
Vega  1 34th Annual  

Small Satellite Conference 

SSC20-WKVIII-08  

Experimental Evaluation of On-Board Contact-Graph Routing Solutions 

for Future Nano-Satellite Constellations 
 

"Blas F. Vega"  

"Agencia Espacial del Paraguay"  

"Av. Defensores del Chaco, San Lorenzo-Paraguay" ; +595961409189  

bvega@aep.gov.py 

"Juan A. Fraire"  

" CONICET - Universidad Nacional de Córdoba" 

“Av. Vélez Sarsfield 2000, Córdoba, Argentina”; +5493512446010  

juanfraire@unc.edu.ar 

and 

“Saarland University“ 

“Saarland Informatics Campus, Saarbrücken, Germany” 

 

ABSTRACT 

Hardware processing performance and storage capability for nanosatellites have increased notably in recent years. 

Unfortunately, this progress is not observed at the same pace in transmission data rate, mostly limited by available 

power in reduced and constrained platforms. Thus, space-to-ground data transfer becomes the operations bottleneck 

of most modern space applications. As channel rates are approaching the Shannon limit, alternative solutions to 

manage the data transmission are on the spot. Among these, networked nano-satellite constellations can cooperatively 

offload data to neighboring nodes via frequent inter-satellite links (ISL) opportunities in order to augment the overall 

volume and reduce the end-to-end data delivery delay. Nevertheless, the computation of efficient multi-hop routes 

needs to consider not only satellite and ground segments nodes, but a non-trivial time dynamic evolution of the system 

dictated by orbital dynamics. Also, in most practical cases, the forwarding decision shall happen in orbit, where 

satellites can timely react to local or in-transit traffic demands. In this context, it is appealing to investigate on the 

applicability of adequate algorithmic routing approaches running on state-of-the-art nanosatellite on-board computers. 

In this work, we present the first implementation of Contact Graph Routing (CGR) algorithm developed by the Jet 

Propulsion Laboratory (JPL, NASA) for a nanosatellite on-board computer. We describe CGR, including a Dijkstra 

adaptation operating at its core as well as protocol aspects depicted in CCSDS Schedule-Aware Bundle Routing 

(SABR) recommended standard. Based on JPL’s Interplanetary Overlay Network (ION) software stack, we build a 

strong baseline to develop the first CGR implementation for a nano-satellites. We make our code available to the 

public and adapt it to the GomSpace toolchain in order to compile it for the NanoMind A712C on-board flight 

hardware based on a 32-bit ARM7 RISC CPU processor. Next, we evaluate its performance in terms of CPU execution 

time (tick counts) and memory resources for increasingly complex satellite networks. Obtained metrics serve as 

compelling evidence of the polynomial scalability of the approach, matching the predicted theoretical behavior. 

Furthermore, we are able to determine that the evaluated hardware and implementation can cope with satellite 

networks of more than 120 nodes and 1200 contact opportunities. 

INTRODUCCION  

The New Space Context 

The demand of processor and memory performance has 

increased dramatically in recent years. To satisfy the 

demand, COTS (Components of The Shelf) devices have 

been made available and considered for use in small 

satellites, significantly reducing the development costs. 

As a result, cubesats missions can leverage significant 

economic and lead time advantage compared with 

traditional mission standards. 

Embedded systems had enjoyed important innovations. 

Powerful processors with reduced instruction set (RISC 

architecture) and memories with larger capacity are now 

possible thanks to miniaturization in electronic 

components. These revolutionary changes also impacted 

in the size and capacity of state-of-the-art small satellites 

[1]. Missions otherwise impossible due the high costs 

and complexities are now accessible to many, including 

universities and start-up companies looking for novel 

business opportunities. We are indeed living the so-

called “democratization” of space. 

As a consequence of this context, cubesat mission 

designers can profit from a wide-range of immediately 

available resources ranging from satellite components, 

subsystems and software elements both for flight and 

ground segments. Boosted by scale production of 

standardized mechanical and electrical interfaces, 

satellite integration can thus be accomplished at 

unprecedented speed. This is reflected in the number of 

cubesats launched in recent years [2, 3], and in the 

notable success achieved by educational development 

programs (e.g., Birds Program of The University of 

Kyutech, Kyushu, Japan). Thanks to this, several 

countries of emerging economies have been able to 

afford, access and launch their first satellite [4]. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/334990648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Vega  2 34th Annual  

Small Satellite Conference 

The paradigm shift also extends to the satellite mission 

design and integration processes. Originally, every detail 

had to be documented and each component tested via 

destructive actions in order to provide the required 

reliability confidence. In contrast, the “new space” 

approach selectively relaxes the security steps in favor of 

a reduced mission cost and time-frame.  

Despite these advances, some degree of reliability needs 

to be imposed to COTS elements conceived to operate 

under the relatively “calm” environment below the 

atmosphere. In particular, the presence of radiation, 

mechanical stress, and extreme temperature ranges 

demand for screening processes before flying the 

mission [5, 6]. Although a noticeable risk reduction with 

respect to traditional missions, innovating in networked 

data management systems remains a challenging 

objective. 

Communications in the New Space 

According to [7], the majority of operative satellite 

missions were deployed to provide communications and 

data relay services. Other applications such as earth 

observation and navigation follow next. The reason 

behind this lies on the increasing demand for data by an 

ever growing and digitalized population. The recent 

trend of connected objects or Internet of Things is also a 

major motivation for communications from space [8]. 

Communication missions are not only based on ground 

links but also on satellite-to-satellite or inter-satellite 

links. Popular networked missions such as Samsung’s 

[9],  Starlink and OneWeb are compelling evidence of 

the private sector's interest in building networked 

satellite constellations despite the complexity that their 

maintenance, handling, and coordination. These 

ambitious missions expect to provide world-wide 

internet coverage and decrease data delivery latency. 

However, to succeed on this objective, these 

constellations are built with thousands of satellites, only 

suitable for a few large-scale companies in the planet. 

Alternative options are desirable in a truly democratized 

New Space context. One way of coping with the problem 

of reduced visibility with the satellite had been 

traditionally solved by means of geostationary satellites 

with large coverage. Nevertheless, geostationary relay 

systems tend to be unaffordable for cubesat missions 

with constrained budgets. Another possibility is to 

deploy several ground stations in strategic locations (i.e., 

near the pole in case of quasi-polar orbits). The issue of 

this option is that this typically involves lengthy 

bureaucratic or political barriers that are also not suitable 

for the agile vision of the new space. 

A DELAY-TOLERANT PROPOSAL 

A more efficient solution for the new space is possible. 

Instead of increasing the number of ground stations on 

inaccessible regions or deploying overly expensive 

geostationary satellites, opportunistic and best-effort 

inter-satellite link between satellites in the same 

constellation can be exploited.  

Opportunistic contacts between orbiting spacecraft are 

by definition episodic and forbid a continuous and stable 

end-to-end data flow as assumed for traditional Internet 

protocols. To cope with this situation, Delay Tolerant 

Networking (a.k.a. DTN) exploits a novel data flow 

approach: store-carry-and-forward. Since DTN relaxes 

the strict end-to-end data path requirement (the one that 

basically demand thousands of satellites for a continuous 

global coverage), it is particularly appealing for sparse 

constellations of a few cubesats. In DTN, data can be 

moved from one spacecraft to the other, and remain 

arbitrarily long period of time in memory, until an 

adequate next-hop link becomes available. The fact that 

data is not immediately transferred to the final 

destination, gives this paradigm its name: delay-tolerant. 

The main challenge in DTN space networks is to design 

and implement suitable routing algorithms to support the 

optimal determination of an adequate next-hop node and 

also, a suitable transmission window. This bi-

dimensional routing problem is already more complex 

than routing on Internet, as it enjoys a stable topology on 

which the time-dimension is not present. In a time-

evolving space topology, time is off the essence. In 

particular, it is not matter of simply finding to “whom” a 

give packet of data should be transferred, but also 

“when” this should happen. Resulting decision shall be 

driven by earliest delivery time or similar metrics [10].  

DTN networks have received the attention of the 

community since early 2000s [11] Originally, it was 

proposed as an architecture to deploy a Solar-System 

Internet, namely, an interplanetary network 

infrastructure where signal propagation delay and 

disruptions due to planet occlusion are the rule and not 

the exception. Consequently, the topology of a DTN is 

better described by “contacts” instead of “links” as in 

traditional network graphs.  

A contact is formally defined as an episode of 

connectivity between two nodes, on which data can be 

transferred between a transmitter and a receiver node. 

Indeed, by definition, a contact starts and ends at a given 

time, and is characterized by a duration equal to the time 

difference between start and end times. Also, contacts 

can have arbitrarily long signal propagation delays. In 

other words, signals are not expected to arrive 

immediately to the destination as in Internet networks. It 



Vega  3 34th Annual  

Small Satellite Conference 

is interesting to note that a continuous link connectivity 

can still be represented by the more general contact 

concept, where duration is set to infinite, and the 

propagation delay to zero. As a result, a time-evolving 

topology formed by orbiting spacecraft in near-Earth of 

deep-space can be properly modeled and integrated with 

ground cabled infrastructure. 

The routing of data packets allows the communication 

despite intermittent connectivity by pre-calculating 

changes in contacts between nodes, which can be 

imprinted int the contact plan. The contact plan is 

distributed to the nodes so that each node can know the 

specific time at which it can communicate with another 

node. Then each node must be able to resolve the next 

route to transmit the data packet in the network that 

constantly varies over time using the "Contact Graph 

Routing" (CGR) algorithm. Instead of having a defined 

path, in CGR, the data packet hop to the next node is 

resolved and defined locally on each node, thus, it 

provides the ability to adapt to network changes and data 

demand. 

Considering future satellite missions where this 

algorithm can play a fundamental role, such as resource-

constrained cubesats, it is worth the effort to study the 

performance of small computers or microprocessors. In 

particular, these are widely available for nano-satellites. 

We are interest in analyzing empirical results that could 

help to decide upon future missions based on delay 

tolerant networking. 

DTN AND CGR IN A CONSTRAINED OBC 

NanoMind OBC Test-bench 

Software for on-board spacecrafts require strict 

approaches to be used in the verification process. This 

kind of analysis, in turn, requires the worst-case 

execution time (WCET) of each task to be known. In 

particular, the present experiment can be used as a first 

step in performing timing analysis on routing 

computations for a swarm of limited embedded on-board 

systems 

We leverage the NanoMind A712c, with a 32-bit 

ARM7TDMI processor for CubeSats running as a task in 

FreeRTOS [12], which is available at the laboratories of 

“Universidad de Formación Superior”, part of the 

educative framework at the Argentinian Space Agency 

(CONAE). The distinguishing features of this OBC are: 

• High-performance 32-bit ARM7 RISC CPU 

• FreeRTOS and eCos realtime operating systems 

• Clock speed: 8-40 MHz 

• 2MB Static RAM 

• 4MB Data Storage (Flash Memory) 

• 4MB Code Storage (Flash Memory) 

• 104-pin CubeSatKit bus connector 

For this hardware, a custom benchmark to evaluate the 

CGR subroutine of the ION (Interplanetary Overlay 

Network) software implementation was developed. 

Inspiration to define the architecture was taken from the 

DTN architecture in RFC 4838, DtnSim [13] and ION. 

The CGR implementation in DtnSim and ION is loaded 

with specific features of the algorithm plus compatibility 

functions which somehow complicates the management 

of subroutines and hides the inner functioning of the 

mechanisms. Since the goal of this work is to study the 

characteristics and scalability of the CGR algorithm and 

not the compatibility features we created our own 

lightweight and streamlined CGR for the NanoMind 

OBC. 

 

Figure 1: NanoMind OBC on test bench 

CGR Implementation for the NanoMind 

The CGR algorithm was re-implemented in C language 

in a condensed and reduced fashion. Although a 

simplified version of the algorithm compared with ION 

software, it is capable of fulfilling the tasks explained in 

[10] (reading a contact plan and meeting the route that 

responds to the requirements), while able to run on a 

limited flight computer as the NanoMind A712c. 

In a DTN network routed by CGR, the number of nodes 

does not directly affect the execution time, but the 

number of contacts between these nodes. Indeed, the 

algorithm iterates over contacts imprinted in the contact 

plan, which has to be periodically updated to each of the 

orbiting spacecraft. However, if the contact is too large, 

the memory resources of the OBC can be stressed and 

eventually overloaded. 

In particular, the memory limitation is consequence of a 

linked list implementation of the contacts data structure. 

Linked lists advantages are crucial for CGR as they are 

used to dynamically allocate the contact plan’s memory 

space. The number of nodes and contacts can grow (new 

arrives from contact plan updates) and shrink (old 

contacts are due and thus removed from memory), so a 



Vega  4 34th Annual  

Small Satellite Conference 

contiguous memory storage is not an option for such 

object. 

Even though the linked list approach is well suited for 

CGR concept of operations, it limits the algorithm 

capacity of delivering a result swiftly. Indeed, computing 

a route in CGR may require iterating through most or all 

of the elements on the list. This makes the algorithm 

runtime difficult to predict or calculate without an 

empirical evaluation that leverages low-level software 

measurement tool-chain provided by the OBC 

manufacturer. Still, the method used to make the 

memory measurements is simply a close track of 

malloc calls (memory allocate functions) during the 

contact storage and route computation phases. 

The compilation of code written in C language is done 

using the ARM toolchain arm-none-eabi-gcc-4.6.4, at 

40Mhz as a primary task of the FreeRTOS real-time 

operating system. 

EXPERIMENTAL CAMPAIGN 

An exhaustive experimental campaign was conducted on 

a realistic contact plan comprised of 10 ground stations, 

100 ground nodes and 12 satellites as nodes. The contact 

plan was derived from realistic simulations of a Walker 

formation of the 12 satellites, specific locations of the 

ground stations, and random locations for the ground 

nodes.  

For this case study, a Mission Operations and Control 

(MOC) node that has permanent contact with all the 

ground stations (node 300) is added to the contact plan. 

The runs were prepared so that computed routes start at 

the control node, go through a ground station, from there 

to a satellite (or more) and then to a ground node as the 

final destination. It is worth mentioning that the ground 

nodes will not necessarily run the algorithm on a limited 

capacity computer in a real application. Anyway, we 

consider they do in this experiment to further stress the 

runtime in the Nanomind OBC.  

Access computations were executed with AGI’s Systems 

Toolkit software available at CONAE. The output of this 

data was exported to a contact plan expressed in ION 

format, the same input structure our NanpMind CGR can 

read. 

The resulting contact plan comprises mor than 9000 

contacts between these nodes. Table 1 sumarizes the first 

27, including their start and end time, the source and 

destination node and associated data rate. 

The experiment is as follows. First, 10 contacts are 

loaded into NanoMind’s memory, then CGR is executed 

and the time to deliver the complete route table is 

measured. Then, the used memory is freed. Next, a total 

of 20 contacts are loaded, and the process repeats with 

steps of 10 contacts until the memory is full.  

The implemented CGR algorithm delivers all the routes 

it finds from a source node to a destination node. 

However, the first route always arrives earlier to the 

destination in the contact plan. In other words, CGR 

route computation delivers a series of routes from the 

contact plan in order, from the best to worst one. 

Supposedly, the second, third, and so on best routes are 

valid paths to the destination as the best ones are either 

consumed as traffic is forwarded or they become old in 

the sense that the limiting contact (typically the first 

contact, but not always) in the route is no longer usable 

(i.e., it has already ended). To avoid routing loops, this 

method is based on Dijkstra's shortest path algorithm for 

path selection as proposed by Segui et al. [14].  For more 

details on the operation of the algorithm the user is 

referred to [10]. 

Our software is able to detect memory exhaustion by 

monitoring the MALLOC_FAILED_HOOK flag from 

NanoMind software. When the flag is raised, there no 

more memory, and no more contacts from the contact 

plan can be allocated. A “Heap is full but trying to 

allocate 4096!”  warning is shown. 

Once the memory limit was found, the next step was to 

change the bundle’s destination node to a different one. 

From the 100 ground nodes, nodes 11 to 70 were used as 

destination. A sample of the obtained routes are listed in 

Table 2, for which the software measurements were: 

Proximate nodes:  1, 9, 
Next hop: 9,  
Execution time (ms): 108765   
Used Mem (bytes): 2678036     
Freed Mem (bytes): 2181448 

The runtime was measured at the following test points: 

//start counter 
portTickType start = xTaskGetTickCount(); 
//start CGR 
cgrForward(bundleP, cp, En); 
//stop counter 
portTickType stop = xTaskGetTickCount(); 
printf("Exec time:\t%lu\n",stop-start); 
printf("Used memory:\t%d\n", totalMem); 
printf("Freed memory:\t%d\n", freedMem); 

From the above code, it is worth indicating that 

xTaskGetTickCount() is a FreeRTOS function that 

measures the algorithm execution time. To this end, we 

have defined #define config TICK_RATE_HZ 
(portTickType) 1000). 



Vega  5 34th Annual  

Small Satellite Conference 

 

Table 1: Contact Plan Extract 

From time To Time From Node To Node Bit Rate 

300 9 0-86400 300 9 

6 406 1 121 1 

6 406 121 1 1 

274 611 90 121 1 

274 611 121 90 1 

529 835 9 119 1 

529 835 119 9 1 

641 1014 14 115 1 

641 1014 115 14 1 

1207 1409 17 116 1 

1207 1409 116 17 1 

1628 1757 58 115 1 

1628 1757 115 58 1 

1810 1978 47 119 1 

1810 1978 119 47 1 

2983 3290 58 118 1 

2983 3290 118 58 1 

7279 7445 71 118 1 

7279 7445 118 71 1 

9800 9867 98 115 1 

9800 9867 115 98 1 

11482 11851 14 112 1 

11482 11851 112 14 1 

11503 11767 47 111 1 

11503 11767 111 47 1 

11504 11846 59 111 1 

11504 11846 111 59 1 

 

 

 

Table 2: Routes Found Extract 

From To Contact (start time – end time) 

300 9 0-86400 

9 119 529-835 

119 47 1810-1978 

47 111 11503-11767 

111 59 11504-11846 

Next Route                                                                       

300 1 0-86400 

1 121 6-406 

121 90 274-611  

90 117 871-1178  

117 31 641-973  

31 113 1366-1742  

113 77 1379-1755  

77 116 2084-2409  

116 69 2026-2394  

69 112 8701-9044  

112 59 10056-10432  

Next Route 

300 9 0-86400 

9 112 0-121 

112 19 124-422 

19 115 658-982 

115 17 2561-2910 

17 118 3978-4353 

118 69 4892-5268 

69 114 5827-6195 



Vega  6 34th Annual  

Small Satellite Conference 

RESULTS AND ANALYSIS 

The main results of the campaign are the statistics of time 

measurements showed in box plots Figure 2. It can be 

noticed that, as the contacts between nodes increases, the 

algorithm execution time increases exponentially. The 

growth is noticeable from topologies larger than 300 

contacts.  

Furthermore, CGR was only able to compute routes with 

contact plans comprised of 1400 contacts. At this contact 

plan size, the OBC was left with no further memory 

available to store more data. Also, at this point, the 

routine required 120 seconds to complete the route table 

computation. 120 seconds anyways imposes a practical 

barrier for realistic use cases.  

Table 3 shows the ammount of routes found for 

destination nodes 14 and 19 (those with more routes 

possible) and 28 and 13 (those with less routes feasible), 

for each contact plan size. Naturally, the larger the 

contacts in the topology, the more routes discovered. A 

color code highlights that a few destination nodes are 

reachable with up to 13 different paths, while other with 

only 2. This heterogeneity maps to a diverse execution 

time in boc plots in Figure 2. It interesting to note that 

destination nodes 28 and 13 would waste valuable 

compute cycles for contact plans larger than 500 

contacts. Actually, the same happens to node 14 and 19, 

but this route number is reached with 1000 contacts. 

Figure 3 presents the computation time for each of these 

nodes. This plot shows how route calculation routines 

that delivers more routes actually consume more 

processing power. 

 

Table 3: Number of routes found. 

 

 

Figure 3: Execution time for nodes 14, 19, 28 and 13. 

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

T
im

e
 (

s
)

Number of Contacts

CGR Execution Time

Min Outlier Max Outlier

Figure 2: Execution time of CGR running on NanoMind OBC 



Vega  7 34th Annual  

Small Satellite Conference 

 

 

 

Figure 5: Number of routes found on a Desktop PC 

 

Figure 4 presents the number of routes found for all 

nodes, not just the extremes presented for 14, 19, 28 and 

13. From the figure is clear, however, that the metrics for 

the latter nodes are actually on the edges of the presented 

box plots. In general, as the number of contacts 

increases, more routes become available for the 

destination nodes, on average.  

However, the number of routes founds stagnate starting 

from 900 contacts onwards. From this point on, we 

discovered that for some destination nodes the OBD runs 

out of memory. Thus, only a given set of routes are 

delivered by the algorithm, although more seem to be 

possible in the contact plan. Figure 5 shows the same 

CGR execution on y PC with unbounded memory. The 

plot evidences some routes after 900 contacts are just 

missed by the OBC. We discover this is due to the 

failures on memory allocation attempts. Finally, at 1400 

contacts, no more routes are found for any node as the 

OBC run out of memory even for those nodes with the 

least number of routes. 

Profiling 

To gain more insights on the details, a code profile 

analysis was performed with Gprof [15] software. 

Results showed that the most frequently called functions 

are related to linked list creations and element search 

within them. In the third place comes a Dijkstra’s 

internal process that solves the shortest transmission 

times. Table 4 shows the main differences in two case 

studies. 

Number of function calls 

  Destination 13 Destination 14 

Function 
(less routes 

found) 
(more routes 

found) 

dijkstra 3 14 

createNeighborList 3 14 

addToNodeList 257139 254010 

isInNodeList 34179 33871 

Table 4: Calls to most relevant functions. 

 

Profiling threw some light to the dependency of the 

execution time against the number of discovered routes 

indicated in Figure 3. Interestingly, a function called 

CreateNeighborList exhibited a predominant time 

consumption in nodes for which a large number of routes 

were found (i.e., node 14 and 19). Internally, this routine 

is in charge of ordering the contact plan so that it is 

prepared to be analyzed by the Dijkstra program. The 

more contacts in the plan, the longer execution time for 

this function. Plus, the more routes found the greater 

number of calls to this routine. The reason for the latter 

is that Dijkstra is restarted from scratch every time a new 

route is found by CGR. As a result, the overall time 

consumption of CGR is proven dependent of the size of 

the computed route table. 

We believe there is room for optimizing this aspect. In 

particular, the contact plan can be prepared only once 

even if a route-finding process is bootstrapped from 

scratch. We, however, understand that current CGR 

implementation in ION and DtnSim is configured in such 

sub-optimal fashion: in the practical case, only a single 

route is computed. Once depleted or due, another route 

is computer for the destination. Since there can be a 

considerable time-gap in-between both routes 

computation, the memory occupied by the prepared 

contact plan should be better released. An optimization 

at this stage can still be advantageous when multiple 

routes are needed at the same time (i.e., redundancy or 

load balancing). 

The graph on Figure 6 provide further detail on the 

memory utilization. In particular, the allocated memory 

counter is registered every time the malloc function is 

0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

N
u
m

b
e

r 
o

f 
ro

u
te

s
 f
o

u
n

d

Number of Contacts

Number of routes found on a Desktop Computer

Min Outlier Max Outlier

0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

N
u

m
b

e
r 

o
f 
ro

u
te

s
 f
o

u
n

d

Number of Contacts

Number of Routes Found

Min Outlier Max Outlier

Figure 4: Number of routes found on NanoMind 

OBC 



Vega  8 34th Annual  

Small Satellite Conference 

called. Next, some of this memory should be released 

after a route found and algorithm returns. The released 

memory graph in Figure 7 shows the sum of the amount 

of memory that is made available to the operating system 

inside the vPortFree function by a counter called 

memfreedcount, which is called after the algorithm 

resolves the path. 

The vPortFree is function responsible for counting 

each time residual memory is released or deallocated. 

Fragmentation is not taken into account here, when using 

the code heap_3.c making malloc and free thread-safe 

by temporarily suspending the FreeRTOS scheduler as 

Memory Allocation Scheme. The comparison of Figures 

6 and 7 gives an idea of the data at the output of the 

algorithm that is deliver to routing table processing stage 

(assuming no memory leaks are present).  

 

DISCUSION 

To put these results in a nanosatellite platform context, 

consider that traditional Attitude Determination and 

Control Subsystems (ADCS) algorithm execution times 

are in the order of 207 µs [16] in the same platform, as 

investigated by the Argentinian Space Agency. 

Moreover, this routine has a periodicity of 1 second. 

Thus, in principle, if there are no other important tasks 

on the satellite OBC (i.e., thermal control and payload 

data management), then CGR execution seems to be 

feasible. In particular, we internally discuss that a proper 

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

M
e
m

o
ry

 (
b
yt

e
s
)

Number of Contacts

Memory Released in CGR Algorithm (vPortFree)

Min Outlier Max Outlier

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

M
e
m

o
ry

 (
b
yt

e
s
)

Number of Contacts

Memory Allocated in CGR Algorithm (malloc)

Min Outlier Max Outlier

Figure 6: Allocated memory in CGR execution 

Figure 7: Released memory in CGR execution. 



Vega  9 34th Annual  

Small Satellite Conference 

scheduling of the route computation power can be 

prepared in advance so that it can run in the background, 

with lower priority as the links become available, as 

already considered by the DTN architecture. 

Moreover, there is plenty of room for optimizing the 

current implementation of CGR used for this experiment. 

On the memory side, we only used the RAM memory of 

the OBC, disregarding other external memory sources 

(i.e., SD memory slots are available). Further research on 

leveraging such a slow yet larger memory bank can bring 

some practical alternatives to the highlighted issues. On 

the processing side, the route is logged and transmitted 

to the host PC at the end of the building route list process. 

The print function affects the execution time and the 

memory stack, but the effect is minimal since the serial 

transmission is at a speed of 115200 baud. We will look 

after improved logging techniques for future 

experiments. Furthermore, the algorithm is executed 

directly on the flight software as an operating system 

task. The NanoMind FreeRTOS operating system 

represents 1% of processor utilization, reported as an 

IDLE task, which can be reduced to the minimum with 

specific OS configurations. 

CONCLUSION 

In this work, an analysis of the Contact Graph Routing 

(CGR) algorithm execution time and memory utilization 

was performed on an on-board computer for cubesats. A 

realistic contact plan and a real computer were leveraged 

and brought into a testbed for processing and memory 

benchmarking. To this end, we implemented our own 

lightweight CGR algorithm in C language to run in 

FreeRTOS. To the best of author’s knowledge, this is the 

first DTN routing evaluation on a nanosatellite OBC. 

 

The experiment has shown what the hardware is capable 

of running and delivering routes correctly with contact 

plans up to 900 contacts. The limited amount of memory 

is the principal limitation, although processing time at 

this topology size is already in the order of 40 seconds 

for a single destination. Future work will be focused on 

better memory management in FreeRTOS and on code 

optimizations to improve the computation time. In the 

long term, we have the expectations of running in-orbit 

experiments with Argentinian Cubesat missions to 

validate the approach of constructing cheap and 

disruption-tolerant LEO DTN satellite constellations. 

Acknowledgments 

This study was conducted in the classrooms and 

laboratories of the “Unidad de Formación Superior – 

UFS, CONAE” during the period 2019-2020 as part of 

the thesis project of the master’s degree in Satellite 

Instruments thanks to a full-time scholarship. Argentine 

Government sponsorship is acknowledged. 

Special thanks to all MIS members, Javier Uranga and 

Marco Alvarez Reyna for collaboration and support.  

 

References  

[1]  S. C. Burleigh, T. De Cola, S. Morosi, S. Jayousi, 

E. Cianca y C. Fuchs, «From Connectivity to 

Advanced Internet Services: A Comprehensive 

Review of Small Satellites Communications and 

Networks,» Wireless Communications and Mobile 

Computing, vol. 2019, nº 6243505, 02 05 2019.  

[2]  E. Kulu, «Nanosats Database,» [En línea]. 

Available: https://www.nanosats.eu/. [Último 

acceso: 10 06 2020]. 

[3]  T. Villela, C. A. Costa, A. M. Brandão, F. T. 

Bueno y R. Leonardi, «Towards the Thousandth 

CubeSat: A Statistical Overview,» International 

Journal of Aerospace Engineering, vol. 2019, nº 

5063145, 10 01 2019.  

[4]  K. I. o. Technology, «Official Website for BIRDS 

project,» 2017. [En línea]. Available: https://birds-

project.com/. [Último acceso: 10 06 2020]. 

[5]  T. M. Lovelly, B. Donavon, K. Cheng, R. Kreynin, 

A. D. George, A. Gordon-Ross y G. Mounce, «A 

Framework to Analyze Processor Architectures 

for,» IEEE Aerospace Conference, pp. 1-10, 2014.  

[6]  R. Some, R. Doyle, L. Bergman, W. Whitaker, W. 

Powell, M. Jhonson, M. Goforth y M. Lowry, 

«Human and robotic space mission use cases for 

high-performance spaceflight computing,» AIAA 

Infotech@Aerospace (I@A) Conference, Vols. %1 

de %2AIAA 2013-4729, nº Aug, 19-22 August 

2013.  

[7]  U. o. C. Scientists, «UCS Satellite Database,» 1 

April 2020. [En línea]. Available: 

https://www.ucsusa.org/resources/satellite-

database. [Último acceso: 10 06 2020]. 

[8]  J. A. Fraire, S. Céspedes y N. Accettura, «Direct-

To-Satellite IoT - A Survey of the State of the Art 

and Future Research Perspectives,» Ad-Hoc, 

Mobile, and Wireless Networks. ADHOC-NOW 



Vega  10 34th Annual  

Small Satellite Conference 

2019. Lecture Notes in Computer Science, vol. 

11803, pp. 241-258, 25 09 2019.  

[9]  D. Gershgorn, «POPULAR SCIENCE,» 17 08 

2015. [En línea]. Available: 

https://www.popsci.com/samsung-wants-launch-

thousands-satellites-bring-everyone-earth-

internet/. [Último acceso: 10 06 2020]. 

[10]  J. A. Fraire, P. Madoery, S. Burleigh, M. 

Feldmann, J. Finochietto, A. Charif, N.-E. 

Zergainoh y R. Velazco, «Assessing Contact 

Graph Routing Performance and Reliability in 

Distributed Satellite Constellations,» Journal of 

Computer Networks and Communications, vol. 

2017, nº 2830542, 2017.  

[11]  S. Burleigh, A. J. Hooke, L. Torgerson, K. Fall, V. 

G. Cerf, B. Durst, K. Scott y H. Weiss, «Delay-

tolerant networking: an approach to interplanetary 

Internet,» IEEE Communications Magazine, vol. 

41, nº 6, pp. 128-136, June 2003.  

[12]  «FreeRTOS™ Real-time operating system for 

microcontrollers,» [En línea]. Available: 

https://www.freertos.org/. [Último acceso: 8 

2019]. 

[13]  J. A. Fraire, P. Madoery, F. Raverta, J. Finochietto 

y R. Velazco, «DtnSim: Bridging the Gap between 

Simulation and Implementation of Space-

Terrestrial DTNs,» 2017 6th International 

Conference on Space Mission Challenges for 

Information Technology (SMC-IT), pp. 120-123, 

2017.  

[14]  J. Segui, E. Jennings y S. Burleigh, «Enhancing 

Contact Graph Routing for Delay Tolerant Space 

Networking,» IEEE Global Telecommunications 

Conference- GLOBECOM 2011, pp. 1-6, 2011.  

[15]  S. L. Graham, P. B. Kressler y M. K. McKusick, 

«Gprof: a call graph execution profiler,» SIGPLAN 

Not, vol. 39, nº 4, p. 49–57, April 2004.  

[16]  J. Garrido, J. Zamorano y J. A. De la Puente, 

«Static analysis of WCET in a satellite software 

subsystem,» OpenAccess Series in Informatics, 

vol. 30, pp. 87-96, 01 2013.  

 

 


