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ABSTRACT 

Communications between ground stations and nanosats in low earth orbit (LEO) require acquisition and tracking of 

large Doppler frequency offsets due to the relative velocity the between the transmitter and the receiver.  The Doppler 

frequency shift varies with time, reaching its fastest rate of change as the small satellite reaches its closest approach 

to the ground station.  Non data-aided techniques for acquiring and tracking the carrier frequency offset without 

requiring the processing of symbols have been developed to address this problem.  One technique is the use of a 

frequency-locked loop (FLL) comprised of band edge filters that convert the energy in the modulated signal’s excess 

bandwidth into a control signal proportional to the frequency offset.  Alternatively, the Doppler frequency offset, in 

addition to the modulation rate of a phase modulated signal, can be obtained by simply multiplying the incoming 

signal by itself or by a time-delayed version of itself.  The frequency offset component of this processed signal can be 

extracted with a phase-locked loop (PLL) which filters the excess noise and removes the tones associated with the 

original signal’s symbol modulation rate.  This PLL filtered signal can then be used in a FLL to correct the observed 

time-varying Doppler frequency.  This paper presents a comparison between these two techniques for BPSK signals 

in both high and low SNR environments, highlighting the advantages and disadvantages of each approach.  MATLAB 

results for each tracker are shown with varying SNR, static Doppler, and dynamic Doppler frequency offset.

INTRODUCTION 

Small satellites in low earth orbit can close 

communication links to ground terminals with less 

power than their counterparts in higher orbits by virtue 

of their closer distance. However, satellites in lower 

orbits travel at higher velocities, and thus are more 

susceptible to Doppler shift.  For example, a satellite in 

a circular orbit 500 miles above the mean sea level of 

Earth will travel at 7.45 km/s in order to stay in orbit.  If 

the satellite were travelling due west over Logan, UT, 

and if a ground terminal were located directly under the 

flight path of the satellite, the satellite would observe a 

time-varying Doppler frequency offset from the ground 

terminal according to the graph shown in Figure 1.  In 

this simple example, the Doppler starts at nearly 57 kHz, 

changing very little until three minutes before zenith, at 

which time it decreases rapidly, reaching -57 kHz at 

three minutes after zenith.  The maximum frequency 

change occurs just as the satellite passes overhead (at 

t=0), when the Doppler changes by -550 Hz/s, as seen in 

Figure 2.  A means of detecting and tracking a time-

changing Doppler frequency without having to 

demodulate the signal would simplify the receiver 

design.  Alternatively, such a correction technique could 

allow the satellite to function as an in-orbit relay station, 

correcting an observed Doppler and re-transmitting the 

signal pre-distorted with a Doppler profile that negates 

what the next relay node would observe.  Two methods 

of Doppler detection are discussed in this paper. Both 

methods involve the manipulation of the incoming signal 

energy to create a new signal that contains a spectral 

tone, and using this in a feedback control loop to drive 

the frequency error to zero.  

 

Figure 1: Doppler vs. Time (500 Mile Satellite 

Altitude, 2.45 GHz, overhead at t=0) 

 

Figure 2: Change in Doppler vs. Time (500 Mile 

Satellite Altitude, 2.45 GHz, overhead at t=0) 

BAND EDGE FILTERS 

Background 

Phase modulated signals are filtered in order to contain 

the spectrum so that bandwidth can be shared among 

multiple channels.  The receiver has a copy of this 
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baseband filter (the “matched filter”) and uses it to 

maximize the signal to noise ratio of the received signal.  

If extra filters are located at the positive and negative 

edges of the channel, the relative energy received from 

the filters can be used to determine the frequency offset 

of the modulated signal.  This energy difference can be 

fed to a feedback control loop, which will automatically 

minimize the Doppler offset.  This is the band edge filter 

approach described by Harris1.  In his derivation of the 

optimum band edge filter, Harris shows that its 

magnitude frequency response is the derivative (with 

respect to frequency) of the matched filter’s frequency 

response.  Band edge filters are symmetrically situated at 

the positive and negative ends of the baseband signal 

spectrum, located at ±(1+α)fsym/2, where α is the rolloff 

in the Nyquist shaping filter and fsym is the symbol rate.  

As an example, Figure 3 and Figure 4 show the spectra 

of the band edge filters (and their associated matched 

filters) for a system designed for a signal with a 50 kHz 

modulation rate.  The rolloff factor α is zero for Figure 

3, and the band edge filters are centered at ±25 kHz.  The 

α factor is unity for Figure 4, and the band edge filters 

are centered at ±50 kHz.  For clarity, the horizontal axis 

has been set to the limits of ±100 kHz even though the 

sample rate used in generating the figures was 1 MS/s.  

In the figures, there are 201 coefficients in each band 

edge filter and the matched filter. 

 

Figure 3: Band Edge and Matched Filter Spectra, 

α = 0, fsym = 50 kHz, 201 Coefficients 

 

Figure 4: Band Edge and Matched Filter Spectra, 

α = 1, fsym = 50 kHz, 201 Coefficients 

Note that the band edge filters have very narrow 

bandwidth for the α = 0 case, and a bandwidth roughly 

equal to the matched filter bandwidth for α = 1.  In fact, 

the bandwidth of the α = 0 band edge filters diminishes 

as the number of coefficients increases.  This illustrates 

the fact that the optimum band edge filters operate on the 

excess bandwidth of the incoming signal.1  

Harris introduces an implementation that calculates the 

band edge filter energy difference using the sum and 

difference of the band edge filter outputs1.  Let the 

positive frequency band edge filter’s baseband output be 

defined as a(t), and let the negative filter’s baseband 

output be defined as b(t).  The upper and lower band edge 

filter outputs are expressed as in (1). 

𝑏𝑒𝑢𝑝𝑝𝑒𝑟(𝑡) = 𝑎(𝑡)𝑒
𝑗2𝜋(1+𝛼)𝑓𝑠𝑦𝑚𝑡

2                             (1) 

𝑏𝑒𝑙𝑜𝑤𝑒𝑟(𝑡) = 𝑏(𝑡)𝑒
−𝑗2𝜋(1+𝛼)𝑓𝑠𝑦𝑚𝑡

2  

In (2), we define the sum of the band edge filters as cc(t), 

and the difference between the upper and lower band 

edge filters as ss(t). 

𝑐𝑐(𝑡) = 𝑎(𝑡)𝑒
𝑗2𝜋(1+𝛼)𝑓𝑠𝑦𝑚𝑡

2 + 𝑏(𝑡)𝑒
−𝑗2𝜋(1+𝛼)𝑓𝑠𝑦𝑚𝑡

2        (2)   

𝑠𝑠(𝑡) = 𝑎(𝑡)𝑒
𝑗2𝜋(1+𝛼)𝑓𝑠𝑦𝑚𝑡

2 − 𝑏(𝑡)𝑒
−𝑗2𝜋(1+𝛼)𝑓𝑠𝑦𝑚𝑡

2  

The product of cc(t) with the conjugate of ss(t) produces 

a complex sum whose real part is equal to the difference 

in energy received in the band edge filters.   

𝑐𝑐(𝑡) ∙ 𝑠𝑠∗(𝑡) = (|𝑎(𝑡)|2 − |𝑏(𝑡)|2) +

                                (
𝑎∗(𝑡)𝑏(𝑡)𝑒−𝑗2𝜋(1+𝛼)𝑓𝑠𝑦𝑚𝑡 −

𝑎(𝑡)𝑏∗(𝑡)𝑒𝑗2𝜋(1+𝛼)𝑓𝑠𝑦𝑚𝑡
)          (3) 
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The second term in parenthesis in (3) is the difference 

between a complex number and its conjugate, which 

produces a strictly imaginary term.  A demonstration of 

the output spectra of the band edge filters as well as the 

real part of the signal in (3) is shown in Figure 5 with 

noise removed for clarity.  The figure depicts a Doppler 

frequency offset of 12.5 kHz for a BPSK signal 

modulated at 50 kHz and a rolloff factor of 0.5.  Note 

that the spectrum of the real part of cc(t)ss*(t) contains a 

tone at DC.  Its amplitude is proportional to the 

difference in the band edge filters’ energies. 

 

Figure 5: Example Spectra of Band Edge Filter 

Outputs 

Incorporation of Band Edge Filters into FLL 

Figure 6 shows a block diagram of a frequency locked 

loop (FLL) using band edge filters.  This implementation 

computes the real part of the product of cc(t) and ss*(t), 

filters it with a proportional and integral filter, and drives 

a numerically controlled oscillator (NCO) with the 

result.  The NCO output is conjugated and then 

multiplied by the incoming signal, completing the 

feedback path and cancelling the Doppler offset. 

 

Figure 6: Band Edge Filter Frequency Locked Loop 

Structure 

The proportional and integral path constants are 

computed by selecting the loop bandwidth parameter η, 

choosing a damping factor ζ, and substituting these 

parameters into equation (4). 

𝑘𝑝 =
4𝜁𝜂

1+2𝜁𝜂+𝜂2                 (4) 

𝑘𝑖 =
4𝜂2

1+2𝜁𝜂+𝜂2  

The expressions for kp and ki shown in (4) are the same 

values that are used in a generic second-order phase 

locked loop, and they are briefly derived in the 

Appendix.   

Performance of Band Edge Filter FLL  

A MATLAB simulation of an FLL system with the 

diagram of Figure 6 using α = 0.5, ζ = 1/√2 and 𝜂 =
2𝜋/200 is shown in Figure 7 (20 dB SNR) and Figure 8 

(5 dB SNR).  In each graph, the incoming BPSK signal 

is modulated at a symbol rate 50 kHz, the Doppler offset 

starts at 12.5 kHz, and the Doppler frequency decreases 

by 550 Hz/s.  The sample rate used is 1 MS/s. 

 

Figure 7: Performance of Band Edge Filter FLL at 

SNR = 20 dB 

 

Figure 8: Performance of Band Edge Filter FLL at 

SNR = 5 dB 

The frequency measurements are obtained by monitoring 

the output of the NCO accumulator.  Figure 8 shows a 

much wider variation of the measured frequency about 

the true frequency when compared to Figure 7, and this 

is due to the SNR in the operating environment.  This 

could be alleviated by narrowing the loop bandwidth 

parameter, but this would slow down the response time 

of the FLL.  Figure 9 shows that when η is reduced by a 
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factor of 10, the variation of the measured frequency 

closely tracks the actual frequency, but the system takes 

more than 100 times longer to acquire the signal. The 

simulation was extended in time from 100,000 points 

(Figure 8) to 2,000,000 points (Figure 9).  With this 

extended simulation time, the -550 Hz/s change in 

Doppler frequency vs. time is easier to observe. 

 

Figure 9: Performance of Band Edge Filter FLL at 

SNR = 5 dB with Reduced Loop Bandwidth 

Advantage of Optimum Band Edge FLL 

The optimum band edge filter design maximizes the 

correlated energy with respect to frequency. This design 

is determined strictly from the shaping filter used on the 

original baseband data, which in turn is parameterized 

strictly from the rolloff factor and symbol rate.  If the 

modulation type is changed to any type that includes 

phase modulation, such as QPSK, Offset QPSK, 8PSK, 

or even QAM-16, the shaping filters and hence the band 

edge filters are unchanged.   

Disadvantage of Optimum Band Edge FLL 

If the magnitude of the Doppler frequency of the 

incoming band edge filter is large enough, its main lobe 

will not line up with either of the band edge filters.  Only 

the sidelobes of the band edge filters will collect energy, 

and the difference between them will be nearly identical 

on a linear scale.  In this condition, the FLL will slowly 

drift its NCO output and then suddenly lock, or it will 

fail to lock entirely because the signal of interest has 

ceased.  For example, suppose the signal of interest were 

modulated at a symbol rate of fsym = 10 kHz instead of 

50 kHz, and suppose the Doppler offset were a constant 

30 kHz.  Let additive white Gaussian noise be added to 

set the SNR to 20 dB (see Figure 10).   

 

Figure 10: Failure of Band Edge Filter FLL When 

Doppler Exceeds Signal Modulated Bandwidth 

In Figure 10, the measured frequency fluctuates around 

0 Hz, never approaching the actual frequency offset.  If 

the Doppler offset of the signal were small enough so 

that its spectrum intersected with the main lobe of one of 

the band edge filters, the energy imbalance would spur 

the control loop back into action and the FLL would 

eventually lock onto the Doppler.  Similarly, if the 

Doppler offset caused the incoming signal to be outside 

of both band edge filters’ main lobes, but it excites the 

nearest sidelobes of only one of the band edge filters, the 

FLL will lock slowly.  At first, the energy difference 

between the band edge filters is very small, so the FLL 

applies the frequency correction.  Suddenly, the signal is 

pushed into one of the band edge filter’s main lobes, and 

the error magnitude dramatically increases, causing the 

FLL to lock quickly.  This can be illustrated with an 

example similar to the previous scenario, except the 

Doppler offset is 19.5 kHz (see Figure 11) and is held 

constant. 

 

Figure 11: Performance of Band Edge Filter FLL 

When Doppler Offset Excites Nearest Sidelobes of 

Only One Band Edge Filter 

Mitigation of Band Edge FLL Disadvantage 

A simple modification to the design allows it to acquire 

and track large Doppler offsets.  If the band edge filters 

are replaced with half-band filters and separated from 

each other by half the sample rate (placed at ±fs/4), then 

at least one of the filters will always capture energy from 

the incoming signal regardless of the Doppler offset.  

Figure 12 shows an upper band edge filter occupying the 
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positive frequencies and a lower band edge filter 

occupying the negative frequencies.  For comparison, 

both band edge filters’ spectra are plotted against the 

matched filter used to shape the baseband data in the 

transmitter.   

 

Figure 12: Spectra of Half-Band Band Edge Filters 

and Matched Filter 

With these new band edge filters, the scenario of Figure 

10 was re-simulated with the added imperfection of a 

time changing Doppler of -550 Hz/s.  This time, the 

30 kHz offset was detected quickly (see Figure 13), but 

the FLL needed nearly 27 milliseconds to achieve lock.  

 

Figure 13: Success of Half-Band Band Edge Filter 

FLL When Doppler Exceeds Modulated Bandwidth 

The standard deviation of the frequency error after lock 

in this example is comparable to the scenario of Figure 

7, which was the 20 dB SNR simulation of a 12.5 kHz 

Doppler.  However, a proper comparison between this 

half-band band edge FLL and Harris’ optimum design 

requires a re-simulation of the scenario of Figure 7 in 

order to make a direct comparison of performance. The 

half-band band edge FLL was re-simulated with a 

12.5 kHz Doppler offset changing at -550 Hz/s.  Figure 

14 shows that the standard deviation of the frequency 

error after lock is worse than it was with the optimum 

band edge FLL design.  The versatility of the half-band 

filters comes at a cost of increased frequency error 

magnitude. 

 

Figure 14: Performance of Half-Band Band Edge 

Filter FLL at SNR = 20dB 

We can recover the benefits of the optimum design and 

retain the locking capability of the half-band design if we 

construct our band edge filters to be numerically equal to 

the sum of an optimum filter and a half-band filter, and 

scaled so that they have a maximum gain of unity.  This 

change does not alter the structure of the block diagram 

of the FLL, it only replaces the coefficients of the band 

edge filters.  Figure 15 shows the spectra of the hybrid 

half-band optimum band edge filters. Figure 16 shows 

that when it is tested with a 12.5 kHz Doppler for a 

50 kHz BPSK signal, its frequency error is lower than 

the half-band’s but higher than the optimum.  Figure 17 

shows that it can still lock onto the 30 kHz Doppler offset 

(for a 10 kHz modulated signal), although it takes more 

time to do so than the half-band FLL. 

 

Figure 15: Spectra of Hybrid Half-Band and 

Optimum Band Edge Filters and Matched Filter 
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Figure 16: Demonstration of Hybrid Band Edge FLL 

Locking onto Doppler Within fsym 

 

Figure 17: Demonstration of Hybrid Band Edge FLL 

Locking onto Doppler Beyond fsym 

DELAY AND MULTIPLY DEVICES 

Background 

Prefiltered delay and multiply structures have been 

designed to determine unknown symbol rates for phase 

modulated signals.2,3 In his paper, Kuehls shows that for 

a delay that is less than a symbol time period, the product 

of a filtered BPSK signal with a delayed version of itself 

contains a periodic term with a baseband spectrum 

related to the symbol rate of the received signal.2  A 

modified version of Kuehls’ derivation can show that 

this term is multiplied by a carrier with twice the 

frequency offset. 

Let incoming signal s(t) be a BSPK signal with symbol 

rate fb = 1/T and frequency offset f0.  It is constructed in 

the transmitter using a baseband pulse p(t) in order to 

band-limit the signal.  The received signal passes through 

a noise-reduction filter h(t) and becomes c(t).  Then, c(t) 

branches off into two paths, one of which is a delay of d.  

These branches are multiplied together to form b(t).   

 

Figure 18: Delay and Multiply Device with Prefilter 

𝑠(𝑡) = ∑ 𝑎𝑛𝑝(𝑡 − 𝑛𝑇)𝑒𝑗2𝜋𝑓0𝑡𝑒𝑗𝜃∞
𝑛=−∞              (5) 

𝑐(𝑡) = ∑ 𝑎𝑛𝑞(𝑡 − 𝑛𝑇)𝐴𝑒𝑗2𝜋𝑓0𝑡𝑒𝑗𝜃𝑒𝑗𝜑∞
𝑛=−∞   

The factor A represents a change in amplitude, and the 

𝑒𝑗𝜙  factor represents a phase change caused by the noise 

reducing filter h(t). The expression q(t) represents the 

effect of the filter h(t) on the baseband pulse p(t).  The 

signal of interest, b(t) is the product of c(t) and c(t-d). 

𝑏(𝑡) = (∑ ∑ 𝑎𝑛𝑎𝑚𝑞(𝑡 − 𝑛𝑇) ∙∞
𝑚=−∞

∞
𝑛=−∞

                𝑞(𝑡 − 𝑑 − 𝑚𝑇)) ∙ (𝐴2𝑒𝑗2𝜋2𝑓0𝑡) ∙

               (𝑒−𝑗2𝜋𝑓0𝑑𝑒𝑗2𝜃𝑒𝑗2𝜑)                          (6) 

The first factor in parentheses, the double summation, 

can be broken down into two pieces: one for which n=m 

and one for which n≠m.  The n=m term is periodic, and 

the n≠m term is random.2 The periodicity of the n=m 

term is caused by the product of q(t-nT) and q(t-d-nT).    

This product remains constant when the data symbol is 

the same as it was during the previous symbol period.  

However, when the data symbol changes, the delay 

ensures that the product also undergoes a change.  The 

change can only happen on symbol time boundaries.  

This effect is readily seen in a simple case of a BPSK 

signal formed with rectangular pulses as in Figure 19.   

 

Figure 19: Forming Product of Rectangular-Pulsed 

BPSK Signal with Delayed Version of Itself 

Here, the only possible values for the BPSK signal are 

+1 and -1, and the only possible values for the product of 

the signal and the delayed version are +1 when they 

agree and -1 when they disagree.  In the general case, the 

transmitter’s pulse shaping filter will round the edges in 

order to contain the spectrum.  This tends to impart a 

small amplitude ripple on the “steady state” portion of 

the BPSK signal, and this ripple is also seen in the 

product of q(t-nT) and q(t-d-nT).  However, even in this 

more general case, most of the change exhibited in this 

product occurs when the data changes.  Figure 20 shows 

the same data sequence from the previous figure but with 

rounded edges.  A small ripple can be seen in the lower 

subplot representing the product of the signal and its 

delayed version.  Larger changes in the product occur in 

symbols 6 through 10 when the BPSK sequence 
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alternates back and forth.  The largest changes in the 

product occur at the beginning and ending of a run of 

consecutive +1’s or -1’s.  Regardless, these changes 

occur at boundaries of the symbol time, demonstrating 

that this product is periodic.  

 

Figure 20: Forming Product of Filtered BPSK Signal 

with Delayed Version of Itself 

For the purposes of this paper, the second factor in 

parenthesis of (6) is of interest because it contains the 

Doppler frequency offset information we are seeking.  

The third factor of (6) consists of a phase constant.  Since 

the original signal s(t) is BPSK modulated, the product 

of 𝑎𝑛
2  is equal to 1. 

The spectrum of b(t) depends on the shaping used in the 

transmitter and the time delay between the signal and its 

delayed version.  If the BPSK signal consists of 

rectangular pulses (no shaping filter), then the delay-

multiply device spectrum will show the tone at twice the 

Doppler offset surrounded by equal-amplitude tones 

separated by the symbol rate, as in Figure 21. A close-up 

of the largest tone is shown in Figure 22. 

 

Figure 21: Spectrum of Rectangular Shaped BPSK 

Signal Passed Through Delay-Multiply Device 

(fsym = 50 kHz, Doppler = 12.5 kHz) 

 

Figure 22: Close-up of Largest Tone of Figure 21 at 

Twice Doppler Frequency Offset 

When the delay is varied between zero and the symbol 

period, the spectrum emphasizes different symbol rate 

tones.  The example below shows a 50 kHz Doppler on 

a BPSK signal modulated at a symbol rate 50 kHz 

captured at 1 MS/s per second (20 samples per symbol).  

The delay element is varied between zero and 19 samples 

of delay, and the resulting spectrum is plotted in a 

separate subplot window. Observe that when the delay is 

set to zero, the symbol rate lines are not present.  

Furthermore, the peak we are interested in that is located 

at 100 kHz (twice the Doppler frequency) diminishes in 

amplitude as the delay is varied.  If the delay were set to 

the symbol rate, 20 samples in this case, the Doppler tone 

would be completely absent.  If our goal were to obtain 

a symbol timing reference instead of locking onto the 

Doppler offset, this would be the best delay choice. 

 

Figure 23: Spectrum of Delay-Multiply Output for 

BPSK with 50 kHz Doppler, Rectangular Shaping, 

Varying Delay from 0 Samples to 19 Samples 

If the BPSK signal is shaped with a root raised cosine 

filter in the transmitter, the delay-multiply device 

exhibits a spectrum with three primary tones: the tone at 

twice the Doppler frequency, and the symbol rate tones 

on either side of it.  Once again, the delay affects the 

spectrum and allows emphasis or de-emphasis of the 

Doppler tone (see Figure 24). 
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Figure 24: Spectrum of Delay-Multiply Output for 

BPSK with 50 kHz Doppler, Root Raised Cosine 

Shaping, Varying Delay from 0 Samples to 19 

Samples 

Incorporation of Delay-Multiply Device into FLL 

The structure of the delay-multiply FLL is similar to the 

band edge FLL.  The incoming signal is filtered with 

noise reducing filter h(t).  The product of the signal with 

a delayed version of itself is formed.  The change in angle 

of this product with respect to the previous value is 

computed and the result is passed to the proportional-

integral filter, which in turn feeds an NCO.  The NCO 

output is conjugated, and the result is multiplied with the 

incoming signal, completing the feedback loop.  This 

block diagram is shown in Figure 25. 

 

Figure 25: Delay-Multiply FLL for BPSK Signals 

Performance of Delay-Multiply Device FLL  

The delay-multiply FLL of Figure 25 was simulated with 

a BPSK signal modulated at 50 kHz and filtered with a 

square root raised cosine filer with α = 0.5.  The delay 

element was set to one sample, and the sample rate was 

1 MS/s.  The noise reducing filter h(t) was assigned to be 

a half-band filter.  It was observed that using the same 

values for ζ and η as the band edge filter FLL produced 

large frequency errors in the 5-6 kHz range along with 

extremely small lock times on the order of 50 

microseconds.  Therefore, a search was conducted for a 

set of parameters that produce similar lock times as the 

band edge filter FLL under similar SNR and Doppler 

offset conditions. It was determined that ζ = 1/√40 and 

𝜂 = 2𝜋/(200√20) produce similar lock times.  The 

FLL proportional and integral gain terms were set by 

equation (4) using these values.  The Doppler was set to 

be initialized at 12.5 kHz and changing at a rate 

of -550 Hz/s.  Noise was added to make the SNR equal 

to 20 dB.  This is the same scenario depicted in Figure 7 

for the band edge filter FLL.  The result for the delay-

multiply FLL is shown in Figure 26.  The delay-multiply 

FLL’s measured frequency at SNR = 20 dB is 

significantly noisier than the measurement from the band 

edge filter FLL.  The standard deviation was more than 

7 times that of the band edge filter’s measurement.  This 

simulation was re-run with the SNR set to 5 dB, and the 

result is shown in Figure 27.  At 5dB SNR, the variation 

in the delay-multiply FLL’s measured frequency is 

nearly triple the value of the band edge filter FLL’s result 

from Figure 8. 

 

Figure 26: Performance of Delay-Multiply FLL at 

SNR = 20 dB 

 

Figure 27: Performance of Delay-Multiply FLL at 

SNR = 5 dB 

If we adjust the loop bandwidth and damping parameters 

to η = 2π/2828 and ζ = 1/√400, the frequency error 

variation will be reduced to approximately the level seen 

in Figure 8 for the band edge filter FLL’s 5-dB scenario.  

However, the delay-multiply FLL will require more time 

to achieve lock.  The 5-dB scenario from the previous 
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figure was re-run as Figure 28 using these parameter 

values.  A comparison between Figure 28 with Figure 8 

shows that the delay-multiply FLL now has a standard 

deviation of 1159.3 Hz after lock compared to the band 

edge filter FLL’s 1272.0 Hz.  However, the delay-

multiply FLL requires 130 milliseconds to achieve lock 

compared to the band edge filter’s 2.99 milliseconds.  No 

matter how the damping and loop bandwidth parameters 

are adjusted, the delay-multiply FLL cannot 

simultaneously match the band edge filter FLL’s 

performance of lock time and frequency error after lock. 

 

Figure 28: Performance of Delay-Multiply FLL at 

SNR = 5 dB with Reduced Loop Bandwidth 

Advantages of Delay-Multiply Device FLL 

With only a single filter, a working delay-multiply FLL 

can be built with fewer field programmable gate array 

logic resources than a band edge filter FLL.  The noise 

reducing filter should have a passband of no more than 

±fs/4 for BPSK.  Figure 29 shows the delay-multiply FLL 

locking onto a time-varying Doppler initially at one 

quarter of the sample rate and changing by -550 Hz/s.  

The FLL is able to lock in less than 15 milliseconds.   

 

Figure 29: Performance of Delay-Multiply FLL with 

Doppler Offset Initially at fs/4 

Disadvantages of Delay-Multiply Device FLL 

The most obvious disadvantage of the delay-multiply 

FLL is that its accuracy does not match the accuracy of 

the band edge filter running under the same SNR 

conditions and the same loop bandwidth parameters.  

The derivation of the delay-multiply expression hinted at 

another major disadvantage.  The n=m term of equation 

(6) contains the factor 𝑎𝑛
2 , which is equal to 1 for BPSK.  

If the incoming signal were modulated with QPSK 

instead, this factor does not simplify.  Instead, the output 

of the prefilter h(t) must be squared before the resulting 

signal is delayed and multiplied.  This step creates the 

factor 𝑎𝑛
4 , which is 1 for QPSK.  While this alteration 

restores the simplification of equation (6), it also pushes 

the maximum spectral tone to four times the Doppler 

frequency instead of two times because it creates the 

factor (𝐴4𝑒𝑗2𝜋4𝑓0𝑡).   In addition, the delay-multiply FLL 

would be limited to detecting Doppler frequencies in the 

range ±fs/8 for QPSK instead of ±fs/4.   

CLOSING REMARKS 

Band edge filters provide an effective way to measure 

and correct time-varying Doppler for a variety of phase 

modulated formats. A modified version of the band edge 

filter preserves this capability while extending the 

frequency correcting range.  Filter implementations tend 

to consume logic resources in field programmable gate 

array designs, so it is useful to consider alternatives to 

the band edge filter FLL that require fewer filters.  

Prefilter delay and multiply techniques offer an 

alternative that can avoid the implementation of filters at 

the cost of reduced accuracy and limited frequency 

correcting range.   

APPENDIX 

A stable second-order analog phase-locked loop has a 

denominator with the structure shown in (A.1). 

𝜃𝑜(𝑠)

𝜃𝑖(𝑠)
=

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2                          (A.1) 

The digital phase-locked loop with proportional constant 

kp and integral constant ki has a block diagram shown in 

Figure 30 and a transfer function as expressed in (A.2). 

 

Figure 30: Second Order Digital Phase Locked Loop 

𝜃𝑜(𝑧)

𝜃𝑖(𝑧)
=

(𝑘𝑝+𝑘𝑖)𝑧−𝑘𝑝

𝑧2+(𝑘𝑝+𝑘𝑖−2)𝑧+(1−𝑘𝑝)
                        (A.2) 

In this derivation, the goal is to find a relationship 

between the proportionality constants kp and ki, the 

analog damping factor ζ, and the natural damping 
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frequency ωn. Our starting point is to replace the 

denominator of the analog system of (A.1) with an 

equivalent digital domain expression.  The bilinear 

transform relating s to z is shown in (A.3). 

𝑠 =
2

𝑇𝑠
(

𝑧−1

𝑧+1
)             (A.3) 

In (A.3), the sample period is Ts.  Substituting the 

bilinear transform expression into (A.1) produces a new 

expression in terms of z as shown in (A.4). 

𝜃𝑜(𝑧)

𝜃𝑖(𝑧)
=

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

(
𝑧−1

𝑧+1
)

2
+2𝜁(

𝜔𝑛𝑇𝑠
2

)(
𝑧−1

𝑧+1
)+(

𝜔𝑛𝑇𝑠
2

)
2            (A.4) 

Replacing the ratio ωnTs/2 with η and multiplying the 

numerator and denominator by (z+1)2, yields (A.5). 

𝜃𝑜(𝑧)

𝜃𝑖(𝑧)
=

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

(𝑧−1)2+2𝜁𝜂(𝑧+1)(𝑧−1)+𝜂2            (A.5) 

Next, we combine powers of z in the denominator of 

(A.5) and compare the result to (A.2). 

𝜃𝑜(𝑧)

𝜃𝑖(𝑧)
=

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

𝑧2+𝑧(
2𝜂2−2

1+2𝜁𝜂+𝜂2)+(
1−2𝜁𝜂+𝜂2

1+2𝜁𝜂+𝜂2)
            (A.6) 

Comparing (A.6) to (A.2), produces two equations with 

two unknowns: 

1 − 𝑘𝑝 =
1−2𝜁𝜂+𝜂2

1+2𝜁𝜂+𝜂2            (A.7) 

𝑘𝑝 + 𝑘𝑖 − 2 =
2𝜂2+2

1+2𝜁𝜂+𝜂2  

Solving (A.7) for kp and ki completes the derivation, with 

the result in (A.8) 

𝑘𝑝 =
4𝜁𝜂

1+2𝜁𝜂+𝜂2             (A.8) 

𝑘𝑖 =
4𝜂2

1+2𝜁𝜂+𝜂2  
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