
SSC20-VII-03

Applying Modern Software System Design to Small Satellite Development and
Operations

Michael Wilson
University of Michigan

mewil@umich.edu
Faculty Advisor: Professor James Cutler

ABSTRACT

Small satellite development and operations can be dramatically improved using contemporary software
practices and such technologies as system monitoring, containerization, and data analytics. By logging
system metrics at all stages of satellite development and operation, as is common practice in current soft-
ware development operations practices, satellite operators can implement new software more quickly, detect
failures sooner, and analyze information more effectively. Michigan eXploration Laboratory (MXL) at the
University of Michigan has created a system that aggregates millions of data points from a wide range of
sources including our satellite development units, our servers, our ground stations, open source ground sta-
tion networks, and our flight spacecraft. The system uses multiple data stores, distributed across a number
of servers, to house hundreds of gigabytes of telemetry data. Our system then provides novel ways to access
that data, including online APIs and GUIs. These tools have afforded MXL an unprecedented ability to
rapidly assess and maintain the health of our spacecraft both in development and in orbit.

INTRODUCTION

We present the design and evolution of the MXL
Integrated Data Analysis System (MIDAS), along
with lessons learned from its operation and the
many technical challenges it has simplified. We also
demonstrate that small satellite operations are en-
hanced through the use of modern software practices
and tools. We first outline the inception of MIDAS,
before discussing its design and the increased oper-
ational capability that it provides for MXL.

In early 2019, MXL was developing the proto-
type for our M-Cubed 9 (MC9) mission,1 while also
finishing the final verification and delivery of the Ex-
tended Tandem Beacon Experiment (E-TBEx).1 At
the same time, we discovered that we could lever-
age the work of SatNOGS,2 a federated global satel-
lite ground station network,3,4 to increase our op-
erational capacity for one of our existing spacecraft,
the GEO-CAPE ROIC In-Flight Performance Ex-
periment (GRIFEX).1 We realized that we needed a
system to augment both our spacecraft development
and our operational capabilities while we worked
with six satellites (development and flight units) be-
tween the three missions. We set out to build such a
system. First, we created a versatile ground station
client that allowed our team to more easily command
and receive telemetry from our spacecraft, as well as
uplink and downlink files. Shortly afterwards, we
wrote some rudimentary Python scripts that pulled

and decoded data from both the SatNOGS API2 and
the ground station client logs. We then dumped
the decoded telemetry data into Elasticsearch,5 a
NoSQL database used for search and analytics by
such organizations as CERN.6,7 The results could
then be viewed as time series graphs in Kibana,8

a visualization tool and another part of the Elastic
stack.5 This loosely coupled collection of Python
scripts was the inception of the system that over the
next year grew to become MIDAS.

After the launch of E-TBEx on SpaceX’s STP-2
mission12 in June 2019, we began turning this set of
Python scripts into a robust Go library and set of ap-
plications. We chose Go for its simplicity, productiv-
ity, and versatility. Go has its own straightforward
build system, testing framework, and formatting
rules, which reduce complexity and make it easier for
new lab members who are still learning programming
to understand our systems. The core application
we developed was a server that could receive data
from the existing ground station client via HTTP
requests, as well as pull data from the SatNOGS
API2 at regular intervals. The server then stored
data packets into a MySQL13 database, before de-
coding and dumping the packets into Elasticsearch5

for indexing. We then connected Grafana,14 an an-
alytics and monitoring platform similar to Kibana,8

to both data stores. This allowed for the creation of
such panels as the one displayed in Figure 4, letting
us easily display and monitor data from our space-

Wilson 1 34th Annual Small Satellite Conference



Figure 1: The MIDAS Architecture: a set of containerized applications, distributed across
physical machines using Docker,9 that interface with external services such as GitLab10 and
Slack11 and connect MXL members to our data.

craft. Using NGINX,15 a popular web server, and
OAuth2 Proxy,16 we made the sites secure, allowing
lab members to log in with their University of Michi-
gan Google accounts. Since the fall of 2019, we have
continued to apply modern software system design
to this server and add new applications to the suite
of software that has become MIDAS. We outline the
design of MIDAS as of April 2020 in the following
section.

MIDAS ARCHITECTURE

MIDAS, illustrated in Figure 1, consists of numer-
ous containerized services distributed across multi-
ple servers using Docker,9 a containerization plat-
form. Containers, a form of operating system vir-
tualization commonly described as lightweight vir-
tual machines, isolate our individual services, as
if they each existed on their own physical hard-
ware. Containerization technologies are common-
place in cloud-based software environments and fa-
cilitate both development and deployment by im-
proving security, service independence, and scala-
bility.17 MIDAS uses Docker to seamlessly deploy
and connect its services across multiple physical ma-
chines in a single distributed environment.

MIDAS ingests data from our spacecraft via

ground stations, operated by both MXL and the
SatNOGS network.2 Pulling data from SatNOGS
requires both rate limiting and caching our requests
to their servers; we use Redis18 to cache received
data from the SatNOGS API. Our server appli-
cation then processes and pushes the data into
PostgreSQL19 and subsequently into Elasticsearch,5

the system’s primary two data stores. Other ser-
vices, including Grafana, Cerebro, Jupyter Note-
book,14,20,21 and the server website, shown in Fig-
ures 2 and 5, access data from these stores. These
services also pull data from Hasura,22 a service that
implements a GraphQL API on top of the Post-
greSQL database.19 MIDAS users access all ser-
vices through NGINX,15 which, in combination with
OAuth2 Proxy,16 handles authentication and for-
wards requests to the appropriate service. Metrics
and logs are collected across the whole system using
Metricbeat23 and Filebeat,24 “lightweight data ship-
pers” for Elasticsearch.5 Finally, various services
can send notifications to our team via Slack11 and
when our developers make changes to our software,
the changes are automatically tested and deployed
using GitLab10 pipelines.

Incorporating such recent software practices as
continuous integration testing, automated deploy-
ments, and containerized environments have allowed

Wilson 2 34th Annual Small Satellite Conference



us to rapidly prototype new features and new ways
to analyze data, while maintaining an operationally
stable environment. In addition, the system’s low-
latency provides such new operational features as the
ability to dynamically generate and execute space-
craft commands in response to incoming telemetry.
Furthermore, the system integrates with communi-
cations tools such as Slack to notify operators in
real time if we receive telemetry indicating a failure
at any level of the system. In the following sections,
we describe how MIDAS has provided vital func-
tionality in four specific areas: ground systems and
satellite communications, telemetry aggregation and
analysis, systems monitoring and development, and
team communications and collaboration.

TELEMETRY AGGREGATION AND
ANALYSIS

MIDAS enables our lab to take full advantage of our
operational capability, as it accepts data in many dif-
ferent forms. It accepts satellite telemetry through
the original Python ground station client, a new
web-based Go ground station client, and from scrap-
ing the SatNOGS API.2 The aggregation of these
three sources allows us to consolidate telemetry data
in different forms into a single, queryable, data store.
The server application puts binary packet data from
these three sources into the PostgreSQL database.19

Telemetry packets are also indexed in Elasticsearch,5

while downlinked file parts are stored in another
PostgreSQL table. Before pushing the telemetry
data into Elasticsearch, the server transforms each
packet from its binary form into specific decimal
fields according to a configuration stored in Post-
greSQL. There exists a separate Elasticsearch index
for each satellite. This process of shipping data from
one data store to another, commonly referred to as
extract-transform-load, is commonplace in modern
data warehousing solutions.25 Storing data points
in Elasticsearch enables querying the time series
telemetry data in milliseconds and improves per-
formance when using such visualization software as
Grafana.14 Grafana allows MIDAS users to create
such informative panels as the one in Figure 4. In
addition to visualization, Grafana allows our team
to monitor the state of our satellites and software
and to be alerted of any changes in telemetry; this is
discussed further in the section on monitoring. The
quantity of data that the system has ingested as of
April 2020 for each flight spacecraft, stored in Post-
greSQL and Elasticsearch, is shown in Table 1.

While some satellite telemetry does not require
computational analysis, for example, free disk space

or memory usage, it is also important to user such
telemetry as magnetometer data to determine space-
craft attitude. Using Jupyter Notebook21 and MI-
DAS data APIs, our system provides lab members
with the tools they need to assess such characteris-
tics. In collaborative Python Notebooks, Jupyter21

allows users to make requests to the MIDAS API,
PostgreSQL, Elasticsearch, and Hasura,5,19,22 ex-
tract and transform the results, and make informed
operational decisions. Figure 3 shows a heatmap,
generated in Jupyter, of power generated per solar
panel from the E-TBEx-A flight unit in orbit, from
Jan 1, 2020 to Apr 27, 2020. This diagram allows
our team to identify an issue with our +Y and -Y
deployable wing panels, as the average power gener-
ated does not exceed 0.5W.

GROUND SYSTEMS AND SATELLITE
COMMUNICATIONS

In addition to providing analytical functionality to
MXL, MIDAS provides increased operational com-
manding capability. By querying our data stores,
we can make informed decisions about what data to
request from the spacecraft, eliminating duplicate
data requests and therefore increasing our downlink
throughput. On orbit, our satellites send out teleme-
try data in a beacon every ten seconds, but they only
pass over our ground station at the University of
Michigan for a small percentage of the day. For this
reason, our flight spacecraft log and compress data
into archive files to be downloaded during our short
windows of contact. Our GRIFEX satellite currently
stores more than five years of historical telemetry
beacons from orbit. However, until MIDAS was cre-
ated, we did not have a way to quickly downlink and
analyze this archived data. While operating a pass,
ground station users can now request a file down-
link and subsequently query the MIDAS API to de-
termine which file parts are still missing from the
download. In addition, using aggregated upcoming
pass data from both SatNOGS and FetchTLE,2,26

one of our legacy services for processing two-line el-
ement sets, we generate lists of future times during
which our spacecraft will be over either SatNOGS or
our own ground stations. MXL operators therefore
schedule downlinks of missing file parts over stations
around the world, further increasing our downlink
throughput. In the case of our two E-TBEx space-
craft, this integration of data from our own ground
stations with data from SatNOGS ground stations
led to a 2.2x increase in received telemetry data.
The left side of Figure 4 depicts the low resolution of
GRIFEX beacons collected only during passes over

Wilson 3 34th Annual Small Satellite Conference



Figure 2: The MIDAS Packet Dashboard: a filterable list of incoming decoded packets. The
columns SID and Flag tell us which satellite the packet is from or has been sent to and the
packet type, respectively. 66 references the GRIFEX satellite, CAP (2), or Command Appli-
cation Packet, is a command packet sent by our team to the spacecraft, and the Other (12)
packet type denotes that the packet contains arbitrary ASCII data.

Figure 3: A heatmap generated using Jupyter that illustrates power generated per deployable
wing panel for E-TBEx-A from Jan 1, 2020 to Apr 27, 2020. Color brightness indicates the
frequency of occurrence.

Wilson 4 34th Annual Small Satellite Conference



Table 1: Data Collection Metrics for MXL Flight Spacecraft

Craft Pass Count Packet Count File Count Individual Data Point Count
GRIFEX 236,881 437,967 2,240 32,137,973

E-TBEx-A 157,668 37,059 23 2,167,941
E-TBEx-B 154,071 33,579 28 1,898,988

M CUBED-2 233,467 86,771 110 8,869,300

Figure 4: Critical Temperatures from the GRIFEX satellite from Dec 28, 2019 to Dec 30,
2019.

active ground stations. The middle and right side of
Figure 4 show the distinct improvement that down-
linked telemetry archives provide, a ten second bea-
con resolution. We monitor the progress of various
downloads on our file dashboard, as well as verify
the integrity of files using an MD5 sum and mark
the files as downloaded telemetry archives as shown
in Figure 5.

SYSTEMS MONITORING AND DEVEL-
OPMENT

In contemporary software system design, monitoring
and alerting have become the standard for ensuring
operational success. MIDAS takes these concepts
and applies them to satellite development and oper-
ations. Such tools as Grafana14 allow us to closely
monitor our systems, easily compare data between
our flight and development units, and alert us of
system errors or abnormalities. For example, using
Metricbeat23 and Filebeat,24 we store millions of MI-
DAS log files and system metrics in Elasticsearch.5

These log files and metrics give us valuable insights
into such important operational data as how often
the server makes requests to SatNOGS2 and what
the percentile latencies of our REST API are (see
Figure 6). Most importantly, these queryable logs
allow us to know what part, if any, of the system
encounters errors. By combining these data aggre-
gation tools with Grafana, we not only clearly report
the status of our systems, but we also alert ourselves
to errors using a Slack webhook.11 These webhooks
send a message to our Slack workspace whenever MI-
DAS encounters an error or sees abnormal telemetry
data from our satellites, allowing us to address such
issues as soon as they are detected. In addition to
Grafana,14 we also use Cerebro,20 an open source
health monitoring and query tool for Elasticsearch,5

to ensure that our systems are nominal and to test
novel queries on our data.

MIDAS additionally lets MXL take full advan-
tage of our satellite development units. By run-
ning our development units for days at a time while
connected to the server, we accumulate hundreds of

Wilson 5 34th Annual Small Satellite Conference



Figure 5: The MIDAS File Dashboard: a list of files with progress summary and metrics to
assess data integrity. The dashboard also gives the user the ability to download completed files
and mark the file as a downloaded telemetry archive, which causes the file to automatically
be decoded and added to our aggregated telemetry data store.

Figure 6: MIDAS API Latency Percentiles, used to assess performance. More specifically, this
tells our team that 75 percent of all requests to the MIDAS API return within approximately
100 milliseconds or less. It also allows us to detect spikes indicating requests with high latency,
enabling us to investigate and improve the performance of the system.

Wilson 6 34th Annual Small Satellite Conference



thousands of beacons that we use not only to spot
errors before they happen on orbit, but also to im-
prove our flight software before launch. Just as most
large software companies have some sort of staging
environment where they test their software, MIDAS
enables MXL satellites to have an operational stag-
ing environment for development units that closely
mirrors their flight environment.

NASA research states that of nearly 37% of
CubeSat missions had never make contact with the
ground and that 30% of missions do not complete
their objectives.27 To minimize failure through au-
tomated testing, MIDAS takes advantage of Git-
Lab’s10 pipeline feature for continuous integration
(CI), continuous deployments (CD), data backups,
as well as general maintenance tasks. GitLab
pipelines are traditionally used for running tests and
deployments. Our software team uses these features
to ensure that all MXL code passes rigorous tests
before being deployed and that our running appli-
cations such as the MIDAS server stay up to date.
Not only do we run unit tests of our server, ground
station, and flight software, but we also test the in-
tegration of these three major components entirely
in software, using Docker9 containers to simulate
the computing environment in which they operate.
These end-to-end integration tests, similar to the
practice of testing mobile app integration with web
servers in the software world, allow us to validate
our changes before we risk putting them into pro-
duction on the ground or on orbit. In addition to
using GitLab pipelines for CI/CD, we also use the
scheduled pipeline feature as a distributed job sched-
uler. For example, every day, GitLab automatically
runs a pipeline to back up the MIDAS server, in-
cluding PostgreSQL19 and Grafana.14

TEAM COMMUNICATIONS AND COL-
LABORATION

As previously mentioned, MXL uses Slack11 not
only to communicate, but also in combination with
Grafana,14 to send alerts when systems encounter
errors or abnormal values. In addition, we use the
Hasura22 service’s event trigger feature to listen for
new packets and provide a live stream of all incom-
ing telemetry in one of our Slack channels.

MIDAS also synchronizes upcoming passes over
our ground station at the University of Michigan
campus to Google Calendar, as seen in Figure 7.
Furthermore, it sends a Slack notification to our
workspace prior to each pass. These features in-
crease operational visibility and allow users to easily
plan their day around the passes they will operate.

In addition to improving operational communi-
cations, MIDAS helps MXL developers build new
tools more quickly by automatically generating doc-
umentation for our services. We have also connected
GitLab to Slack, ensuring that any errors in soft-
ware development, deployment, or data backups are
reported. These features not only make it easier for
new members to understand existing services and il-
lustrate our development process, but also help au-
tomate maintenance of our systems for experienced
members.

CONCLUSION AND FUTURE WORK

The applications and tools that MIDAS has pro-
duced have undoubtedly transformed MXL satel-
lite operations for the better. Furthermore, in the
past several months, these collaboration tools along
with our automation infrastructure and secure net-
work access have allowed MXL to continue its re-
search and satellite operations remotely as we face
the COVID-19 pandemic. While we no longer have
physical access to our hardware, our software has
allowed us to continue to monitor and operate both
our development and flight spacecraft.

We have demonstrated that current software
practices and tools increase data visibility, team
communication, and thus both operational and de-
velopmental capability for small satellites. These
practices, including containerization, monitoring,
decoupling of services, documentation, alerting, data
analytics, and automation, have helped ensure that
MXL remains at the forefront of small satellite de-
velopment.

MIDAS will continue to be developed to further
its goals of operational success through contempo-
rary software system design with an increased focus
on collaboration among lab members. Planned fea-
tures include a remote collaborative ground station
client, improved satellite state summarization and
analysis capabilities, and eventually, the automation
of our operations to ease the load of operations on
our members. Our work clearly illustrates that mod-
ern software solutions that emphasize system auton-
omy and measurability have the power to dramati-
cally improve small satellite operations and develop-
ment.

References

[1] Missions and systems. The Michigan eXplo-
ration Lab, 2020.

[2] Satnogs. SatNOGS, 2020.

Wilson 7 34th Annual Small Satellite Conference



Figure 7: Google Calendar used to display upcoming passes over our ground station at the
University of Michigan

Wilson 8 34th Annual Small Satellite Conference



[3] J.W. Cutler and P. Linder. A federated
ground station network. Proceedings of the 2002
SpaceOps Conference, Houston, TX, October,
October 2002.

[4] S. C. Spangelo, D. Boone, and J. Cutler. Assess-
ing the capacity of a federated ground station.
2010 IEEE Aerospace Conference, 2010.

[5] Elasticsearch: The official distributed search &
analytics engine. Elastic, 2020.

[6] Felix Barnsteiner. Elasticsearch as a time series
data store. Elastic Blog, April 2019.

[7] Z Mathe, A Casajus Ramo, F. Stagni, and
L. Tomassetti. Evaluation of NoSQL databases
for DIRAC monitoring and beyond. Journal of
Physics: Conference Series, 664(4):042036, De-
cember 2015.

[8] Kibana: Explore, visualize, discover data. Elas-
tic, 2020.

[9] Empowering app development for developers.
Docker, 2020.

[10] The first single application for the entire devops
lifecycle. GitLab, 2020.

[11] Where work happens. Slack, 2020.

[12] SpaceX. Stp-2 mission. SpaceX, April 2019.

[13] The world’s most popular open source
database. MySQL, 2020.

[14] Grafana: The open observability platform.
Grafana Labs, 2020.

[15] High performance load balancer, web server, &
reverse proxy. NGINX, 2020.

[16] oauth2 proxy. oauth2-proxy: A reverse
proxy that provides authentication with google,
github or other providers. GitHub, May 2020.

[17] What are containers and their benefits —
google cloud. Google, 2020.

[18] Redis. Redis, 2020.

[19] The world’s most advanced open source rela-
tional database. PostgreSQL, 2020.

[20] Lmenezes. lmenezes/cerebro: open source elas-
ticsearch web admin. GitHub, April 2020.

[21] Jupyter notebook. Project Jupyter, 2020.

[22] Instant realtime graphql apis on postgresql. Ha-
sura GraphQL, 2020.

[23] Metricbeat: Lightweight shipper for metrics.
Elastic, 2020.

[24] Filebeat: Lightweight log analysis & elastic-
search. Elastic, 2020.

[25] Michael J Denney, Dustin M Long, Matthew G
Armistead, Jamie L Anderson, and Baqiyyah N
Conway. Validating the extract, transform, load
process used to populate a large clinical re-
search database. International journal of med-
ical informatics, October 2016.

[26] Tools for fetching two-line elements sets. Fetch-
TLE, 2020.

[27] M. Swartwout. Cubesats and mission suc-
cess: 2016 update. 2016 Electronics Technology
Workshop, NASA Goddard Space Flight Cen-
ter, June 2016.

Wilson 9 34th Annual Small Satellite Conference


