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ABSTRACT 

Long-Wave Infrared (LWIR, wavelength > 8 um) polarimetric measurements can be used to characterize space 

objects. A simulation of a sensor for collection of LWIR polarimetric signatures of space objects has been assembled 

using two software packages: MATLAB, and FRED. A statistical approach developed for unresolved visible light 

polarimetric observations of GEO satellites has been adapted for unresolved LWIR polarimetric observations of LEO 

satellites, showing both that well-known objects can be recognized and anomalies--for example, a major change in 

shape due to the presence in the scene of another object--can be detected. Though the satellites are effectively point 

sources, the aggregate polarization values across many measurements can be used to differentiate objects of different 

shape and material composition. 

INTRODUCTION 

The objective of the project, a part of which is 

documented here, is to explore a new avenue for space 

situational awareness (SSA). Today, SSA is maintained 

through a combination of ground sensors (radars, 

telescopes) and voluntary sharing of telemetry and other 

information with various organizations that maintain 

active catalogs of space objects1,2. The present work 

seeks to demonstrate, initially through modeling and 

simulation, the characterization of low Earth orbit (LEO) 

satellites by a long-wave infrared polarimetric imaging 

system. 

Passive long-wave infrared polarimetry for man-made 

object detection has been the subject of numerous studies 

since at least the 1990s3,4,5. The advantage of long-wave 

infrared for these purposes is that it measures primarily 

the target’s self-emission, though emission by nearby 

sources (e.g. low clouds), and thus reflection off the 

target, can interfere. This occurs because the reflected 

light is polarized perpendicularly to the emitted light, 

resulting in reduced values for S1 and S25,6, and thus a 

reduced signal-to-noise ratio. For space object detection 

this is not a concern, as space objects are generally not 

close to each other, and solar radiation incident on the 

target (and resulting reflected radiation) in the 8.2-9.2 

micron band is an order of magnitude or more less than 

the self-emission of the target. Moreover, there are few, 

if any, competing background sources of polarized 

thermal emissions in space. The primary polarized 

emission sources are interstellar dust particles emitting 

in the 10+ micron range7. 

There has also been some work done concerning long-

wave infrared (without polarization) for detection of 

space objects, beginning in the late 1980s. Targets 

included geosynchronous satellites, which could be 

detected but not resolved8.9.10. Studies have also been 

conducted using space based LWIR sensors to detect and 

characterize space objects11. In both cases detection was 

feasible during both daytime and nighttime. Another 

more recent study concluded that a moderate aperture 

telescope system would suffice to detect unresolved 

LEO objects using modern LWIR detectors12. The 

tradeoff between visible light collection and LWIR is 

one of resolution against collection opportunities. When 

using a long-wave IR sensor, the target is its own source 

of illumination, where a visible light sensor requires an 

external source of illumination (e.g. the Sun). However, 

for equivalent optical system, the spatial resolution of the 

LWIR sensor is going to be about 18x coarser than that 

of a visible light sensor.  

Long-wave infrared polarimetry has been demonstrated 

for man-made object detection in a variety of terrestrial 

and maritime settings3,4,13. In addition, visible spectrum 

polarimetry has been demonstrated for detection and 

identification of satellites in geosynchronous orbit 

GEO14,15. Speicher used visible light polarimetry to 

detect and identify GEO satellites. The experimental 

setup only measured S0 and S1, and due to the dimness 

of the targets required an integration time of ~20 

seconds. Repeated observations over time revealed 

differences in signature between individual satellites, 

both between different types of vehicles, and between 

vehicles of the same design, but of different age. The 

latter effect is of particular interest, as it is the material 

properties of the surface layer (e.g. paint) that drive the 

complex index of refraction and thus the polarization 
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signature4. Those material properties change over time 

due to exposure to the space environment15. Further 

work has shown that the superposition of polarization 

signatures of individual components (e.g. dish antenna, 

bus, solar panels) creates a composite signature for 

unresolved objects16, and that statistical measures can be 

used to tell objects apart17.  

Fundamentally, the polarization state of a light beam can 

be described by the Stokes vector S. The Stokes vector 

is based on six flux measurements using ideal polarizers 

in front of a radiometer: horizontal (PH), vertical (PV), 

diagonal (45 and 135 degrees; P45 and P135, respectively), 

and left (PL) and right circular (PR)18. The Stokes vector 

is then defined as 

𝑺 = [

𝑠0
𝑠1
𝑠2
𝑠3

] = [

𝑃𝐻 + 𝑃𝑉
𝑃𝐻 − 𝑃𝑉
𝑃45 − 𝑃135
𝑃𝑅 − 𝑃𝐿

] (1) 

where s0, s1, s2, and s3 are the Stokes vector components 

in units of watts per meter squared. The Stokes vector 

represents an average over area, solid angle, and 

wavelength18. From the Stokes vector four common 

polarization parameters can be determined19: 

Flux 𝑃 = 𝑠0 (2) 

Degree of 

polarization  𝐷𝑂𝑃 =
√𝑠1

2 + 𝑠2
2 + 𝑠3

2

𝑠0
 (3) 

Degree of linear 

polarization  𝐷𝑂𝐿𝑃 =
√𝑠1

2 + 𝑠2
2

𝑠0
 (4) 

Degree of circular 

polarization  
𝐷𝑂𝐶𝑃 =

𝑠3
𝑠0

 (5) 

The bulk of the materials encountered–dielectrics, 

metals, and thin films (coatings, paints)–have negligible 

rates of circular polarization18, reducing the value of 

DOP and DOCP measurements. While DOLP plays a 

major role in detecting man-made objects in maritime 

and terrestrial scenes and can serve the same purpose in 

a space object detection scheme, it can only provide an 

indication of the presence of an object. To take a step 

further and identify that object one needs to consider the 

elements of the Stokes vector, particularly s0, s1, and s2.  

In a series of papers16,17, Beamer, Abeywickrema, and 

Banerjee demonstrated polarimetry as a useful tool in 

differentiating space objects from one another, 

especially unresolved objects. They found that the bulk 

of optical approaches to space object detection and 

characterization focused on spectral characteristics 

(wavelength and intensity), with only a small proportion 

investigating polarimetry, and primarily in the visible 

portion of the spectrum. Polarimetry enables 

discernment of man-made objects from natural 

background, because target qualities, such as sharp edges 

and regular surfaces lend themselves to polarimetric 

study. Measurements were made in a laboratory 

environment using a collimated broadband visible 

spectrum light source and a detector with a wire grid 

polarizer and a quarter wave plate to determine the 

Stokes vector parameters. Experiments included 

moderately complex target geometries resembling 

simple spacecraft: bus, solar panel, dish antenna17.  

Adapting the work of both Beamer et al.17 and Dao et 

al.20, polarization signatures can be investigated in a 

manner analogous to Johnson photometry, which 

introduces a set of color spaces based on the relative 

intensity of four color bands (Blue, Visible, Red, 

Infrared): B-V, B-R, B-I, V-R, V-I, R-I. Here then the 

four Stokes parameters S0, S1, S2, S3, can also be paired 

into six unique color spaces: 𝑆1 𝑆0⁄ , 𝑆2 𝑆0⁄ , 𝑆3 𝑆0⁄ , 

𝑆2 𝑆1⁄ , 𝑆3 𝑆1⁄ , and 𝑆3 𝑆2⁄ . Given the much lower 

intensity of circularly polarized light in most 

circumstances16,18, the terms involving 𝑆3 are dropped. 

This approach then yields three polarization vector-

vector spaces: 𝑆2 𝑆0⁄  vs. 𝑆1 𝑆0⁄ , 𝑆2 𝑆1⁄  vs. 𝑆1 𝑆0⁄ , and 

𝑆2 𝑆1⁄  vs. 𝑆2 𝑆0⁄ . Multiple observations of each object 

from different angles are plotted on a 2-D graph, along 

with the mean position on the plot for each object. Using 

a non-Euclidean distance measure, the distance between 

the mean positions of the observation clusters of 

different objects can be determined. This distance is a 

measure for how different one object, i.e. one set of 

measurements, is from another in polarization space16.  

Some early work used the Mahalanobis distance16, which 

focuses on the distance between the mean points of two 

distributions and considering the average covariance of 

the two distributions. However, it is better suited to 

comparison of individual points with a distribution, 

rather than comparison of two distributions to each other. 

A more suitable measure is the Bhattacharyya distance 

(BD), which incorporates a modified Mahalanobis 

distance in its first term, but whose second term gives 

additional weight to the covariances of each 

distribution20:  

𝐵𝐷 =
1

8
(�̅�1 − �̅�2)

𝑇 (
Σ̿1 + Σ̿2
2

)

−1

(�̅�1 − �̅�2)

+
1

2
ln

(

 

|Σ̿1 + Σ̿2|
2

2 ∙ √|Σ̿1| ∙ |Σ̿2|)

  

(6) 

In the last term on the right hand side of equation (6), 

|Σ̿𝑛| is the Frobenius norm of the matrix Σ̿𝑛. The 
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Frobenius norm is used instead of the determinant, 

because the former gives a better estimate of the 

maximum excursion of a vector during a linear 

transformation using the matrix, even if the determinant 

of the matrix is zero21. �̅�1 = (𝑥𝜇1, 𝑦𝜇1) is the mean 

vector of the first class of vectors �̅�1 = {𝑥𝑖1, 𝑦𝑖1} being 

compared, and �̅�2 = (𝑥𝜇2 , 𝑦𝜇2) is the mean vector of the 

first class of vectors �̅�2 = {𝑥𝑖2, 𝑦𝑖2}, each representing 

the “center of mass” of its respective distribution17. 

Σ̿1and Σ̿2 are the 2×2 covariance matrices of the 

measurement vectors �̅�1 and �̅�2, respectively. 

   

TOOLS 

Optical Photonics: FRED 

FRED Optical Engineering Software simulates the 

propagation of light through any optomechanical system 

by raytracing. It provides a multitude of design and 

analysis tools and is used across a broad set of 

applications, including stray light analysis, lasers, 

imaging systems and non-imaging optics, and thermal 

imaging. FRED enables rapid virtual prototyping and 

real-time visualization and editing of complex optical 

systems. It also accurately simulates virtually any type 

of light source. Finally, it allows for detailed surface 

definitions, including different materials, scatter models, 

and thin film coatings22. 

Data processing: MATLAB 

MATLAB was developed in the 1970s as a linear algebra 

tool, written in Fortran. It could perform a limited 

number of functions and had some ability to output 

graphics. By the early 1980s it had been ported to C with 

expanded functionality and a more user-friendly 

interface. It was rolled out as a commercial product by 

MathWorks in 198423. Since then, The core functionality 

has been further expanded with dozens of tool boxes for 

everything from signal processing and image processing 

to control systems to statistics and optimization, and 

more24. The primary MATLAB functionality used in this 

research is array manipulation. MATLAB readily ingests 

the text files generated by FRED and reconditions the 

data for use in Excel for visualization purposes. 

 

MODELING AND SIMULATION 

In earlier work presented elsewhere, satellites of 

different shape and material composition were compared 

both in the visible spectrum and in LWIR. These initial 

simulations provided a baseline for the magnitude of the 

statistical distances between different vehicles25. 

Of particular importance to the present research is 

FRED’s ability to keep track of the polarization state of 

the rays through the entire optomechanical model and its 

flexibility in defining light sources. In the situations 

modeled here, it is the satellites themselves that act as 

light sources in the thermal infrared (above 8 µm 

wavelength). The polarization of the emitted light is a 

function of the surface properties of the satellite: 

materials and thin film coatings (e.g paint). Likewise, the 

amount of thermal radiation emitted is a function of 

those same surface properties. 

In FRED materials and coatings are defined by material 

properties. There are many ways to define the optical 

properties of materials, but the method chosen here was 

to provide wavelength dependent values for the complex 

index of refraction, the reflectance, and transmittance for 

each material used. FRED itself performs evaluations of 

the Fresnel equations at each interface and keeps track of 

the changes in polarization state of each ray generated. 

The light sources generate light rays with random 

polarization—collectively this makes for unpolarized 

light. Their interaction with the vehicles’ surfaces then 

results in a preferential polarization direction. 

Here the presence of another space object in close 

proximity to the primary vehicle was studied, using in 

simulation a setup similar to one that would be used in a 

lab setting. The primary vehicle was a 1-meter cube, with 

a large solar panel on top (Figure 1). The secondary 

vehicle was shaped like a 3U cubesat, but substantially 

larger with a “wingspan” of 1 meter (Figure 2). The 

surface colors represent the materials used to represent 

the vehicle components. Silicon was used for the solar 

panels (lilac), aluminum (gray) and Kapton (brown) for 

bus and structure surfaces.  

 

Figure 1: Primary vehicles, aluminum bus (left) and 

Kapton bus (right) 

 

Figure 2: Secondary vehicle 
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The simulations were run multiple times with two 

versions of the primary vehicle. The first is almost 

entirely composed of bare aluminum surfaces, except for 

its solar panel, the other has a Kapton coating on the 

major bus surfaces. The secondary vehicle is composed 

of the same three materials; its configuration was 

inspired by NASA’s ICECUBE cubesat.  

Sources were created in the FRED software to represent 

the emitted light from for each surface. The relevant 

material constants were culled from various sources and 

provided to the software, which then used that 

information to generate polarized rays. 

For each primary vehicle the following 10 scenarios 

were investigated: No secondary, the baseline case; 

secondary in front of primary, above primary, and off to 

one side, but fully visible when viewed from the front; 

secondary slightly behind the primary and partially 

obscured when viewed from the front, with obscuration 

varying from 25% to 90%.  

The sensor started at a position -30 degrees from the 

center line and was rotated in one-degree increments to 

+30 degrees from the centerline. At each position a 

polarimetric measurement was taken and stored to a file. 

In all ten files were produced, one for each scenario. 

Each file contains the measured values for S0, S1, S2. 

Using a set of MATLAB scripts, the data from each 

scenario were first processed to add calculated values for 

𝑆1 𝑆0⁄ , 𝑆2 𝑆0⁄ , and 𝑆2 𝑆1⁄ , all normalized for better 

comparability.  Then they were compared to the baseline 

case (no secondary vehicle).  

The processed data yielded three graphs per pair of 

scenario, one for each of the vector-vector spaces 

investigated (𝑆2 𝑆0⁄  vs. 𝑆1 𝑆0⁄ , 𝑆2 𝑆1⁄  vs. 𝑆1 𝑆0⁄ , and 

𝑆2 𝑆1⁄  vs. 𝑆2 𝑆0⁄ ). Each graph shows the distribution of 

measurement points, as well as the mean point (center of 

gravity) of the distribution for each distribution. In 

addition to the graphical representation, the 

Bhattacharyya distance was determined for each pair of 

vehicles (e.g. vehicle 1a vs. vehicle 2a, etc.). Figures 3 

through 6 provide some representative examples of the 

distributions encountered. 

 

 

 

Figure 3: Comparison of baseline cases: Kapton bus 

(Vehicle 1a) vs. aluminum bus (Vehicle 1b) for all 

three vector-vector space comparisons 

The BD between vehicles of the same shape but different 

materials is on the order of 10-2. The BD for vehicles of 

different shape, but same materials is similar. 
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Figure 4: Comparison of baseline case (Kapton bus: 

Vehicle 1a) vs. Vehicle 1a with the secondary vehicle 

directly in front for all three vector-vector space 

comparisons 

 

 

 

Figure 5: Comparison of baseline case (Kapton bus: 

Vehicle 1a) vs. Vehicle 1a with the secondary vehicle 

partially obscured (34% obscuration when viewed 

from the front) for all three vector-vector space 

comparisons 
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Figure 6: Comparison of baseline case (Aluminum 

bus: Vehicle 1b) vs. Vehicle 1b with the secondary 

vehicle partially obscured (34% obscuration when 

viewed from the front) for all three vector-vector 

space comparisons 

As can be seen, the BD values also differ with different 

relative positions of the secondary vehicle, as well as 

with the material composition of the vehicles. Note the 

sharp reduction in BD when going from Vehicle 1a 

(Kapton) to Vehicle 1b (Aluminum). There is more 

signal (i.e. more strongly linearly polarized light) 

coming from the aluminum bus, resulting in smaller 

difference between the baseline measurement and the 

measurement with the secondary object in the scene, but 

partially obscured. 

CONCLUSIONS 

This method has potential in that it allows the 

discrimination between a known object and that same 

object with something else nearby in certain 

circumstances. However, a sufficient amount of the 

secondary object must be visible in order to detect a 

difference. Depending on material composition one the 

other object may be emitting substantially more strongly 

polarized light than the other. If this is the primary 

vehicle, then it can be difficult to detect a secondary 

object nearby. 

For geosynchronous applications this would be 

problematic, as the scene diversity (viewing angle of the 

targets) from a given ground site is very limited by the 

nature of the orbit. For low Earth orbit applications, this 

is likely not as much of a problem. The vehicle and its 

secondary object will viewed from different angles 

throughout an orbital pass and from pass to pass, 

resulting in one or more collections where the secondary 

vehicle is more clearly visible. 

An anomaly detection system based on this approach 

would benefit greatly from having a large number of 

collection locations to ensure a wide diversity of views 

of a particular space vehicle. 
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