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ABSTRACT

Tropical vertebrate species have faced increasing pressures from hunters, causing many to 

become locally extinct. I used an agent-based model (NEDD) to investigate the influence of 

dispersal and insect seed predation on seedling survival. Statistical dispersal kernels were used to

simulate the dispersal of seeds. The NEDD model generates survival and spatial data from 

parameter sets, which were chosen based on a Latin-Hypercube experimental design. Spatial 

point analysis was performed on the output data to identify trends in spatial clustering patterns as

the parameter space was changed. The results of this investigation suggest that there is a positive 

association between the proportion of seeds that are distributed at a frugivore site and the 

successful recruitment of seeds. Increasing frequency of frugivore sites was shown to have a 

negative impact on seedling recruitment. Understanding the role of tropical vertebrates in 

mediating seed dispersal and survival may inform management decisions in the near future.
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INTRODUCTION

 A large proportion of human activities have negative impacts on native fauna and flora. One 

of the obvious ways that local communities put pressure on native populations is by killing or 

capturing native animals. The effect of removal of animals on the native populations has become 

more apparent in recent years, resulting in local and global extinctions of vertebrate species 

(Hoffman 2010, 2011). However, it is less obvious how large-scale losses of vertebrate seed 

dispersers are impacting non-target species, such as plants and invertebrates. Forests that are 

depleted of animals appear to be otherwise intact for a number of years; this phenomenon is 

called “empty forests” (Redford 1992, Wilkie et. al. 2011).

Despite appearances, empty forests are suffering from disruptions to ecological processes 

(Hoffman 2010, 2011). Frugivorous vertebrate populations are key to the health of forested 

populations because they disperse seeds throughout the forest. Active seed dispersing populations

are key to maintaining the extreme biodiversity of tropical ecosystems and the genetic diversity 

of the fauna that grow within them (Vellend 2010, Kremer 2012). High levels of genetic and 

species diversity are a crucial resource for ecosystems because they allow for the ecosystems to 

be resilient in the face of global changes (Travis et. al. 2013).

    While the removal of vertebrate seed dispersers impacts many areas around the world, the 

decline of vertebrate dispersers has become particularly evident in tropical regions (Hoffman 

2010, 2011). More than 80% of trees in these regions are dependent upon vertebrates to disperse 

their seeds (Howe and Smallwood 1982). These seeds are commonly dispersed when frugivores 

defecate seeds from fruit which they previously collected and consumed. Studies focused on 

understanding the changes in composition of forests experiencing defaunation have suggested 

that depleted forests become more dominated by the plants that specialize in dispersal 

mechanisms that make use of non-game species or abiotic dispersal modes (Terborgh et al, 2008; 

Effiom et al, 2013; Wright et al 2007). Further empirical studies have suggested that reductions in



frugivore populations reduce overall seed recruitment (Harrison et al, 2013), reduce the distance 

between the recruited seeds and the parent tree (Babweetera and Brown, 2010), and reduce local 

species diversity (Nunez-Iturri and Howe, 2007).

The removal of seed dispersing vertebrates from wild areas is a problem that faces the 

globe. As of 2013, 25.9% of all seed dispersing vertebrates face the threat of extinction (Aslan, 

2013). The large scale of defaunation combined with the long generation times of many trees 

raises the concern that there are latent effects of species extinctions that have yet to be revealed 

(Brodie et al, 2009). Understanding the dispersal mechanisms underlying biodiversity may supply

information about what species are critical to preserving biodiversity in species-rich forests. This 

information could direct conservation efforts towards key species thereby maximizing return on 

investments.

Preparing strategies for managing Earth's forests in the face of a changing global 

environment demands that we understand how defaunation is going to alter the composition and 

resilience of the world's forests. In advancing the study of defaunation, computer simulations 

have been used to model how seed dispersers and seed predators interact to create patterns of 

recruitment that sustain biodiversity (Adler and Muller-Landau, 2005; Muller-Landau and Adler, 

2007). Simulated environments and analytical mathematical models are important to the study of 

defaunation because they produce results much faster than traditional empirical data sets. 

Studying defaunation using empirical data sets presents barriers to research because tree 

populations must be studied over long periods of time and defaunation occurs at large scales. The

long generation time of many trees also means that the full effect of rapid defaunation won't 

become apparent in empirical data sets until a lengthy latency period has passed.

This investigation uses an agent-based model developed by Dr. Beckman and Dr. Adler to 

examine how interactions between female insect predators and vertebrate seed dispersers affect 

the overall success of recruitment. The parameter space of each variable was sampled using a 

Latin-Hypercube experimental design, culminating in a total of 300 simulations.  



METHODS

This study investigates how the behaviors of vertebrate seed dispersers and insect seed 

predators influence the successful recruitment of seeds. Results from this study were generated 

by varying the inputs to a simulation which models the interactions between seeds, vertebrates, 

and insect seed predators. The simulated environment is an example of an agent-based model. It 

was developed by Dr. Beckman (Utah State University) and Dr. Adler (University of Utah) as a 

non-invasive method of investigating the impacts of seed dispersal in areas with high 

biodiversity. The output of the NEDD code environment classifies seeds as either  “success” or 

“fail.” The successful seeds were not consumed by insect seed predators. As such, they have the 

potential to successfully recruit into an adult tree. 

Abundance Parameters

The NEDD simulation environment has 20 input parameters which can be varied either 

continuously or discretely. These parameters are of three basic types. The first class of 

parameters are focused on the abundance of each agent within the model. The model includes 

reproductive adult trees, female insect seed predators, frugivore sites (locations where social 

animals congregate), and seeds. The NEDD simulation environment encompasses a 9 ha (300 x 

300m) area, so our experiment samples the parameter space for the frequency of each agent 

within a value range that represents reasonable densities.

Mean Parameters for Dispersal Kernels

 A second class of parameters contains inputs for the statistical functions that act as 

dispersal kernels. Source trees and frugivore sites are randomly populated into a two-dimensional

grid. Seeds and insect seed predators are then dispersed around frugivore sites and reproductive 

adult trees. Seeds may be dispersed from source trees by gravity, or they may be dispersed from 

trees by vertebrate seed dispersers which drop the seeds in-transit from the tree. Gravity dispersal

is modeled using a Gaussian kernel with a mean value of 5 meters. The mean value for the 



gravity dispersal kernel is kept constant among all simulations performed. In-transit seed 

dispersal processes are modeled using a two-Dimensional t-distribution (2Dt). The mean value 

for the in-transit seed dispersal (kmmean) ranges from 5 to 160 meters. Insect seed predators are 

only dispersed from reproductive adult trees. A 2Dt kernel with a mean dispersal distance 

(rhomean) ranging between 5 and 160 meters is used to model dispersal of insect seed predators 

from adult reproductive trees. In addition to being dispersed from adult reproductive trees, seeds 

are dispersed from frugivore sites. These are sites where social vertebrate seed dispersers 

congregate. Examples of seed dispersers that congregate socially include rhinoceros, tapirs, 

primates, and bats. These sites serve as latrines, resting sites, and fruit-processing sites for 

vertebrate seed dispersers. A key parameter within this model provides a proportion (p_s) that 

dictates how many seeds are dispersed by frugivores at the frugivore sites as opposed to being 

dispersed in-transit. 

Foraging Behavior Parameters

A third class of parameters define the foraging behavior of female insect predators. These 

parameters together define the probability that a seed will survive given that it is within a certain 

distance (det.rad) of an insect seed predator. Each simulation sets a value which defines the shape

(det.func) of an insect seed predator’s search function. Additionally, the time a beetle spends 

handling seeds they find (th) and the speed with which they detect seeds (sd) are incorporated 

into their simulated foraging behavior by using a modified Holling’s Disk Equation (Holling 

1959). The equation of the probability of seed survival was developed by Drs. Beckman and 

Adler.

Sampling Parameter Space

We used the NEDD environment to process a total of 300 simulations. Before performing 

the simulations, the parameter space of each simulation input was narrowed to ranges that 

reflected realistic minimum and maximum values. The values for each simulation were 



subsequently sampled according to the Latin-Hypercube sampling procedure. Using this process,

we defined unique combinations of agent abundance, seed dispersal, and predator foraging 

behavior for each of 300 simulations. The NEDD environmental simulations output reported the 

status of seeds at the end of the simulation as either a “success” or a “fail.” Success indicated that

the seed evaded the beetles and survived after one time step. Having evaded insect predators, 

these seeds have the potential to recruit into reproductive adults. 

Binary Logistic Regression Analysis

Successful predator evasion was modeled by creating a binary logistic regression model 

which made use of 13 of the 20 parameters that were sampled. Only continuous parameters were 

used in the creation of our binary logistic model. This was facilitated by the glm() package in R 

(R Core Team, 2020). The goodness-of-fit of the model was evaluated by calculating  

McFadden’s Pseudo R2 (McFadden 1977). The Pseudo R2 is calculated by subtracting the 

quotient of the log likelihood of the current model over the log likelihood of the null model from 

1 (See Equation 1). 

After calculating goodness-of-fit, the model coefficients were analyzed to determine the 

effect sizes for each parameter (Table 1). The link function used for binary logistic models 

converts probability to the log of the odds of success. This procedure eliminates the range 

problem inherent to working with binary data. As a result, the coefficients (effect sizes) report the

Equation 1: How to calculate McFadden's Pseudo R-Squared



effect that increasing a parameter by one unit has on the log of the odds of a seedling being 

successful. Although the coefficients generated by our binary logistic model all give the effect 

size per 1 unit change, the units differ between parameters. The effect sizes for means of dispersal

kernels were compared against each other because their units represent standardized distances in 

the NEDD environment. All simulations and analysis for this study were performed in R version 

3.6.3 (R Core Team, 2020).



RESULTS

Goodness of Fit

The goodness-of-fit of the binary logistic regression model was evaluated using McFadden’s

Pseudo R2,, which produced a value of  R2=0.045. This result indicates that the binary logistic 

model that we created from the continuous variables poorly predicts seedling success. Unlike 

other forms of linear regression, it is expected that the R2, value of a binary logistic regression 

will be small. McFadden suggests that values as low as 0.2 represent an excellent fit (1977). We 

conclude that the generated model is a poor predictor of seedling success. We suggest that non-

parameter attributes of the data be evaluated to determine if the spatial arrangement of seeds 

relative to either con-specific adults or frugivore sites are better predictors of seedling success.  

The relatively poor ability of these parameters to predict seedling success may be an artifact of 

multicollinearity among the independent variables.

Significance

Although the binary logistic regression model is poorly fit to the survivorship data, the 

output of the model is still useful for evaluating data trends. The binary logistic regression model 

revealed that all of the continuous parameters in the model were significant at the significance 

level of α=0.001.

Model Trends

The model reported that increases in tree abundance (nadult), proportion of dispersed seeds 

distributed to vertebrate sites (p_s), mean displacement of seeds distributed around frugivore 

sites (k0mean), abundance of insect seed predators (nb), insect speed/detection (sd), probability 

of a seed being found by a disperser (q_seed), mean dispersal distance for in-transit seeds 

(kmmean), and handling time for seed predators (th) increased the log-odds of seeds escaping 

mortality caused by insect seed predators. The model reported that increases in the mean 

dispersal distance for seed predators (rhomean), the insect search radius (det.rad), the shape 



parameter for the insect’s search function (det.func), the abundance of frugivore sites (ss), and 

the beetle departure rate (delta0) reduced the log-odds of seeds escaping mortality caused by 

insect seed predators. 

Comparison of Dispersal Kernel Means

The model reports that the effect size for increases in the mean dispersal distance of seeds 

dispersed from frugivore sites (3.90e-04) is larger than the effect size for increases in the mean 

dispersal distance of seeds dispersed from reproductive adult trees (2.39e-02). Increasing the 

average distance of seeds from frugivore sites increased the log-odds of seeds escaping insect-

driven mortality 61 times better than increasing the average distance of seeds from con-specific 

reproductive adults. The effect size for the mean dispersal distance of insect seed predators (-

4.07e-3) had a magnitude of effect that was intermediate to the dispersal kernels for seeds. 

Comparison of Sleeping Sites and Reproductive Adults

A comparison between the effect size of increasing the abundance of reproductive adult 

trees (3.23e-03) and the abundance of sleeping sites (-1.02e-2) suggest that increasing the 

number of reproductive adult trees increases the log-odds of seedling success faster than 

increasing the number of frugivore sites. The effect size for increasing the proportion of seeds 

distributed by vertebrates at frugivore sites (rather than in-transit) was the largest reported effect 

size in the binary logistic model (0.443). This suggests that seeds are more likely to survive at 

frugivore sites than around reproductive con-specific sites.



Table 1: The size of the coefficients produced by a binary logistic regression 
model performed for the continuous parameters present in the NEDD code 
simulation.

Figure 1: Visualization performed as part of this 
investigation



DISCUSSION

Binary Logistic Regression

The McFadden’s Pseudo R2 calculated from our regression model indicated that the model 

was poorly fit to the data for seedling success. The experiment we performed was meant to 

simulate an environment that contains both stochasticity and complexity. Therefore, it is no 

surprise that the logistic regression model was not able to identify a clear threshold for seedling 

success. Analyzing the effects of increasing the mean dispersal distance of seeds gives insight 

into why vertebrate seed dispersal is important to the successful recruitment of trees. This study 

indicated that the success of seeds increased as vertebrates became more active in the simulated 

environment. However, a better Pseudo R2 might be found by using the relative position of agents 

as a parameter in a new model. Incorporating the proximity between a frugivore site and its 

nearest source tree may add crucial information about the relative positions of NEDD agents that 

is not available by analyzing mean dispersal distances alone.

Dispersal Kernels

 We anticipated that increasing the means for dispersal distance of seeds would increase the 

log-odds of seedling success. We also expected that increasing the dispersal distance of insect 

seed predators would increase the log-odds of seeds getting eaten by insects. In this set of 

simulations, the vertebrate seed dispersal was limited to two types. Animals either dispersed 

seeds around the source tree or at their frugivore sites. It has been proposed that highly mobile 

vertebrate seed dispersers place seeds across their entire habitat. This feature has been 

incorporated as an optional component of the NEDD environment in the form of a dispersal 

kernel that disperses seeds in a random uniform pattern across the simulated environment. Future

studies may focus on indicating how including this additional method of seed dispersal alters the 

effect size of each of the dispersal kernels seen in this study. Such an investigation would give 



insight into the role that highly mobile seed disperser play in maintaining biodiversity.

Measures of Abundance

The model reported that increasing the number of adult reproductive trees increased the log-

odds of seedling success in the area. This result was anticipated because simulations with more 

trees produce more seeds, which gives them more opportunities to successfully recruit. The 

NEDD environment only models whether or not a seedling escapes predator-driven mortality. 

Therefore, the positive impact of increasing the density of con-specific trees does not account for 

the negative effect that intraspecific competition has on successful seedling recruitment. 

The logistic regression model also reported that increasing the number of frugivore sites 

decreased the log-odds of seedling success in the area. Even though the density of frugivore sites 

increases, the total number of seeds being dispersed remains the same. Therefore, this result may 

indicate that adding frugivore sites has the effect of reducing the maximum density of seeds in 

any given area. Reducing seedling density may also reduce benefits that seeds get by satiating 

predators. Consider a case where a predator can detect and prey on 2 seeds per 10 square meters. 

If an area contains two insect predators and 15 seeds, then 4 of those seeds will satiate the 

predators and 11 of the seeds will survive. The negative effect of frugivore sites on seedling 

success which was reported by the model may be indicating that removing seeds from high 

density areas reduces benefits accrued by satiating insect predators. While the effect size of this 

parameter suggests that seeds were less likely to survive in general, the effect size for increasing 

the proportion of seeds dispersed at frugivore sites suggests that frugivore sites have a positive 

effect on the log-odds of successfully evading predator-driven mortality. This indicates that seeds

dispersed from frugivore sites tend to be more successful than seeds dispersed from source trees.

Increases to the density of the insect predator population had a small positive effect on the 

log-odds of seed success. The absolute effect size of increasing the insect predator population is 

the smallest effect size present in the regression output (2.66e-06). However, the relative impact 



of increasing the number of insect predators actually has a larger positive effect on seedling 

success than some other variables because there is a large potential for the number of insects to 

fluctuate. The simulations tested in the NEDD environment sampled the parameter space for 

insect abundance in the range of 1,000 to 100,000 insects. Therefore, the insect abundance has 

the potential to increase the log-odds of survival by 2.66e-03. This doesn’t create as much 

positive impact on seedling success as adding several reproductive adult trees. However, this does

represent a substantial positive effect of increasing the size of the beetle population. This 

phenomenon remains unexplained, providing fertile ground for assessment with more advanced 

spatial and statistical analysis. 

Foraging Behavior

The regression model reported that seedlings were more successful when insects searched 

smaller areas and spent more time handling the seeds that they detected. Seeds also benefited in 

simulations where insects had slower departure rates. Surprisingly, the model also reports that 

the seeds benefited in simulations where the beetles had a higher value for the speed detection by 

area parameter. These results generally communicate that seedlings benefit from having insect 

predators that are not well suited to find them and spend long period of time handling each seed 

that they do find.

Future Directions

Future analysis of this model should incorporate spatial analysis which accounts for the 

relative positions of each of the agents in the model. Several surprising results were produced by 

this simulation. Specifically, we did not expect to see positive effects for increasing the number of

insect predators and negative effects for increasing the number of sleeping sites. Additional 

investigations should seek to understand the mechanisms that underlie these phenomena. 
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through time. I studied mushrooms, sketched flora and fauna, and fearlessly adventured with 

tireless friends. My capstone project—which investigates how insect seed predators and 

vertebrate seed dispersers shape the dynamics of forests—reflects the sense of fascination for 

nature that I felt and the efforts I have made to understand the dynamic processes that change our 

world.

Through the last 3 years, I have been an active member of the Beckman Research Lab. 

Being part of the Beckman Lab has opened many doors for me, and I have grown substantially as

a researcher while volunteering and working within the lab. Three years ago, I asked Dr. 

Beckman to allow me to join her lab because I wanted to use mathematical and computational 

models to describe biological populations. The completion of this capstone project is evidence 

that I have come a long way towards achieving that goal. All of this progress has been made 

possible because I have had amazing mentors. During the Spring of 2019, I submitted proposals 

for the URCO grant and the Peak Fellowship opportunity. I remember being nervous about the 

application and seeking guidance from my friend Dr. Pearse. It was that day that I came to realize

that I had the full support of my mentors. In the words of a friend: they had my back. Soon after 

that conversation, I asked myself what would be the best way of thanking people who invest in 

me. My answer is that the only genuine thank you that I can give someone who invests in my 



potential is to realize that potential. As such, I have viewed this capstone project as my way of 

expressing gratitude towards Dr. Beckman, Dr. Pearse, and the friends and family that have 

encouraged and supported me.

As a Biology student, in-depth statistics and computer science were not a part of my 

standard curriculum. However, they quickly became a staple to my work as a researcher. For the 

last 3 years, I have been on a journey in which I have learned about open source software and 

embedded technology. My research pushed me to discover communities that develop R packages 

and share them freely with the community. Engaging with open source materials has showed me 

that there are communities of people who volunteer their efforts, time, and resources for the sake 

of making the world a little bit better. I am inspired by these open source communities because 

their efforts have produced tools that facilitate my research, my efforts in science communication,

and the way that I organize my life! As a result, I am committed to contributing to these 

communities by using my qualifications as a biological researcher. I have begun to realize this 

commitment by collaborating with conservationists across the globe to assist with the 

development of tracking systems to be used in disrupting illegal wildlife trafficking.

Pursuing this capstone project was a significant and worthwhile investment. It has given me 

the opportunity to be a part of a large-scale mathematical biology investigation. When this study 

has been completed, I will be a published author in the field of mathematical ecology. This 

publication will be evidence to me and to my future collaborators of development that I have 

made in my career as a researcher. This project and the Honors contracts that preceded it have 

been responsible for creating friendships and opportunities that changed my life.

The submission of my capstone project occurred during the Covid-19 global pandemic. This

time period disrupted the rhythm of my senior year, making graduation seem somewhat anti-

climactic. I feel that submitting my Honors project is the moment that symbolizes my graduation.

This project has been the focus of my efforts for only one year of my undergraduate career, but 

many of the skills required to engage in this project were obtained before its conception. In this 



project I used my knowledge of programming in R, operating a linux terminal through ssh, Git 

version control, and embedding code in org emacs. I learned these skills over the past three years,

and I made good memories while I learned them. I met every week with Dr. Pearse and the USU 

Biology Nerd Herd to gain exposure to research-oriented software and embedded systems. I 

audited classes that would benefit my research. I came to school early, and I walked home late at 

night. Submitting this project is the way that I choose to honor those memories and sacrifices as I

prepare to graduate to the next stage of life.
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