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Abstract 

BACKGROUND: Perennial legumes cultivated under irrigation in the Mountain West USA 

have non-fibrous carbohydrate (NFC) concentrations exceeding 400 g kg-1, a level commonly 

found in concentrate-based ruminant diets. Our objective was to determine the influence of NFC 

concentration and plant secondary compounds on in vitro rumen digestion of grass, legume and 
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forb forages compared with digestion of their isolated neutral detergent fiber (NDF) fraction. 

Forages were composited from ungrazed paddocks of rotationally stocked irrigated monoculture 

pastures between May and August 2016, frozen in the field, freeze-dried, and ground. 

 

RESULTS: The maximum rate (RMax) of gas production was greater for the legumes alfalfa 

(ALF; Medicago sativa L.) and birdsfoot trefoil (BFT; Lotus corniculatus L.) than for the legume 

cicer milkvetch (CMV; Astragalus cicer L.) the grass meadow brome (MBG; Bromus riparius 

Rehm.) and the non-legume forb small burnet (SMB; Sanguisorba minor Scop.), and 

intermediate for the legume sainfoin (SNF; Onobrychis viciifolia Scop.). The RMax of isolated 

NDF was greatest for BFT and CMV, intermediate for ALF, SNF and SMB and least for MBG. 

 

CONCLUSIONS: More than 900 g of organic matter (OM) kg-1 dry matter (DM) of legumes 

was digested after 96 h. Across forages, the extent of whole plant digestion increased with NFC 

and crude protein (CP) concentrations, decreased with NDF concentrations, and was modulated 

by secondary compounds. The extent of digestion of isolated NDF decreased with concentration 

of lignin and residual tannins. 

 

Keywords: condensed and hydrolysable tannins; cumulative fermentation gases; irrigated 

pastures; isolated fiber; non-fibrous carbohydrates; perennial legume forages 
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INTRODUCTION 

Increasing the forage content of beef finishing diets and dairy rations could reduce feed costs and 

improve the health and longevity of dairy cows 1. Intake and digestibility of forages by ruminants 

are a function of forage neutral detergent fiber (NDF) and energy concentration 2; however, the 

digestibility of NDF and the proportion of NDF that is ultimately not digested in the rumen 3 can 

limit the rate of passage of forages from the rumen and thereby limit intake 4. The concentration 

and biochemistry of lignin and the localization of its deposition in forage cell walls, constrains 

ruminant intake and digestibility 5, while greater concentrations of non-fibrous carbohydrates 

(NFC) represent energy for microbial colonization of forages 6. These variables are, in part, a 

function of plant phenology and environment 7. For instance, forages grown under irrigation in 

the high-elevation Mountain West USA have more NFC and less NDF compared with the same 

forages cultivated in warmer, more humid environments 8, 9. 

Legume forages such as the true clovers or alfalfa (ALF) are commonly grazed only as 

components of grass-legume mixtures to avoid issues with pasture bloat 10 that can result from 

the rapid digestion of bloat-causing forages 11. Temperate nutrient-dense legumes such as 

birdsfoot trefoil (BFT) and sainfoin (SNF) are non-bloating due to the presence of condensed 

tannins (CT) that precipitate excess plant protein in the rumen and reduce protein availability 12, 

disrupt biofilms 13, or alter rumen microbial ecology14. Alternatively, vein structural tissue holds 

the upper and lower epidermis of CMV leaves together 15 preventing bloat by slowing rumen 

microbial access to plant cell contents. 
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The objective of this study was to compare the rate and extent of digestion of two non-

tannin (ALF and CMV) and two CT-containing (BFT and SNF) legumes with a grass (MBG) 

and a non-legume forb (SMB) when these forages were grown under irrigation in the Mountain 

West region. Grasses have more fiber and less lignin than legumes 5, and the non-legume forb 

SMB is persistent and palatable to livestock but contains a hydrolysable tannin (HT) that reduces 

nitrogen excretion in the urine of beef cattle 16. The in vitro gas production technique was used to 

study the influence of NDF, NFC, crude protein (CP), lignin, CT, HT and other nutrients and 

secondary plant compounds on the rumen digestibility of these forages. 

 

MATERIALS AND METHODS 

Forage collection 

The six forage species used in this study were composited from irrigated monoculture pastures 

(0.365 ha each) that were rotationally stocked with dry beef cows from late May through mid-

August of 2016. Pastures were located in Lewiston, Utah (41.95°N; 111.87°W; altitude 1370 

m.a.s.l.). Composited material was collected weekly (CMV MBG and SMB; 11 dates x 5 reps; 1 

g DM per sample) or monthly (ALF, BFT, SNF; 3 dates x 9 reps; 2 g DM per sample) between 

8.00 h and 12.00 h from paddocks that would be grazed next in rotations by clipping ~10 

samples of each species to a 7.6 cm stubble. A total of approximately 250 g fresh weight was 

collected by walking a corner-to-corner transect of the paddock. Grass pasture regrowth was 

maintained in the vegetative stage and all forbs were maintained in the flowering stage during 
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this period. Forage samples were immediately frozen under dry ice and stored at –20°C until 

freeze-dried, then milled to pass the 1-mm screen of a Wiley mill (Thomas Scientific, 

Swedesboro, NJ, USA). 

 

NDF isolation 

Neutral detergent fiber of each species was isolated using the standard protocol for the ANKOM 

A200 Fiber Analyzer (ANKOM Technology, Macedon, NY, USA). Following an acetone rinse, 

samples were dried at 102°C and weighed to determine NDF concentration. Isolated NDF was 

soaked overnight in 10% (v/v) tert-butyl alcohol and 90% 1 M sodium sulfate at 39°C and rinsed 

successively with hot water, 95% ethanol, and acetone 17 to remove traces of neutral detergent 

solution. 

 

In Vitro Rumen Fluid Fermentation 

The in vitro methodology of Theodorou et al. 18 was used to determine the kinetics of rumen 

fermentation. Three runs of the fermentation were carried out over a 3-wk period. Triplicate 

samples of approximately 0.4 g of each whole plant and NDF isolate sample plus a BFT control 

and a blank were included in each run. Fermentations were carried out in 125-mL borosilicate 

glass serum bottles (Wheaton, Boston, MA, USA). A 40-mL aliquot of buffer containing macro- 

and microminerals, artificial saliva, a reducing solution, and resazurin 19 was added to forage in 

each bottle, which was flushed with CO2 and sealed with a butyl rubber septum and aluminum 
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crimp cap (Wheaton). All reagents were purchased from Sigma-Aldrich (St. Louis, MO). Bottles 

with forage and buffer were stored overnight at 4°C then warmed to 39°C before 20 mL rumen 

fluid was added. Blank vials contained buffer and rumen fluid only. 

Animal handling was conducted under Utah State University Institutional Animal Care 

and Use Committee protocol #2834. Rumen fluid was collected approximately 4 h after a meal 

of ALF hay. Fluid was squeezed from the mat of fermenting forage of a ruminally cannulated 

Angus cow into a pre-warmed thermal flask, transported 15 min. to the laboratory, strained twice 

through three layers of cheesecloth and maintained at 39°C under CO2 gas. The pH of rumen 

fluid was 6.3 ± 0.4. When fermentation was terminated at 96 h, mean pH of all samples was 6.75 

± 0.05 (SD); the pH of blanks was 7.02 ± 0.20, and the pH of controls was 6.92 ± 0.08. 

 Gas pressure measurements were made with a needle-equipped pressure transducer 

(PX409-015GUSBH; Omega Engineering Inc., Stamford, CT, USA) at 1, 2, 4, 6, 8, 10, 12, 18, 

24, 36, 48, 72, and 96 hours after inoculation, and accumulated gas was vented after each 

measurement 18. Fermentation was stopped by cooling serum bottles to 4°C in a walk-in freezer. 

Undigested fermentation residues were collected in ANKOM in situ bags with 50 µm porosity, 

thoroughly rinsed with distilled water, and dried at 60°C to obtain dry mass. 

 Gas pressure was transformed to gas volume using the equation gas volume (mL) = 

5.3407 × gas pressure (psi) 20. A single phasic model (Equation 1) for cumulative gas volume (G) 

was used to calculate fermentation kinetics parameters where A (mL g-1 organic matter; OM) 

was the asymptotic (maximum) gas volume, B (hours) was the incubation time (t) at which half 
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the maximum amount of gas had been formed, and C was a constant describing the sharpness of 

the switching characteristic of the cumulative gas curve 21. As the value of C increases, 

cumulative gas production curves become more sigmoidal and increase in slope,  

 

𝐺𝐺 = 𝐴𝐴
1+(𝐵𝐵 𝑡𝑡� )𝐶𝐶

          Equation (1) 

 

The time when the maximum rate of substrate digestion occurred (𝑡𝑡𝑅𝑅𝑀𝑀) and the maximum rate of 

substrate digestion (RMax) were calculated from A, B, and and C using Equations 2 and 3 21.  

 

𝑡𝑡𝑅𝑅𝑀𝑀 = 𝐵𝐵(𝐶𝐶 − 1)1/𝑐𝑐         Equation (2) 

 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐵𝐵

(𝐶𝐶 − 1)(1−1𝐶𝐶)        Equation (3) 

 

Forage Analyses 

Dry matter (DM) of forages and isolated fiber was determined by drying three subsamples of 

each forage for 48 h at 105°C. Digestible dry matter (DDM) was calculated by subtracting DM 

of undigested fermentation residue at the end of the fermentation from substrate DM and 

dividing by substrate DM. Residues were ashed at 550°C and subtracted from substrate DM to 

estimate substrate OM. Undigested OM was calculated by subtracting ash from undigested 

fermentation residue DM; some minerals may have been solubilized during fermentation22. 
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Digestible organic matter (DOM) was calculated by subtracting undigested OM from substrate 

OM and dividing by substrate OM.  

Forage composites were analyzed by near infrared spectroscopy (NIRS; FOSS 2500 Feed 

Analyser, Foss Analytics, Hilleroed, Denmark) to estimate CP, amylase-treated NDF (aNDF), 

NDF digestibility as a proportion of NDF (NDFD), acid detergent fiber (ADF), NFC, ash, acid 

detergent lignin (ADL), fat, and total digestible nutrients (TDN) using the March 2018 NIRS 

Consortium mixed hay equation (https://www.nirsconsortium.org/). The calibration set for this 

equation does not include SMB. The WSC concentration of forage samples was determined by 

the phenol-sulfuric acid method 23, and their starch concentration by the glucose oxidase-

peroxidase method 24.  

 Total CT concentrations were determined by the butanol-HCl-acetone method 25. 

Condensed tannin standards were isolated from BFT and SNF 26. Hydrolyzable tannins were 

determined for SMB relative to methyl gallate standards and a tannic acid check 27. 

 

Experimental Design and Statistical Analyses 

Cumulative fermentation gas kinetics parameters were estimated using PROC NLIN and then 

analyzed using PROC GLIMMIX (SAS/STAT 14.3, SAS Institute Inc., Cary, NC, USA) with a 

mixed model in which run was the random factor, and species and material (whole plant or 

isolated fiber) with their interaction were fixed effects. To account for the correlation of whole 

plant and isolated fiber materials from the same species, a heterogeneous compound-symmetry 
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structure (CSH) was included based on AIC and BIC selection. Pairwise differences among the 

least squares means (LSMEANS) of the kinetics parameters were tested with Tukey-Kramer 

multiplicity adjustment. PROC CORR was used to determine correlation between whole plant 

DDM and CP and between ADL and undigested OM. Tests were considered significant at the 

0.05 level. 

 

RESULTS 

The four legumes used in this study (ALF, BFT, CMV, and SNF) had similar CP, NDF and NFC 

concentrations (Table 1). The mean CP concentrations of these legumes was approximately 

twice that of the grass and the non-legume forb, and their NDF concentrations were 

approximately half that of the grass and the forb (Table 1). The NFC concentration of the non-

legume forb was similar to legume NFC concentrations, and the NFC concentrations of all five 

forbs was more than twice that of the grass (Table 1). Acid detergent lignin concentrations were 

similar for three of the legumes (ALF, BFT, and CMV), while ADL values were similar for SNF 

and SMB; the four legumes and the non-legume forb had ADL values 1.4 to 2 times greater than 

that of the grass. Neutral detergent fiber concentrations estimated by NIRS (Table 1) and NDF 

concentrations determined by ANKOM digestion (Table 2) were ranked similarly, including that 

of SMB. Values for NDF by NIRS averaged 7% less than ANKOM analysis. 

Water-soluble carbohydrate (WSC) concentrations (Table 2) were greatest for the 

legumes BFT and CMV and the forb SMB, and were greater for the legume SNF than the grass. 
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The WSC concentration of ALF was less than that of other forages tested, while starch 

concentration was greatest for ALF. In whole plant material, the CT concentration of SNF was 

more than double that of BFT, and the concentration of HT in SMB was intermediate to the CT 

concentrations of BFT and SNF (Table 2). Isolated NDF of SMB retained about half the HT 

concentration of whole plant material, while isolated NDF of BFT and SNF retained 28 and 

21%, respectively, of the CT in whole plant material of these species (Table 2). 

 Whole plant DDM and DOM did not differ among legumes and were greater than for the 

grass; grass values were greater than the non-legume forb SMB (Table 3). There was a positive 

correlation between whole plant DDM and CP (r = 0.94;). The concentrations of undigested OM 

for whole plant material of MBG and SMB were approximately two and three times greater, 

respectively, than that of the four legumes (Table 3). 

The DDM of isolated NDF was greatest for CMV followed by the grass, and least for 

SMB (Table 3). Acid detergent lignin concentration was positively correlated with undigested 

OM of isolated NDF (r = 0.86). For isolated NDF, more OM remained undigested for the three 

tannin-containing forages than for other forage species. The NDF of SMB contained the greatest 

concentration of HT and had the greatest concentration of undigested OM, followed by SNF and 

BFT.  

Forage species had a significant effect on RMax (Table 4) of both whole plant material and 

isolated NDF. The RMax of ALF and BFT was greater than for other forages except SNF, and the 

RMax of isolated NDF was greater for BFT and CMV than MBG. Time to reach RMax (𝑡𝑡𝑅𝑅𝑀𝑀) was 
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less than 8 h for whole plant material of all species and more than 28 h for isolated NDF of all 

species (Table 4). The RMax of isolated NDF reached values equal to or greater than the rate 

observed for whole plant material of CMV, MBG, and SMB. 

The asymptotic gas volume (Parameter A) is the cumulative gas production at the end of 

fermentation predicted from analysis of cumulative gas as a function of time (Fig. 1). Asymptotic 

gas volume of MBG whole plant material was greater than that of CMV and SMB whole plant 

material, and did not differ from that of ALF, BFT, and SNF whole plant material (Table 5). 

Asymptotic gas volume of isolated NDF was greatest for CMV and MBG and least for SMB. 

Acid detergent lignin concentration was negatively correlated with asymptotic gas volume of 

isolated NDF (r = -0.93). 

Hours to one-half asymptotic cumulative gas volume (Parameter B; Table 5) is related to 

both the rate and extent of fermentation; a lower value for Parameter B reflects a more rapid rate 

of rumen digestion. Among whole plant material, time to one-half gas volume was greatest for 

MBG and SMB, and did not differ from that of CMV. Parameter B of whole plant CMV did not 

differ from SNF, and Parameter B of whole plant SNF did not differ from ALF and BFT, which 

reached one-half asymptotic cumulative gas volume the most quickly; ALF and BFT also had the 

greatest whole plant RMAX. Time to one-half asymptotic gas volume of whole plant material was 

negatively correlated with CP (r = - 0.90). For isolated NDF, time to one-half asymptotic 

cumulative gas volume was greater for MBG than for ALF, BFT, and CMV and did not differ 

from SNF and SMB (Table 5). 
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For whole plant material, Parameter C was greater for ALF and BFT than for CMV, 

MBG, and SMB indicating a sharper acceleration of fermentation rate following the initial lag 

phase. Parameter C was greater for whole plant SNF than MBG and SMB and did not differ from 

ALF, BFT or CMV (Table 5). Values of  Parameter C (Table 5) were greater for isolated NDF 

than for whole plant material (p < 0.01) and did not differ among forages (Fig. 1). 

 

DISCUSSION 

The NFC concentrations of legumes grown in the Mountain West were comparable to those for 

corn silage (358 g kg-1 DM) and beet pulp (383 g kg-1 DM) 28. The elevated NFC concentrations 

of forages cultivated in the Mountain West likely result from the greater net photosynthesis of 

long, sunny days 29 combined with cool night temperatures that reduce the rate of respiration that 

consumes non-structural carbohydrates30. 

Starch concentration was least in the cool-season grass, which stores carbohydrates as 

fructans 31 in leaf and stem bases below grazing height. Alfalfa starch concentration in this study 

was greater than values generally reported for forage legumes; however, starch concentration of 

red clover (Trifolium pretense L.) leaves reached 350 g kg-1 DM by the end of the day when 

grown at day/night temperatures of 19-23°C /14-16°C 32. When legume WSC and starch 

concentrations were summed by species, they accounted for 27% (CMV) to 46% (ALF) of NFC; 

the balance of NFC consists of organic acids and ND-soluble fiber, including pectins and some 

hemicelluloses 33. 
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Increasing the NFC of high-forage diets by adding grain usually decreases fiber 

digestibility 34, augmentes VFA synthesis and may increase nutrient flow from the rumen 35, 36. In 

this study, the undigested OM of isolated legume NDF ranged from 225 to 503 g kg-1 DM after 

96 h while legume whole plant undigested OM ranged from 78 to 88 g kg-1 DM. The whole plant 

undigested OM of SMB, the non-legume forb, was nearly three times greater than for the 

legumes even though NFC of all five forbs was similar. The reduced digestibility of SMB whole 

plant and isolated fiber was likely due to the antimicrobial activity of HT, which is known to 

negatively affect digestion 37. These results demonstrate that NFC does not inhibit NDF 

digestion, and that the extent of forage digestion is influenced by the concentration of NDF and 

can be modulated by the presence of plant secondary compounds in NDF. Whole plant 96-h 

DDM of the tannin-containing legumes BFT and SNF was similar to the non-tannin legumes 

ALF and CMV. 

Grass whole plant material produced the greatest asymptotic fermentation gas volume 

(Parameter A). Diets with greater fiber concentrations result in greater rumen acetate-to-

propionate ratios38, and acetate synthesis results in a greater volume of gas production than 

propionate synthesis 39, 40. Comparing the gas volume of isolated forage NDF eliminates 

variation due to acetate and propionate contributions, since non-structural carbohydrates are the 

main source of propionate synthesis. Cicer milkvetch contains a water-soluble arabinogalactan 

protein that prevents cellulolytic bacteria from digesting cellulose 41, 42 and cattle gained 

significantly less on irrigated, rotationally stocked CMV than BFT pastures 43. This 
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arabinogalactan protein may account for the lower RMax and greater Parameter B of whole plant 

CMV that suggests inhibited short-term digestion compared with ALF and BFT. However, these 

parameters were not less for CMV isolated fiber. While ALF and CMV had similar whole plant 

ADL concentrations, ALF has more rigid, erect stems while CMV has less rigid, vine-like stems. 

These differences in stem structure could result from differences in the amount, type or 

localization of lignin in stem fiber cell walls44 and result in greater isolated NDF DDM of CMV 

compared with ALF. The grass had the least ADL, which was positively correlated with 

undigested NDF OM and negatively correlated with isolated NDF asymptotic gas volume. The 

extent of digestion of SMB isolated NDF was likely constrained by both elevated ADL and the 

presence of about 50% whole plant HT retained in isolated NDF.  

More OM remained undigested in NDF isolates from tanniferous species that retained 

tannins in the NDF fraction. The HT in SMB bound more dietary N than the CT in BFT or SNF 

when beef cows were fed tannin-containing hays as their complete diet 16. Here, the NDF of 

SMB, with half the whole-plant concentration of HT, had the greatest undigested OM. Tannins 

may bind to structural cell wall proteins and inhibit enzymes secreted by wall-digesting rumen 

microbes. The concentration of structural proteins in monocots is approximately 1% while 

structural proteins comprise as much as 10% of the cell walls of dicots, including legumes and 

forbs45. Our demonstration that the NDF fraction of tanniferous forages retains significant CT 

and HT concentrations suggests tannins could influence the digestion of both the cell contents 

and the cell wall fraction of forages. 
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CONCLUSIONS 

The perennial legumes used in this study had elevated whole plant CP compared with the grass 

MBG and the forb SMB. The four legumes and the forb, SMB, had elevated NFC concentrations 

compared with the grass. The four legumes had the greatest DDM and DOM of the six forages, 

and the least undigested OM after 96 h. The digestion of isolated NDF, however, was more 

variable and reduced by the combined concentratons of lignin and residual tannin. Among the 

legumes, ALF and BFT had similarly elevated maximal rates of digestion, abbreviated times to 

one-half asymptotic cumulative gas production, and sharp inflection points in their cumulative 

gas curves. While the CT concentrations of BFT and SNF appeared to affect isolated NDF 

digestion, they did not reduce the extent of forage digestion measured as DDM. However, some 

combination of reduced protein concentration, elevated NDF and the presence of HT inhibited 

both the rate and extent of SMB digestion. While the fiber of CMV was rapidly and more 

completely digested than that of other forage species, the digestion of CMV whole plant material 

was extensive but less rapid than other legumes, perhaps due to the presence of a water-soluble 

arabinogalactan that inhibits fiber digestion. Reducing the concentration of secondary 

compounds such as the arabinogalactan in CMV or the HT in SMB would be worthy plant 

breeding goals to enhance forage digestibility and improve the nutrition and productivity of 

ruminants grazing these forages. 
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Figure Legend 

Fig. 1. Cumulative gas production of whole plant material (A) and isolated neutral detergent 

fiber (B) for an in vitro fermentation carried out for 96 h, expressed as mL gas g-1 digestible 

organic matter (DOM). Error bars represent SEM; n = 3. 
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Table 1. Near infrared spectroscopy (NIRS) predictions of for nutritive value composited from 

pre-grazed rotationally stocked irrigated pastures from May through August of 2016. 

 CP ADF aNDF NDFD NFC Ash ADL Fat TDN 
    

Species -----g kg-1 DM----- g kg-1 NDF ------------g kg-1 DM------------ 
ALF 259 198 226 515 441 68.9 50.8 14.5 700 
BFT 259 179 192 373 481 62.9 54.2 16.0 822 
CMV 253 212 238 671 424 80.2 50.8 14.8 784 
SNF 218 233 252 320 476 48.8 73.1 07.0 760 
MBG 136 370 588 618 190 80.3 36.8 27.9 604 
SMB 122 298 412 487 401 59.8 77.4 34.7 686 

 

CP, crude protein; ADF, acid detergent fiber; aNDF, neutral detergent fiber assayed with a heat-

stable α-amylase; NDFD, NDF digestibility; NFC, non-fibrous carbohydrates; ADL, acid 

detergent lignin; TDN, total digestible nutrients. 

ALF, alfalfa; BFT, birdsfoot trefoil; CMV, cicer milkvetch; SNF, sainfoin; MBG, meadow 

bromegrass; SMB, small burnet. 

NIRS Consortium calibration equations do not include small burnet. 
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Table 2. Fiber, carbohydrate and tannin concentrations of whole plant material and tannin 

concentrations of isolated neutral detergent fiber (NDF) of forages composited from pre-grazed 

rotationally stocked irrigated pastures from May through August of 2016.  

Species ANKOM aNDF 
(SE) 

WSC 
(SD) 

Starch 
(SD) 

Whole Plant Tannins 
(SD) 

NDF Tannins 
(SD) 

  

 -----------------------------------------------------g kg-1 DM-------------------------------------
---------------- 

ALF 260d (0.29) 86.5d 
(1.36) 

67.0a 
(0.26)   

BFT 245e (0.27) 125.9a 
(4.20) 

36.5b 
(0.17) 21.2c (1.86) 6.0c (0.41) 

CMV 261d (0.15) 130.1a 
(2.01) 

15.3d 
(0.44)   

SNF 300c (0.24) 110.1b 
(7.28) 

31.8c 
(0.10) 56.1a (2.07) 11.8b (0.19) 

MBG 577a (0.07) 92.3c 
(4.54) 

8.0e 
(0.30)   

SMB 406b (0.23) 131.1a 
(5.44) 

14.0d 
(1.57) 39.6b (1.28) 19.9a (1.28) 

 

ALF, alfalfa; BFT, birdsfoot trefoil; CMV, cicer milkvetch; MBG, meadow bromegrass; SMB, 

small burnet; SNF, sainfoin. 

For neutral detergent fiber (aNDF), grass n=46 and forb n=69; aNDF values followed by the 

same letter are not different at p < 0.05 based on the Tukey-Kramer multiplicity adjustment. 

Water-soluble carbohydrate (WSC), starch and tannin data are the means of three laboratory 

replicates. ALF, CMV and MBG contain no condensed or hydrolyzable tannins. 
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Table 3. Characteristics of whole plant and isolated neutral detergent fiber (NDF) of forages 

composited from pre-grazed rotationally stocked irrigated pastures from May through August of 

2016. Data are the means of three laboratory runs; standard errors in parentheses. 

 Whole Plant Material  Isolated NDF 

Species DDM DOM Undigested 
OM 

 NDF 
DDM 

NDF 
DOM 

NDF Undigested 
OM 

  
 ------------------------------------------------------------g kg-1 initial DM----------------------

-------------------------------------- 
ALF 833a 

(9.6) 
917a 
(6.7) 80c (6.4)  626c 

(9.6) 
684b 
(6.7) 306c (13.8) 

BFT 831a 
(14.0) 

916a 
(11.3) 82c (6.4)  467d 

(14.0) 
532c 
(11.3) 451b (13.8) 

CMV 852a 
(7.4) 

918a 
(7.4) 78c (6.4)  720a 

(7.4) 
764a 
(7.4) 225d (13.8) 

SNF 848a 
(13.6) 

908a 
(9.7) 88c (6.4)  432d 

(13.6) 
478d 
(9.7) 503b (13.8) 

MBG 738b 
(8.2) 

796b 
(5.8) 198b (6.4)  669b 

(8.2) 
706b 
(5.8) 281cd (13.8) 

SMB 693c 
(9.2) 

758c 
(8.0) 235a (6.4)  347e 

(9.2) 
408e 
(8.0) 573a (13.8) 

 

DDM, digestible dry matter; DOM, digestible organic matter; OM, organic matter. 

ALF, alfalfa; BFT, birdsfoot trefoil; CMV, cicer milkvetch; SNF, sainfoin; MBG, meadow 

bromegrass; SMB, small burnet. 

Values within a column followed by the same letter are not different at p < 0.05 based on the 

Tukey-Kramer multiplicity adjustment. 
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Table 4. Maximum rate (RMax) and time during fermentation at which maximum rate of 

cumulative gas production is reached (𝑡𝑡𝑅𝑅𝑀𝑀) based on in vitro fermentation of whole plant and 

isolated neutral detergent fiber (NDF) expressed on an organic matter (OM) basis.  

 Species ALF BFT CMV SNF MBG SMB 
  
 RMax 
 -----------------------------------------------------mL gas g-1 OM h-1--------------------------

--------------------------- 
Whole 0.071a 

(0.0052) 
0.072a 

(0.0052) 
0.040b 

(0.0052) 
0.053ab 
(0.0052) 

0.032b 
(0.0052) 

0.034b 
(0.0052) 

NDF 0.046ab 
(0.0022) 

0.052a 
(0.0022) 

0.052a 
(0.0022) 

0.047ab 
(0.0022) 

0.040b 
(0.0022) 

0.044ab 
(0.0022) 

  
 𝑡𝑡𝑅𝑅𝑀𝑀 
 ---------------------------------------------------------------h-------------------------------------

-------------------------- 
Whole 7.3 (2.23) 6.7 (2.23) 7.2 (2.23) 7.7 (2.23) 7.7 (2.25) 3.4 (2.23) 
NDF 28.5 (2.41) 30.4 (2.41) 30.4 (2.41) 33.0 (2.41) 33.7 (2.41) 31.7 (2.41) 
       

 

ALF, alfalfa; BFT, birdsfoot trefoil; CMV, cicer milkvetch; SNF, sainfoin; MBG, meadow 

bromegrass; SMB, small burnet. 

Data are the means of three laboratory runs and three replicates in each run; standard errors in 

parentheses. 

Values within a row followed by the same letter are not different at p < 0.05 based on the Tukey-

Kramer multiplicity adjustment. 
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Table 5. Kinetics of cumulative gas production from in vitro fermentation of whole plant and 

isolated neutral detergent fiber (NDF)21. Parameters include asymptotic cumulative gas 

production (A) expressed on an organic matter (OM) basis, time to one-half asymptotic 

cumulative gas volume (B), and a constant (C) describing the sharpness of the sigmoidal 

inflection point.  

 Species ALF BFT CMV SNF MBG SMB 
 Parameter A 
 mL g-1 OM 
Whole 194ab 

(13.5) 
187ab 
(13.0) 

162b (11.3) 171ab 
(11.9) 

207a (14.4) 164b (11.4) 

NDF 164b (8.6) 152b (7.9) 188a (9.8) 123c (6.4) 181a (9.4) 104d (5.4) 
  
 Parameter B 
 hour 
Whole 12.4c 

(1.34) 
12.2c 
(1.32) 

20.1ab 
(1.44) 

15.9bc 
(1.72) 

26.1a 
(2.82) 

26.5a (2.86) 

NDF 26.3b 
(1.65) 

26.5b 
(1.66) 

26.4b (1.65) 28.8ab 
(1.80) 

30.9a 
(1.93) 

28.8ab 
(1.80) 

  
 Parameter C 
  
Whole 2.51a 

(0.071) 
2.48a 

(0.070) 
2.29bc 
(0.065) 

2.40ab 
(0.068) 

2.21c 
(0.063) 

2.13c 
(0.060) 

NDF 3.30 
(0.172) 

3.57 
(0.186) 

3.57 (0.186) 3.55 (0.185) 3.33 
(0.173) 

3.41 (0.177) 

 

ALF, alfalfa; BFT, birdsfoot trefoil; CMV, cicer milkvetch; SNF, sainfoin; MBG, meadow 

bromegrass; SMB, small burnet. 

Data are the means of three laboratory runs and three replicates within each run; standard errors 

in parentheses. 
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Values within a row followed by the same letter are not different at p < 0.05 based on the Tukey-

Kramer multiplicity adjustment. 
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