous crop (grass ley pasture). Each rotation 

included both a nil and a fertilised treatment. The N fertiliser applied to sorghum in 

the legume-cereal rotation was reduced compared to the grass-cereal to assess the 

availability of the N fixed by the legume ley pasture. 
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This study is the first to use a fully automated greenhouse gas measuring system 

to precisely quantify N2O emissions in a subtropical cereal crop after the termination 

of a legume ley pasture. The results of this study will contribute to define mitigation 

strategies for the sustainable intensification of these agroecosystems. 

4.3 Materials and Methods 

4.3.1 Local climate and soil characteristics  

This experiment was conducted in the subtropical region of Australia at the J. 

Bjelke Petersen Research Station of the Department of Agriculture, Fisheries and 

Forestry (DAFF). The research site is located in Kingaroy (26°34’54,3’’ S, 

151°49’43.3’’ E, altitude 441 m a.s.l), in the southern Burnett region of southeast 

Queensland, Australia. The subtropical climate (classified as Cfa, according to the 

Köppen climate classification) has warm, humid summers and mild, dry winters. 

Daily mean maximum and minimum temperatures range from 20.1°C to 4.0°C in 

winter and from 29.6°C to 16.5°C in summer, respectively. Local mean annual 

precipitation is 776.2 mm and varies from a minimum of 28.6 mm in August to a 

maximum of 114.1 mm in January (Australian Bureau of Meteorology website). The 

soil is a Tropeptic Eutrustox Oxisol (USDA Soil Taxonomy, USDA (1998)) - Orthic 

Ferralsol (FAO, 1998), characterised by relatively slow permeability and high clay 

content (50-65% clay). The effective rooting depth is 1.2 m and the plant available 

water holding capacity is 100 mm. The main physical and chemical soil properties of 

the field site are highlighted in Table 4-1. 

4.3.2 Experimental set-up 

The experiment was established in a slit plot design with two main plots (legume 

and grass ley pastures) and two sub plots (N fertiliser rates) with three replicates. 

Each main plot was 30 m x 10.8 m, with main plots split into two subplots (15 m x 

and 10.8 m) during the sorghum cropping season. Allowing for buffer rows, the 

effective subplot area was 12 m x 7.2 m, or 8 crop rows spaced 0.9 m apart.  
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Table 4-1 - Main soil physical and chemical properties of surface 30 cm of soil 

profile for the two cropping histories (mean ± SE, n=3) at the beginning of the 

sorghum season at Kingaroy research station, Queensland, Australia. 

Soil Property (0-30 cm) Legume Grass 

pH (H2O) 5.12 ± 0.03 5.30 ± 0.02 

DOC (kg C ha-1)* 43.04 ± 11.98 56.05 ± 2.97 

PMN (kg N ha-1)** 12.78 ± 1.33 9.25 ± 1.08 

Bulk density 0-30 cm (g cm-3) 1.18 ± 0.08 

Texture (USDA) Clay 

Clay (%) 55 

Silt (%) 14 

Sand (%) 31 

*Dissolved organic carbon. **Potentially mineralisable nitrogen. 
 

 

4.3.3 Cropping histories 

N2O emissions and yields were measured in plots planted with sorghum (Sorghum 

bicolor L.) following two distinct cropping histories. One crop rotation (hereafter 

called legume cropping history) included two seasons of alfalfa pasture (Medicago 

sativa, L., summers 2009/2010 and 2010/2011), one season of maize (Zea mays, L., 

summer 2011/2012) and one season of sulla ley pasture (Hedysarum coronarium L., 

winter 2012) prior to sowing sorghum. The other crop rotation (hereafter called grass 

cropping history) included two seasons of a mixed Rhodes grass (Chloris gayana, 

K.) and alfalfa pasture (summers 2009/2010 and 2010/2011), one season of maize 

(summer 2011/2012) and one season of wheat (Triticum aestivum L., winter 2012). 

Although the mixed alfalfa pasture was sown in consociation with Rhodes grass, the 

Rhodes grass became rapidly predominant and by the end of the first season the 

pasture was composed almost completely by Rhodes grass. All crops in both 

rotations were not fertilised. Sulla and wheat were direct drilled in August 2012 and 

managed as forage crops. Both crops were terminated 28 November 2012 with all 

residues returned to the soil as mulch before being incorporated with four shallow 

cultivations (20 cm). The incorporation of sulla residues (2.3 Mg dry matter ha-1, 

1.57% N) was estimated to supply the soil approximately 36 kg N ha-1, while wheat 

residues (1.24 Mg dry matter ha-1, 0.75% N) about 9 kg N ha-1. The entire field study 
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was irrigated with 20 mm on 10 December 2012, two days before plots were planted 

with sorghum (12 December 2012). Further details on the management of the two 

crop rotations can be found in Bell et al. (2012). 

4.3.4 Sorghum establishment and management  

Sorghum (cultivar Pioneer G22) was planted with a plant density of 7 plants m-2 

and an inter-row space of 90 cm. Two N fertilisation rates were tested on each 

cropping history, resulting in a total of four treatments: 

• L0:  Sorghum grown in the legume cropping history, no N applied; 

• L70: Sorghum grown in the legume cropping history, 70 kg N ha-1 

applied; 

• G0: Sorghum grown in the grass cropping history, no N applied; 

• G100: Sorghum grown in the grass cropping history, 100 kg N ha-1 

applied. 

 

Treatments L70 and G100 were base dressed at planting, banding 20 kg N ha-1 as 

urea. On 15 January 2013 (eight leaf stage) both treatments were inter-row cultivated 

and side dressed with banded urea, receiving 50 kg N ha-1 (L70) or 80 kg N ha-1 

(G100). The N application rate for G100 was designed to achieve maximum yield 

potential and was representative of farming practices of the region. The synthetic N 

rate used in L70 was reduced compared to G100 to assess whether the estimated 30 

kg N ha-1 resulting from the mineralisation of the sulla residues would have been 

available to sorghum. 

During the early stages of crop development irrigation was applied at a rate of 10 

mm h-1 when water filled pore space (WFPS) values approached 40%. This method 

avoided water stress limiting the potential yields and prevented fertiliser N to be 

leached below the rooting zone. The trial was irrigated on four and two occasions 

over the wheat and maize seasons, respectively. The trial was irrigated three times 

over the season (25 mm on 18 December 2012, 40 mm on 4 January 2013 and 40 

mm on 18 January January) using surface stored dam water and overhead sprinklers. 

Sorghum was harvested on 18 June 2013. The trial area was left fallow until being 
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cultivated on 6 August 2013 (offset disc and chisel plough to a depth of 20 cm) and 

on 19 September 2013 (offset disc to a depth of 20 cm) to prepare the seedbed for the 

next crop. Irrigations were conducted on 27 and 29 August 2013 (30 and 40 mm, 

respectively) to assess whether significant amounts of N were still available for 

nitrification or denitrification after harvest. Details about crop rotations and farming 

operations are displayed in Table 4-2.  

 

Table 4-2 - Details of crop rotations and farming operations for the four 

treatments at Kingaroy research station. 

Date L0 L70 G0 G100 

Summer 2009/2010 Alfalfa pasture Alfalfa pasture Rhodes grass + alfalfa 

pasture 

Rhodes grass + alfalfa 

pasture 

Summer 2010/2011 Alfalfa pasture Alfalfa pasture Rhodes grass + alfalfa 

pasture 

Rhodes grass + alfalfa 

pasture 

Summer 2011/2012 Maize Maize Maize Maize 

Winter 2012 Sulla pasture Sulla pasture Wheat Wheat 

28-30/11/2012 Pastures terminated and entire field trail cultivated four times with offset disc to 20 cm 

10/12/2012 Entire field trail irrigated with 20 mm 

12/12/2012 Sorghum planted Sorghum planted 

Applied 20 kg N ha-1 

Sorghum planted Sorghum planted 

Applied 20 kg N ha-1 

18/12/2012 Entire field trail irrigated with 25 mm 

04/01/2013 Entire field trail irrigated with 40 mm 

14/01/2013  Applied 50 kg N ha-1  Applied 80 kg N ha-1  

18/01/2013 Entire field trail irrigated with 40 mm 

18/06/2013 Entire field trail harvested 

06/08/2013 Entire field trail cultivated twice with offset disc down to 20 cm 

27/08/2013 Entire field trail irrigated with 30 mm 

29/08/2013 Entire field trail irrigated with 40 mm 

19/09/2013 Entire field trail cultivated with offset disc down to 20 cm 
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4.3.5 Measurement of N2O and CO2 emissions 

The use of a fully automated greenhouse gas measuring system enabled a long-

term high temporal resolution dataset to be established. N2O fluxes were monitored 

for nine months, from sorghum planting (12 December 2012) to the final preparation 

of the seedbed for the subsequent crop (19 September 2013) to assess overall N2O 

losses over the cropping season as well as the post-harvest period. 

N2O emissions were captured using twelve automated sampling chambers (one 

per plot). Chambers were made of transparent acrylic panels, measured 50 cm x 50 

cm x 15 cm and were attached via a rubber seal to stainless steel frames inserted 10 

cm into the ground. The chambers were closed airtight with lids operated by 

pneumatic actuators and connected to a fully automated sampling and analysis 

system as described in Chapter 3 and in Scheer et al. (2013b). 

During a measurement cycle a set of four chambers closed for 60 min with each 

chamber sampled 4 times for 3 min. A certified gas standard of 500 ppb N2O (BOC –

Munich, Germany- and Air Liquide –Dallas, TX, USA) was pumped into the gas 

chromatograph every 15 min. At the end of the cycle the chambers reopened and the 

next set of four chambers closed for sampling. One complete cycle of twelve 

chambers lasted 3 hours, during which each chamber was sampled for 1 hour and 

remained opened for 2 hours to restore ambient conditions. This method enabled the 

determination of up to 8 single fluxes per chamber per day. 

The air samples taken from each chamber headspace were automatically pumped 

to the sampling unit at a flow rate of 200 ml min-1. During the 3 min sampling period 

the air sample was continuously analysed for CO2 concentration using a single path 

infra-red gas analyser (Licor, LI 820, St Joseph, MI, USA). N2O concentration was 

analysed injecting 3 ml of gas sample into the carrier gas (N2) of a gas 

chromatograph (Model 8610C, SRI Instruments, USA) equipped with a 63Ni electron 

capture detector (ECD). A column filter containing sodium hydroxide-coated silica 

(Ascarite, Sigma-Aldrich, St. Louis, MO, USA) was installed upstream of the ECD 

to minimise the CO2 and water vapour interference on N2O measurements. The 

column filter was replaced every two weeks.  

During the three hours of a complete measuring cycle the system was 

automatically calibrated twelve times by a single point calibration using the certified 
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gas standard of 500 ppb N2O. Greater accuracy was achieved with a multi-point 

calibration during the measuring season using certified gas standards of 500, 980, 

5030 ppb N2O (BOC –Munich, Germany). The GC response over this range was 

determined to be linear so no correction was necessary to precisely determine high 

fluxes. The detection limit of the system was calculated using the methodology 

established by Parkin et al. (2012) and was approximately 0.5 g N2O-N ha-1 day-1 for 

N2O and 1 kg CO2-C ha-1 day-1 for CO2, respectively. Throughout the season all 

system components were constantly checked for leaks, making the sample dilution 

due to leakage negligible. The system was programmed to open the chambers if rain 

events exceeded 5 mm or the internal air temperature of the chamber exceeded 55°C. 

During irrigation events the system was stopped and all chamber lids were opened to 

allow water to enter inside the chambers.  

The chamber placement strategy was based on the methodology established by 

Kusa et al. (2006) and Parkin and Kaspar (2006) in order to measure N2O emissions 

from both a diffused source (crop residues) and a localised source (banded fertiliser). 

Two of the three replicate chambers of each treatment were positioned over the crop 

row and the third in the inter-row. Chambers positioned over the crop row included 

the banded fertiliser (10 cm from the plant row) in the chamber area. Sorghum plants 

inside the chamber positioned over the crop row were cut when exceeding the 

chamber headspace, a practice established by Drury et al. (2008); Halvorson et al. 

(2008) and Hu et al. (2013). As recommended by Kusa et al. (2006) and Parkin and 

Kaspar (2006), the impact of this practice on belowground C and N dynamics, and 

therefore N2O emissions, was minimised by relocating all chambers placed over the 

crop row to a new section of the crop row every fortnight. This strategy proved to be 

effective as only marginal differences in daily N2O emissions were observed in the 

control treatments between chambers placed in the inter-row and over the crop row 

(Table 4-3, Figure 4-5). 

The measuring system was deployed immediately after planting and temporarily 

withdrawn to permit farming operations (side dressing, harvest, post-harvest 

cultivations). During the nine months of this study an average of 2700 valid N2O and 

CO2 fluxes were obtained for each treatment. 
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4.3.6 Calculation of N2O and CO2 emissions  

Hourly N2O fluxes were calculated with the method described by Barton et al. 

(2008), determining the slope of the linear increase or decrease of the four gas 

concentrations measured during the 60 minutes of chamber closure period. In 

contrast, hourly CO2 fluxes were computed using the linear increase of six 

concentrations measured in the first two sampling intervals, a method used to avoid 

possible saturation of CO2 partial pressure in the chamber. N2O and CO2 fluxes were 

corrected for the three factors of air temperature inside the chamber, atmospheric 

pressure and the ratio between chamber volume and soil area using: 
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Equation 1 

 

where F is the emission rate (µg m-2 hour-1), b is the variation of gas concentration 

inside the chamber (ppb min-1), VCH is the volume of the chamber (m3), MW is the 

gas molar weight (28 for N2O-N and 12 for CO2-C), 60 is the conversion from 

minutes to hours, 106 converts g to µg, ACH is the surface area of the chamber (m2), 

MVcorr is the mole volume (m3 mol-1) corrected for pressure and temperature  as 

presented in Equation 2, 109 converts ppb to µL m-3. 
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where 0.02241 m3 is 22.41 L molar volume, T is the temperature of the chamber 

at the time of the measurement (Kelvin), p0 is the air pressure at sea level and p1 is 

the air pressure at the study site. To provide greater accuracy, air pressure at the site 

was determined using a barometric equation based on the local altitude.  
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The Pearson correlation was then used to quality-check flux measurements. 

Fluxes above the detection limit were discarded if the regression coefficient (r2) was 

< 0.80 for N2O and < 0.90 for CO2, respectively. Mean daily fluxes for each 

treatment were calculated using weighted averages of hourly data from the three 

replicates. That is, for each treatment, hourly fluxes from the two chambers over the 

crop row (covering 50 cm around the crop row) were averaged. The obtained mean 

flux was then averaged with the mean of hourly fluxes measured by the chamber in 

the inter-row (covering 50 cm in the inter-row). This method made it possible to 

accurately calculate the average N2O emissions of each treatment, accounting for the 

spatial variability occurring between two crop rows (98 cm). Cumulative N2O fluxes 

[kg N2O-N ha-1] were determined by summing daily N2O fluxes measured during the 

study period.  

Emission factors were corrected for background emissions (Kroeze et al., 1997) 

using the following:  

 

𝐸𝐸 % =  
𝑁2𝑂 (𝐸𝐹𝐹𝐹) − 𝑁2𝑂 (𝑈𝑈𝑈𝐹𝐹𝐹) 

 𝑁 𝑈𝐹𝐹𝐹𝑓𝑓𝑓𝑓𝐹𝐹 𝑓𝑈𝑖𝑖𝐹
 ∙ 100 

Equation 3 

 

where EF % is the emission factor reported as a percentage of N fertiliser input 

(kg N ha-1 season-1) lost as N2O-N, N2O (Fert) and N2O (Unfert) (kg N ha-1 season-1) 

are the cumulative N2O-N emissions measured in the fertilised and non-fertilised 

treatments with the same cropping history, respectively. 

Soil CO2 fluxes, considered a proxy data for estimating soil respiration rates 

(inclusive of microbial and roots respiration), were calculated using only the 

chambers placed in the inter-row. Missing daily N2O and CO2 fluxes (due to rare 

occasional failures of the measuring system) were estimated with the Amelia II 

multiple imputation model (Honaker and King, 2010) using daily values of soil 

Water-Filled Pore Space (WFPS) (0-10 cm, 10-20 cm and 20-30 cm) and mineral N 

content (0-30 cm). 
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4.3.7 Auxiliary measurements 

Chamber air temperature and soil temperature were measured every 5 minutes 

using RTD probes (Temperature Controls Pty Ltd, Australia) buried at 10 cm depth 

near to a chamber. Four Frequency Domain Reflectometers (FDR, EnviroScan 

probes, Sentek Technologies, Australia) measured water dynamics of the soil profile 

throughout the field study. Before the beginning of the experiment all FDR probes 

were calibrated for the local soil type following producer recommendations (Sentek 

Technologies, 2011). The FDR probes were deployed at planting and programmed to 

measure the volumetric soil water content at three depths (0-10 cm, 10-20 cm, 20-30 

cm) at 30 minute intervals. Water filled pore space (WFPS) was calculated using a 

particle density of 2.79 g cm-3.  

Soil chemical properties at the site were determined at sorghum planting, with soil 

samples collected from every plot with a manual open-faced bucket auger (10 cm 

diameter). Each plot was sampled at three depths (0-10, 10-20, 20-30 cm) and then 

analysed for texture (hydrometer method as described by Carter and Gregorich 

(2007)), pH, NH4-N, NO3-N, dissolved organic C and potentially mineralisable N. 

Routine soil sampling was then conducted at regular intervals during the growing 

season and soil samples (0-10, 10-20, 20-30 cm) were analysed for NH4-N, NO3-N. 

Each soil sample consisted of three subsamples taken at 10 cm intervals from the 

crop row of then mixed in order to ensure it represented the banded and non-banded 

areas of the plot. 

Soil NH4-N and NO3-N were extracted by shaking 20 g soil in 100 mL 1 M KC1 

solution at room temperature for 60 minutes (Carter and Gregorich, 2007). This 

solution was then filtered and stored in a freezer until analysed colorimetrically for 

NH4-N and NO3-N using an AQ2+ discrete analyser (SEAL Analytical WI, USA). 

Dissolved organic C was extracted at room temperature by shaking 20 g soil in 100 

mL of deionised water for 60 minutes. The suspension was then centrifuged for 15 

minutes at 10000 rotations per minute and the supernatant filtered with a 0.45 µm 

pore diameter cellulose membrane filter (based on Scaglia and Adani (2009)). The 

samples were analysed using a supercritical water oxidation technique with the 

Seivers InnoVox laboratory TOC analyser (General Electric, Boulder, CO, USA). 
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Potentially mineralisable N was determined by incubating soil samples at field 

capacity at 30°C for 0, 7 and 14 days (Bremner, 1965). The samples were taken on 

12 December 2012 sampling each plot at three depths (0-10, 10-20, 20-30 cm). 

Mineral-N formed during the incubation was measured by 2M KCl extraction 

followed by automated colorimetric determination. For each treatment, the amount of 

potentially mineralisable N was calculated as the difference between the mineral N 

determined at day 7 and 14 in order to avoid the Birch effect (Birch, 1958). 

Total biomass was determined at physiological maturity by collecting duplicate 

samples of 1m of crop row in each plot. Samples were oven dried at 60°C to 

determine dry weight before being weighed and ground for total N content, which 

was measured using a C-N analyser after Dumas combustion (LECO TruMac, LECO 

Corporation, St. Joseph, MI, USA). Grain yield was measured in each plot by 

harvesting duplicate 1.8 m wide strips for the plot length using a plot combine. Grain 

samples were also dried at 60°C before quantification of yields on a dry weight basis, 

while grain N was determined using a methodology similar to that in biomass 

samples.  

Fertiliser N recovery in the crop (REfN) was determined applying 15N-labelled 

urea in micro-plots (0.9 m x 1.5 m) located next to the measuring chambers. The L70 

and G100 treatments received 5% excess 15N enriched urea both at planting and at 

side dressing. The 15N-labelled urea was dissolved in 1 L of deionised water and 

applied as a liquid solution in a sub-surface band, minimising in this way N losses 

via runoff and NH3 volatilisation. Plants in the micro-plots were sampled at crop 

harvest by collecting above- and below-ground material. The 15N analysis was 

performed using a 20-22 Isotope Ratio Mass Spectrometer (Sercon Limited, UK). 

More detailed information on the methodology used to determine the REfN is 

presented in Chapter 5.  
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4.3.8 Statistical analysis 

Statistical analyses were performed within the MATLAB 2012a environment 

(MathWorks Inc., Natick, MA, US), where the temporal patterns of daily N2O 

emissions displayed by the four treatments were compared using the autoregressive 

integrated moving average (ARIMA) model (Box and Pierce, 1970). This model was 

fitted to each time series using the following formula: 

 

∆𝑑𝑌𝑡 = 𝜙0 + 𝜙1∆𝑑𝑌𝑡−1 + ⋯+ 𝜙𝑝∆𝑑𝑌𝑡−𝑝 + 𝑎𝑡 + 𝜃1𝑎𝑡−1 + ⋯+ 𝜃𝑞𝑎𝑡−𝑞, 

Equation 4 

 

where Δ = (1 − 𝐵) and 𝐵 are the backshift operators. The roots of the AR and 

MA polynomials satisfied the stationarity and invertibility conditions, respectively. 

The values of p, d and q were determined by the Bayesian information criterion 

(BIC), and the unknown parameters were estimated by least squares estimators. The 

residuals 𝑎�𝑡 were computed by Φ�(𝐵)Θ�−1(𝐵)𝑌𝑡, where Φ�(𝐵) and Θ�(𝐵) denote the 

estimates of the autoregressive and moving average parameters, respectively. The 

bootstrap residual resampling method was used to evaluate the variation, while 

prediction intervals were constructed using the percentile method. A mixed-design 

analysis of variance (ANOVA) was performed to determine the influence of 

fertilisation rate or cropping history on N2O emissions and grain yields. The 

Bonferroni post hoc test was used to compare average and cumulative N2O 

emissions, N2O intensities, grain yields, above ground biomass productions and 

harvest indexes. As with the method used for the calculation of daily N2O fluxes, 

standard errors of average and cumulative N2O emissions and N2O intensities were 

calculated by assigning different weights to the chamber in the inter-row (0.5) and 

over the rows (0.25). 

http://en.wikipedia.org/wiki/Mathematical_model
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4.4 Results 

4.4.1 Environmental conditions 

Over the study period (12 December 2012 - 19 September 2013) a total of 827 

mm of rain fell at the study site, including one heavy rainfall event of 234 mm during 

a thunderstorm on 27 January 2013. While this total corresponded to 148% of the 

growing season mean for the 108-year period between 1905 and 2013, it is 

noteworthy that over 70% of the total rainfall was concentrated between 25 January 

and 3 March (Figure 4-1). The mean air temperature was 17.9°C, with the maximum 

(38.0°C) and minimum (-4.4°C) hourly air temperatures recorded in January and 

August 2013, respectively. Average daily soil temperatures (0-10 cm) ranged from a 

maximum of 29.7°C (December 2012) to a minimum of 11.9°C (May 2013).  

 

 
Figure 4-1 - Minimum and maximum daily air temperatures, soil temperatures (0-

30 cm), rainfall and irrigation events at Kingaroy (Queensland, Australia) during the 

sorghum season. 
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4.4.2 Seasonal variability of soil conditions 

The WFPS of the topsoil (0-30 cm) varied in response to rainfall, irrigation events 

and crop growth. At the beginning of the season WFPS values fluctuated between 

36% and 47% due to the rapid crop development and irrigation events (Figure 4-2). 

WFPS ranged from 30% to 50% during most of the study. Values up to 66% were 

measured between late January and mid-March as a consequence of the intense 

rainfall events that occurred during this period. After March average WFPS values 

started gradually to decrease as a result of the declined rainfall regime. 

 

 
Figure 4-2 - Daily soil N2O fluxes and water-filled pore space (WFPS, 0-30 cm) 

for the four treatments during the sorghum season in Kingaroy (Queensland, 

Australia). Arrows indicate the timing of N fertiliser applications. 

In the 0-30 cm sampling zone, NH4
+-N was the dominant form of soil mineral N. 

With the possible exception of the sampling event at sowing, no consistent response 

to history or fertiliser application was observed regarding NH4
+-N dynamics (Figure 

4-3a). At sorghum planting, NH4
+-N contents in the top 30 cm averaged 40 kg N ha-1 

and then stabilised between 16 and 33 kg N ha-1 for the remainder of the season. 

Limited response to history or N fertiliser application was observed also in soil NO3
--

N contents (Figure 4-3b), with the exception of the first month of the growing 
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season. At this stage the legume histories (L0 and L70) showed higher NO3
--N 

contents than the grass history equivalents, although differences were less than 20 kg 

N/ha. 

Even though not statistically different, at the beginning of the sorghum season 

dissolved organic carbon contents in the grass history tended to be higher than in the 

legume. Slightly higher (but not statistically different) potentially mineralisable N 

values were observed in the legume history treatments compared to the grass (Table 

4-1).  

 

 
Figure 4-3 - Soil ammonium (a) and nitrate (b) contents (0-30 cm) for the four 

treatments during the sorghum seasons in Kingaroy (Queensland, Australia). Arrows 

indicate the timing of N fertiliser applications. 
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4.4.3 N2O emissions  

N2O emissions varied temporally and spatially in response to N fertilisation rate 

and cropping history. In all treatments significant N2O losses occurred between mid-

December 2012 and mid-March 2013, when soil mineral N contents and WFPS 

values were higher than in the remainder of the study period (Figure 4-2, Figure 4-3). 

During this period N2O emissions increased shortly after rain or irrigation events. 

This trend was particularly evident in the G0 and G100 treatments, where N2O 

emission rates increased more abruptly than in L0 and L70 (Figure 4-2).  

In all except G0 treatments, the highest emission pulse was observed after the 

rainfall event on 27 January, when a total of 234 mm rainfall fell over 24 hours. 

During this event N2O emissions in treatments L70 and G100 were up to 4 and 6 fold 

those of the non-fertilised treatments, respectively. After this event, N2O emission in 

all treatments progressively declined to background levels, with the only exception 

being G100, where a substantial N2O emission pulse was measured after another 260 

mm rainfall fell at the field site between 19 February and 3 March (Figure 4-2). After 

mid-March daily N2O fluxes in all treatments never exceeded 1 g N ha-1 day-1 despite 

several rain events. Emissions did not increase even after the two irrigation events on 

27 and 29 August 2013 or the two cultivation events on 6 August and 19 September 

2013. 

During the period of highest emissions (December 2012 to March 2013) the 

ARIMA model highlighted significant treatment effects on the temporal pattern of 

N2O emissions. Before side dressing, the two N2O emission pulses measured in 

G100 and G0 significantly exceeded those in L70 and L0, respectively (Figure 4-4a, 

b). After side dressing the emission pulse in G100 was significantly higher than that 

in L70, while no substantial differences were observed between G0 and L0 (Figure 

4-4c, d). 
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Figure 4-4 - 95% confidence intervals of N2O fluxes in the different treatments 

during the period of highest emissions (December 2012-March 2013) in Kingaroy 

(Queensland, Australia). Confidence intervals are displayed using different scales. 

Arrows indicate the timing of N fertiliser applications. 
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The chamber placement highlighted two different patterns in the spatial variability 

of N2O flux rates during the period of high emissions. In the two non-fertilised 

treatments and in G100, N2O fluxes from the crop row (inclusive of the banded 

fertiliser) did not differ significantly from those from the inter-row (Figure 4-5b, c, 

d). Whereas in the L70 treatment, average N2O emissions measured in the crop row 

exceeded those in the inter-row by a factor of 6 (Figure 4-5a). 

Only the N2O cumulative losses measured in G100 were significantly higher 

(p<0.05) than those of the other treatments. Cumulative losses in L70 did not display 

significant differences compared to the non-fertilised treatments (Table 4-3).  

 

 

Table 4-3 - Seasonal N2O average fluxes, cumulative N2O fluxes, N2O intensities 

(mean ± SE, n=3), emission factors and cumulative CO2 fluxes as a function of the 

four treatments. Means denoted by a different letter indicate significant differences 

between treatments (p<0.05). 

Measurement Treatment 

L0 L70 G0 G100 

Average Flux [g N2O-N ha-1 d-1] 0.85 ± 0.08 a 2.41 ± 0.82 a 0.94 ± 0.18 a 5.07 ± 0.58 b 

Cumulative N2O Flux [kg N2O-N ha-1 season-1] 0.24 ± 0.02 a 0.68 ± 0.23 a 0.27 ±0.05 a 1.43 ± 0.16 b 

N2O Intensity [kg N2O-N t-yield-1 ha-1] 0.09 ± 0.01 a 0.13 ± 0.04 a 0.28 ± 0.05 b 0.28 ± 0.03 b 

Emission Factor [%] - 0.63 - 1.17 

Cumulative CO2 Flux [kg CO2-C ha-1 season-1] 33.4 ± 6.51 a 34.96 ± 5.21 a 29.22 ± 3.37 a 33.30 ± 4.92 a 
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Figure 4-5 - Daily soil N2O fluxes measured in the row (R) and inter-row (IR) 

chambers for the L70 (a), L0 (b), G100 (c) and G0 (d) treatments during the period 

of highest emissions (December 2012-March 2013) in Kingaroy (Queensland, 

Australia). Arrows indicate the timing of N fertiliser applications. Graphs are in 

different scales.   
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The mixed-design ANOVA analysis indicated that the main effect regulating N2O 

emissions was the N fertiliser rate, while the cropping history per se had no 

significant effect on measured N2O losses (Table 4-4). 

 

 

Table 4-4 - Significance of treatment effect (applied fertiliser rate and cropping 

history) on N2O emissions and grain yields during the sorghum season. 

Measurement Factor p-Value F Statistics 

N2O  Fertiliser rate ** 17.37 

 Cropping history NS 2.68 

Grain yield Fertiliser rate *** 255.79 

 Cropping history ** 14.41 

*, **, ***: probability significant at 0.05, 0.01 and 0.001 level, respectively. NS: not significant. 

 

4.4.4 CO2 emissions  

Soil CO2 fluxes showed little variation between treatments and exhibited a 

temporal pattern influenced by soil temperatures and WFPS (Figure 4-6). Average 

soil CO2 emissions peaked during the warmest months (early January to late March 

2013, average of 23 kg CO2-C ha-1 day-1) before decreasing to <10 kg CO2-C ha-1 

day-1 during the colder and drier period from April to late August 2013.During the 

fallow period CO2 fluxes remained below 5 kg CO2-C ha-1 day-1. Emissions in all 

treatments did not increase after the tillage event of 6 August 2013 but rose to an 

average of 17 kg CO2-C ha-1 day-1 after the two irrigation events of 27 and 29 

August. 

In contrast to N2O emissions, CO2 fluxes tended to not to rise until several days 

after a rainfall/irrigation event. This was particularly evident with the rainstorm on 

27 January, when CO2 emission did not start to increase until seven days after the 

event. Overall, cumulative CO2 emissions measured in the inter-rows showed little 

variations between treatments (Table 4-3) and no significant differences in the 

pattern of daily CO2 emissions was detected by the ARIMA model. 
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Figure 4-6 - Daily soil CO2 fluxes and water-filled pore space (WFPS, 0-30 cm) 

for the four treatments during the sorghum season in Kingaroy (Queensland, 

Australia). Arrows indicate the timing of N fertiliser applications. 

4.4.5 Crop biomass, grain production and N uptake 

Sorghum biomass production and yield were substantially affected by cropping 

history and N fertiliser rate. Both biomass and yield in the non-fertilised sorghum 

following the legume ley pasture (L0) were significantly higher (p < 0.05) than those 

in the corresponding treatment following the grass ley pasture (G0). Grain and 

biomass production in L70 were comparable to those in G100 and both were 

significantly higher than those in the non-fertilised treatments (Table 4-5). The 

harvest index (kg grain ha-1 / kg total biomass ha-1) of L0 was significantly higher 

than in G0, but comparable to that of both L70 and G100. 

The mixed-design ANOVA analysis showed that both the N fertiliser rate and the 

cropping history had significant effects on grain yield. However, the cropping history 

F value was substantially lower than that of the fertiliser rate, indicating that the 

fertiliser rate had greater influence on yields (Table 4-4). 

Soil N availability in the legume cropping history was higher than in the grass one 

and N uptake values measured in L0 and L70 exceeded those of G0 and G100, 

respectively. Though the N fertiliser rate in G100 was 30 kg N ha-1 higher than in 
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L70, the fraction of fertiliser N taken by the crop was greater in L70, exhibiting a 

significantly higher REfN compared to G100 (Table 4-5). 

 

Table 4-5 - Sorghum grain yield (expressed as dry weight), above ground biomass 

(expressed as dry weight), harvest index, total N uptake (mean ± SE, n=3) and 

recovery efficiency of fertiliser N in the crop (REfN) as a function of the four 

treatments. Means denoted by a different letter indicate significant differences 

between treatments (p<0.05). 

Measurement Treatment 

L0 L70 G0 G100 

Grain Yield [Mg ha-1] 2.52 ± 0.22 b 5.29 ± 0.22 c 0.94 ± 0.12 a 5.20 ± 0.11 c 

Above ground biomass [Mg ha-1] 8.38 ± 0.78 b 14.96 ± 0.73 c 4.48 ± 0.34 a 13.68 ± 0.53 c 

Harvest Index 0.31 ± 0.02 b 0.36 ± 0.01 bc 0.21 ± 0.03 a 0.38 ± 0.01 c 

Total N uptake [kg N ha-1] 46.91 ± 4.77 118.94 ± 7.98 25.11 ± 1.53 98.52 ± 6.88 

REfN [%] - 70.9 ± 2.1  52.8 ± 6.1** 
** probability significant at 0.01 level 
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4.5 Discussion 

4.5.1 N2O emissions from cropped soils after termination of a 
pasture phase 

To date little research has been undertaken on N2O emissions following the 

termination of ley pastures, specifically in terms of how management, climatic 

conditions and chemical composition of the residues influence N2O losses during 

subsequent cropping seasons. This is the first study to investigate the role of these 

factors in two subtropical ley pasture-cereal crop rotations using a fully automated 

measuring system providing high temporal resolution data on N2O emissions.  

Studies conducted on various cropping systems under different environmental 

conditions indicate that the incorporation of legume residues per se is not sufficient 

to trigger elevated N2O emissions. For example, extremely high N2O emissions 

following the plough-down of legume pastures have often been measured in cold 

climates during spring, when high levels of soil moisture coincide with increasing 

soil temperatures (Wagner-Riddle et al., 1997; Wagner-Riddle and Thurtell, 1998; 

Pappa et al., 2011). In contrast, limited N2O emissions following the incorporation of 

legume pastures have been reported under relatively dry condition in temperate, 

subtropical and mediterranean climates (Baggs et al., 2000; Gomes et al., 2009; 

Brozyna et al., 2013; Sanz-Cobena et al., 2014). 

The availability of the N released by the legume residues to the soil microbial 

pool, and therefore the magnitude of N2O emissions, appears therefore to be the 

product of several concurrent factors. 

4.5.2 Factors influencing N2O emissions and yields 

In this study cumulative N2O emissions were primarily a function of the N 

fertiliser rate applied, while cropping history had no significant effect. On the other 

hand, crop biomass and grain production showed a clear response to increased N 

availability in the legume history, irrespective of the N fertiliser input. While 

incorporation of legume residues provided an additional 20-22 kg N ha-1 to the 

sorghum crop in both L0 and L70 compared to G0 and G100, this additional N 

release did not significantly enhance the nitrification or denitrification processes 
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compared to the incorporation of grass residues. Moreover, the temporal pattern of 

daily N2O emissions was substantially affected by the cropping history and in the 

first 10 weeks after sorghum establishment N2O emissions pulses in G0 and G100 

were significantly higher than in L0 and L70, respectively. 

We propose that this apparent contradiction can be explained by considering three 

interacting factors: the fertiliser N rate applied, the synchrony between soil N 

availability and crop N uptake, and the cropping history.  

4.5.3 N fertilisation rates 

The application of synthetic N fertiliser was the main factor responsible for 

enhanced N2O emissions and the highest cumulative N2O losses were measured in 

the two fertilised treatments. In L70 and G100 the highest N2O emission rates were 

observed after side dressing, when the majority of the N fertiliser was applied and 

WFPS exceeded 60% (Figure 4-2). The abrupt emission pulses after fertilisation can 

be explained by considering the release dynamics of synthetic fertilisers (Crews and 

Peoples, 2005). Under humid soil conditions urea is rapidly hydrolysed, leading to a 

fast release of high amounts of mineral N in the soil. At side dressing sorghum plants 

were still at an early stage of physiological development and were able to take up 

only a fraction of the mineral N applied. Therefore, significant amounts of mineral N 

accumulated in the soil and became available to nitrifying and denitrifying 

microorganisms. Indeed, sufficient surplus N must have still been present in the 

highest N rate treatment (G100), where a secondary emission pulse was observed 

between mid-February and mid-March, one month after side dressing. 

Increased N2O emissions following the fertilisation events in this study did not 

correspond to elevated soil mineral N contents in the first 30 cm, due probably to the 

large rainfall event that fell over the trial shortly after side dressing. After this rain 

event a large fraction of the applied N is likely to have leached deeper into the soil 

profile, leaving little mineral N in the first 30 cm to be detected at the following 

sampling events (Figure 4-3). 

Overall, N2O emissions displayed a significant correlation with N fertilisation, 

rising in nonlinear patterns at increasing N fertiliser rates (0, 70 and 100 kg N ha-1). 

As observed by several authors (McSwiney and Robertson, 2005; Hoben et al., 2011; 

Shcherbak et al., 2014), the fast release of mineral N after fertilisation can exceed the 
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plant uptake capability when N fertiliser is applied at high rates and the resulting 

temporary surplus of mineral N can promote elevated nitrification and denitrification 

rates if the appropriate soil water conditions are met. These findings indicate that the 

best fertiliser management practices aimed at reducing N2O losses coincide with 

those designed to achieve high levels of agronomic efficiency. N rates and 

fertilisation techniques should therefore be aimed at maximising the crop uptake of 

applied synthetic N.  

4.5.4 Synchrony of N supply 

Synchrony is a critical aspect in reducing N2O losses after the termination of a 

legume pasture (Crews and Peoples, 2005; Jensen et al., 2012), which means 

matching the N release resulting from the degradation of the legume residues with 

the N uptake of the subsequent crop. The high emissions reported after the 

termination of a legume pasture are often measured when the field site has been left 

fallow for long periods (Wagner-Riddle et al., 1997; Wagner-Riddle and Thurtell, 

1998; Pappa et al., 2011). Conditions can be highly conducive for elevated N2O 

emissions when a soil is left fallow after the incorporation of fresh legume residues 

since in the absence of a crop following the pasture, all the readily mineralisable C 

from the legume residues becomes available to support the denitrification of large 

amounts of NO3
- accumulated in the soil.  

In this study sorghum was planted 13 days after the termination of the pasture 

phase. During the fallow prior to sorghum planting only 6 mm of rainfall fell, 

limiting therefore the possibility of organic matter decomposition, mineral N 

accumulation or generation of significant N2O emissions. Typically, the highest N 

mineralisation rates from legume residues are reported to occur after about six weeks 

from the termination of the pasture (Fox et al., 1990; Becker and Ladha, 1997; 

Robertson, 1997; Park et al., 2010). In the present study this would have coincided 

with the moment of maximum N uptake of sorghum, supplying in this way 

approximately an extra 20-22 kg N ha-1 to the plants in L70 and L0. The good 

synchrony between N release from the legume residues and N uptake of the sorghum 

plant is confirmed by the high REfN measured in L70 (Table 4-5). 

The potential of using legumes to support the growth of the following cereal crop 

was highlighted by the significant enhancement of the soil N pool in the legume 
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cropping history. While the initial mineral N contents in the top 30 cm of the profile 

were quantitatively similar between the legume and grass histories (Figure 4-3), there 

was a higher proportion of that N in the form of NO3-N in the legume (33%) than the 

grass (20%) histories. These data, combined with the increases in PMN (Table 4-1), 

suggest greater mineralisable N reserves in the legume histories, which is also 

reflected in sorghum growth, grain yield and N accumulation. Moreover, while the N 

supply from the residue mineralisation was not substantial in G100 and G0, the 

heavy rain events in January are likely to have promoted substantial N2 losses 

(Schwenke et al., 2013), further reducing the N supply to the plants of these 

treatments. The high N losses via leaching would have severely limited the efficiency 

of the side dressing, resulting therefore in the lower REfN values measured in G100 

compared to L70. Consequently, crop biomass and grain yields in L70 were 

comparable to those of G100 despite a 30% reduction in fertiliser rate, while yields 

in L0 were approximately double those in G0. 

Overall, planting sorghum shortly after pasture termination proved an effective 

strategy to reduce N2O losses due to the decomposition of legume residues. This 

practice also resulted successful in supplying an extra source of N to sorghum, 

increasing significantly the yields in both the fertilised (L70) and non-fertilised (L0) 

treatments.  

4.5.5 Cropping history 

Although it did not have a statistically significant effect on cumulative N2O 

emissions, the cropping history substantially influenced the temporal and spatial 

patterns of N2O fluxes. In the first part of the season for example, daily N2O fluxes in 

G100 and G0 tended to rise immediately after rain events and on these occasions 

emissions were consistently higher than in L70 and L0, respectively (Figure 4-4a, b). 

The grass cropping history treatments constituted also a more diffused source of N2O 

emissions, with G100 and G0 displaying high N2O losses also from the inter-row, 

while N2O fluxes from the inter-row in L70 and L0 never exceeded 12 g N ha-1 day-1 

(Figure 4-5). 

It is here hypothesised that the sharp increases of N2O emissions following 

increments in WFPS, as well as the high fluxes measured across the whole field in 

G100 and G0, are to be attributed to higher labile C in the soil of the grass cropping 
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history. Enhanced N2O emissions from soils with high DOC contents have been 

reported by numerous studies (Elmi et al., 2003; Yao et al., 2009; Barton et al., 

2011). This positive correlation originates from the coupled biogeochemical cycles 

of C and N. The degradation of plant material provides soil microbes with substantial 

amounts of C, which under anaerobic conditions is oxidised by denitrifying 

microorganisms via reducing NO3
- to N2O (Conrad, 1996).  

The DOC values observed at the beginning of the sorghum season tended to be 

higher in the treatments following the termination of the grass pasture, where a 

substantially higher amount of fine fibrous plant residues was present at sorghum 

planting. Whilst not quantitatively documented, the presence of undecomposed roots 

and crowns in the grass history would have continued to supplement the labile C 

pool. This would have provided a uniformly distributed C source to support 

microbial activity and therefore the potential for denitrification in both row and inter-

row areas (Figure 4-5). While this enhanced potential microbial activity in G0 

became increasingly N-limited by the end of December, the provision of the N side 

dressing in G100 allowed that activity to continue. When combined with the very 

wet soil conditions, this high nutrient availability resulted in the significant N2O 

emissions pulses observed in G100 from late January (Figure 4-5).  

Conversely, the low C:N ratio of the sulla plants residues would likely have 

contributed to a more rapid degradation of residues in the L0 and L70 treatments, 

leaving less labile C to support continued microbial activity. This may have changed 

during the season in the vicinity of the sorghum rows, where increasing root density 

would have contributed to labile C stores. The marked contrast in N2O emissions 

between the rows and inter-rows in both L0 and L70 (Figure 4-5) are consistent with 

this hypothesis. Similar results to this study were reported by Sanz-Cobena et al. 

(2014), who observed higher N2O emissions from maize after the incorporation of 

barley compared to the same crop after the incorporation of a vetch pasture. 

These findings highlight the potential role of the soil labile C pool in regulating 

N2O losses. Specifically, denitrifying microorganisms can be more competitive than 

plants in using even small amounts of NO3
- when soil labile C content is sufficiently 

high to sustain elevated microbial activity in anaerobic conditions. This was evident 

in the non-fertilised treatments, where dry matter and grain yield in G0 were severely 

limited by N availability but N2O emissions were almost identical. However, further 
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research is advocated to corroborate the results of this study. Specifically, future 

studies should focus on the chemical availability of C supplied by crop residues and 

its role in stimulating denitrification when the soil NO3
- content is not a limiting 

factor.  

4.6 Implications for managing N2O emissions from a 

cereal crop following a legume pasture 

Introducing a legume ley pasture in a cereal-based cropping system enabled the 

reduction of the synthetic N fertiliser applied to the following cereal crop and 

significantly reduced the N2O emission factor for this crop compared to a grass ley 

pasture. The emission factor of L70 (0.63%) was almost half of G100 (1.17%) and 

was considerably lower than the 1% recommended by the IPCC methodology for 

fertilised cropping systems (De Klein et al., 2006). Both Tier 1 and Tier 2 

approaches consider an emission factor of 1% for N derived from the mineralisation 

of crop residues. According to this method, in L70 the total N2O emissions resulting 

from the mineralisation of approximately 30 kg N ha-1 contained in the legume 

residues and combined with the application of 70 kg N ha-1 would have amounted to 

about 1 kg N2O-N ha-1. Similarly, N2O losses from the two non-fertilised treatments 

should have differed substantially, resulting in 0.3 and 0.1 kg N2O-N ha-1 from L0 

and G0, respectively. However, the different dynamics observed in this study suggest 

that the amount of N in the soil per se is not sufficient to correctly estimate N2O 

emission factors, and that the quantity and availability of soil C should also be 

considered. 

The importance of soil labile C is reinforced when the N2O emissions intensity 

(kg N2O-N yield-1 ha-1) of the legume and grass cropping histories are considered. 

This measure effectively quantifies the efficiency of agronomic practices in 

maximising grain yields while minimising N2O emissions. Despite the broad range 

of grain yields, N2O emissions intensities were consistent among treatments with the 

same cropping history, with intensities significantly lower in the legume compared to 

the grass history (Table 4-3). 
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The introduction of a legume pasture phase in a cereal-based crop rotation seems 

to offer multiple environmental and agronomic advantages. In the fertilised 

treatments it resulted in a 50% reduction of the N2O-N emitted compared to 

introducing a grass pasture, proving to be an effective mitigation strategy to reduce 

the contribution of cereal cropping systems to greenhouse gas emissions. A pasture 

phase can also contribute to increasing the soil organic matter, aggregate stability, 

soil microbial pool and organic N content (Giller and Cadisch, 1995; Rochester et 

al., 2001), benefiting the overall soil chemical and physical fertility. These results 

overall indicate that introducing a legume pasture in a subtropical cereal cropping 

system is a sustainable practice from both the environmental and agronomic 

perspective.  

The implications of managing N2O emissions from a cereal crop following a 

legume pasture in terms of agronomy and crop productivity are further examined in 

sections 6.4.2 and 7.1, while the profitability of this N management strategy is 

analysed in section 7.2. 
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Chapter 5: Assessing agronomic and 
environmental implications of 
different N fertilisation 
strategies in subtropical grain 
cropping systems in Oxisols 
(Paper 3) 

 

Abstract 

A multi-season 15N tracer recovery experiment was conducted on an Oxisol 

cropped with wheat, maize and sorghum to compare crop N recoveries of different 

fertilisation strategies and determine the main pathways of N losses that limit N 

recovery in these agroecosystems. In the wheat and maize seasons, 15N-labelled 

fertiliser was applied as conventional urea (CONV) and urea coated with a 

nitrification inhibitor (DMPP). In sorghum, the fate of 15N-labelled urea was 

monitored in this crop following a legume ley pasture (L70) or a grass ley pasture 

(G100). The fertiliser N applied to sorghum in the legume-cereal rotation was 

reduced (70 kg N ha-1) compared to the grass-cereal (100 kg N ha-1) to assess the 

availability of the N residual from the legume ley pasture. Average crop N recoveries 

ranged from 73% (CONV) to 77% (DMPP) in wheat and from 50% (CONV) to 51% 

(DMPP) in maize, while in sorghum varied between 71% (L70) and 53% (G100). 

Data gathered in this study indicate that the intrinsic physical and chemical 

conditions of these soils can be extremely effective in limiting N losses via deep 

leaching or denitrification. Elevated crop 15N recoveries can therefore be obtained in 

subtropical Oxisols using conventional urea while in these agroecosystems DMPP 

urea has no significant scope to increase fertiliser N recovery in the crop. Overall, 

introducing a legume phase to limit the fertiliser N requirements of the following 

cereal crop proved to be the most effective strategy to reduce N losses and increase 

fertiliser N recovery. 
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5.1 Introduction 

Half the world’s population live in regions dominated by acid soils (Yang et al., 

2004), 18.4 % of which are classified as Oxisols (von Uexküll and Mutert, 1995). 

Oxisols are the most common soil type in the tropics and subtropics, representing 

approximately 46% and 23% of soil area in these regions, respectively (Buol and 

Eswaran, 1999), and are mainly located in South America, Africa and Asia (von 

Uexküll and Mutert, 1995).  

More susceptible to degradation than most soils and characterised by low natural 

fertility, Oxisols had been relegated to marginal agricultural practices until the Green 

Revolution (Borlaug and Dowswell, 1997; Thomas and Ayarza, 1999). However, 

with modern technologies many of the constraints of Oxisols can be amended and 

these soils are now regarded as the most extensive agricultural frontier in the world. 

Today, Oxisols are capable of high productivity levels and support sufficient food 

production and economic returns to feed millions of peoples, particularly in tropical 

and subtropical regions (Fageria and Baligar, 2008). For example in Brazil, the 

country with the greatest extent of arable Oxisols in the world, the area of Oxisols 

cultivated with grain crops increased from 10 million ha in 1970 to 48 million ha in 

2011 (Thomas and Ayarza, 1999; Scheid Lopes et al., 2012) and alone contributes to 

4.3% of the world’s current cereal production (Fischer, 2009; FAOSTAT website, 

accessed October 2014). 

However, there is growing concern about the environmental and agronomic 

implications of intensive cropping of Oxisols. Nearly all future demographic growth 

is projected to take place in tropical and subtropical countries (UNFPA, 2011), 

meaning a greater pressure on Oxisols to meet future cereal demand (Fageria and 

Baligar, 2008). There will be economic and environmental pressures for any increase 

in grain production to occur without intensification of synthetic N fertiliser use, as 

the manufacture and use of these products has major implications in terms of water 

quality, energy consumption and greenhouse emissions (Crews and Peoples, 2004; 

Jensen et al., 2012; Müller and Gattinger, 2013). There is therefore an urgent need to 

develop N management strategies and farming systems that can reduce the need for 

synthetic N fertiliser in Oxisols and improve fertiliser N recovery in cereal cropping 

systems.  
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Under certain conditions, the application of nitrification inhibitors to urea-based 

fertilisers has been shown to improve yields through an increased crop N recovery 

(Linzmeier et al., 2001b; Pasda et al., 2001; Kawakami et al., 2012). However, the 

efficiency of nitrification inhibitors is highly dependent on soil and climatic 

conditions and their use substantially increases fertilisation costs (Eagle et al., 2012). 

Alternatively, many authors have proposed the reintroduction of legumes in cereal-

based cropping systems as one possible strategy to reduce synthetic N inputs whilst 

sustaining crop yields (Crews and Peoples, 2004; Jensen et al., 2012). The dynamics 

regulating the release of plant-available N from legume residues are however 

complex and grain yields can be limited by any asynchrony between N supplied by 

the legume residues and crop N uptake (Crews and Peoples, 2004).  

Research to date has primarily focused on the efficacy of various N management 

strategies on different soils under temperate climatic conditions or, in tropical and 

subtropical climates, on the correction of the main constraints of Oxisols (soil 

acidity, available phosphorus and soil organic matter).  

As a result, very scarce data on efficient N fertilisation strategies are currently 

available for subtropical cereal cropping systems in Oxisols. The overall aims of this 

study were therefore to: i) compare the N recoveries of different N fertilisation 

strategies on subtropical Oxisols, including the use of conventional urea or urea 

coated with a nitrification inhibitor and the presence or absence of legumes in the 

crop rotation; ii) determine the main pathways of N losses that limit N recovery in 

these agroecosystems and iii) evaluate the agronomic and environmental 

sustainability of the N supply practices examined. 

Two investigations were carried out on an Oxisol supporting cereal cropping 

systems as part of a multi-season 15N tracer recovery experiment. The first 

investigation focused on the N recovery efficiency of urea coated with a nitrification 

inhibitor and was performed on a crop rotation composed of wheat followed by 

maize. The second investigation assessed the fate of 15N-labelled urea in sorghum 

following a legume ley pasture and compared it to the same crop in rotation with a 

grass ley pasture. 

This study is the first to assess the agronomic and environmental performances of 

these N management practices on cereal crops in Oxisols. The results will contribute 
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to define agronomically viable and environmentally sustainable N fertilisation 

strategies to support future intensification of cereal production on these soils.  

5.2 Materials and Methods 

5.2.1 Study site  

The study was conducted at the J. Bjelke Petersen Research Station of the 

Department of Agriculture, Fisheries and Forestry (DAFF). The research site is 

located in Taabinga (26°34’54,3’’ Latitude South, 151°49’43.3’’ Longitude East, 

altitude 441 m a.s.l), near Kingaroy, in the southern inland Burnett region of 

southeast Queensland, Australia. The climate is classified as subtropical, with warm, 

humid summers and mild, dry winters. Daily mean maximum and minimum 

temperatures are 20.1°C and 4.0°C in winter and 29.6°C and 16.5°C in summer, 

respectively. Mean annual precipitation is 776.2 mm and varies from a minimum of 

28.6 mm in August to a maximum of 114.1 mm in January (Australian Bureau of 

Meteorology website). The soil is classified as a Tropeptic Eutrustox Oxisol (USDA 

Soil Taxonomy, USDA (1998)) or as a Orthic Ferralsol (FAO Soil Taxonomy, FAO 

(1998)) and has a moderately slow permeability. The soil profile is relatively 

homogenous, characterised by a high clay content (50-65% clay), an effective 

rooting zone of 1.2 m and a water holding capacity of 100 mm. Physical and 

chemical soil properties are listed in Table 5-1. 
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Table 5-1 - Main soil physical and chemical properties (0-30 cm) of the 

experimental site at Kingaroy research station, Queensland, Australia 

 First investigation Second investigation 

Soil Property (0-30 cm) - Legume * Grass * 

pH (H2O) 5.58 ± 0.11 5.12 ± 0.03 5.30 ± 0.02 

DOC (kg C ha-1) 39.56 ± 2.07 43.04 ± 11.98 56.05 ± 2.97 

Bulk density 0-30 cm (g cm-3) 1.33± 0.09 1.18 ± 0.08 1.18 ± 0.08 

Texture (USDA) Clay Clay Clay 

Clay (%) 55 55 55 

Silt (%) 14 14 14 

Sand (%) 31 31 31 

* Cropping history 

 

 

5.2.2 First investigation (nitrification inhibitor trial) 

The first investigation consisted of two cropping seasons: wheat (winter 2011) 

and maize (summer 2011/2012). Wheat (Triticum aestivum L., cultivar Hartog) was 

planted 6 July after the harvest of a summer mungbean (Vigna mungo L.) crop and 

subsequently harvested 29 November 2011, while maize (Zea mays L., cultivar 

32P55) was planted 21 December 2011 and harvested 20 June 2012. Two treatments 

were tested: 

• Conventional fertiliser (CONV): fertiliser N applied at rates of 80 and 160 kg N 

ha-1 to wheat and maize, respectively. Rates were designed to achieve maximum 

yield potential. 

• Fertiliser coated with DMPP nitrification inhibitor (DMPP): fertiliser N applied 

at same rates of CONV treatment. DMPP (3,4-dimethylpyrazole phosphate) was 

chosen amongst other nitrification inhibitors for the high efficiency in slowing 

nitrification and reducing N losses (Weiske et al., 2001a; Weiske et al., 2001b; 

Liu et al., 2013). 
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During the wheat season both treatments were base dressed with 20 kg N ha-1 as 

diammonium phosphate (DAP, banded at panting) and top dressed at booting stage 

broadcasting 60 kg N ha-1 as conventional urea (CONV) or urea coated with the 

DMPP nitrification inhibitor (DMPP). In maize the two treatments were base dressed 

at planting by banding 40 kg N ha-1 as monoammonium phosphate (MAP) and side 

dressed at V10 physiological stage (beginning of tenth leaf) with 120 kg N ha-1 as 

conventional urea (CONV) or with DMPP urea (DMPP). Given the high cost of 

DMPP, in each season DMPP urea was used only at top/side dressing, when 75% of 

seasonal N was applied to the crop. During the early stages of crop development 

irrigation was applied at a rate of 10 mm h-1 when water filled pore space (WFPS) 

values approached 40%. This method avoided water stress limiting the potential 

yields and prevented fertiliser N to be leached below the rooting zone. The trial was 

irrigated on four and two occasions over the wheat and maize seasons, respectively. 

Timings and amounts of fertiliser application are reported in Table 5-2, while further 

information on the study site and crop management can be found in Chapter 3.  

 

Table 5-2 - Times of application and N rates of labelled and unlabelled fertilisers 

during the two investigations at Kingaroy research station, Queensland, Australia 

Crop Time of fertiliser application 
Fertilisation [kg-N ha-1] 

CONV DMPP 

Wheat 
Planting  20 (DAP) 20 (DAP) 

Top Dressing (broadcasted) 60 (urea) ** 60 (DMPP urea) ** 

Maize 
Planting  40 (MAP) 40 (MAP) 

Side Dressing (banded) 120 (urea)** 120 (DMPP urea)** 

 
 L70 L100 

Sorghum 
Planting  20 (urea) * 20 (urea) * 

Side Dressing (banded) 50 (urea) * 80 (urea) * 

** Fertiliser labelled with 10% 15N urea 

*   Fertiliser labelled with 5% 15N urea   
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The trial layout was a randomised complete block design with three replicates per 

treatment. For each treatment, three randomly placed 1 m2 micro-plots were 

delimited by stainless steel frames inserted 15 cm into the ground. All micro-plots 

were surrounded by a buffer of 1 m along each side of the frame. The micro-plots 

were repositioned before planting maize to avoid 15N contamination across seasons.  

The 15N-labelled fertiliser was only applied at top/side dressing to determine the N 

recovery of DMPP urea and compare it with conventional urea. Each micro-plot 

received 10% excess 15N enriched urea, which was dissolved in 1 L of deionised 

water. The labelled fertiliser was applied uniformly with a dispenser over the entire 

micro-plot area to replicate top dressing (in wheat) or along the band to replicate 

banding (in maize). For the DMPP treatment the 15N enriched urea was added with 

DMPP at a ratio of 6 g DMPP kg-1 urea to replicate the same ratio of commercial 

DMPP urea (Incitec Pivot Fertilisers, personal communication). 

5.2.3 Second investigation (legume N trial) 

The second investigation consisted of one cropping season (sorghum, planted 12 

December 2012 and harvested 18 June 2013) and took place in a field adjacent to the 

one used for the first investigation. Plots were planted with sorghum (Sorghum 

bicolor L.) following two distinct cropping histories. One crop rotation (hereafter 

called legume cropping history) included two years of alfalfa pasture (Medicago 

sativa, L.), one season of maize (summer crop) and one season of sulla ley pasture 

(Hedysarum coronarium L., winter crop) prior to sowing sorghum. The other crop 

rotation (hereafter called grass cropping history) included two years of a mixed 

pasture predominantly composed by Rhodes grass (Chloris gayana, K.), one season 

of maize (summer crop) and one season of wheat (winter crop). Sulla and wheat were 

managed as green manure crops. The incorporation of sulla residues (2.3 Mg dry 

matter ha-1, 1.57% N) was estimated to return approximately 36 kg N ha-1 to the soil, 

while wheat residues (1.24 Mg dry matter ha-1, 0.75% N) about 9 kg N ha-1. During 

the sorghum season two treatments were assessed:  

• Sorghum grown in the grass cropping history, with 100 kg N ha-1 applied 

(G100). The fertiliser N rate was designed to achieve maximum yield 

potential. 
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• Sorghum grown in the legume cropping history, with 70 kg N ha-1 applied 

(L70); 

 

The two treatments were base dressed with 20 kg N ha-1 as urea banded at 

planting, and side dressed at the eight leaf stage banding 50 kg N ha-1 (L70) or 80 kg 

N ha-1 (G100) as urea (Table 5-2). The synthetic N rate used in L70 was reduced 

compared to G100 to account for the expected increase in plant available N arising 

from the legume inputs. As in the first investigation, irrigation was applied during the 

early stages of crop development at a rate of 10 mm h-1 when WFPS values 

approached 40%. All plots were irrigated three times over the cropping season; see 

Chapter 4 and Bell et al. (2012) for further details on the experiment and the 

management of the two crop rotations.  

The experiment was established in a split plot design with two main plots (legume 

and grass ley pastures). Lateral movement of N was considered negligible since urea 

was banded both at side and base dressing. During this investigation micro-plots 

(1.35 m2) were therefore sited in the main plots without stainless steel frames. To 

account for 15N uptake by adjacent plants, micro-plots (0.9 m wide) included one 

crop row fertilised with 15N enriched urea (1.5 m) and two non-fertilised crop rows 

(1 m) located on either side of the row receiving the 15N-enriched fertiliser. A buffer 

area of 0.25 m was established at either end of the fertilised crop row. The 5% excess 
15N enriched urea was dissolved in 1 L of deionised water and applied in single 

bands in each micro-plot during both application events.  

5.2.4 Samples collection, preparation and analysis 

At the beginning of each cropping season soil samples were collected prior to 

planting to establish soil 15N background levels. At the end of each cropping season 

plant and soil samples were taken at crop harvest. In wheat and maize all above 

ground material in the micro-plots was cut near the soil surface using hand clippers. 

In both seasons the extremely dry conditions of the soil prevented the collection of 

representative samples of root material. Soil moisture at the end of the sorghum 

season was higher and plants could be dug out of the ground to collect root material. 

Sorghum plants from the fertilised and non-fertilised rows were collected with hand 

clippers and stored separately. 
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Soil sampling was conducted using a core sampler (10 cm diameter) and different 

strategies were adopted in each season in consideration of fertiliser position. In 

wheat, where 15N-labelled fertiliser was evenly applied, six cores were randomly 

taken inside each micro-plot. In maize two transects of three cores each were 

performed across the inter-row space of each micro-plot, with one core per transect 

placed over the fertiliser band. In both seasons soil samples were collected at six 

depths (0-10, 10-20, 20-30, 30-40, 40-50, 50-60 cm). Moist soil conditions at the end 

of sorghum season enabled a deeper penetration of the core sampler and samples 

were collected at six depths to a depth of 1 m (0-10, 10-20, 20-30, 30-50, 50-70, 70-

100 cm). Two transects of three cores each were performed in the inter-row space 

between the fertilised and non-fertilised rows of each micro-plot, with one core per 

transect placed over the fertiliser band. At the end of each season reference biomass 

and soil samples were collected outside the micro-plots as controls for background 
15N abundance.  

Plant material was mechanically mulched and oven-dried at 60°C to constant 

weight. Grain, stem and roots (in sorghum) were ground in a planetary cylinder mill 

and analysed separately. Soil samples were oven-dried at 60°C and ground using the 

planetary cylinder mill. Soil and plant samples were processed in ascending order of 

fertiliser rate and all equipment washed with ethanol between treatments to prevent 

possible cross contamination. The 15N analysis was performed using a 20-22 Isotope 

Ratio Mass Spectrometer (Sercon Limited, UK).  

5.2.5 Ancillary measurements  

In addition to soil sampling for 15N analysis, routine soil sampling was conducted 

at regular intervals to assess soil N dynamics during the growing seasons. Soil 

samples were taken at three depths (0-10, 10-20, 20-30 cm) and analysed for NH4-N 

and NO3-N. Each soil sample consisted of three subsamples taken at 10 cm intervals 

from the crop row of then mixed in order to ensure it represented the banded and 

non-banded areas of the plot. Soil NH4-N and NO3-N were extracted by shaking 20 g 

soil in 100 mL 1 M KC1 solution at room temperature for 60 minutes (Carter and 

Gregorich, 2007). The solution was then filtered and stored in a freezer until 

analysed colorimetrically for NH4-N and NO3-N using an AQ2+ discrete analyser 

(SEAL Analytical WI, USA).  
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N2O fluxes and soil mineral N content were also measured throughout the 

investigations as part of a comprehensive project assessing N dynamics in cereal-

based cropping systems in Oxisols. N2O emissions from each treatment were 

measured every three hours using a chamber-based automated greenhouse gas 

measuring system installed next to the micro-plots. For more information about N2O-

N losses during the two investigation see Chapters 3 and 4. 

Four frequency domain reflectometers (FDR, EnviroScan probes, Sentek Sensor 

Technologies, Australia) were installed at the field site to continuously monitor the 

water content at three depths (0-10 cm, 10-20 cm, 20-30 cm). Soil temperature was 

measured every 5 minutes with resistance temperature detectors (RTD, Temperature 

Controls Pty Ltd, Australia) buried at 10 cm, 20 cm and 30 cm in the proximities of 

chambers. Rainfall data were obtained from a weather station located at the study 

site. 

5.2.6 Calculations and statistical analysis 

All calculations were conducted on oven-dried basis. Total recovery of applied 
15N-labelled fertiliser was determined by mass balance. The percentage of N derived 

from the labelled fertiliser (Ndff) in each plant and soil pool was determined using 

the following formula (IAEA, 2001): 

 

𝑁𝑁𝑈𝑈 =
(𝑎𝐹𝑎𝑎% 𝑁15

𝑠𝑠𝑠𝑝𝑠𝑠 − 𝑎𝐹𝑎𝑎% 𝑁15
𝑐𝑐𝑐𝑡𝑐𝑐𝑠) 

(𝑎𝐹𝑎𝑎% 𝑁15
𝑠𝑠𝑙𝑠𝑠𝑠𝑠𝑑 𝑓𝑠𝑐𝑡𝑓𝑠𝑓𝑠𝑠𝑐 − 𝑎𝐹𝑎𝑎% 𝑁15

𝑢𝑐𝑠𝑠𝑙𝑠𝑠𝑠𝑠𝑑 𝑓𝑠𝑐𝑡𝑓𝑠𝑓𝑠𝑠𝑐) 
 × 100 

Equation 1 

 

 

The percentage of 15N recovered in each pool was calculated as 

 

𝑁15  𝐹𝐹𝑟𝑎𝑟𝐹𝐹𝑟 =  
𝑁15  𝐹𝐹𝑟𝑎𝑟𝐹𝐹𝐹𝑁 (𝑘𝑘 𝑁 ℎ𝑎−1)
𝑁15  𝑎𝑖𝑖𝑓𝑓𝐹𝑁 (𝑘𝑘 𝑁 ℎ𝑎−1)

 ×  100 

Equation 2 

Fertiliser N recovery in the root biomass of wheat and maize was calculated 

assuming a N recovery similar to the one in straw and stalks, respectively (Anderson, 

1988). Root biomass was estimated using a root:shoot ratio of 0.31 for wheat 
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(Siddique et al., 1990; Manschadi et al., 2008) and 0.22 for maize (Anderson, 1988; 

Demotes-Mainard and Pellerin, 1992).  

Statistical analyses were performed within the SPSS 22 environment (IBM 

Corporation, USA). Differences in 15N recoveries of different pools were assessed 

with the ANOVA test using a confidence interval of 95%. 

5.3 Results 

5.3.1 First investigation 

Throughout the first investigation the field study received a total of 919 mm 

rainfall, the majority of which occurred during the summer season (520 mm) (Figure 

5-1). Soil mineral N content was relatively high at planting of wheat and gradually 

decreased during the two cropping seasons. Substantial increases in soil N were 

observed in both seasons after top/side dressing (Figure 5-2). Soil conditions were 

considerably warmer and wetter during the maize season, especially at the time of 

side dressing. 

 

 
Figure 5-1 - Water filled pore space (WFPS) measured at 0-30 cm, soil 

temperature (0-30 cm) and rainfall and irrigation events during the wheat, maize and 

sorghum seasons at Kingaroy research station, Queensland, Australia. Arrows 

indicate the time of application of 15N-labelled fertiliser. 
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Figure 5-2 - Soil mineral N levels (NH4

+ + NO3
-) in the top 30 cm for the four 

treatments during the wheat, maize and sorghum seasons at Kingaroy research 

station. Arrows indicate the time of application of 15N-labelled fertiliser. 

In both seasons the use of DMPP urea did not significantly affect N recovery, 

grain yield and biomass production (Table 5-3). Plant recovery of 15N-labelled 

fertiliser was higher in wheat (CONV: 72.9%, DMPP: 76.2%) than in maize (CONV: 

49.7%, DMPP: 50.9%). The residual 15N-labelled fertiliser recovered in the soil 

ranged from 25.8% (CONV) to 23% (DMPP) in wheat and from 35.9% (CONV) to 

32.6% (DMPP) in maize. Whilst at the end of the wheat season almost all residual 
15N-labelled was confined to the upper 10 cm, a higher amount of N moved 

throughout the soil profile in maize (Figure 5-3).  

In wheat about 33.8% (CONV) and 35.7% (DMPP) of plant N derived from the 

fertiliser N applied at top dressing, while in maize Ndff values varied between 51.9 

(CONV) and 50.9 (DMPP). In both crops fertiliser N was primarily recovered in 

grains and secondarily in the straw/stalks and root components. The estimated 

proportion of 15N recovered in roots was consistent with results reported by Kumar 

and Goh (2002) and Ichir et al. (2003) for wheat and by Mahmood et al. (2011) and 

Vanlauwe et al. (2001) for maize. 
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Figure 5-3 - 15N-labelled fertiliser recovered in the soil by depth increment during 

the wheat, maize and sorghum seasons. Depth increments in maize were the same of 

wheat. Error bars indicate the standard errors. 

N2O-N losses measured after top dressing in wheat amounted to 0.2% of the 

fertiliser N applied at top dressing, while in maize they varied between 1.3% 

(CONV) and 0.3% (DMPP) of the N banded at side dressing (Table 5-3). Accounting 

for these gaseous losses, the amount of applied 15N-labelled fertiliser that was not 

recovered in the soil-plant system during the wheat season ranged from 1.1% 

(CONV) to 0.1% (DMPP). During the maize season this percentage varied between 

13.2% and 16.2% in the CONV and DMPP treatments, respectively (Table 5-3).   
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Table 5-3 - Dry matter, plant N derived from 15N-labelled fertiliser (Ndff) and 

recovery of added 15N measured at the end of the two investigations (mean ± SD, 

n=3). Statistically significant differences are denoted 

Crop Pool DM [Mg ha-1] Ndff [%] 15N recovered [%] 

  CONV DMPP CONV DMPP CONV DMPP 

Wheat Grain 3.5 ± 0.5 3.6 ±0.8 24.8 ± 2.7 26.0 ± 2.4 53.3 ± 2.2 55.6 ± 7.5 

 Straw 7.7 ± 1.3 7.8 ±1.3 6.9 ± 0.9 7.4 ± 0.7 14.9 ± .2.2 16.1 ± 3.5 

 Roots ‡ 2.4 ± 0.4 2.4 ±0.4 2.1 ± 0.1 2.3 ± 0.2 4.7 ± 0.8 5.0 ± 0.8 

 Plant total 13.6 ± 2.2 13.9 ±2.5 33.8 ± 2.9 35.7 ± 2.4 72.9 ± 3.3 76.7 ± 11.3 

 Soil     25.8 ± 6.4 23.0 ± 5.3 

 N2O after top dressing     0.2 ± 0.02 0.2 ± 0.01 

 N accounted for 15N     98.9 ± 5.8 99.9 ± 8.8 

 N unaccounted for 15N     1.1 0.1 

Maize Grain 8.2 ± 1.3 7.7 ± 0.3 42.2 ± 3.4 42.0 ±4.8 40.3 ± 6.7 40.3 ± 0.7 

 Stalks 4.7 ± 1.2 4.9 ± 0.7 8.0 ± 0.5 8.9 ±0.9 7.6 ± 1.4 8.6 ± 0.6 

 Roots ‡ 1.0 ± 0.3 1.1 ± 0.2 1.8 ± 0.04 2.0 ±0.1 1.7 ± 0.4 2.0 ± 0.3 

 Plant total 13.9 ± 2.7 13.7 ± 1.0 51.9 ± 3.8 52.9 ±5.4 49.7 ± 8.6 50.9 ± 0.6 

 Soil     35.9 ± 5.7 32.6 ± 9.3 

 N2O after side dressing     1.3 ± 0.6 0.3 ± 0.2 

 N accounted for 15N     86.8 ± 12.1 83.8 ± 9.6 

 N unaccounted for 15N     13.2  16.2  

        

  L70 G100 L70 † G100 † L70 † G100 † 

Sorghum Grain 8.9 ± 1.5 7.0 ± 0.8 17.1 ± 4.5 27.7 ± 4.0 * 45.6 ± 4.3 32.4 ± 2.2 ** 

 Stalks 11.9 ± 1.5 9.2 ± 1.8 8.3 ± 1.4 15.4 ± 3.0 * 22.7 ± 5.3 18.2 ± 4.6 

 Roots  2.4 ± 0.3 2.0 ± 0.3 1.0 ± 0.2 1.8 ± 0.5 2.6 ± 0.3 2.2 ± 0.7 

 Plant total 23.2 ± 3.2 18.1 ± 2.7 26.3 ± 5.1 44.9 ± 5.0 * 70.9 ± 2.1 52.8 ± 6.1 ** 

 Soil     27.3 ± 2.8 43.3 ± 4.4 ** 

 N2O     1.0 ± 0.3 1.4 ± 0.2 

 N accounted for 15N      99.1 ± 4.9 97.4 ± 2.6 

 N unaccounted for 15N     0.9 2.6 
‡ estimated values 

† values are inclusive of N recovered by plants in non-fertilised row 
*  p < 0.05 
** p < 0.01 
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5.3.2 Second investigation 

Over the study period a total of 827 mm of rain fell at the study site, including one 

heavy rainfall event of 234 mm during a thunderstorm on 27 January 2013. Over 

70% of the total rainfall was concentrated between 25 January and 3 March (Figure 

5-1). A gradual decrease in soil mineral N was observed in both treatments during 

the growing season. No consistent response to history or fertiliser application could 

be measured in terms of soil mineral N (Figure 5-2). Similarly to the maize season, 

average soil temperatures ranged from a maximum of 29.7°C (December 2012) to a 

minimum of 11.9°C (May 2013). 

Sorghum production was substantially affected by cropping history. Despite a 

30% reduction in the amount of N fertiliser applied, the production of grain and 

biomass in L70 was comparable to that in G100 (Table 5-3). This was reflected in 

the percentage of plant N derived from fertiliser: in L70 only 26.3% of plant N 

originated from the fertiliser, while in G70 the percentage was 44.9%. The recovery 

of applied N fertiliser in L70 (70.9 ± 2.1) was significantly greater than in G100 

(52.8 ± 6.1). In both treatments fertiliser N was mostly recovered in the grains, with 

lesser quantities in stalks and roots. The amount of 15N-labelled fertiliser left in the 

soil in the G100 treatment (43.3 ± 4.4 %) was significantly higher than in G70 (27.3 

± 2.8) and was mainly concentrated in the top 10 cm of soil profile (Figure 5-3). 

After taking into consideration the N2O-N losses, the amount of fertiliser N that 

could not be accounted for ranged between 0.9 (L70) and 2.6% (G100).  

In both investigations unaccounted 15N was assumed to be lost from the monitored 

crop-soil system via deep leaching or through the nitrification/denitrification 

processes. Losses via runoff and NH3 volatilisation were considered negligible since 

in both investigations 15N-labelled urea was applied as a liquid solution in a sub-

surface band. On average, uncertainty due to cumulative errors associated with the 

analyses amounted to 9.96% and 3.83% in the first and second investigations, 

respectively.  
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5.4 Discussion 

5.4.1 Fertiliser as source of crop N  

As expected, the amount of plant N derived from labelled fertiliser varied widely 

across crops and investigations. In the first investigation, the average percentage of 

crop N derived from 15N-labelled fertiliser was 34.7 ± 1.3 in wheat and 52.4 ± 0.7 in 

maize. The low reliance of wheat on N fertiliser can be attributed to the cropping 

history of the field study, as the site had previously been cropped with mungbean. 

This crop was harvested six weeks before planting wheat and mungbean residues 

were incorporated in the soil at a rate of approximately 1.8 Mg DM ha-1. As 

confirmed by the high soil N levels measured at wheat planting, the mineralisation of 

mungbean residues supplied a substantial amount of N to the wheat plants, reducing 

the dependence of wheat on the synthetic N source. Similar results were reported by 

Dourado-Neto et al. (2010) for wheat in rotation with peanut cropped on an Entisol 

under tropical conditions.  

Synthetic fertiliser represented a more important source of N in the maize season 

and two factors may have contributed to this. Firstly, maize was side dressed with 

twice the amount of N when compared to wheat and therefore maize plants had a 

greater pool of readily available mineral N in the soil profile (Figure 5-2, Figure 5-3). 

Moreover, maize was planted three weeks after wheat harvest and native soil N was 

lower than at the beginning of the wheat season (Figure 5-2). Continuous cereal 

cropping has been reported to increase the crop reliance on synthetic fertiliser N 

(Tilman et al., 2002) and significantly lower Ndff levels (25.3-40.8%) were reported 

by Blesh and Drinkwater (2014) for fertilised maize (150 kg N ha-1) in rotation with 

soybean.  

A similar response to cropping history was observed during the second 

investigation. Despite yields and biomass production in L70 and G100 being 

comparable, a significantly higher reliance on fertiliser N was observed in sorghum 

plants in G100 (44.9% ± 5) compared to that in L70 (26.3% ± 5.1). Sorghum was 

planted two weeks after the incorporation of the pasture residues. Typically, the 

highest N mineralisation rates from legume residues occur about six weeks from the 

termination of the pasture (Fox et al., 1990; Park et al., 2010). In the present study 
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this would have coincided with the moment of maximum N uptake of sorghum 

(week four - eight leaf stage), although it was not possible to determine whether the 

extra 25 kg N ha-1 available to the sorghum crop in L70 was derived from the recent 

small input of sulla biomass, the previous alfalfa ley phase or, more likely, a 

combination of both. As in the maize experiment, the greater reliance on fertiliser as 

a source of N in G100 was consistent with the small amount of N provided by the 

decomposition of grass/wheat residues and the high fertiliser N rate applied. No 

direct comparisons with other studies could be made for sorghum as, to the 

knowledge of the authors, no studies have been published on crop N derived from 

fertiliser for this crop under similar conditions.  

Collectively, these results illustrate the implications of including legumes in 

cropping systems conducted in Oxisols. While Oxisols can contain large amounts of 

organic matter and N under native vegetation, these reserves generally decline 

rapidly under cultivation (Bell et al., 1995). Consequently, cropped Oxisols are 

typically characterised by low levels of soil organic matter and native N, meaning 

low inherent fertility and little resilience when used for intensive cropping 

(Mulongoy and Kang, 1986; Vieira et al., 2010). Continuous cereal cropping in these 

agroecosystems has the potential to rapidly erode native soil N supply and lead to a 

greater reliance on fertiliser N to meet crop demand (Dalal and Mayer, 1986; Tilman 

et al., 2002). Conversely, the presence of a legume phase in a cropping system has 

been shown to have the potential to increase the soil organic matter and organic N 

content (Giller and Cadisch, 1995; Rochester et al., 2001), substantially reducing 

therefore the reliance of subsequent crops on synthetic fertiliser N.  

5.4.2 Crop N recoveries and N losses 

Crop recoveries of 15N fertiliser measured in the two investigations were at the 

higher end of values reported for cereal cropping systems conducted under tropical 

or subtropical climatic conditions (Ssali, 1990; Xu et al., 1992; Pilbeam, 1995; 

Mubarak et al., 2003; Dourado-Neto et al., 2010). As emphasised by Dourado-Neto 

et al. (2010), N recoveries of annual crops are highly variable and are influenced by 

multiple factors. Amongst these, the most prominent are the synchronisation between 

fertiliser N release and plant N uptake, the availability of native soil N and the 

occurrence of environmental conditions that can stimulate N losses. 
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Effective synchronisation between crop N demand and fertiliser N supplied is 

likely to have been achieved during both investigations. Wheat and maize were 

top/side dressed at a stage when soil N reserves had been depleted during the early 

stages of crop growth (Figure 5-2), enabling a fast recovery of applied fertiliser 15N. 

In sorghum the 15N-labelled fertiliser was split between at-planting and in-season 

applications, with differing N rates reflecting differences in the soil N supply. The 

results of this study showed that crop recoveries of applied 15N varied substantially 

across seasons and were influenced by environmental conditions and amounts of N 

applied. Significantly higher crop recoveries (≥70%) were observed in both 

treatments in wheat and in the L70 treatment in sorghum, where 15N-labelled 

fertiliser rates were 60 and 70 kg N ha-1, respectively. Conversely, 15N recoveries did 

not exceed 53% in maize and in the G100 treatment in sorghum, where 15N-labelled 

fertiliser rates were 120 and 100 kg N ha-1 (Figure 5-4). 

In winter (wheat season) the environmental conditions were not conducive for 

excessive N losses. As indicated by the low N2O-N losses, the nitrification and 

denitrification processes are likely to have been inhibited by the relatively low soil 

temperatures (constantly below 20°C). Moreover, the low amount of rainfall that 

occurred in the month following top dressing (154 mm) would not have triggered 

denitrification or caused important leaching events in this soil type. Accordingly, the 

vast majority of labelled fertiliser N not recovered in the crop was found in the top 

10 cm of the soil profile (Table 5-3) and unaccounted N was limited to 1% of applied 
15N. 

In summer, conditions at side dressing were more favourable for stimulating N 

losses (Figure 5-1). In both maize and sorghum seasons the high soil moisture 

conditions occurring concurrently with elevated soil temperatures would have 

stimulated the activity of nitrifying and denitrifying microorganisms. Moreover, 

significant rainfall events occurred a few days after side dressing, resulting in higher 

amounts of 15N leached down the soil profile (Figure 5-3) compared to the winter 

season.  
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Figure 5-4 - Mean cumulative crop and soil recoveries and losses of 15N-labelled 

fertiliser for the four treatments during the wheat, maize and sorghum seasons. 

Despite soil conditions were conducive for high N losses, the amount of 

unaccounted 15N in the maize and sorghum seasons was relatively low compared to 

other studies conducted on summer crops grown on soils other than Oxisols (Sanchez 

and Blackmer, 1988; Smil, 1999; Dourado-Neto et al., 2010; Zhang et al., 2010; 

Blesh and Drinkwater, 2014). The low N losses measured in this study can be 

explained considering the physical and chemical characteristics of the soil.  

The permeability of the soil was sufficient to avoid prolonged periods of 

saturation of the soil profile even after the high summer rainfall events, while the 

relatively low content of soil organic C would have resulted in a limited supply of 

labile C to support denitrification. As indicated by the relatively low N2O emissions 

measured in the two summer crops (Table 5-3), denitrification could therefore not go 

to completion and only moderate quantities of N2 are likely to have been lost after 

significant rain events. 



 

162  

On the other hand, the high clay content of the soil reduced the water infiltration 

rates even during the intense rain events occurred during the two summer seasons 

(Figure 5-1). The moderate soil permeability limited NO3
- leaching and maintained 

the majority of the N in the rooting zone, enabling in this way a wider window of 

opportunity for the plants to adsorb the N supplied with fertilisation. As a result, the 

unaccounted fertiliser N during the summer cropping seasons was limited to amounts 

varying between 0.9% (L70) and 16.2% (DMPP) of applied N fertiliser. 

In this study N losses via runoff and NH3 volatilisation were minimised by the 

fertiliser application method, while NOx–N losses were considered negligible. Nitric 

oxide in soil is a by-product of the nitrification and denitrification processes, and 

several laboratory study have reported NO:N2O emissions ratios varying from 0.01 

to 1 (Skiba et al., 1997). Consequently, fertiliser-induced NO emissions were 

estimated to range from 0.3% to 1.4% of the applied N, a value in close agreement 

with those suggested by Skiba et al. (1997) and Veldkamp and Keller (1997), and 

similar to that measured by Fernandes Cruvinel et al. (2011) in a fertilised Oxisols 

cropped with maize.  

During the summer cropping seasons the majority of the unaccounted fertiliser N 

is likely to have been lost in the deeper layers of the soil profile via leeching. In 

maize, when the amounts of unaccounted fertiliser N were highest (13.2% and 

16.2%), approximately 11% of fertiliser N was recovered in the monitored subsoil 

(30 - 60cm). This aspect indicates a net N movement towards the lower soil layers 

and suggests that a further 10% of fertiliser N could have been lost in the 

unmonitored strata of the soil profile, i.e. deeper than 60 cm.  

DMPP was not effective in increasing crop N recovery, although values tended to 

be slightly higher than in the CONV treatment (Table 5-3). Several studies have 

reported that nitrification inhibitors have the potential to significantly increase N 

recoveries only when relatively large amounts of fertiliser N are lost via leaching or 

denitrification (Walters and Malzer, 1990; Freney et al., 1993; Wolt, 2004; Chaves et 

al., 2006; Abalos et al., 2014). The intrinsic characteristics of the Oxisol monitored 

in this study limited the possibility of DMPP to significantly improve the fertiliser N 

use efficiency since relatively low N losses were observed also when conventional 

urea was applied.  
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In fact, also in the CONV treatment the majority of the fertiliser N that was not 

taken by the crop remained confined in the top soil. The high clay content of the 

Oxisols limited the vertical movement of fertiliser N in the soil and the percentage of 

soil 15N recovered in the top 10 cm at the end of the wheat and maize seasons 

amounted to 84 and 50% of the total 15N recovered in the soil profile, respectively 

(Figure 5-3). Similar results were observed in the second investigation, when after 

fertilising sorghum with conventional urea the 15N recovered from the first 10 cm 

constituted 76% (L70) and 88% (G100) of the total 15N recovered in the soil.  

5.4.3 Implications  

Overall, fertiliser N rates were the main factor limiting N recovery in the crops. 

Highest fertiliser N recoveries were observed in the CONV and DMPP treatments in 

wheat (>70%) and in the L70 treatment in sorghum (70%), which were fertilised 

with 60 and 70 kg 15N ha-1, respectively. The low N rates applied in these treatments 

enabled to synchronise the fertiliser N supply with plant N demand. Fertiliser N was 

therefore used more efficiently by the crop and less (approximately 25%) was left in 

the soil.  

In contrast, significantly lower fertiliser N recoveries were measured in the 

CONV and DMPP treatments in maize (approximately 50%) and in the G100 

treatment in sorghum (53%), which received 120 and 100 kg 15N ha-1, respectively. 

The amounts of 15N recovered in the soil of these three treatments were remarkably 

similar (39.1 - 43.3 kg N ha-1), while the quantities of leached or otherwise 

unaccounted 15N were greater in the CONV and DMPP treatments in maize, where 

the rate of labelled N applied at side dressing (120 kg N ha-1) was substantially 

higher than in G100 (80 kg N ha-1).  

The introduction of a legume phase in the cereal-based cropping system proved to 

be the most effective N strategy under both the agronomic and environmental 

perspectives. The mineralisation of the legume residues provided a substantial N 

supply to the following cereal crops and reduced the cereal reliance on synthetic 

fertiliser compared to cereals planted after a non-leguminous crop. The decreased 

reliance on synthetic N inputs allowed for reducing fertiliser N rates to the levels 

necessary to reach maximum yield potential. In particular, this strategy enabled 

lowering the amount of fertiliser N side dressed to the summer cereal crop, the 
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occasion when the highest quantities of annual synthetic N are applied. Build-up of 

high amounts of NO3
- in the soil following fertilisation was therefore limited and 

N2O losses were caused mainly by temporary increases of NO3
- levels due to 

fertiliser application. Consequently, cumulative N2O emissions were primarily a 

function of the N fertiliser rate applied, while cropping history had no significant 

effect. 

5.5 Conclusions  

Collectively, the results of this study point to limiting the application rates of 

synthetic fertiliser N as the most effective strategy to reduce N losses and increase 

fertiliser N recovery in subtropical Oxisols. Future N management strategies in these 

agroecosystems should focus on the introduction of legumes to reduce the reliance of 

cereal crops on synthetic N fertilisers and minimise the agronomic inefficiencies due 

to fertiliser N losses. A critical aspect for the success of these N management 

strategies will be to achieve a good synchrony between the N released from the 

degradation of legume residues and the N uptake of the subsequent crop.  
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Chapter 6: Legumes or nitrification 
inhibitors to reduce N2O 
emissions in subtropical cereal 
cropping systems? (Paper 4) 

 

Abstract 

The DAYCENT biogeochemical model was used to investigate how the use of 

fertilisers coated with nitrification inhibitors and the introduction of legumes in the 

crop rotation can affect subtropical cereal production and N2O emissions. The model 

was validated using comprehensive multi-seasonal, high-frequency dataset from two 

field investigations conducted on an Oxisol, which is the most common soil type in 

subtropical regions. Different N fertiliser rates were tested for each N management 

strategy and simulated under varying weather conditions. DAYCENT was able to 

reliably predict soil N dynamics, seasonal N2O emissions and crop production, 

although some discrepancies were observed in the treatments with low or no added N 

inputs and in the simulation of daily N2O fluxes.  

Simulations were consistent with field observations and highlighted that the high 

clay content and the relatively low C levels of the Oxisol analysed in this study limit 

the chances for significant amounts of N to be lost via deep leaching or 

denitrification. The application of urea coated with a nitrification inhibitor (DMPP) 

was the most effective strategy in minimising N2O emissions. This strategy however 

did not increase yields since the application of urea coated with a nitrification 

inhibitor did not substantially decrease overall N losses compared to conventional 

urea. Simulations indicated that replacing part of crop N requirements with N 

mineralised by legume residues is the most effective strategy to reduce N2O 

emissions and support cereal productivity. The results of this study show that 

legumes have significant potential to enhance the sustainable and profitable 

intensification of subtropical cereal cropping systems on Oxisols.  
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6.1 Introduction 

By 2050, global cereal demand is predicted to increase by 50% to meet the 

demands of a world population 30% larger and more affluent than at present (Ray et 

al., 2013). Virtually all of the increase in cereal consumption will come from tropical 

and subtropical countries (Alexandratos and Bruinsma, 2012), implying an urgent 

need to increase productivity levels in these regions. This increase will be 

extensively sustained by agricultural systems conducted in Oxisols, which are the 

most common soil type in these regions (von Uexküll and Mutert, 1995; Buol and 

Eswaran, 1999). 

Since the beginning of the Green Revolution, intensification of agricultural 

systems has been achieved through an increase in the use of synthetic N (Ladha et 

al., 2005), resulting in sharp increases in greenhouse gas emissions, especially N2O 

(van Beek et al., 2010). N2O is a potent greenhouse gas with a global warming 

potential 298 times greater than CO2 and is also the major contributor to the 

depletion of the ozone layer in the stratosphere (Ravishankara et al., 2009). There is 

consensus that pursuing food security through a further increase in synthetic N use 

will result in unacceptable levels of environmental damage (FAO, 2010; Foley et al., 

2011; Tilman et al., 2011). It is therefore critical to identify alternative N 

management strategies aimed at supporting future intensification of tropical and 

subtropical agricultural systems without provoking an increase of N2O emissions 

from these agroecosystems. 

The use of fertilisers coated with nitrification inhibitors and the (re)introduction of 

legumes in cereal-based crop rotation are among the most promising strategies for 

this purpose. Nitrification inhibitors decrease N2O losses both directly, via slowing 

the nitrification rates and, indirectly, by reducing the amount of NO3
- available to 

denitrifying microorganisms (Linzmeier et al., 2001b; Hatch et al., 2005; Suter et al., 

2010). The presence of legumes in the cereal-based crop rotation instead reduces the 

amount of synthetic N required by the following cereal crop and consequently 

decrease N2O emissions associated with synthetic N fertilisers (Jensen and 

Hauggaard-Nielsen, 2003; Emerich and Krishnan, 2009; De Antoni Migliorati et al., 

2015).  
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However, the efficacy of these two N management strategies has never been 

compared under subtropical conditions. To date, studies have extensively evaluated 

the effects of nitrification inhibitors and legumes on N2O emissions and cereal yields 

under temperate climatic conditions, while scant data is available for subtropical 

Oxisols (Fageria and Baligar, 2008). Moreover, field studies are influenced by the 

specific seasonal weather conditions encountered during the monitoring period and 

several authors have reported contradicting results on the efficacy of the two N 

management strategies (Díez López and Hernaiz, 2008; Jensen et al., 2012; Liu et 

al., 2013; De Antoni Migliorati et al., 2014). 

Process-based models can overcome these limitations as they enable to assess 

how different N management strategies can affect crop production and greenhouse 

gas emissions under varying seasonal climate conditions. Several simulation studies 

have demonstrated that models, when calibrated and validated with appropriate input 

data, lead to the same results of field studies (Staggenborg and Vanderlip, 2005; 

Basso et al., 2010; Huth et al., 2010), giving researcher a useful tool for thoroughly 

evaluating different N management strategies 

The objectives of this study were therefore to use a process-based model to: i) 

compare the influence of applying urea coated with nitrification inhibitors or 

introducing a legume phase in the cereal-based crop rotation on N2O losses and 

yields in various cereal crops grown in a subtropical Oxisol; ii) determine best 

agronomical and environmentally sound strategies to support future intensification of 

cereal cropping systems in subtropical Oxisols.  

The DAYCENT biogeochemical model was chosen for the purposes of this study 

because it is currently the model that has been most extensively tested to simulate 

both crop production and N2O emissions in cereal cropping systems (Del Grosso et 

al., 2002; Del Grosso et al., 2005; Del Grosso et al., 2006; Del Grosso et al., 2008; 

Halvorson et al., 2008; Scheer et al., 2013a) and it is currently used to estimate N2O 

emissions for the U.S. National GHG Inventory (US-EPA, 2014) under the United 

Nations Framework Convention on Climate Change (Del Grosso et al., 2006).  

The model was calibrated and validated using high temporal frequency N2O 

measurements, 15N recovery observations and yield data collected during two field 

investigations. The whole dataset included multiple cropping seasons, crop rotations, 



 

172  

the use of fertilisers coated with a nitrification inhibitor and the introduction of a 

legume phase in cereal-based crop rotation. A series of scenarios embracing a range 

of N fertiliser rates was tested for both N management strategies. Each scenario was 

simulated using 15 years of local climate data.  

This is the first study to employ a model validated using such an extensive dataset 

to assess the use of nitrification inhibitors and legumes as alternative N management 

strategies in subtropical cereal cropping systems on Oxisols. The results will 

contribute to identify agronomically viable and environmentally sustainable N 

fertilisation strategies to support future intensification of grain production on these 

agroecosystems.   

6.2 Materials and Methods 

6.2.1 Study site and experimental design 

The two field investigations were conducted at the J. Bjelke Petersen Research 

Station of the Department of Agriculture, Fisheries and Forestry (DAFF). The station 

is located in Taabinga (26°34’54,3’’ Latitude South, 151°49’43.3’’ Longitude East, 

altitude 441 m a.s.l), in southeast Queensland, Australia. The climate is classified as 

subtropical (Cfa) according to Köppen climate taxonomy, with a mean annual 

precipitation of 776.2 mm. Daily mean maximum and minimum temperatures are 

20.1 °C and 4.0 °C in winter and 29.6 °C and 16.5 °C in summer, respectively 

(Australian Bureau of Meteorology website). The soil is classified as a Tropeptic 

Eutrustox Oxisol (USDA, 1998) or as a Orthic Ferralsol (FAO, 1998), and is 

characterised by a high clay content (55%), a moderately slow permeability and an 

effective rooting zone of 1.2 m.  

The first experiment consisted of two cropping seasons: wheat (winter 2011) and 

maize (summer 2011/2012). Wheat (Triticum aestivum L., cultivar Hartog) was 

planted 6 July and harvested 29 November 2011, while maize (Zea mays L., cultivar 

32P55) was planted 21 December 2011 and harvested 20 June 2012. Four treatments 

were tested: 

• CNT: Control test; no N fertiliser applied to wheat, urea applied at rate of 40 kg 

N ha-1 to maize to guarantee a minimum crop establishment. 
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• ADJ: Conventional N fertiliser rate adjusted according to estimated residual soil 

N; urea applied at rates of 20 and 100 kg N ha-1 to wheat and maize, 

respectively.  

• CONV: Conventional N fertiliser rate; fertiliser N applied at rates of 80 and 160 

kg N ha-1 to wheat and maize, respectively. N rates were similar to farmer 

practice and designed to achieve maximum yield potential. 

• DMPP: Fertiliser coated with DMPP nitrification inhibitor; fertiliser N applied at 

same rates of CONV treatment. Given the high cost of DMPP, in both seasons 

DMPP urea was only used at top/side dressing, when 75% of seasonal N was 

applied to the crop. 

 

The second experiment was conducted on sorghum (Sorghum bicolor L., planted 

12 December 2012 and harvested 18 June 2013) following two distinct cropping 

histories. One, hereafter called legume cropping history, included two seasons of 

alfalfa pasture (Medicago sativa, L.), one season of maize and one season of sulla ley 

pasture (Hedysarum coronarium L.) prior to sowing sorghum. The other, hereafter 

called grass cropping history, included two seasons of a mixed pasture 

predominantly composed by Rhodes grass (Chloris gayana, K.), one season of maize 

and one season of wheat. Both sulla and wheat were managed as green manure crops 

and plant residues incorporated before sowing sorghum. During the sorghum season 

the following treatments were assessed:  

• L0:  Sorghum grown in the legume cropping history, no N applied; 

• L70: Sorghum grown in the legume cropping history, 70 kg N ha-1 applied 

as urea; 

• G0: Sorghum grown in the grass cropping history, no N applied; 

• G100: Sorghum grown in the grass cropping history, 100 kg N ha-1 applied 

as urea.  

The fertiliser N applied in G100 was similar to farmer practice and was designed 

to achieve maximum yield potential. The synthetic N rate used in L70 was reduced 

compared to G100 to account for the expected increase in plant available N arising 

from the legume residues. During both investigations all treatment were irrigated to 

prevent water stress limiting the potential yields. Details of crop management and 

fertilisation events are highlighted in Table 6-1. See Chapters 3 and 4 for further 
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information on the experimental set-up and crop management adopted during the two 

investigations.  

 

 

Table 6-1 - Times of application and N rates of isotopically labelled and 

unlabelled fertilisers during the two investigations at Kingaroy research station, 

Queensland, Australia. 

Crop Time of fertiliser application Date 
Fertilisation [kg-N ha-1] 

CONV DMPP 

Wheat 
Planting  06/07/2011 20 (DAP) † 20 (DAP) † 

Top Dressing (broadcasted) 15/09/2011 60 (urea)* 60 (DMPP urea)* 

Maize 
Planting  21/12/2011 40 (MAP) † 40 (MAP) † 

Side Dressing (banded) 19/01/2012 120 (urea)* 120 (DMPP urea)* 

 
  L70 L100 

Sorghum 
Planting  12/12/2012 20 (urea)** 20 (urea)** 

Side Dressing (banded) 14/01/2013 50 (urea)** 80 (urea)** 

*   Fertiliser labelled with 10% 15N urea 

** Fertiliser labelled with 5% 15N urea 

†   DAP: diammonium phosphate; MAP: monoammonium phosphate 
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6.2.2 Crop development and fertiliser N recovery 

Crop development was monitored in all treatments by collecting plant samples at 

booting stage, flowering and physiological maturity. On every occasion, three 

samples were collected in each treatment by cutting the plants over one meter of crop 

row and subsequently oven-dried for 24 hours at 60°C. At harvest, average grain 

yield was measured in each treatment by harvesting six strips at least 1.65 m wide for 

the plot length using a plot combine. 

Additionally, fertiliser N recoveries in the soil-plant system were assessed in the 

treatments where high N fertiliser rates were applied, that is CONV and DMPP in the 

first investigation and L70 and G100 in the second. In the CONV and DMPP 

treatments 15N-labelled fertiliser was only applied as a side dressing to determine the 

N recovery of DMPP urea and compare it with conventional urea (Table 6-1). Each 

treatment received 10% excess 15N enriched urea; in the DMPP treatment the 15N 

enriched urea was added with DMPP at a ratio of 6 g DMPP kg-1 urea to replicate the 

same ratio of commercial DMPP urea. In the second investigation the L70 and G100 

treatments received 5% excess 15N enriched urea both at planting and at side dressing 

(Table 6-1). In both investigations 15N-labelled urea was applied as a liquid solution 

in a sub-surface band, minimising in this way N losses via runoff and NH3 

volatilisation.  

In the treatments fertilised with 15N enriched urea, plant and soil samples were 

taken exclusively at crop harvest. In wheat and maize only above-ground material 

was collected, while moister soil conditions at the end of the sorghum season enabled 

the collection of both above- and below-ground material. Wheat root biomass was 

estimated using a root:shoot ratio of 0.31 (Siddique et al., 1990; Manschadi et al., 

2008) while a root : shoot ratio of 0.22 was used for maize (Anderson, 1988; 

Demotes-Mainard and Pellerin, 1992). Soil sampling was performed using a core 

sampler; samples were collected to a depth of 60 cm in wheat and maize, and to 1m 

in sorghum. The 15N analysis was performed using a 20-22 Isotope Ratio Mass 

Spectrometer (Sercon Limited, UK). For further information on experimental settings 

and main findings see Chapter 5.  
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6.2.3 N2O emissions and ancillary measurements 

The use of a fully automated, chamber-based greenhouse gas measuring system 

ensured N2O emissions were monitored at a high temporal frequency throughout 

each cropping season. The twelve chambers were closed airtight with lids operated 

by pneumatic actuators and connected to a fully automated sampling and in-field 

analysis system as described in Chapter 3 and Scheer et al. (2013a). One complete 

sampling cycle (of twelve chambers) lasted 3 hours, with each chamber sampled for 

1 hour and open for 2 hours to restore ambient conditions. This method provided 

eight single fluxes per chamber per day. Hourly N2O fluxes were calculated by 

defining the slope of the linear increase or decrease of the four gas concentrations 

measured during the 60 minutes of chamber closure period (Chapter 4.3.6). Fluxes 

above the detection limit were discarded if the regression coefficient (r2) was < 0.80. 

Daily N2O emissions were determined by calculating the mean of the sub-daily 

fluxes.  

Routine soil sampling was conducted at regular intervals during the growing 

seasons by collecting samples at three depths (0-10, 10-20, 20-30 cm). Samples were 

added with 100 mL of 1M KCl and analysed colorimetrically for NH4-N and NO3-N 

using an AQ2+ discrete analyser (SEAL Analytical WI, USA). Four frequency 

domain reflectometers (FDR, EnviroScan probes, Sentek Sensor Technologies, 

Australia) were installed at the field site to assess the water dynamics content at three 

depth intervals (0-10 cm, 10-20 cm, 20-30 cm). Rainfall data were obtained from a 

weather station located at the study site. 

6.2.4 DAYCENT biogeochemical model  

Developed as the daily time-step version of the CENTURY biogeochemical 

model, DAYCENT simulates C and nutrients (N, P, S) dynamics between the 

atmosphere, vegetation, and soil pools (Parton et al., 1998; Kelly et al., 2000; Del 

Grosso et al., 2001). Main model inputs consist of data on daily maximum/minimum 

air temperature and precipitation, site-specific soil properties, and current and 

historical land management. Key submodels include crop development, soil water 

dynamics by layer, mineralisation of nutrients and N gaseous emissions (N2O, N2, 

NOx).  
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Crop development is controlled by genetic potential, phenology, nutrient 

availability, water/temperature stress, and solar radiation (Metherell et al., 1993). 

The allocation of net primary production is regulated by vegetation type, phenology 

and water/nutrient stress. Nutrient mineralisation is a function of the lignin content 

and C:N ratio of the substrate, substrate availability and water/temperature stress. No 

vertical movement is assumed for soil NH4
+, which is simulated only for the top 15 

cm of soil profile. NO3
- movement is instead simulated throughout the entire soil 

profile and NO3
--N can be leached below the rooting zone (Del Grosso et al., 2011).  

The model simulates daily soil N2O and NOx fluxes due to nitrification and 

denitrification, as well as daily N2 fluxes from denitrification (Parton et al., 1996; 

Del Grosso et al., 2000; Parton et al., 2001). Nitrification rates rise linearly with soil 

NH4
+ concentration and increase exponentially with temperature until stabilising 

when soil temperature reaches the highest monthly value recorded for the site. The 

effect of soil moisture on biological activity is simulated by limiting nitrification 

when soil water-filled pore space (WFPS) is below 40% or above 80%. Nitrification 

is not limited when soil pH is above 7 but diminishes exponentially at pH levels 

lower than neutral. If optimal conditions are met, maximum daily nitrification rates 

can reach up to 10% of soil NH4
+.  

Denitrification is regulated by soil NO3
- content, labile C availability, water 

content and texture (Del Grosso et al., 2000). Denitrification starts to occur when 

water-filled pore space (WFPS) values exceed 50-60% and increases exponentially 

until soil water content approaches saturation (70-80% WFPS). Daily N fluxes from 

denitrification are calculated taking into consideration the input that is most limiting. 

N2O emissions are determined as a factor of total daily denitrification using an 

N2:N2O ratio function. Depending on soil NO3
- concentrations, maximum daily 

denitrification rates can vary from less than 15% to almost 100% of soil NO3
-.  

6.2.5 Model initialisation, calibration and validation 

The first step of the simulation entailed the site characterization process, 

providing the model with information on site latitude, weather statistics and soil 

horizonation. Initial values of soil organic matter and nutrient pools were generated 

running a spin-up simulation reproducing historical land use (Del Grosso et al., 

2011). The spin-up simulation was run for almost 2000 years (ending in 1970), 
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assuming a 15-year burn cycle and a mixed ecotype formed by subtropical grass, 

shrubs and eucalyptus trees. Running the spin-up simulation with the default model 

parameters resulted in a significant overestimation of soil C content. The decay rate 

of the passive soil organic matter pool was therefore increased by a factor of 2.5 to 

meet the total soil C content measured at the beginning of the two field 

investigations.  

The base simulation was started in 1970, when the native vegetation was 

eliminated via controlled burning and the soil ploughed for the first time. A crop 

rotation including sorghum, peanuts, maize and wheat was implemented from 1970 

to 2011 according to recorded local farming practices. Both spin-up and base 

simulations were implemented using a 15-year weather file obtained combining data 

from two meteorological stations located within 3 km from the study site (Australian 

Bureau of Meteorology website). 

The model was calibrated against measurements of soil water content, soil NH4
+ 

and NO3
- levels, daily N2O emissions, in-season biomass production, grain yield and 

aboveground plant N uptake in the 0N, CONV, DMPP, L0 and G0 treatments. The 

obtained parametrisation was validated against measurements in the ADJ, L70 and 

G100 treatments.  

Since the current version of DAYCENT does not include a 15N tracer submodel, 

simulated plant N uptake in the aboveground biomass was calculated detracting the 

plant N due to indigenous soil N pool from the total plant N. Plant N due to 

indigenous soil N, defined as the N present in the soil before fertilisation, was 

determined using the values from the CNT treatment in wheat and from L0 and G0 in 

sorghum. For the maize season, plant N due to indigenous soil N was calculated by 

simulating a treatment with no fertiliser N inputs. Fertiliser N losses measured in the 

field were almost entirely due to deep leaching (leaching of NO3
- beyond the rooting 

zone) and gaseous emissions (N2O and N2) (Chapter 5). Simulated NO3
- leaching, 

N2O and N2 emissions due to fertiliser N were corrected for background values and 

their sum was compared to the unaccounted N calculated with 15N-tracer techniques 

(Chapter 5). 

Data collected during the first investigation indicated that the efficiency of DMPP 

in inhibiting N2O emissions was substantially higher in the maize season compared 
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to wheat (Chapter 3). The factor regulating the reduction in nitrification rates of 

fertilizer N with DMPP was therefore reduced to 0.25 during the maize season and to 

0.60 during wheat. In both seasons the duration of the nitrification inhibitor was set 

to 6 weeks (Pasda et al., 2001).  

6.2.6 N management scenarios 

The fertiliser N rates that supported the highest yields in the two field 

investigations (CONV, DMPP, L70 and G100) were varied by 20% to assess and 

compare the robustness of each N management practice in terms of abating N2O 

emissions and supporting high yields. Scenarios replicating the first investigation 

included three N fertiliser rates in wheat (65, 80, 95 kg N ha-1) and in maize (130, 

160, 190 kg N ha-1) using conventional or DMPP urea. For the second investigation 

fertiliser N rates were 55, 70 and 85 kg N ha-1 in sorghum after the legume pasture 

and 80, 100 and 120 kg N ha-1 in sorghum after the grass pasture.  

N application methods, crop rotations and management were left unvaried 

compared to those used for model calibration. Irrigation events were scheduled to 

occur during the initial stages of crop development when volumetric water content 

declined to levels lower than 20%. Sowing dates were adjusted according to weather 

conditions year by year. The efficiency of each N management strategy was tested 

under varying weather conditions running every scenario with 15 years of local 

climate data (1999-2013). Initial soil conditions were re-initialised at the beginning 

of every simulation.  

6.2.7 Calculations and Statistical analysis  

N2O emission factors, expressed as the percentage of N fertiliser lost as N2O, 

were corrected for background emissions using values from the CNT treatment in 

wheat and from L0 and G0 in sorghum. For the maize season, background emissions 

were calculated simulating a treatment with no fertiliser N inputs. N2O emission 

intensities were calculated as the ratio of N2O emitted (kg N2O-N ha-1) to grain 

produced (Mg grain ha-1). Cumulative N losses were calculated for each treatment 

summing seasonal losses via deep NO3
- leaching and N2O and N2 emissions.  

Discrepancies between measured and simulated values were assessed using the 

root mean square error (RMSE) and the Pearson correlation (r2). Differences in 
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cumulative N2O emissions and grain yields were assessed with the ANOVA test 

using a confidence interval of 95%. The Tukey post hoc test was used to compare 

cumulative N2O emissions. Statistical analyses were performed within the SPSS 22 

environment (IBM Corporation, USA).  
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6.3 Results 

6.3.1 Model validation 

The temporal pattern and magnitudes of modelled volumetric water content were 

in reasonable agreement with observed values, especially in the top 10 cm (Figure 

6-1). Values of r2 and RMSE for volumetric water content in the top 10 cm were 

0.49 (F 292.28) and 5.06 in the first investigation and 0.43 (F 191.55) and 0.04 in the 

second investigation, respectively. The precision of simulated soil water content was 

inferior for the lower soil layers and r2 and RMSE values averaged for the top 30 cm 

amounted to 0.28 (F 119.88) and 5.14 in the first investigation and 0.40 (F 287.64) 

and 0.5 in the second investigation, respectively. 

 

 

Figure 6-1 - Measured and simulated volumetric soil water content for three layers 

(0–10 cm, 10–20 cm, 20–30 cm) and rainfall/irrigation events during the wheat-

maize (a, b, c) and sorghum (d, e, f) seasons at the Kingaroy research station, 

Australia. 
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The model was able to represent properly the magnitude of soil NH4
+ and NO3

- 

variations following fertilisation events but a slight asynchrony between simulated 

and observed values was often observed (Figure 6-2).  

 

 
Figure 6-2 - Measured and simulated soil ammonium and nitrate contents (0-10 

cm) for the eight fertilisation treatments during the wheat-maize (a, b, c, d) and 

sorghum (e, f, g, h) seasons in Kingaroy, Australia. Arrows indicate the timing of N 

fertiliser applications. 
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As a result, in the first investigation average r2 and RMSE values across 

treatments were 0.39 (F 1.98) and 29.06 kg N ha-1 for NH4
+ (top 30 cm) and 0.26 (F 

4.65) and 15.04 kg N ha-1 for NO3
- (top 30 cm). In the second investigation the 

respective values were 0.29 (F 2.81) and 5.31 kg N ha-1 for NH4
+ (top 30 cm) and 

0.51 (F 6.37) and 1.78 kg N ha-1 for NO3
- (top 30 cm). In both investigations 

simulated leaching of NO3
- below the rooting zone was minimal (< 2 kg NO3

--N ha-

1), which is consistent with data reported in Chapter 5. 

The model provided reliable simulations of biomass production and crop response 

to increasing fertiliser N rates (Table 6-2, Table 6-3 and Figure 6-3). The simulated 

course of crop growth was close to field observations for wheat and sorghum, while 

for maize tended to be slower compared to field observations. r2 and RMSE values 

averaged across treatments were 0.93 (F 64.20) and 2.68 Mg ha-1 in the first 

investigation and 0.96 (F 77.42) and 1.08 Mg ha-1 in the second, respectively.  

 

 
Figure 6-3 - Measured (mean ± SD) and simulated aboveground biomass 

(expressed as dry matter) for the eight fertilisation treatments during the wheat-maize 

(a, b, c, d) and sorghum (e, f, g, h) seasons in Kingaroy, Australia. 
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Table 6-2 - Measured (mean ± SD) and DAYCENT simulated N2O fluxes, grain 

yield, aboveground (AG) plant biomass, aboveground plant N uptake, N2O emission 

factors and N2O intensities in the treatments tested during the wheat and maize 

cropping seasons at Kingaroy (Queensland). 

Parameter 
Treatment Wheat Maize 

 Measured Simulated Measured Simulated 

Cumulative N2O Flux [kg N ha-1] CNT 0.25±0.07 0.23 0.22±0.05 0.14 

Grain Yield [Mg ha-1]  3.88±0.84 4.03 2.23±0.29 4.15 

AG plant biomass [Mg ha-1]  14.61±0.63 14.08 7.99±0.34 9.41 

AG plant N uptake [kg N ha-1]  140.74±38.5 148.73 50.98±13.79 65.12 

N2O Emission Factor [%]  - - 0.26 0.04 

N2O Intensity [kg N2O-N Mg yield-1]  0.06 0.06 0.10 0.03 

Cumulative N2O Flux [kg N ha-1] ADJ 0.19±0.03 0.24 0.65±0.26 0.66 

Grain Yield [Mg ha-1]  4.48±0.27 4.26 5.20±0.67 5.87 

AG plant biomass [Mg ha-1]  16.40±0.77 14.89 12.55±0.11 13.32 

AG plant N uptake [kg N ha-1]  160.22±34.5 152.08 91.04±5.34 99.78 

N2O Emission Factor [%]  -0.29 0.06 0.53 0.54 

N2O Intensity [kg N2O-N Mg yield-1]  0.04 0.06 0.12 0.11 

Cumulative N2O Flux [kg N ha-1] CONV 0.40±0.03 0.31 1.61±0.85 1.49 

Grain Yield [Mg ha-1]  5.02±0.29 5.67 7.31±0.30 6.85 

AG plant biomass [Mg ha-1]  22.13±0.54 19.84 17.17±0.23 15.53 

AG plant N uptake [kg N ha-1]  197.65±30.9 201.91 125.73±10.9 120.26 

N2O Emission Factor [%]  0.19 0.11 0.93 0.86 

N2O Intensity [kg N2O-N Mg yield-1]  0.08 0.06 0.22 0.22 

Cumulative N2O Flux [kg N ha-1] DMPP 0.25±0.02 0.26 0.50±0.21 0.50 

Grain Yield [Mg ha-1]  4.79±0.23 5.69 7.19±0.44 6.94 

AG plant biomass [Mg ha-1]  20.96±0.87 19.91 14.76±0.05 15.75 

AG plant N uptake [kg N ha-1]  187.75±39.3 202.47 113.90±3.44 124.86 

N2O Emission Factor [%]  -0.01 0.04 0.24 0.24 

N2O Intensity [kg N2O-N Mg yield-1]  0.05 0.05 0.07 0.07 
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Table 6-3 - Measured (mean ± SD) and DAYCENT simulated N2O fluxes, grain 

yield, aboveground (AG) plant biomass, aboveground plant N uptake, N2O emission 

factors and N2O intensities in the treatments tested during the sorghum cropping 

seasons at Kingaroy (Queensland). 

Parameter 
Treatment Sorghum 

 Measured Simulated 

Cumulative N2O Flux [kg N ha-1] G0 0.27±0.09 0.56 

Grain Yield [Mg ha-1]  0.94±0.21 1.82 

AG plant biomass [Mg ha-1]  4.48±0.59 4.87 

AG plant N uptake [kg N ha-1]  25.11±2.65 35.53 

N2O Emission Factor [%]  - - 

N2O Intensity [kg N2O-N Mg yield-1]  0.28 0.31 

Cumulative N2O Flux [kg N ha-1] L0 0.24±0.03 0.45 

Grain Yield [Mg ha-1]  2.52±0.38 3.47 

AG plant biomass [Mg ha-1]  8.38±1.35 9.29 

AG plant N uptake [kg N ha-1]  46.91±8.26 66.49 

N2O Emission Factor [%]  - - 

N2O Intensity [kg N2O-N Mg yield-1]  0.09 0.13 

Cumulative N2O Flux [kg N ha-1] G100 1.43±0.28 1.23 

Grain Yield [Mg ha-1]  5.20±0.19 5.01 

AG plant biomass [Mg ha-1]  13.68±0.92 13.42 

AG plant N uptake [kg N ha-1]  98.52±11.92 107.51 

N2O Emission Factor [%]  1.16 0.67 

N2O Intensity [kg N2O-N Mg yield-1]  0.28 0.25 

Cumulative N2O Flux [kg N ha-1] L70 0.68±0.40 0.75 

Grain Yield [Mg ha-1]  5.29±0.38 5.05 

AG plant biomass [Mg ha-1]  14.96±1.26 13.53 

AG plant N uptake [kg N ha-1]  118.94±13.82 106.15 

N2O Emission Factor [%]  0.63 0.43 

N2O Intensity [kg N2O-N Mg yield-1]  0.13 0.15 
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Simulated grain production was in good accordance with observed values, but in 

the treatments with nil of low N inputs (CNT, L0, G0) yields tended to be 

overestimated, especially in the two summer crops (maize and sorghum). Overall, 

simulated aboveground plant N uptake well matched observations obtained with the 
15N tracer technique, suggesting that the model generally captured the N dynamics of 

the soil-plant system. 

The model was able to represent the magnitude and temporal variation of 

measured N2O emissions (Table 6-2, Table 6-3 and Figure 6-4). However, the model 

tended to overestimate emissions in the non-fertilised treatments (L0, G0 and CNT in 

wheat) and no increase in N2O emissions was simulated in the CNT treatment in 

maize after the rain event of 24 January 2012. In the two summer crops (maize and 

sorghum) DAYCENT anticipated the occurrence of emission pulses following side 

dressing (L70, G100 and ADJ and CONV in maize) but correctly simulated the 

attenuated N2O emissions in the DMPP treatment. As a result, average r2 and RMSE 

values across treatments were 0.37 (F 141.90) and 6.55 g N2O-N ha-1 d-1 in the first 

investigation and 0.42 (F 211.76) and 4.16 g N2O-N ha-1 d-1 in the second 

investigation. 
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Figure 6-4 - Daily N2O fluxes for the eight treatments during the wheat-maize (a, 

b, c, d) and sorghum (e, f, g, h) seasons in Kingaroy, Australia. Arrows indicate the 

timing of N fertiliser applications. 

 

The discrepancies between measured and simulated N2O emission factors varied 

among cropping seasons and treatments (Table 6-2 and Table 6-3). In wheat, 

simulated emission factors for the ADJ and DMPP treatments were higher than those 

calculated using field data. This was due to the high background emissions observed 

in the field and that led to a negative emission factor for the ADJ treatment (Chapter 

3). Emission factors were accurately simulated in the maize season, with the only 

exception of the CNT treatment, where the high simulated yield caused an 

underestimation of the emission factor. Emission factors in G100 and L70 were 

lower than the observed values due to an overestimation of background emissions in 

G0 and L0, respectively. On the other hand, N2O emission intensities were similar to 

those calculated with field observations (Table 6-2 and Table 6-3). The only 

exceptions where the non-fertilised treatments (L0, G0 and CNT in wheat), where 

the yield overestimation resulted in emission intensities lower than the observed. 
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6.3.2 N management scenarios  

In the first investigation (wheat and maize) N2O emissions increased 

exponentially with increasing fertiliser N rates, while in the second investigation 

(sorghum) the increase was linear (Table 6-4). In both investigations the correlation 

between fertiliser N rate and grain yield tended to be linear, even though the yield 

response started to plateau at the higher N rates. Significant differences in sorghum 

yields were only observed in the grass cropping history between the -20% and +20% 

treatment. 

N2O emission factors and intensities of the CONV treatments consistently 

exceeded those of DMPP in wheat and maize, while in sorghum they were higher in 

the grass compared to the legume cropping history. N2O emission factors and 

intensities varied substantially with increasing fertiliser N rates only in the maize 

season, while in wheat and sorghum variations across N rates were minimal (Table 

6-4).  

The application of DMPP urea reduced cumulative N emissions compared to 

conventional urea, but significant difference were only observed in DMPP-20% and 

DMPP 160N compared to CONV+20%. Yields in the DMPP treatments were not 

statistically different compared to the same N rate with conventional urea (Table 

6-4). Even though cumulative N losses in the legume cropping history tended to be 

lower than in the grass treatments, variability across seasons led to no significant 

differences between the two cropping histories (Table 6-4). 
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Table 6-4 - DAYCENT simulated grain yields, N2O fluxes, cumulative N losses, aboveground (AG) plant N uptake, N2O emission factors 

and N2O intensities for twelve N management scenarios at Kingaroy (Queensland) using daily weather data from 1999 to 2013 (mean ± SD). 

Means denoted by a different letter indicate significant differences between treatments (p<0.05). 
Parameter Crop Fertiliser N rate applied 

 CONV-20% CONV 80N CONV+20% DMPP-20% DMPP 80N DMPP+20% 

Grain Yield [Mg ha-1] Wheat 4.90±1.46 a 5.18±1.50 a 5.47±1.55 a 4.91±1.47 a 5.19±1.51 a 5.48±1.55 a 

Cumulative N2O Flux [kg N ha-1]  0.35±0.14 a 0.37±0.14 a 0.39±0.14 a 0.30±0.14 a 0.32±0.13 a 0.34±0.13 a 

Cumulative N2 Flux [kg N2-N ha-1]  2.89±2.65 a 2.99±2.65 a 3.12±2.66 a 2.72±2.62 a 2.79±2.61 a 2.89±2.61 a 

Cumulative N losses [kg N ha-1] †  3.97±3.71 a 4.09±3.73 a 4.25±3.76 a 3.75±3.57 a 3.84±3.58 a 3.95±3.60 a 

N2O Emission Factor [%] *  0.15 0.15 0.15 0.08 0.08 0.09 

N2O Intensity [kg N2O-N t yield-1]  0.07 0.07 0.07 0.06 0.06 0.06 

  CONV-20% CONV 160N CONV+20% DMPP-20% DMPP 160N DMPP+20% 

Grain Yield [Mg ha-1] Maize 6.30±1.01 a 7.00±0.90 ab 7.68±0.78 b 6.25±1.07 a 6.96±0.94 ab 7.62±0.82 b 

Cumulative N2O Flux [kg N ha-1]  0.87±0.40 a 1.22±0.59 ab 1.61±0.83 b 0.31±0.16 a 0.41±0.21 a 0.54±0.28 a 

Cumulative N2 Flux [kg N2-N ha-1]  5.84±4.52 ab 7.83±6.05 ab 9.81±7.62 b 2.18±1.84 a 3.22±2.62 a 4.53±3.69 ab 

Cumulative N losses [kg N ha-1] †  7.65±5.59 ab 9.95±7.19 ab 12.30±8.97 b 3.20±2.63 a 4.31±3.32 a 5.73±4.37 ab 

N2O Emission Factor [%] *  0.58 0.69 0.78 0.15 0.18 0.22 

N2O Intensity [kg N2O-N t yield-1]  0.14 0.17 0.21 0.05 0.06 0.07 

  G -20% G 100N G +20% L -20% L70 L +20% 

Grain Yield [Mg ha-1] Sorghum 3.32±0.81 a 3.76±0.90 ab 4.36±1.00 b 3.52±0.86 ab 3.78±0.91 ab 4.12±0.99 ab 

Cumulative N2O Flux [kg N ha-1]  0.69±0.28 ab 0.80±0.32 ab 0.89±0.35 b 0.45±0.17 a 0.52±0.20 a 0.58±0.22 ab 

Cumulative N2 Flux [kg N2-N ha-1]  9.03±4.73 b 9.13±4.69 b 9.26±4.64 b 3.99±2.15 a 4.16±2.23 a 4.33±2.29 a 

Cumulative N losses [kg N ha-1] †  12.23±7.40 a 12.40±7.43 a 12.61±7.41 a 7.36±6.47 a 7.55±6.55 a 7.78±6.58 a 

N2O Emission Factor [%] *  0.47 0.53 0.53 0.39 0.40 0.40 

N2O Intensity [kg N2O-N t yield-1]  0.21 0.21 0.21 0.13 0.14 0.14 

*Corrected for background emissions                † Sum of deep NO3- leaching and N2O and N2 emissions  
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6.4 Discussion 

6.4.1 Model performance 

Process-based models represent fundamental tools to assess diverse agricultural 

practices under varying climatic conditions to identify the most productive and 

sustainable N management strategies. However, models have to be accurately 

validated with field data to ensure that the obtained predictions are reliable and to 

date DAYCENT has never been used in subtropical Oxisols. 

Typically, models are validated with datasets referring to laboratory conditions, 

single-season field experiments or reporting N2O measurements taken, at the most, 

several times per week (Jarecki et al., 2008; Scheer et al., 2013a). Model validations 

based on such relatively small datasets entail significant uncertainties and often result 

in large errors (Kroon et al., 2010). The simultaneous availability of high-frequency 

observations and N recovery data referring to multiple cropping seasons, crop 

rotations and N fertiliser strategies constitutes therefore a unique framework able to 

provide a rigorous validation of the DAYCENT model for a subtropical Oxisol.  

The importance of testing the DAYCENT model for these environments was 

confirmed by the initial overestimation of the soil C content obtained using the 

default model parameters. The algorithms regulating C dynamics in DAYENT have 

been largely developed using datasets referring to temperate conditions, where 

mineralisation rates can be lower than in subtropical environments (Del Grosso et al., 

2011; Pu et al., 2012). Soil C levels in the study region are low as a result of 

intensive conventional farming practices and the simultaneous occurrence of elevated 

temperatures and high soil moisture levels during the summer months (Bell et al., 

1995), factors that can significantly accelerate soil C mineralization (Mann, 1986; 

West and Post, 2002; Lal, 2004).  

The necessity of increasing the decay rate of the passive soil organic matter pool 

has already been reported in studies testing DAYCENT under subtropical conditions. 

For example, Scheer et al. (2013a) employed a decay rate similar to that used in this 

study after observing that, under warm and humid conditions, the DAYCENT 
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decomposition sub-model tends to overestimate the portion of organic C that is 

stabilized in finer textured soils.  

Increasing the decomposition rate of the passive soil organic matter pool 

significantly improved model performance in predicting N dynamics in the soil-plant 

system. Model validation provided a strong correspondence between simulated and 

measured cumulative N2O emissions across investigations, although some deviations 

were observed in the treatments that received low N inputs. Cumulative N2O 

emissions were underestimated in the CNT treatment in maize and overestimated in 

L0 and G0 in sorghum. It is likely that the low N2O fluxes simulated in CNT were 

due to the overestimation of total biomass, which led to an excessive plant N uptake 

and reduced the soil N available to nitrification and denitrification. Accordingly, no 

N2O emission pulse was simulated in the CNT treatment after the rain event of 25 

January 2012 (Figure 6-4a). In L0 and G0, where simulated biomass production 

closely matched observations, the simulated seasonal N2O fluxes exceeded 

measurements (Table 6-2, Table 6-3, Figure 6-4d and Figure 6-4e). This was also 

observed by Del Grosso et al. (2008), who reported consistent overestimations of 

N2O fluxes from non-fertilised treatments due to excessive background nitrification 

rates. On the other hand, the model correctly simulated higher N2O fluxes in G0 

compared to L0. The higher background N2O emissions simulated in the grass 

cropping history were supported by a greater active soil C pool derived from the 

decomposition of grass residues. Conversely, the simulated levels of active soil C in 

the legume cropping history remained relatively low after the incorporation of the 

pasture residues, limiting denitrification despite the higher content of organic N (data 

not shown). These nutrient dynamics were consistent with field observations 

(Chapter 4).  

DAYCENT was able to reproduce soil water and mineral N dynamics on a day-

to-day basis (Figure 6-1 and Figure 6-2). The average correlation of measured vs. 

simulated daily N2O emissions yielded r2 values of 0.23 for the first investigation 

and 0.42 for the second, which are consistent with some of the best results (0.32-

0.52) obtained with DAYCENT for various cropping systems worldwide (Li et al., 

2005b; Abdalla et al., 2010; Scheer et al., 2013a). However, in the summer crops the 

model tended to anticipate the N2O emission pulses following side dressing (Figure 

6-4), lowering the overall annual r2 and RSME values.  
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Observed data indicated that when soil mineral N levels were elevated due to the 

recent fertilisations events, N2O emission rates started to increase approximately 

three days after a substantial rainfall/irrigation event (> 20 mm). This time lag was 

probably due to a combination of reduced gas diffusivity caused by the high clay 

content of the soil (Smith et al., 1998) and time required to the microbial pool to 

initiate enzyme production when nutrient and water levels reached a threshold level 

(Dendooven and Anderson, 1994).  

These two processes are currently not simulated in DAYCENT. However, the 

data analysed in this study highlight that algorithms regulating microbial activity and 

gas diffusivity of N2O produced at different depths should be incorporated in the 

model to improve DAYCENT capability of simulating the temporal patterns of daily 

N2O emissions. An enhanced representation of how different soil conditions 

influence microbial dynamics would also allow the model to reproduce the decline in 

the DMPP inhibitory efficiency observed during the winter season, so to avoid the 

use of different inhibition factors for fertilizers applied to winter and summer crops.  

The model precisely predicted the response of the three crops to the different N 

management strategies. Grain yields, simulated aboveground biomass productions 

and fertiliser N recoveries closely matched field observations (Table 6-2 and Table 

6-3). DAYCENT however tended to overestimate grain production in the low-N 

input treatments of the two summer crops, i.e. CNT in maize and L0 and G0 in 

sorghum. Field observations showed that the elevated N requirements of these two 

crops led to a heavier reliance on fertiliser N to achieve maximum yield potential 

(Chapter 5). As a result, observed maize and sorghum crop productions were 

severely affected by below-optimal N inputs. The decline of maize and sorghum 

harvest indexes at decreasing fertiliser N rates was however not reproduced by the 

model, which simulated constant harvest indexes regardless of the N stress of the 

crop. These results indicate that simulated crop physiology is not optimal in 

DAYCENT and that improvements are needed to correctly predict plant growth 

dynamics under varying N stress conditions. 

Overall, the model validation highlighted some shortcomings in DAYCENT 

ability to simulate the timing of N2O emissions pulses and reproduce crop response 

to elevated N stress. However, cumulative N2O losses, crop N uptake and yields 

were predicted correctly when fertiliser N rates did not cause excessive N stress to 
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the crop. The parameterisation obtained could therefore be used to accurately 

evaluate different N management strategies aimed at supplying optimal N levels to 

subtropical cereal cropping systems.  

6.4.2 Scenarios and best N management practices 

Simulations highlighted that N losses during the three cropping seasons tended to 

be lower compared to cereal systems conducted under different environmental 

conditions (Van Groenigen et al., 2010; Liu et al., 2011; Hu et al., 2013). This was 

essentially due to the physical and chemical properties of the Oxisol used in this 

study. The high clay content of the soil, constant through the entire profile, reduced 

the water infiltration rates also during the intense rain events occurred during the two 

summer seasons (Figure 6-1). The moderate soil permeability limited NO3
- leaching 

and maintained the majority of the N in the rooting zone, enabling in this way a 

wider window of opportunity for the plants to adsorb the N supplied with 

fertilisation. This dynamic was observed in the field using 15N tracer techniques and 

was correctly replicated by the model.  

On the other hand, the permeability of the soil was sufficient to avoid prolonged 

periods of saturation of the soil profile following high rainfall events. Denitrification 

could therefore not go to completion and only moderate quantities of N2 were lost 

after significant rain events (Table 6-4). Moreover, denitrification was limited by the 

relatively low amounts of soil C, a feature typical of intensively cropped Oxisols 

(Bell et al., 1995). As a result, the 15-year mean N2O emission factors (corrected for 

background emissions) ranged from a minimum of 0.08% (DMPP -20% in wheat) to 

a maximum of 0.78% (CONV +20% in maize, Table 6-4), and on average were 

substantially lower than the default values of 1% of applied N suggested by De Klein 

et al. (2006). 

DMPP urea  

The simulation of different N management scenarios indicated however that there 

is significant scope for limiting N2O losses in these agroecosystems, especially in 

summer. The warm and humid soil conditions of this season, associated with the 

higher N fertiliser rates applied to summer crops, were conducive for substantially 
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greater nitrification and denitrification rates compared to winter. Among the N 

management strategies tested, the application of DMPP urea was the most effective 

in minimising N2O emission factors during a summer crop (Table 6-4).  

On average, side dressing maize with high amounts of conventional urea led to 

short periods of asynchrony between plant N uptake and N supply in the top soil. 

During the investigated period soil conditions at side dressing were typically warm 

and moist, resulting in rapid nitrification of the NH4
+-N applied. At this stage of crop 

development the crop root systems were however not sufficiently developed to 

effectively acquire all available NO3
-, leading to temporary build-ups of NO3

- levels 

in the top soil (i.e. where urea was banded). The increased concentrations of soil 

NO3
- usually coincided with elevated soil moisture levels caused by intense rainfall 

events, and resulted in conditions highly conducive for denitrification and therefore 

for elevated N2O emissions.  

Compared to conventional urea, the slower nitrification rates of DMPP urea 

enabled to better match the NO3
- released by the fertiliser with plant N uptake, 

resulting in almost no accumulation of NO3
- in the top soil and therefore limiting 

denitrification. Consequently, the N2O emissions factors and N2O emission 

intensities of the DMPP treatments in maize were less than a third compared to those 

in CONV (Table 6-4).  

However, the reduction of cumulative N losses simulated for DMPP urea was not 

sufficient to increase yields compared to conventional urea, even in the +20% 

treatment. Augmenting the application rate of urea by 20% (total N rate: 190 kg N 

ha-1) was likely to result in substantial N losses that would have prevented to achieve 

maximum yield potential. Cumulative N losses in the CONV treatment were instead 

limited by soil properties and grain yields in CONV+20% were similar to 

DMPP+20% (Table 6-4).  

In fact, the enhanced synchronicity of DMPP urea compared to conventional urea 

was only temporary and limited to the top soil. Deep NO3
- leaching events after top 

dressing with conventional urea were prevented by the high clay content of the 

Oxisol, while the soil C content and the short-lived periods of soil saturation after the 

summer rainfall events were not sufficient for denitrification to go to completion and 

result in elevated N2 losses (Table 6-4). As a result, applying N as conventional urea 
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led to temporary accumulations of NO3
- in the top soil (and therefore to higher N2O 

emissions), but on average the majority of fertiliser N remained in the rooting zone.  

These observations support the results obtained by Abalos et al. (2014), whose 

extensive meta-analysis across cropping systems evaluated the effectiveness of 

different nitrification inhibitors - including DMPP - in increasing crop N uptake and 

productivity. After examining a total of 27 studies and 160 observations on crop 

productivity and 21 studies with 94 observations on crop N uptake, the analysis 

found little or no effects on crop yields when nitrification inhibitors were applied on 

fine-textured soils. The reason for this inefficiency was identified in the limited 

susceptibility of these soils to NO3
- leaching and N2 losses, confirming that 

nitrification inhibitors have little scope to improve productivity in Oxisols.  

Legume phase in a cereal-based crop rotation  

The introduction of a legume pasture phase in a cereal-based crop rotation showed 

multiple environmental and agronomic advantages. Planting sorghum shortly after 

incorporating the legume pasture ensured the synchronicity between the N uptake of 

the cereal crop and the mineral N progressively released by the decomposition of the 

legume residues. This practice avoided the accumulation of relevant amounts of N in 

the soil that would have been available to nitrifying and denitrifying microorganisms, 

and simulated N2O emissions were primarily a function of the N fertiliser rate 

applied. Decreasing the synthetic N rates applied to sorghum in the legume cropping 

history led therefore to substantial reductions of N2O losses and emission factors 

were abated on average by 20% compared to the grass cropping history (Table 6-4). 

These results are consistent with what reported for subtropical cropping systems by 

Schwenke et al. (2015), who observed that the slow release of legume-derived N can 

increase the synchronicity with the demand of the following crop, leading to 

substantial reductions of N2O emissions compared to synthetic N.  

In particular, this strategy enabled lowering the amount of fertiliser N side dressed 

to the summer crop, the occasion when the highest quantities of annual synthetic N 

are applied. Build-up of high amounts of NO3
- in the soil following fertilisation was 

therefore limited and fertiliser N was used more efficiently by the plants. These 

results confirm what reported in a simulation study by Huth et al. (2010), who 
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reported that split application of smaller amounts of synthetic N can decrease 

average N2O emissions by at least 15%. 

Although not sufficient to fully meet the crop N demand, the incorporation of 

legume residues provided enough readily available N to support sorghum growth. 

The cereal crop responded positively to the N supplied by the legume residues and 

the higher soil N reserve in the legume cropping history decreased the reliance of the 

cereal crop on synthetic N fertiliser. Reducing the fertiliser N rate by 20% in the 

legume cropping history led to a 7% decline in sorghum yield, while the same N 

reduction in the a grass cropping history caused a 12% yield decrement. As a result, 

even when the fertiliser N rate was reduced by 20%, yields in the legume cropping 

history were comparable to those in the G100 and G+20% treatments (Table 6-4). 

Conversely, sorghum in the grass cropping history was highly reliant on synthetic N 

fertiliser and yields in G-20% were significantly lower than in G+20%. Similar 

results were obtained by Huth et al. (2010), who reported a 34% reduction in the 

amount of fertiliser N required by cereal crops when grown in rotation with legumes. 

The results of this study also indicate that the presence of a legume phase in a 

cereal-based crop rotation reduces the risk of failing to achieve maximum yield 

potential due to an insufficient application of synthetic N. This strategy provides 

more flexibility to the farmer in terms of timing and rate of fertiliser application, 

especially in rainfed cropping systems. The mineralisation of legume residues can in 

fact supply enough N during the initial stages of crop growth, enabling the famer to 

modulate the synthetic N input applied at side dressing depending on seasonal 

weather conditions and therefore the potential yield achievable. Collectively, model 

simulations suggest that introducing legumes in subtropical grain-based cropping 

systems reduces the N2O emission intensity of the cereal phase by 30% while 

sustaining the maximum yield potential of the cereal crop.  
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6.5 Conclusions 

Even though these results are influenced by the soil and climatic conditions of the 

site used for the validation of the model, they provide an insight on N fertiliser 

dynamics and N2O losses that could be valid for other subtropical cereal-based 

cropping systems on Oxisols.  

Overall, simulations indicated that nitrification inhibitors can be more effective 

than legumes to reduce N2O emissions during the cereal cropping phase. The use 

nitrification inhibitors however increases the fertilisation costs compared to 

conventional urea and in this study the higher costs of this practice were not 

compensated through increases in grain yield. The results of this study indicate 

therefore that in these agroecosystems the use of nitrification inhibitors to reduce 

N2O emissions cannot be regarded as an economically viable standard farming 

practice unless governmental incentive policies are established. 

On the other hand, the chances of significant N losses in these agroecosystems are 

limited by the moderate permeability and relatively low C content of the Oxisols. 

Consequently, synchronicity between fertiliser N supply and plant uptake can be 

achieved with conventional urea when applied at low rates. Limiting the application 

rates of synthetic fertiliser N is therefore the most feasible strategy to reduce N2O 

losses in Oxisols. 

Introducing legumes in cereal-based crop rotations reduced the reliance on 

fertiliser N of the cereal crop and therefore limited synthetic N rates. The 

mineralisation of legume residues provided sufficient N to support crop development 

during the early phenological stages, limiting fertiliser N requirement to the amounts 

necessary to attain maximum yield potential. This strategy reduced the chances of 

high amounts of mineral N accumulating in the top soil and therefore diminished 

N2O emissions due to fertilisation. This simulation study therefore indicates that 

introducing legumes in cereal-based cropping systems is the most agronomically 

viable and environmentally sustainable N management strategy to support future 

intensification of subtropical cereal production in Oxisols. Further research is 

however advocated to confirm the efficacy of this N management strategy on 

different types of Oxisols under different subtropical conditions.  
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This study also highlighted some shortcomings in the crop and soil submodels of 

DAYCENT. The correction of these limitations would significantly improve the 

potential of the model in assessing the environmental and agronomic implications of 

different N management practices. 
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Chapter 7: Discussion and Conclusions 

 

7.1 Overall study findings  

Mitigating climate change and achieving food security are two of the key 

challenges of the twenty-first century. By 2050 the world’s population is forecast to 

be over a third larger than at present (UNFPA, 2011) and cereal demand is predicted 

to increase by 60% (FAO, 2009). Pronounced intensification of cereal production is 

expected to take place in Oxisol-dominated tropical and subtropical regions (Smith et 

al., 2007), identifying the need for more N to be supplied to these agroecosystems 

(Fageria and Baligar, 2008). Boosting food production though an increased use of 

synthetic N fertilisers will however result in sharp increases in greenhouse gas 

emissions, especially N2O (FAO, 2010; Foley et al., 2011; Tilman et al., 2011). It is 

therefore critical to identify alternative N management strategies aimed at supporting 

future intensification of tropical and subtropical agricultural systems without 

promoting an increase of N2O emissions from these agroecosystems. 

A unique dataset of high temporal-frequency N2O observations and N recovery 

data from multiple cropping seasons, crop rotations and N fertiliser strategies was 

gathered in the subtropics using a fully automated greenhouse gas measuring system, 
15N-tracer techniques and a process-based biogeochemical model. The aim was to 

define profitable, agronomically viable and environmentally sustainable N 

management strategies to support future intensification of cereal production on 

subtropical Oxisols. This study also aimed to improve the current understanding of 

environmental factors influencing N2O emissions in fertilised Oxisols and to assess 

the magnitude and main pathways of fertiliser N losses that limit crop yields in these 

agroecosystems.  

The major findings and conclusions from this study are presented in this section 

against each of the research objectives. An analysis of the environmental, agronomic 
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and economic implications resulting from this study follows along with the 

recommendations for further research. The concluding statement of this research is 

thus presented. 

Objective 1 

Research objective: Evaluate the use of urea coated with a nitrification inhibitor to 

limit N2O emissions and increase grain yields compared to conventional urea.  

Hypotheses: i) nitrification inhibitors decrease N2O emissions both directly, via 

slowing the nitrification rates, and indirectly, by reducing the amount of NO3
- 

available to denitrifying microorganisms; ii) by reducing N movements beyond the 

rooting zone, nitrification inhibitors can improve the synchrony between fertiliser-

derived NO3
- and plant uptake, and therefore increase yields compared to 

conventional urea. 

 

Applying urea coated with the DMPP nitrification inhibitor was successful in 

reducing N2O emissions only in the summer crop (maize), when conditions were 

conducive to high N2O emissions, while no differences with conventional urea were 

observed in the winter crop (wheat). In winter, the activity of nitrifying and 

denitrifying microorganisms was limited by the relatively low soil temperature and 

water content. These conditions are particularly adverse for denitrification, the 

process that can be the main pathway for large N2O losses (Robertson and Groffman, 

2007). As a result, N2O emission rates in winter were naturally inhibited by the soil 

conditions and there was no scope for DMPP to reduce the emissions any further.  

In contrast, the warm and humid soil conditions of the summer season were more 

conducive for nitrification and denitrification. As a result, N2O emissions following 

the application of 130 kg of conventional urea (60 kg N ha-1) in the summer crop 

were fivefold those measured after applying the same rate of conventional urea in the 

winter crop (Paper 1).  

N2O emissions in summer were also higher due to the asynchrony between the N 

released by conventional urea and the plant N uptake, particularly at the highest N 

rate (120 kg N ha-1). When maize was side dressed with conventional urea, the 
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summer soil conditions promoted rapid nitrification of the applied NH4
+-N, but at 

this physiological stage (V10) the crop root system was not sufficiently developed to 

acquire all N present in the soil. As measured in the field (Paper 1) and confirmed by 

model simulations (Paper 4), this asynchrony resulted in a build-up of NO3
- levels in 

the top soil (i.e. where urea was banded). This increase in the concentration of soil 

NO3
- coincided with elevated soil moisture levels caused by intense rainfall events, 

and resulted in conditions highly conducive for denitrification.  

The occurrence of significant summer rainfall events shortly after the side 

dressing of N fertiliser is typical in subtropical regions and was frequently observed 

during the fifteen years (1999-2013) of local climate data used for the simulation of 

N management scenarios (Paper 4). This pattern indicates that the conditions 

observed in the field experiment were representative of those usually occurring at 

these latitudes.  

Slower nitrification rates achieved with DMPP urea enabled a better synchrony 

between the plant uptake and the NO3
- derived from the fertiliser (Paper 3), and 

enabled a reduction of NO3
- in the top soil during summer cropping. With less NO3

- 

available for denitrification in the top soil, N2O emissions in maize were abated (on 

average) by 65% compared to the same N rate with conventional urea (Paper 1 and 

Paper 4).  

The enhanced synchrony between N availability and plant uptake afforded by 

DMPP urea compared to conventional urea was however confined to the top soil -

where the fertiliser was banded- and did not influence the overall crop N uptake. As 

established in Paper 3 and Paper 4, the losses of NO3
- via leaching were minimal in 

the heavy clay soil. In addition, the periods of soil saturation after the summer 

rainfall events were not prolonged, limiting N2 losses from both conventional and 

DMPP urea. Applying N as conventional urea led therefore to a temporary 

accumulation of NO3
- in the top soil, but the majority of fertiliser N remained in the 

rooting zone. This resulted in plants fertilised with conventional urea having an 

adequate window of opportunity to take-up the fertiliser N and, as reported in Paper 

3, limited amounts of fertiliser N were lost from the soil-plant system. DMPP had 

therefore no significant scope to increase the overall ability of the plant to acquire the 

applied N, and no gain in yields was observed at any applied N rate (Paper 1 and 

Paper 4). 
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These observations support the results obtained by Abalos et al. (2014), whose 

extensive meta-analysis across cropping systems evaluated the effectiveness of 

different nitrification inhibitors - including DMPP - in increasing REfN and crop 

productivity. After examining a total of 27 studies and 160 observations on crop 

productivity and 21 studies with 94 observations on REfN, the analysis found little or 

no effects on crop yields when nitrification inhibitors were applied on fine-textured 

soils. As in the present study (Paper 1 and 4), Abalos et al. (2014) identified the 

reason for this inefficiency in the limited susceptibility of these soils to NO3
- 

leaching, concluding that nitrification inhibitors have little scope to improve REfN in 

clay soils.  

Objective 2 

Research objective: Evaluate whether the introduction of a legume in a cereal-

based crop rotation can reduce the reliance of cereal crops on synthetic N fertilisers 

and minimise N2O emissions during the cereal cropping phase. 

Hypotheses: i) the N mineralised from legume residues can substantially reduce 

the synthetic N input required by the following cereal crop and therefore limit the 

“direct” N2O emissions due to mineral fertilisation, and ii) N2O losses due to the 

mineralisation of legume residues can be minimised via synchronising the release of 

N derived from the residues with the N demand of the subsequent cereal crop. 

 

Introducing a legume in a cereal-based crop rotation offered the double advantage 

of supplying substantial amounts of N to the following cereal crop while reducing 

overall N2O emissions during the cereal season. This condition was attained because 

in this study the N supplied by both sources -legume residues and synthetic fertiliser- 

was synchronised with crop demand. 

Synchronising N supply with N demand can be technically challenging when, as 

with the mineralisation of legume residues, N release is mediated by microbial 

processes. In fact, low levels of synchrony have often been reported in legume-cereal 

cropping systems (Wagner-Riddle et al., 1997; Wagner-Riddle and Thurtell, 1998; 

Fillery, 2001; Pappa et al., 2011), when the field was left fallow for long periods 
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after the end of the legume phase, allowing for the accumulation of large amounts of 

mineral N in the soil at a time when there was no crop to use it (Jensen et al., 2012). 

In this study the accumulation of mineral N in the top soil was avoided by 

minimising the period between the incorporation of the legume residues and the 

planting of the cereal crop (approximately three weeks). A key factor in limiting 

mineral N accumulation during this time was the relatively dry soil conditions, which 

slowed the decomposition of the legume residues. Wetter soil conditions during the 

fallow period would have in fact accelerated the mineralisation of the legume 

residues and created optimal circumstances for nitrifying and denitrifying bacteria, 

resulting therefore in higher N2O losses. 

In both wheat and sorghum the gradual N release from the mineralisation of 

legume residues (mungbean and sulla, respectively) provided a consistent flow of N 

that was within the uptake capability of the crop. Importantly, high levels of 

synchrony between the N released from legume residues and the uptake of the 

following crop were achieved during both the winter (wheat) and summer (sorghum) 

crops.  

Environmental factors such soil moisture and soil temperature play pivotal roles 

in influencing the decomposition of the residues and different patterns of 

mineralisation can be expected during winter and summer. However, the 

environmental factors that regulate the decomposition of the residues are the same 

that influence the plant nutrient demand of the following crop, enabling therefore to 

attain high levels of synchrony under different soil moisture and temperature 

conditions (Myers et al., 1994; Crews and Peoples, 2005).  

Although not sufficient to fully meet the crop N demand (Paper 1 and Paper 2), 

the N released by the legume residues provided a substantial N supply to the cereal 

crops and reduced the crop reliance on synthetic fertiliser compared to crops planted 

after a non-leguminous crop (Paper 3). The diminished reliance on synthetic N inputs 

was confirmed by model simulations (Paper 4), which established that grain yields in 

legume-cereal cropping systems declined less rapidly than in cereal-cereal or grass-

cereal systems when fertiliser N rates were reduced.  

The decreased reliance on synthetic N inputs allowed for reducing fertiliser N 

rates to the levels necessary to reach maximum yield potential. In particular, this 
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strategy enabled lowering the amount of fertiliser N side dressed to the summer crop, 

the occasion when the highest quantities of annual synthetic N are applied. Build-up 

of high amounts of NO3
- in the soil following fertilisation was therefore limited and 

fertiliser N was used more efficiently by the plants. As highlighted in Paper 3, the 

recovery of fertiliser N in the plant was significantly higher in crops that had been 

fertilised with lower rates of synthetic N. Accordingly, in these treatments the 

amount of synthetic N left in the soil after the cereal cropping cycle was substantially 

lower than where crops were fertilised with elevated N rates. 

Overall, the gradual mineralisation of legume residues promoted the fertiliser N 

recovery in the crop and N2O losses were mainly caused by temporary increases in 

soil NO3
- levels due to fertiliser application (Paper 2). Cumulative N2O emissions 

increased in direct response to the rate of N fertiliser applied, with cropping history 

having no significant effect as confirmed by model simulations (Paper 4).  

A reduction in N2O emissions from the legume-cereal cropping systems was also 

due to the chemical composition of the legume residues. The low C:N ratio of the 

legume tissues enhanced the degradation of the residues, leaving little labile C in the 

soil during the cereal cropping season and reducing the potential activity of 

heterotrophic microorganisms, such as those responsible for denitrification (Elmi et 

al., 2003; Yao et al., 2009). As a result, although soil N concentrations after the 

termination of a legume phase were higher than after a non-leguminous crop, N2O 

emission pulses following rainfall events were significantly lower in the legume 

cropping history (Paper 3). These findings support the results reported by Sanz-

Cobena et al. (2014), who observed higher N2O emissions from maize after the 

incorporation of barley, compared to the same crop after the incorporation of a vetch 

pasture.  

Overall, the results of this study show that when legume residues are managed 

correctly they can play a pivotal role in improving the N synchrony and reducing 

N2O emissions in high-yielding cereal-based agroecosystems. 
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Objective 3  

Research objective: Assess the sustainability of the N management practices 

investigated in Objectives 1 and 2 under a broader spectrum of fertiliser N rates and 

environmental conditions. 

Hypotheses: A simulation approach can be used to i) assess the validity and 

robustness of the hypotheses underlying the previous two objectives, and ii) improve 

the understanding of the environmental factors driving N2O emissions and crop 

productivity in subtropical cereal cropping systems. 

Models are useful tools for evaluating the hypotheses advanced in this study as 

well as to explain the N2O emissions and crop growth patterns observed during the 

field experiments. Simulating the application of conventional and DMPP urea at 

different N rates and under diverse seasonal conditions enabled to establish that the 

chemo-physical characteristics of the Oxisol, and not the fertiliser type, were the 

main factor influencing synchronicity between N demand and fertiliser supply. 

Models simulation confirmed that applying DMPP urea to inhibit nitrification in 

these soils is effective in reducing N2O emissions, which however represented only a 

fraction of the overall N losses (inclusive of N2O and N2 emissions, and NO3
- 

leaching). Critically, DMPP urea did not substantially decrease N2 emissions and 

NO3
- leaching compared to conventional urea and therefore did not increase yields 

(Paper 4).  

Substituting a proportion of the N requirements of the crop with N mineralised 

from the legume residues proved to be the most effective strategy to reduce N2O 

emissions and support cereal productivity. Legume residues supplied substantial 

amounts of N to crops but did not lead to sharp increases in soil N levels that would 

have stimulated nitrification and denitrification (Paper 4). Seasonal N2O emissions 

were directly related to the amount of fertiliser N applied, not of the crop rotation. 

Consequently, proportional reductions in N2O emissions were obtained when 

fertiliser N rates could be decreased as a result of the N supplied by the legumes.  

The use of model simulations also increased the overall understanding of N 

dynamics in subtropical Oxisols. The large dataset established in this study enabled 

the DAYCENT model to be calibrated for N2O losses, plant N uptake and mineral N 

kinetics for the top 30 cm of these soils. Additionally, it was possible to define N 
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losses via deep leaching by reconciling soil water content data and the recovery of 

fertiliser N in the lower layers of the soil profile. This technique enabled to perform a 

N mass balance and therefore to accurately estimate N2 emissions from these 

agroecosystems.  

The magnitude of N2 losses from soils and the related N2:N2O ratio are largely 

unknown due to difficulties in measuring N2 against a high atmospheric background 

(Dannenmann et al., 2008; Mulvaney, 2008). N2 losses differ greatly across 

agroecosystems depending on soil chemo-physical properties, fertilisation and 

rainfall regime (Weier et al., 1993). As a result, studies on cereal cropping systems 

have reported N2 emissions varying from 1% to 15% of applied N depending on 

environmental conditions (Weier, 1994; Bronson and Fillery, 1998; Smil, 1999; Cai 

et al., 2002a; Janzen et al., 2003). In addition to the difficulties of obtaining N2 

measurements, the uncertainty of estimating N2 losses with DAYCENT is due to 

limited dataset used for developing the denitrification submodel. The denitrification 

equations in the DAYCENT model were defined using a series of intact core 

incubations (Weier et al., 1993) and field measurements (Mosier et al., 1996) that 

related C, NO3
- and WFPS dynamics to N2O and N2 fluxes (Parton et al., 1996). 

Critically, none of these experiments was conducted in Oxisols or under subtropical 

conditions, and no studies so far have assessed N2 emissions from these agro-

environments using DAYCENT.  

The dataset gathered in this study allowed for a rigorous calibration of the 

DAYCENT model for subtropical cereal cropping systems in Oxisols, and therefore 

for the estimation of N losses due to denitrification. Even though not supported by 

direct N2 measurements, model simulations enabled to estimate fertiliser-derived N2 

losses during the three cropping seasons. N2 losses estimated in this study for 

conventional urea varied between averages of 1.3% of applied synthetic N for the 

winter season (wheat) and 4.6% for the summer seasons (maize and sorghum). In 

line with the results reported in Paper 3, simulation showed that N2 losses tend to be 

limited in Oxisols and highlighted that average N2:N2O ratios of 8.5 could be 

adopted for estimating denitrification losses in subtropical Oxisols. These results 

confirmed the analysis conducted by Xu et al. (2013), who in an extensive review 

indicated that denitrification rates in acidic tropical and subtropical soils can be 

lower than those in their temperate counterparts. In fact, N2 losses tend to be limited 



Discussion and Conclusions 

 207 

in Oxisols due to the relatively low C content of these soils, which may not be 

enough to support denitrification (Xu and Cai, 2007; Wang and Cai, 2008). The low 

soil pH of these soils is also likely to negatively affect the growth and activity of 

most denitrifiers, which optimal pH ranges from 6 to 8 (Aulakh et al., 2001). 

Moreover, the permeability of Oxisols is usually sufficient to avoid prolonged 

periods of saturation of the soil profile following high rainfall events, resulting in 

low gas emission due to denitrification (Pu et al., 2002; Xu et al., 2013).  

Overall, the use of model simulations provided a unique insight of gaseous N 

emissions in Oxisols, establishing that fertiliser N losses in subtropical Oxisols are 

limited by their intrinsic chemo-physical properties. This approach was also pivotal 

for determining that the introduction of legumes in these cropping systems is the best 

strategy to support crop production while reducing overall N2O emissions during the 

cereal season. The simulation of N2 emissions obtained in this study was however 

performed without the possibility of comparing modelled results with field 

measurements. Further research measuring N2 losses from cropped Oxisols is 

therefore advocated to validate the estimates presented in this study.  

7.2 Economic implications 

Identifying environmentally and agronomically sound N management strategies is 

essential when promoting the sustainable intensification of future subtropical cereal 

cropping systems. Guaranteeing their widespread adoption means these strategies 

need to be profitable for the farmer and adoptable both in low- and high-income 

cropping systems. The key economic implications of the two N management 

strategies assessed in this study are examined here, with a clear focus on their 

profitability at farm-scale level.  

Evaluating the specific economic implications of these N management strategies 

in every country with cereal cropping systems in Oxisols is extremely complex and 

beyond the scope of this study. The commodity prices used for this analysis refer 

therefore to Australian conditions, and have been calculated averaging the values 

obtained from the FAOSTAT database for the period 2008-2012. 
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DMPP urea 

The application of DMPP urea in this study was the most effective strategy to 

abate N2O emissions during the summer cereal crop but proved to be uneconomical 

at farm-scale. Urea coated with DMPP is 30% more expensive than conventional 

urea (Chapter 3.3.2) and the first investigation showed that top dressing the summer 

cereal crop (maize) with DMPP urea increases the fertilisation costs by 

approximately USD 50   ha-1. The additional cost of using DMPP urea however was 

not compensated through increases in grain yield, meaning that in these 

agroecosystems the use of nitrification inhibitors cannot be regarded as an 

economically viable N management from the farmer’s perspective. 

Governments or political institutions aiming to reduce N2O emissions from cereal 

cropping systems could foster the use of N fertilisers coated with nitrification 

inhibitors by establishing subsidies covering the additional cost of these fertilisers or 

introducing emission trading schemes. In this study, top dressing the summer crop 

with DMPP urea reduced N2O emissions by 1.1 kg N2O-N ha-1 compared to 

conventional urea (Table 3-3), equivalent to approximately 0.33 Mg CO2 ha-1. The 

hypothetical carbon price necessary to refund farmers applying DMPP urea would 

therefore correspond to 150 USD Mg CO2
-1, a value largely exceeding the 8 USD 

Mg CO2
-1 currently adopted by the European Union Emission Trading System 

(London Stock Exchange, accessed November 2014).  

Even though in this specific study the use of DMPP urea increased fertilisation 

costs by 30%, a detailed study assessing various nitrification inhibitors (Weiske, 

2006) suggested 10% as the average cost increase for nitrification inhibitors. 

Assuming a 10% cost increase however, the use of the nitrification inhibitor at top 

dressing would increase fertilisation costs by approximately 16 USD ha-1, requiring a 

carbon price of 47 USD Mg CO2
-1. These results indicate that the use of nitrification 

inhibitors to decrease N2O emissions in subtropical Oxisols is not a profitable 

practice unless heavily subsidised and therefore cannot be regarded as a feasible 

strategy to support a sustainable intensification of these cropping systems.  
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Legume phase in a cereal-based crop rotation 

The introduction of legume crops in a cereal-based crop rotation offered the dual 

advantage of reducing overall N2O emissions while reducing fertilisation inputs, and 

therefore costs. The economic implications of introducing legumes in cereal cropping 

systems can differ substantially and depend on the characteristics of the cropping 

system (Bohlool et al., 1992; Campbell et al., 1992; Bell et al., 2012; Sadeghpour et 

al., 2013; Kirkegaard et al., 2014). For example, the gross annual income of cereal 

cropping systems incorporating a legume phase can be increased or decreased 

compared to cereal monocultures depending on the legume crop (grain, forage or 

tree), the length of the legume phase (mono- or multi-seasonal), the original cereal-

based cropping systems (mono- or double cereal cropping) and whether the legume 

replaces a cereal crop, a fallow phase or is intercropped with the cereal.  

Generalising the profitability of introducing a legume phase in a cereal cropping 

system is not feasible given the large number of variables and the analysis presented 

in this section focuses on the N management tested in this study. This economic 

analysis assesses the introduction of a forage legume crop in a cereal-based crop 

rotation and does not consider the implications of using more profitable legumes 

crops, such as grain legumes. Importantly, this analysis does not cover the indirect 

economic benefits provided by the presence of legumes in the crop rotation, such as 

increased native soil fertility and disruption of pest and disease lifecycles, two factors 

that significantly influence the long-term productivity of a cropping system (Giller 

and Cadisch, 1995; Rochester et al., 2001).  

In this study the winter legume ley pasture was green-manured and the 

decomposition of the legume residues provided approximately 36 kg N ha-1 to the 

subsequent summer cereal (Chapter 4.3.3). This N supply lowered the fertiliser N 

requirements of the cereal crop to the levels necessary to reach maximum yield 

potential. Specifically, this practice enabled a reduction in the applied fertiliser rate 

by almost 80 kg urea ha-1 compared to a summer cereal not in rotation with a legume 

pasture.  

In a crop rotation where the summer cereal is preceded by a fallow phase (cereal 

mono-cropping system), replacing the fallow phase with a legume pasture for green-

manuring would reduce the annual N fertilisation costs by 47 USD ha-1 and therefore 
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increase the annual net income. In the case where the legume pasture was harvested 

for hay, the legume phase would generate a gross income of approximately 400 USD 

ha-1 (assuming a legume hay price of 200 USD Mg-1 and an average hay yield of 2 

Mg grain ha-1). Additionally, the incorporation of below ground biomass would 

provide approximately 15 kg N ha-1, resulting in a fertiliser cost reduction of 20 USD 

ha-1 during the following cereal crop. This practice would therefore increase the 

annual net income by 390 USD ha-1 compared to a cereal mono-cropping system, 

even while accounting for the additional costs due to the purchase of legume seeds, 

machinery use and labour, 

On the other hand, compared to a double cropping system (winter cereal-summer 

cereal crop rotation), growing a legume pasture for green-manuring would preclude 

the possibility of growing a winter cereal. Assuming a grain price of 230 USD Mg-1 

(FAOSTAT website, accessed October 2014) for an average winter cereal yielding 5 

Mg grain ha-1 (Table 3-3), replacing the winter cereal with a legume crop for green 

manuring would lead to a net income reduction of circa 1150 USD ha-1 per annum. 

In the case the legume pasture was harvested for hay, replacing the winter cereal with 

a legume pasture would result in an overall income reduction of circa 730 USD ha-1, 

indicating that under no hay management scenario replacing a cereal crop with a 

forage legume can be a profitable option.  

Introducing a legume crops in cereal crop rotations could potentially entitle 

farmers to greenhouse gas emission credits since an extensive review by Jensen et al. 

(2012) highlighted that N2O emissions during the legume growing season do not 

differ substantially from unplanted or non-fertilised soils and are significantly lower 

than during a fertilised winter cereal. The economic implications of this aspect in 

terms of emissions trading are however not included here since no N2O 

measurements were conducted during the legume pasture phase in this study.  

 

Overall, this analysis highlights that the use of nitrification inhibitors cannot be 

considered an economically feasible strategy to support cereal production while 

limiting N2O emissions in subtropical Oxisols. Introducing a legume pasture phase in 

a cereal crop rotation instead can be a profitable N management practice, but only 

when adopted in a cereal mono-cropping system. This result is significant since 
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cereal mono-cropping is a common practice in many subtropical regions, especially 

in rainfed cropping systems (Peter and Runge-Metzger, 1994; Herrmann et al., 2014; 

Wratten et al., 2014).  

7.3 Recommendations for future research 

This study showed that reducing nitrification rates in subtropical Oxisols does not 

improve the agronomic efficiency of applied N fertiliser. On the other hand, the 

introduction of a legume phase in a cereal-based crop rotation exhibited multiple 

environmental and agronomic advantages, highlighting the importance of achieving 

synchrony between soil N supply and the N demand of the following crop via the 

incorporation of legume residues in a cereal-based crop rotation.  

Conducted on one single Oxisol subclass and having tested only one type of 

legume, a forage pasture, this research lays the foundation for further research to 

investigate how synchrony with the subsequent cereal crop can be achieved in 

different sub-classes of Oxisols. Importantly, such research needs to assess the 

agronomic, economic and environmental implication of using diverse leguminous 

corps (forages and grains) and cropping practices (crop rotations and intercropping) 

to maximise food production and limit N2O emissions. In particular, efforts should 

aim to identify which constituents of the legume tissues (e.g. lignin, polyphenols, 

soluble C and N compounds) affect residue mineralisation, and therefore the N 

release and its availability to plants and the soil microbial pool (Palm et al., 2001; 

Bolger et al., 2003; Crews and Peoples, 2005). Research studies should 

simultaneously investigate how mineralisation patterns during the post-harvest 

period can be manipulated by choosing specific legume species or combining 

different legume crops.  

However, mineralisation patterns could be affected by site-specific environmental 

conditions, while some crop varieties might not be fit for cultivation in certain 

regions. Research will therefore need to address these constraints by developing 

profitable grain or forage legume species optimised for different seasons, cropping 

regions and climates. Such results will reduce the uncertainties involved in the use of 

legumes as a source of N and provide subtropical farmers with a reliable N 
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management strategy to bolster cereal production while limiting N2O emission rates 

from these agroecosystems. 

Additionally, the economic analysis showed that in double cereal cropping 

systems replacing a cereal with a non-edible legume crop (e.g. forage) can reduce the 

overall food production and profit. Research is necessary therefore to address this 

problem by investigating how grain legumes or legume management practices (crop 

rotations and intercropping) can maximise food production while limiting N2O 

emissions in these agroecosystems. 

The model simulations conducted within this study suggested that N2 emissions in 

subtropical Oxisols can be up to nine times higher than those of N2O. Future field 

research should therefore aim to corroborate these findings by combining automated 

greenhouse gas measuring systems and mass spectrometry techniques to precisely 

measure N2 losses in these agroecosystems. Such results will further increase the 

current understanding of N dynamics in subtropical Oxisols and determine the 

influence of N2 emissions on the agronomic efficiency of the tested N management 

strategies. 

Finally, this study highlighted that simulated crop physiology is not optimal in 

DAYCENT and that improvements are needed to correctly predict plant growth 

dynamics under varying N stress conditions. Moreover, the data analysed in this 

study suggest that algorithms regulating microbial activity and gas diffusivity of N2O 

produced at different depths should be incorporated in the model. An enhanced 

representation of soil microbial activity would also allow DAYCENT to reproduce 

the decline in the DMPP inhibitory efficiency observed under winter conditions, so 

to avoid the use of different inhibition factors for fertilizers applied to winter and 

summer crops. Overall, the correction of these limitations would significantly 

improve the potential of the model in assessing the environmental and agronomic 

implications of different N management practices. 
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7.4 Conclusions 

This is the first study integrating high temporal frequency N2O measurements, 

fertiliser N recovery observations, and model simulations to assess the environmental 

and agronomic implications of using urea coated with the DMPP nitrification 

inhibitor and reintroducing legumes in crop rotations. The results indicate that the 

chances of significant N losses in subtropical agroecosystems in Oxisols are limited 

by the moderate permeability and relatively low C content of these soils. 

Significantly, there is scope to improve the REfN and reduce N2O emissions from 

these cropping systems, especially in summer. The high N fertiliser rates usually 

applied to summer crops, associated with the hot and humid conditions of this 

season, can indeed lead to periods of temporary asynchrony between fertiliser N 

supply and crop capacity to use it. As a result, nitrification and denitrification rates in 

summer can be up to fivefold those occurring in winter. Strategies to secure 

subtropical cereal production without increasing N2O emissions should therefore 

focus on N fertiliser management strategies for summer crops. 

DMPP was effective in delaying nitrification in the top soil, reducing N2O losses 

via nitrification and denitrification. Given the chemo-physical characteristics of the 

soil however, DMPP had no scope for improving the fertiliser N recovery in the crop 

and therefore did not increase grain yields. The lack of yield increase and the higher 

cost of urea coated with nitrification inhibitors reduce the profitability of this 

fertilisation practice, highlighting that the use of nitrification inhibitors cannot be 

regarded as an economically viable N management strategy for the sustainable 

intensification of subtropical cereal cropping systems. 

Soil properties and fertiliser N rates were the main factors influencing fertiliser N 

recovery in the soil-plant system. The lower N recoveries observed in crops when 

elevated amounts of synthetic N were applied  indicate that limiting N rates in 

Oxisols is the most efficient strategy to increase the recovery efficiency of fertiliser 

N in the crop (REfN) and therefore reduce the amount of soil N available to nitrifying 

and denitrifying microorganisms.  

Introducing legumes in cereal-based crop rotations decreases the reliance of the 

cereal crop phase on N fertiliser. When synchronisation with the cereal N demand is 
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achieved, the mineralisation of legume residues can provide sufficient N to support 

crop development during the early stages of crop development, limiting fertiliser N 

requirement to the amounts necessary to attain maximum yield potential. This 

strategy reduces the chances of high amounts of mineral N to accumulate in the top 

soil and therefore lowers N2O emissions due to fertiliser application. Conditions can 

however be highly conducive for elevated N2O emissions when a soil is left fallow 

after the incorporation of fresh legume residues. The most viable strategy for 

reducing N2O emissions after the termination of the legume phase and maximising 

the synchronicity between residue mineralisation and the cereal N demand is 

therefore to minimise the amount of time between incorporating the residue and 

planting the subsequent crop. 

Reducing the fertiliser N input required by cereals in rotation with legumes 

provides greater flexibility for the farmers in terms of timing and rate of fertiliser 

application, especially in rainfed cropping systems. This strategy enables the famer 

to modulate the synthetic N input depending on seasonal weather conditions and 

reduces investment in fertiliser N at the beginning of the cropping season. This 

aspect is particularly significant since during the early stages of the cropping season 

it is not possible to predict the in-season rainfall patterns, resulting in the 

impossibility to determine the chances for the crop to efficiently adsorb the synthetic 

N applied. Critically, replacing part of the N requirements of the cereal crop with the 

N supplied by legume residues decreases overall fertiliser costs and can increase 

annual profits when adopted in a cereal mono-cropping system.  

Introducing legumes in cereal-based cropping systems is the most agronomically 

viable and environmentally sustainable N management strategy to support future 

intensification of subtropical cereal production in Oxisols. Importantly, this strategy 

can be widely adopted in subtropical regions since it is economically accessible, 

requires little know-how transfer and technology investment, and can be profitable in 

both low- and high-input cropping systems. 
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