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ABSTRACT
Stratospheric ozone represents only a tiny fraction of the atmosphere, yet is vitally important for life on
Earth. Measurements from satellites provided data on the initial decline of ozone in the late 1970s and early
1980s that supported the adoption of the Montreal Protocol, and current observations hint at a potential
recovery. Adequate determination of that recovery requires continuous and, in the case of multiple instru-
ments, overlapping data records. However, most current satellite systems are well beyond their expected
lifetimes, and are large and expensive to build and launch. A new measurement paradigm is needed to
enable cost-effective, sustainable measurements of atmospheric ozone into the 2040s when ozone is expected
to recover.

The Stratospheric Aerosol and Gas Experiment IV (SAGE IV) is an example of an innovative mission that
can sustain a crucial science measurement at a fraction of the costs of traditional, larger missions. SAGE IV
is a solar occultation imager capable of measuring ozone, aerosol, and other trace gas species with the
same quality as previous SAGE instruments (including SAGE III currently on International Space Station
(ISS)), yet takes advantage of recent technological advancements to reduce its overall size, fitting inside a
6U CubeSat bus. This paper describes the SAGE IV instrument.

INTRODUCTION

The Stratospheric Aerosol and Gas Experiment IV
(SAGE IV) is a solar occultation imager concept ca-
pable of measuring ozone, aerosol, and other trace
gas species with the same quality as previous SAGE
instruments (including SAGE III currently on the
ISS). With a goal of providing data continuity for
critical atmospheric constituents but in a sustain-
able and cost-effective manner, the SAGE IV con-
cept adapts successful methods from its predecessors
but takes advantage of recent technological advance-
ments to reduce its overall size, fitting inside of a
6U CubeSat bus. Innovations that have made this
mission possible include greatly improved bus point-
ing capabilities that allow transition from a legacy
solar-scanning technique using a grating spectrome-
ter to imaging the entire solar disk directly, as well as
a telescope that was designed to be thermally agnos-
tic, nearly eliminating optical performance variation
as thermal gradients fluctuate in orbit. The tele-
scope also uses aspheric Zerodur mirrors manufac-
tured using a magnetorheological finishing process,
which has only relatively recently become commer-
cially viable.

In 2017, the National Aeronautics and Space Ad-
ministration (NASA) Earth Science Technology Of-
fice (ESTO) funded an Instrument Incubator Pro-
gram (IIP) project to develop a ground demonstra-
tion prototype called the Stratospheric Aerosol and
Gas Experiment IV (SAGE IV) Pathfinder. Taking
lessons learned from a long heritage of SAGE in-
struments, an innovative SAGE IV solar occultation
imager concept could fill critical atmospheric data
continuity needs in the coming decades, but at an
order-of-magnitude reduction in cost compared to
traditional missions. The goal of this three-year IIP
was to develop an instrument prototype that met
the science requirements of a potential future flight
instrument using a mixture of flight-like and ground
hardware. In order to ensure rapid development to-
ward a future spaceflight mission, all hardware is
readily available (i.e., no research and development
required) and any non-flight hardware used for the
prototype has a clear path to flight. This paper
briefly summarizes the IIP, including the science mo-
tivations, descriptions of each subsystem, and pre-
liminary results from ground tests.
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SCIENCE RATIONALE

Like its predecessors, a SAGE IV flight instrument
will provide continuity for critical data products,
particularly ozone and aerosol in the stratosphere, as
described in the 2017 Decadal Survey for Earth Sci-
ence and Applications from Space1. These observ-
ables play an important role in stratospheric chem-
istry and Earth’s radiation budget and their contin-
ued measurement is necessary to both improve our
understanding of Earth’s atmosphere and model fu-
ture changes.

Ozone is a trace gas in the stratosphere essential
to the existence of life on Earth, because it blocks
cancer-causing, ultraviolet (UV) radiation from the
Sun. Yet earlier measurements revealed an alarm-
ing trend: the rapid decline of stratospheric ozone
and the formation of a seasonal ozone “hole” at the
poles as a result of chemical reactions with anthro-
pogenically sourced chlorine2–4. This discovery ulti-
mately led to the adoption of the Montreal Protocol
by international treaty to curb the use of ozone de-
pleting substances (ODSs) and to the amendment of
the Clean Air Act5 to mandate that NASA monitor
ozone in the stratosphere. Even though observations
show that the Montreal Protocol continues to be ef-
fective such that the Antarctic ozone hole is decreas-
ing in both extent and intensity and global ODSs
are generally decreasing6, recent evidence of local-
ized non-compliance7 reaffirms the need for con-
tinued monitoring. Simulations show that strato-
spheric ozone will not recover (i.e., return to 1980’s
levels) for another few decades and that recovery
time varies by latitude, even revealing a perpetual
decline in the tropics. Considering all of these mo-
tivations, the continued monitoring of stratospheric
ozone is of paramount importance.

Strictly defined as fine particles suspended in a gas,
aerosol is essentially a “catch-all” term for every-
thing that is not a gas in the atmosphere. Aerosols
have many different compositions and originate from
a variety of natural and anthropogenic sources8.
Aerosols that reach the stratosphere are primarily
sourced either from a wildfire-induced pyrocumu-
lonimbus (PyroCb), which appear to be occurring
with increasing frequency, or a large volcanic erup-
tion, which occur randomly. Once there, they can
last for weeks, months, or even years depending upon
the circumstance and reduce the amount of short-
wave solar radiation that reaches the surface. Some
larger injections can change the overall stratospheric
loading levels by several orders of magnitude result-
ing in significant tropospheric cooling (and strato-

spheric warming) and modifying large-scale atmo-
spheric dynamics. For example, the 1991 eruption of
Mount Pinatubo resulted in decreased surface tem-
peratures on the order of a few tenths of a degree
Celsius9 and its overall impact persisted for several
years10. Stratospheric aerosols not only play a ma-
jor role in stratospheric chemistry involving trace gas
species like ozone11, but are also a key component
of the Earth’s radiation budget12,13. In order to en-
sure robust climate modeling and improved weather
forecasting, a continued record of aerosol measure-
ments and a better understanding of aerosol-cloud
interactions is needed.

With the 2017 Decadal Survey listing ozone and
aerosols as “Targeted Observables”, NASA under-
stands the importance of these atmospheric con-
stituents and the need to continue to measure them.
Thus far, data from SAGE instruments form the
backbone of data sets used for ozone trend stud-
ies e.g.,14–16 and also comprise the majority of the
stratospheric aerosol record17. Looking towards the
future, there is only one “Program of Record” (i.e.,
the Ozone Mapping and Profiler Suite / Limb Pro-
filer (OMPS/LP)) to monitor ozone beyond 2024
and no designated plan to provide stratospheric
aerosol continuity. However, proper data continuity
requires precise and stable measurements from more
than one measurement system that can be validated
against already existing measurement systems with
the same or better data quality. A prominently held
view within the scientific community is that a com-
bination of solar occultation and limb-scatter mea-
surements “seems to be the minimum viable satellite
configuration for monitoring stratospheric change in
ozone and shortwave radiative forcing due to volca-
noes”18. Indeed, the repeated deployment of rel-
atively inexpensive SAGE IV sensorcraft can ful-
fill this need in an economically sustainable fashion.
With unknown long-term prospects and the serious
danger of a gap in our ability to maintain proper
measurement continuity, it is imperative that the
development of such a measurement system begin
as soon as possible to ensure deployment while the
necessary validation sources are still operational.

INSTRUMENT DESIGN

The SAGE IV concept originated with a desire to en-
able sustainability in future ozone and aerosol con-
tinuity measurements and, if possible, improve the
overall data quality. Such a capability is achievable
by continuing to use the observation method of so-
lar occultation (i.e., observing the Sun as it rises
or sets through the atmosphere) but with a change
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to 2D spatial imaging from the previous scanning
technique see e.g.,19,20. When it comes to solar oc-
cultation measurements, pointing knowledge is crit-
ical and a great deal of effort is expended to en-
sure the best possible measurement with the cur-
rent SAGE scanning architecture. With solar imag-
ing, pointing knowledge on the solar disk is intrin-
sic, essentially replacing multiple assumptions about
pointing with measurements to enable an improved
data product. Imaging allows for better character-
ization of the light source (i.e., the Sun) and intro-
duces the possibility of new data products. It has
the added benefit of removing massive and/or ex-
pensive tracking mechanisms to shrink the overall
instrument size.

While switching to solar imaging offers many im-
provements, it also requires a complete reconsid-
eration of instrument requirements instead of just
copying them directly from older instruments. With
a history of successful SAGE missions that have
demonstrated the ability to use solar occultation to
measure stratospheric aerosol and trace gases and a
desire to, at a minimum, provide results with the
same data quality, it is logical to inherit the science
requirements from previous SAGE instruments for
use with SAGE IV. At the highest level, these re-
quirements translate into the ability to measure the
different species of interest in the stratosphere at the
desired precision and vertical resolution as shown
in Table 1. While vertical resolution can be fairly
uniform for a solar occultation instrument, precision
varies with altitude and the precisions listed in Ta-
ble 1 are the best theoretically possible that should
be attainable within the stratosphere with this in-
strument.

Table 1: Science Requirements

Species Altitude
Range

Best
Precision

Vertical
Resolution

Ozone 0*–70 km 1% 1km
Aerosol
Extinction 0*–40 km 5% 1km

Water
Vapor

0*–60 km 10% 2km

Nitrogen
Dioxide

10*–50 km 5% 1km

*Stated altitude or cloud-top, whichever is higher

These high-level science requirements were trans-
lated into performance requirements and SAGE IV
was designed to meet each requirement. Charac-
teristics of SAGE IV are shown in Table 2. While
not a science requirement, the overall form factor
of the instrument was considered as part of the de-

sign process. During preliminary design work, it was
determined that key decisions reduced the size of a
potential SAGE IV instrument drastically compared
to previous SAGE instruments and that it could po-
tentially fit within a 6U CubeSat (30×20×10 cm)
for a future flight mission. If possible, such a design
decision would offer significant savings in the cost
of mission architecture and accelerate any follow-on
work for a science mission. This choice would fur-
ther support the concept of offering “sustainable”
continuity science; therefore, the decision to use a
6U CubeSat to introduce size constraints on the in-
strument was made.

Table 2: Instrument Characteristics

Characteristic Specification

Mass (CBE + 30% cont.) 6.4 kg

Power (CBE + 30% cont.) 46.4W

Volume (instrument + bus)
10 cm x 20 cm x 30 cm
(6U CubeSat)

Pointing Accuracy Requirement ±3 arcminutes

Field-of-View 1.0◦

Aperture Size 6.2 cm

Angular Resolution 0.5 arcminutes

Throughout the instrument integration and test pe-
riod, a surrogate chassis (Fig. 1) was used to house
the telescope, filter wheel assembly, and detector
assembly. The chassis is slightly larger than a
6U CubeSat bus to allow for working room and
has feedthrough connections to all of the electronics
that are housed externally, allowing the system to
be largely sealed to outside dust and debris. There
are also gas inlet and outlet ports that are connected
to a nitrogen purge system. The gas system main-
tains a slight positive pressure of ≈100% N2 in order
to allow the detector to be cooled to temperatures
below the ambient dew point. Descriptions of the
individual subsytems are included below.

Detector

For SAGE IV, the availability of detectors was a lim-
iting factor. The large Signal-to-Noise Ratio (SNR)
requirement is in a shot-noise-limited regime (i.e.,
where the noise follows Poisson statistics and is
equivalent to the square root of the signal) and so
to achieve a SNR of ≈ 2000, a pixel on the detec-
tor would need a minimum well-depth of 4 million
electrons over the range of linearity. However, to
give margin on the linearity requirement and avoid
saturating the detector, a requirement of a mini-
mum pixel well-depth of 5 million electrons was used.
Given a desired spectral range in the UV/VIS/NIR,
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the use of silicon as the photosensitive substrate is
the most logical choice and has the added benefit
of a relatively low dark current (compared to the
signal) at ambient temperatures. This requires sim-
ple temperature control for stability during the few
minutes encompassed by an occultation, instead of
cryocooling, and is easily achievable with the use of a
Thermoelectric Cooler (TEC). The sensitivity of the
measurement and the fact that SAGE IV images re-
quires that each pixel on the detector be individually
read out, instead of the “bucket brigade” style on
a traditional Charge-Coupled Device (CCD); there-
fore, an additional requirement was that the detec-
tor be a PIN diode array with a readout capabil-
ity similar to those in Complementary Metal Ox-
ide Semiconductor (CMOS) devices. Lastly, a more
simple requirement was that the detector needed to
be a two-dimensional array of square pixels with at
least 120 by 120 pixels in each dimension (from field
of view (FOV) requirements). The combination of
these requirements on the detector left few commer-
cially available options. The CHROMA 640, a hy-
brid, visible-infrared Focal Plane Array (FPA) im-
ager from Teledyne Imaging Sensors (TIS) was com-
petitively selected as the detector for the IIP, and
the flight detector will be selected through a compet-
itive Government procurement process from vendors
whose products meet the requirements.

Figure 1: Surrogate Chassis used for integra-
tion and ground testing

The CHROMA 640 FPA image capture sequence is
initiated through the use of an external control mod-
ule known as Focal Plane Electronics (FPE). The
FPE interfaces to the FPA to capture data and pro-
vides captured images via a CameraLink interface
to user hardware. The CameraLink interface pro-
vides the data interface for receiving images as well

as a serial interface for controlling the FPE and FPA
settings via register reads and writes. The FPE sup-
plies the necessary analog and digital bias voltages
to the FPA, performs the analog-to-digital converter
(ADC) conversion of the Readout Integrated Circuit
(ROIC) outputs, and provides the system clock. The
FPE system clock can be configured to operate at a
10 megahertz (MHz), 1 MHz, or 100 kilohertz (kHz).
All timing and auxiliary power is generated inter-
nal to the ROIC further simplifying the image cap-
ture sequence. The ROIC generates the frame and
data valid signals, synchronized with the input sys-
tem clock, to be used by the FPE to read the ROIC
analog outputs and capture the detector image. The
start of the integration and read state machines in
the ROIC is controlled by an external Frame Syn-
cronization (FSYNC) signal or via serial command.
SAGE IV firmware triggers the FSYNC signal based
on the filter wheel position such that images are cap-
tured when each filter in the wheel is aligned with
the instrument optical path. The baseline configu-
ration captures a single image at each filter position
as the filter wheel turns at 30 revolutions per minute
(RPM).

The SAGE IV ground demonstration unit’s detec-
tor requires both cooling below the ambient environ-
ment and stability to achieve its science goals. The
relevant thermal requirements and environments for
the detector are captured in Table 3. A TEC was
determined to be the best option to provide cooling
to the detector based on the requirements. Laird�

model CP10-31-05 was selected for the design pri-
marily because it had a short lead time, a geom-
etry that meets requirements, and 10 units could
be ordered easily. The geometry and volume con-
straints of the instrument assembly necessitate a
flexible thermal strap to transfer the waste heat from
the TEC to the surrogate chassis.

A molybdenum heat sink was bonded to the de-
tector using Scotch Weld 2216 epoxy. Molybde-
num was chosen because its coefficient of thermal
expansion (CTE) is very close to the CTE of the ce-
ramic (alumina) detector case, and it has an accept-
ably high thermal conductivity for this application.
The matched CTE reduces deformation and stress
on the detector when cooled. The 2216 epoxy was
chosen for its relatively good adhesion to gold; the
heat transfer pad on the detector was gold coated
to allow soldering if needed. A lap shear test was
conducted at Goddard Space Flight Center (GSFC)
to compare 2216 lap shear strength when bonded to
gold or bare aluminum. Shear strength results for
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gold were about half of what they were for bare alu-
minum, however the total strength was deemed suf-
ficient for this application. The molybdenum block
serves as the mechanical and thermal connection to
the TEC and heat sink strap. Control of the TEC
is described in the AVIONICS section.

Table 3: Detector Requirements

Requirement Value

Detector Temperature 10◦C

Detector Temperature Stability 0.1◦C

Detector Heat Dissipation 0.2W to 0.3W

Detector Focus Tolerance ± 8µm

Detector X&Y Tilt Tolerance < 0.039◦
(0.68mrad)

Detector CTE 6µm/(m ·K)

Expected Ambient Temperature Range 10◦C to 30◦C

A drawing of the final detector thermal control de-
sign is shown in Figure 2 and a picture of the as-built
detector assembly is shown in Figure 3.

Optical Layout

As with most instruments, the telescope design must
be tailored for its specific use. The solar disk is
≈ 32 arcminutes across and the science FOV encom-
passes ≈ 40 arcminutes. To add margin for point-
ing uncertainty for a future on-orbit mission, the
total FOV was required to be 1 degree across. With
the detector already chosen, the telescope needed to
ensure that 0.5 arcminutes corresponded to 30 mi-
crons at the focal plane (i.e., the pitch of a sin-
gle pixel on the detector). Also, in order to make
use of spectral filters, the telescope had to afford
a location where collimated light could be passed
through the filters. Beyond these requirements, care
was taken during the design process of the telescope
to ensure the best possible performance. Solar oc-
cultation measurements routinely span 4–5 orders
of magnitude and switching from scanning to imag-
ing meant that range would be contained in a single
snapshot. The dynamic range in the observations
means that mitigating stray light (i.e., image ghost-
ing, out-of-field stray light, and in-field stray light)
is of paramount importance. Furthermore, the tele-
scope needed to maintain these performance require-
ments through the thermal environment that could
be encountered on-orbit. Lastly, like previous SAGE
instruments, the optical train would require an at-
tenuator to block out the majority of light from the
Sun to prevent saturating the detector, but this is
performed as the last step to optimize the through-

put of the system.

Figure 2: Final Detector Thermal Control
Design

Figure 3: Final Detector Assembly

Key requirements that drove the optical design of
the multispectral imager include: (1) image qual-
ity, measured as encircled energy at the focal plane;
(2) out-of-field stray light rejection; (3) supression of
ghost images from Fresnel reflections; and (4) ease of
integration of a filter wheel with narrow-band filters
to perform multispectral measurements. As image
quality and encircled energy are a function of in-
field stray light, only unobscured systems were con-
sidered with the largest reasonable aperture. It is ex-
pected that there will be meaningful temporal and
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spatial thermal gradients during operation caused
by periodic solar flux and the small size of the host
spacecraft. The selection of materials for each of
the primary component types (metering structure,
mounts, and optics) is critical to maintaining align-
ment through the range of operating conditions, as
well as ensuring the structural survivability during
launch. Exhaustive materials trade studies were per-
formed to understand which metering structure ma-
terial would perform best, and ultimately a carbon
fiber metering structure, with Invar-36 mounts and
zerodur® mirrors was selected.

The amount of stray light incident on the FPA be-
cause of in-field or out-of-field scattering and ghost
reflections was quantified to verify that it would not
be strong enough to corrupt the science image. Mea-
surements obtained at the Space Dynamics Labora-
tory (SDL) stray light testing facility went extremely
well, with good comparison to conservative simula-
tions and modeling. The solar rejection filter (SRF)
ghost showed up where expected and agreed with
the model, with minor variations in magnitude. Be-
cause of the success of the measurements and their
agreement with simulation, the model has been val-
idated, thus eliminating the need for expensive test-
ing as long as good qualification of components is
achieved. Encircled energy was measured to be be-
tween 92.4% and 94.2% over the image plane, which
exceeded requirements and was within the predicted
as-built performance range, including manufactur-
ing tolerances.

A model of the SAGE IV satellite within a 6U bus is
shown in Figure 4. The metering structure is shown
in black, and the optical path can be traced from
the aperture in the top right corner through the fil-
ter wheel (filters shown in blue) and ending on the
detector in the top left corner of the bus. The lower
2U of volume is reserved for spacecraft bus avionics.

Filter Wheel Assembly (FWA)

The imaging technique necessitated the use of spec-
tral interference filters. A similar approach was used
by the highly successful SAGE II instrument during
its 21 years of operation. For SAGE IV, the deci-
sion was made to incorporate a filter wheel into the
design. The wheel itself would need to fit within a
CubeSat framework (i.e., / 10 cm with margin), but
would ideally be as large as possible to incorporate as
many filter locations as possible to maximize science
value. To achieve science and onboard characteriza-
tion goals (e.g., dark current and flat-fielding), the
filter wheel would need at least 9 locations. With a

sampling frequency requirement of one image at each
wavelength of interest every two seconds, the wheel
would need to spin at 0.5 Hz. The size of each filter
is a coupled requirement with the telescope design
and detector timing to allow for adequate integra-
tion time through the clear aperture of each filter as
the filter wheel rotates without obscuring the light
or introducing vignetting. Lastly, to ensure detector
integration is appropriately timed, the rotational lo-
cation of the filter wheel would need to be known to
within the timing limits of the ability to readout the
detector.

The SAGE IV FWA is designed to house eight trans-
missive bandpass filters and filter/diffuser combina-
tions along with one opaque flat mirror as required
to perform the SAGE IV science. The FWA is de-
signed to permit filters and diffusers to be changed
throughout the IIP project, allowing filters from dif-
ferent vendors and filter/diffuser combinations to be
tested. The filter wheel size is limited by the instru-
ment chassis size and is restricted by the placement
of the telescope and detector. The FWA mounts
to the motor assembly, which nominally turns the
filter wheel at 30 RPM and measures angular posi-
tion with an encoder. The FWA is designed to place
each of the nine elements into the optical path as
the filter wheel turns. The filter wheel and motor
are supported by the motor mount, which holds the
full assembly at a 7.5◦ angle from the chief ray to
direct Fresnel reflections into the beam dump. The
assembled filter wheel is shown in Figure 5.

Figure 4: Illustration of SAGE IV 6U satellite
concept
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Figure 5: Filter Wheel with Filters and Dif-
fusers

Each of the nine elements in the filter wheel serves
the purpose either as a science channel specifically
chosen to observe a target species or as a character-
ization channel chosen to enable characterization of
the instrument’s performance during routine opera-
tions (e.g., as we would expect on-orbit for a future
flight mission). For the purpose of the IIP, more
combinations of filters and diffusers than can simul-
taneously fit in the wheel were procured to facil-
itate testing of different combinations. To enable
measurements of detector dark current during sci-
ence observations, one spot within the wheel has
a counter-bore with a flat mirror inserted. The
counter-bore ensures that no light passes through
and the mirror is representative of the interference
filters that reflect the majority of the light back into
the telescope beam dump. With a “light block” as
an element in the filter wheel, a dark current image
can be taken as part of the standard 0.5 Hz data col-
lection and potential thermal transient effects can be
observed, characterized, and removed during science
data processing. The spectral locations of the band-
pass filters used for the IIP are essentially copied
from those used for the SAGE II mission, but are
not completely representative of those that would
be used for a future flight mission. Instead, they
were chosen based on their utility in characterizing
instrument performance in the lab and during final
Sunlook testing, and are detailed in Table 4.

Table 4: Bandpass Filters

Center Wave-
length

Bandwidth Purpose

386 nm 15 nm Aerosols / Blue-end
Response

448 nm 2 nm Nitrogen Dioxide

452 nm 2 nm Nitrogen Dioxide

525 nm 15 nm Aerosols

600 nm 15 nm Ozone

1020 nm 15 nm Aerosols / Red-end
Response

In addition to the “light block”, diffusers are
the other characterization element within the fil-
ter wheel. Any time two (or more) pixels on a
detector look at different spatial scenes and need
to be compared, a pixel-to-pixel cross-calibration or
“flat-fielding” correction will need to be applied to
the data to account for spatial non-uniformities in
pixel responsivity. This is a standard step in im-
age processing that is often not required for sim-
ple pushbroom spectrometers. While flat-fielding is
easily characterized in the lab, this behavior will
change in orbit from radiation damage and may
also be susceptible to minor changes with temper-
ature. As such, it is necessary to perform this
kind of instrument characterization in space. For
a highly sensitive measurement such as solar occul-
tation, observing the solar disk through a diffuser
can provide a sufficiently uniform source to per-
form pixel-to-pixel cross-calibrations. Incorporating
such a characterization measurement into the filter
wheel has the added bonus of observing how pixel
response differs with changes in the thermal profile
of the spacecraft through extended exoatmospheric
measurements. Such thermal transients have been
shown to be potentially problematic and difficult to
characterize for previous SAGE instruments. Sev-
eral engineered diffusers of 1, 2, 5, and 10 degree
divergence angles were procured for testing as part
of the IIP.

A trade study to investigate motor options was per-
formed early in the SAGE IV IIP project. A spec-
ification for the desired motor was developed from
the inertia of the filter wheel, the desired 30 RPM
rotational speed, environmental characteristics, and
the motor needing a path to flight on a Low Earth
Orbit (LEO) CubeSat. Because the filter wheel in-
ertia was low, a direct drive solution was desired.
A Phytron motor was selected and purchased for
the IIP demonstration with a path to flight solu-
tion. The Phytron motor purchased for SAGE IV
is vacuum compatible and included a resolver. The
Phytron stepper motor and resolver met all motor
requirements and fit in the available volume allo-

Obland 7 34th Annual
Small Satellite Conference



cated in the instrument chassis.

Avionics

The SAGE IV IIP avionics design is implemented
in 3 subsystems (Camera Controller, Motor Con-
troller, and Instrument Controller) using Commer-
cial Off-the-Shelf (COTS) development boards to
keep avionics costs low for the IIP effort while pro-
viding a path to flight. The selection of the in-
strument controller and motor controller develop-
ment boards provides a path to flight utilizing a
Microsemi RTG4 for the flight design and maxi-
mizes the re-use of software and firmware developed
or acquired for the IIP. The instrument and motor
controller firmware were combined into a single de-
sign for demonstration and a digitizer board devel-
oped by NASA GSFC was integrated into the instru-
ment controller to replace the camera controller elec-
tronics and detector Focal Plane Electronics (FPE),
integrating all SAGE IV subsystems into a single
design for demonstration in preparation for flight.
Additional peripherals needed to complete the in-
strument IIP avionics were developed in-house at
NASA LaRC. These developments include an elec-
tronic board stack for the instrument controller pro-
viding digital interfaces (RS-232, RS-422, DIO) for
communications with other subsystems, housekeep-
ing voltage and temperature monitors, and a TEC
controller for governing the detector temperature.

The camera controller avionics consists of a Xil-
inx ZC702 Evaluation Board with a Sundance Dig-
ital Signal Processor (DSP) board to interface with
the Teledyne detector via a CameraLink inter-
face. The ZC702 System on a Chip (SoC) pro-
vides programmable logic combined with two ARM®

Cortex�-A9 MPCore� processors with common pe-
ripherals. Only one of the ARM processors is used.
The embedded software handles the overall camera
controller processes, while the programmable logic
supports the higher speed state machines needed to
implement high speed interfaces such as the Cam-
eraLink and Ethernet interfaces. The CameraLink
interface is used for capturing detector images from
the Teledyne FPE as well as providing a command
and telemetry interface to the FPE via the embed-
ded serial interface.

A MicroSemi SmartFusion2 Dual-Axis Motor Con-
trol Kit is used as the stepper motor controller
for turning the filter wheel. The SmartFusion2
SoC provides programmable logic combined with an
ARM® Cortex�-M3 processor with common periph-
erals. The embedded software handles the overall

motor controller processes, while the programmable
logic supports the higher speed state machines and
controllers needed to implement the stepper motor
controller. The motor controller provides for step-
per motor control and encoder feedback for moni-
toring the filter wheel position. Custom firmware
was developed to signal the instrument controller at
specified encoder positions providing an indication
when the filter wheel is in position to capture an
image. This signal is used by the instrument con-
troller (combined with the arm signal from the cam-
era controller) to generate the signals to capture an
image.

The main instrument controller is developed us-
ing a MicroSemi SmartFusion2 Advanced Develop-
ment Kit. The SmartFusion2 SoC is of the same
family as the one used for the motor controller
providing programmable logic combined with an
ARM® Cortex�-M3 processor with common periph-
erals. The embedded software handles the overall
instrument control. The programmable logic imple-
ments custom firmware needed to control the other
subsystems. The firmware interfaces with custom
electronics boards required for communications with
other subsystems, housekeeping measurements, and
a TEC controller. The TEC controller interfaces
to a TEC for cooling or heating the detector. The
SmartFusion2 was chosen for the IIP since it has a
path to flight using the MicroSemi RTG4.

The SmartFusion2 Advanced Development Board
interfaces to other subsystems via a set of custom
electronics. The stack electronics provided for ex-
pansion where the SAGE IV TEC controller was
added to the top of the stack and integrated into
the instrument controller. The TEC controller pro-
vides closed loop temperature control for the detec-
tor. The TEC mounts to the molybdenum mounted
to the rear of the detector. The TEC controller
provides Pulse Width Modulation (PWM) control
of the TEC power. A Resistance Temperature De-
tector (RTD) bonded to the molybdenum block is
used as the sensor for closed loop control. The
Proportional–Integral (PI) controller is implemented
in the SmartFusion2 programmable logic interfacing
through the instrument stack to the TEC board and
is controlled by the embedded software. The embed-
ded software provides the capability to set controller
gains, temperature setpoints, modes of operation,
and select one of the two RTD sensors inputs (TEC
board RTD or Housekeeping board RTD). The em-
bedded software also collects health and status data
including onboard voltages for TEC controller oper-
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ation.

The instrument controller, motor controller, and
camera controller are integrated into an avionics
chassis for the IIP. The integrated avionics is de-
signed to be portable in order to support both the
laboratory testing and the outdoor Sunlook test.

Firmware & Software

Firmware development for the SAGE IV IIP instru-
ment is focused on the Instrument Controller Board
(ICB) FPGA. The ICB FPGA contains most of
the interfaces and control systems for the instru-
ment. The Motor Control Board (MCB) FPGA
contains only a Universal Asynchronous Receiver-
Transmitter (UART) interface to the ICB, a Mi-
crosemi IP core for stepper motor control, and cus-
tom firmware for monitoring the encoder position
to signal when the motor reaches one of 9 specified
positions. Likewise, the Camera Controller Board
(CCB) FPGA contains a UART interface to the
ICB, IP cores for Ethernet and CameraLink inter-
faces, and custom control firmware for controlling
the capture of detector images.

The primary goal of the SAGE IV IIP software de-
velopment effort was to allow for a successful ground
demonstration of the instrument while allowing for
a path-to-flight for many of the developed embed-
ded software components. It is important to note
that it was deemed out-of-scope to develop flight-
like mission operations Ground Support Software
(GSS) for the IIP. Therefore, the majority of the
effort for developing path-to-flight software compo-
nents was focused on the embedded software rather
than the GSS. This, however, does not preclude the
team from utilizing the GSS components for future
lab testing and development for a flight project.

The design of the SAGE IV IIP embedded software
is spread across three boards (ICB, MCB, and Im-
age Processing Board (IPB)). These boards com-
municate via serial UART interfaces, utilizing the
same interface software for simplicity and modular-
ity. This design choice was made by the hardware,
firmware, and software teams because it provided
the quickest route to a functioning instrument while
still allowing for the development of path-to-flight
software. With minimal additional effort, the soft-
ware was able to be written such that each module
ports easily to a single board once the hardware and
firmware components are developed.

The ICB software controls the SAGE IV IIP instru-

ment. The MCB software handles the command and
control of the stepper motor. The IPB software han-
dles the image data processing for the instrument.
FreeRTOS was chosen as the operating system for
the embedded software components for several rea-
sons. Foremost, FreeRTOS is a lightweight, open
source, and widely used Real-Time Operating Sys-
tem (RTOS). Additionally, the tooling, documen-
tation, and resources for FreeRTOS are ample and
allow for quick development of the necessary em-
bedded software components. Lastly, FreeRTOS has
flight heritage21 and is intended to be the operating
system of choice for a future flight project. This se-
lection, however, does not preclude the team from
changing operating systems if desired, as a porting
effort between RTOSs would be feasible due to large
consistencies between RTOS Application Program-
ming Interfaces (APIs).

For the SAGE IV IIP, basic operations of the in-
strument require ground support software that, at a
minimum, provides a means to visualize instrument
telemetry and construct instrument commands. The
software team chose to utilize the popular and open
source application COSMOS available from Ball
Aerospace to fulfill these needs. In addition to these
basic features, COSMOS offers, the ability to graph,
log, develop scripts, automate tests, create docu-
mentation, and build custom displays. Utilizing this
software sped up the software team’s development
effort significantly and offered the team with various
tools out-of-the-box that would not have otherwise
been available.

In addition to basic commanding and telemetry, op-
eration of the instrument requires real-time display
and logging of the science image data. For this, uti-
lizing COSMOS was not possible because COSMOS
does not natively support displaying images. To
meet this requirement, the software team chose to
build a lightweight custom image processor utilizing
Python. The application logs the images and asso-
ciated metadata in .raw and .png format for science
post-processing and visualization purposes respec-
tively.

Satellite Bus

Blue Canyon Technologies (BCT) was competitively
selected as a partner for the IIP instrument and
the SAGE IV baseline bus design is the BCT XB6
6U CubeSat bus. The bus for the flight instrument
will be competitively selected through a Government
procurement process and must meet the SAGE IV
mission requirements for power, available instrument
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volume (the SAGE IV instrument requires approxi-
mately 4U) and pointing accuracy (3 arcminutes).

Launch Vehicles

As a 6U CubeSat, there are expected to be nu-
merous rideshare opportunities (e.g., SpaceX, NASA
CubeSat Launch Initiative) or even low-cost dedi-
cated launch opportunities (e.g., Rocket Lab) when
SAGE IV is ready to launch, so no specific launch
vehicle has been designated. The ideal orbit for a
SAGE IV demonstration mission would be an “ISS-
like” orbit (mid-inclination, 500 km altitude) that
allows for maximum overlap with the SAGE III/ISS
orbit, and therefore, maximum number of valida-
tion opportunities. However, other orbit inclinations
would be acceptable assuming the orbital lifetime al-
lows for an acceptable number of comparison oppor-
tunities with SAGE III/ISS.

PRELIMINARY TEST RESULTS

After the instrument was fully integrated, system
checkout and characterization testing occurred in
the laboratory. In order to evaluate operational per-
formance in a relevant environment, the SAGE IV
IIP instrument was positioned outdoors on an equa-
torial mount as shown in Figure 6. The motorized
equatorial mount provides seemless tracking and po-
sitioning with respect to the Earth’s axis of rotation.
Closed loop control of the system from the SAGE IV
operational software automatically maintained the
Sun in the instrument FOV. Once aligned, the in-
strument was able to track the Sun by rotating along
a single axis, allowing for the straight-forward col-
lection of images of the Sun. Tests were performed
on cloudfree, sunny days at elevated heights to re-
duce the effects from obstructions. While the pri-
mary purpose of the Sunlook test was to demon-
strate the instrument’s ability to capture images in
full view of the Sun, it also presented an opportu-
nity to assess the integrated system performance (i.e
optical system, electronic hardware, and the under-
lying software) in dynamic conditions outside of the
laboratory. It also enabled analysis of images with a
solar target as opposed to the calibrated light source
used in the lab. The resultant images are then com-
pared to those captured in a laboratory setting to
further examine any deviations in SNR values. Fur-
ther analysis was performed to ensure that the target
image was distortion free. Ideally, the target image
should be absent of any distortions from the appar-
ent mechanical vibrations of optical components or
external vibrations to the system.

Each test image was attempted to be captured at

80% well capacity or approximately 52000 DN. The
images are captured during continous revolution of
the rotating optics of the filter wheel (known as
Science mode operation), thus the integration time
must be adjusted to maintain SNR across each
frame. When active tracking was not on, the Sun
moves in the instrument’s field of view as the Earth
rotates. To account for this motion, a centroiding
routine was developed to find the center of the image
within the field of view. Once the centroid is deter-
mined, this point is then aligned with each successive
frame and averaged. An example of this centroid
averaging is shown in Figure 7. Proper centroiding
enables corrective pixel averaging of the Sun in tem-
poral space.

Sunlook testing was interrupted by COVID-19 re-
strictions. The data set that was able to be obtained
is being analyzed and further testing will continue
when possible.

Figure 6: Chassis Integrated onto Equatorial
Mount
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Figure 7: Example of mean Sunlook test im-
age after solar centroiding. Note that the op-
tical axis is not aligned to the center of the
detector.

CONCLUSIONS

The Stratospheric Aerosol and Gas Experiment IV
(SAGE IV) is a solar occultation imager concept ca-
pable of measuring ozone, aerosol, and other trace
gas species with the same quality as previous SAGE
instruments (including SAGE III currently on the
ISS). A ground-demonstration unit has been built
and tested, meeting technical requirements that ver-
ify the ability of SAGE IV to meet measurement
requirements for many important science objectives
once in orbit. SAGE IV takes advantage of current
technologies and a novel solar occultation imaging
architecture to reduce its overall size to fit within a
6U CubeSat bus. SAGE IV provides a sustainable
solution for monitoring these key constituents of the
atmosphere for the decades needed to verify ozone
layer recovery to 1980s levels and beyond, maintain-
ing vitally important atmospheric data records dur-
ing that time.
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Kurylo, E. Kyrölä, M. Laine, S. T. Leblanc,
J.-C. Lambert, B. Liley, E. Mahieu, A. May-
cock, M. de Mazière, A. Parrish, R. Querel,
K. H. Rosenlof, C. Roth, C. Sioris, J. Stae-
helin, R. S. Stolarski, R. Stübi, J. Tammi-
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