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ABSTRACT 
A previous study investigated the feasibility in using a radically inexpensive MEMS IMU with a GPS and a model of 
Earth’s magnetic field for attitude determination. A Multiplicative Extended Kalman Filter was designed to estimate 
the biases and errors associated with the IMU and reduce attitude uncertainty. States with large influence on overall 
uncertainty were identified through error budget and sensitivity analysis. It was determined that the complexity of the 
Kalman filter could be significantly reduced by removing 18 of the 42-element state vector. In this study, the sub-
optimal filter is designed and its feasibility for attitude determination is demonstrated through Monte Carlo 
simulations. The primary mission is inertial attitude control in support of spacecraft mission operations in low Earth 
orbit. 

Our challenge is to create a radically inexpensive spacecraft using commercially available and bespoke subsystems. 
This inhibits the use of expensive and larger attitude sensors such as star cameras and sun sensors. While the proposed 
system uses a Raspberry Pi as the main flight computer, reducing computational complexity enhances the ability to 
provide near-real-time attitude solutions. This sub-optimal MEKF therefore improves mission capabilities by reducing 
computational load.                    

INTRODUCTION 

The optimal multiplicative extended Kalman filter 
(MEKF) includes high-fidelity models, that include 
estimation parameters for biases and other errors, for all 
systems and sensors. While this provides a high degree 
of accuracy and is useful for design and simulation, the 
resulting filter may not be feasibly implemented on real-
world hardware due to memory or computational 
constraints. Even when an abundance of computational 
power is available, reducing the complexity of the 
MEKF may yield faster performance, resulting in a 
better overall near-real-time solution and reserve 
compute power for other mission capabilities. 

In the authors' previous work1 it was shown that, for a 
spacecraft in low Earth orbit (LEO), an attitude solution 
of +/- 5 degrees (1-sigma) is possible using low-cost 
Micro Electro-Mechanical System (MEMS) Inertial 
Measurement Unit (IMU) and magnetometer sensors, a 
GPS module, and the World Magnetic Model2 in 
conjunction with the TRIAD algorithm3. While not 
reasonable for missions requiring fine attitude steering 
(e.g. targeted high-gain RF or optical communications), 
this accuracy is sufficient for maximizing power 
generation by a sun-tracking controller for solar panel 
pointing. This result was enabled by a 48-state MEKF 

including sensor bias and error estimation for the MEMS 
IMU accelerometer, gyroscope, and magnetometer. 

The goal of developing a sub-optimal MEKF is to enable 
accurate navigation within low-power systems. Several 
integrated guidance, navigation, and control solutions 
exist as commercial off the shelf systems for the small 
satellite market. These products must minimize resource 
consumption while maximizing pointing performance, 
which means fusing sensor data and controlling actuators 
with as little compute power as possible. 

As part of previous work, the authors determined the 
error budget and sensitivity analysis for the optimal 
MEKF, and found that several estimated states had very 
little impact on overall uncertainty of position, velocity, 
and attitude estimate of the spacecraft1. Therefore, 
removal of these states can be done without impacting 
the accuracy of other state estimates and yielding a 
simpler MEKF. This resulting filter is the sub-optimal 
MEKF. 

SUB-OPTIMAL MEKF 
When first modeling a system for simulation and 
analysis, the fullest and most complete models are used 
to provide the best insight into system behavior. An 
example of this is using an atmospheric density model 
that accounts for time of year, solar activity, and latitude 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/334990477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Jorgensen 2 34th Annual 
  Small Satellite Conference 

and longitude as opposed to a model that only requires 
altitude. This complexity may include modeling known 
or assumed biases and disturbances, and even including 
terms for unknown or unmodeled effects, for both 
sensors and environmental models. The result is a more 
accurate model that is built from real-time environmental 
feedback and physics models of the system, at the cost 
of modeling complexity and computational load. 

Suboptimal linear filter design is covered thoroughly in 
Gelb4. The concepts presented cover sensitivity analysis 
and error budget creation for minimizing estimation 
error growth for the state-reduced filter. These concepts 
are extended here to apply to the nonlinear MEKF. 

The optimal MEKF derived previously1 uses the 
following states: 

𝒓!"# ∈ ℜ$

𝒗!"# ∈ ℜ$

𝒒&!% ∈ ℜ$
' 𝑠𝑚𝑎𝑙𝑙𝑠𝑎𝑡	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  

𝒃& ∈ ℜ$

𝒃' ∈ ℜ$

𝒃( ∈ ℜ$
' 	𝑠𝑒𝑛𝑠𝑜𝑟	𝑏𝑖𝑎𝑠𝑒𝑠 

𝒃) ∈ ℜ$

𝒔) ∈ ℜ$

𝜸) ∈ ℜ*
'𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟	𝑏𝑖𝑎𝑠/𝑒𝑟𝑟𝑜𝑟𝑠 

𝒃+ ∈ ℜ$

𝒔+ ∈ ℜ$

𝜸+ ∈ ℜ*
'𝑔𝑦𝑟𝑜	𝑏𝑖𝑎𝑠/𝑒𝑟𝑟𝑜𝑟𝑠 

Note that the attitude state captures only the attitude 
deviation based on a small-angle approximation used 
during the quaternion rotation, and so there are three 
attitude state variables instead of four. An error budget 
and sensitivity analysis were conducted. The states 
related to the accelerometer errors {𝒔), 𝜸)}	and the states 
related to the gyroscope errors ?𝒔+, 𝜸+@ had 
approximately two orders of magnitude lower impact on 
the total estimation error budget. Hence, these states are 
good candidates for removal. 

The sub-optimal MEKF for attitude estimation retains 
the system parameters position 𝒓!"#, velocity 𝒗!"#, and 
attitude 𝒒&!%, and the position, velocity, attitude, 
accelerometer, and gyroscope bias terms 
A𝒃', 𝒃(, 𝒃& , 𝒃), 𝒃+B. These terms account for the sub-
optimal MEKF's 24 states. Compared to the optimal 
MEKF with 42 states, this is a 43% reduction in state 
space. The input space remains the same, with 
measurement vectors comprised of GPS position, GPS 

velocity, and attitude measurement from the TRIAD 
algorithm. 

COMPUTATIONAL COMPLEXITY 
It is difficult to accurately account for code performance 
using common research tools such as MATLAB, which 
was used for this analysis. Under the hood, these tools 
use optimizations that reduce runtime for common tasks, 
such as matrix multiplications. For illustrative purposes 
that may apply more to low-cost, low-power hardware 
on which a sub-optimal MEKF would be designed to run, 
a naïve accounting is presented for the MEKF update 
step. 

Computational load can be estimated by counting the 
number of floating point operations required to perform 
a task. For example, the MEKF update step follows 
Equations 1-3. 

𝒙,- = 𝒙,. +𝑲(𝒚, − 𝒉,) (1) 

𝑷,- = (𝑰 − 𝑲,𝑯,)𝑷,.(𝑰 − 𝑲,𝑯,)/ +𝑲,𝑹,𝑲,
/ (2) 

𝑲, = 𝑷,.𝑯,
/(𝑯,𝑷,.𝑯,

/ +𝑹,).0 (3) 

Multiplying two matrices of size ℜ,×2 and ℜ2×" takes 
𝑘 ∗ 𝑚 ∗ 𝑙  multiplications and 𝑘 ∗ 𝑚 ∗ (𝑙 − 1) additions, 
and by Gaussian elimination the 𝑚×𝑚 matrix inverse 
takes 0

3
𝑚 ∗ (𝑚 + 1) divisions, 0

*
(2𝑚$ + 3𝑚3 − 5)  

multiplications, and 0
*
(2𝑚$ + 3𝑚3 − 5) additions. 

Figure 1 shows the total number of floating-point 
operations for the MEKF state update step as a function 
of both state vector length 𝑛 and measurement vector 
length 𝑚. The two markers show the computation 
requirement for the optimal MEKF given 42 estimated 
states and 9 input states and the computation requirement 
for the sub-optimal MEKF with 24 estimated states. Note 
that this complexity measurement does not account for 
any intermediate processing required for measurements, 
state propagation, or other system tasks. 

Clearly, reducing the state space has significant impact 
on the computational complexity, which for the example 
of the MEKF update step is 𝑂(𝑛$, 𝑚$). 
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Figure 1: Computational complexity of MEKF 
update step 

Table 1 shows a selection of common low-cost 
microprocessors and system on chip devices (SoCs) 
often used in research and industry for embedded 
electronics control and data processing. Million 
instructions per second (MIPS) is used to compare 
computing performance. Note that this does not 
guarantee performance for MEKF applications, since 
some hardware (e.g. the ATmega328) is not well-suited 
for floating point math or programs requiring large 
amounts of memory. One device (Cortex-M4F) 
specifically includes a floating-point unit (FPU) that is 
useful for MEKF type calculations. 

Table 1: Microcontroller and SoC performance 
comparison 

MCU CPU Type MIPS Clock 
(MHz) 

ATmega328 8-bit 20 20 

MSP430x6xx 16-bit 25 25 

ARM Cortex-M3 32-bit 45 50 

ARM Cortex-M4F 32-bit w/ FPU 45 50 

ARM Cortex-A8 32-bit 2,000 1,000 

ARM Cortex-A53 64-bit 2,688 1,200 

ARM Cortex-A9 32-bit 13,800 1,500 

The complexity analysis shows that the optimal MEKF 
update step requires 0.4M instructions, and for the 
reduced state space sub-optimal MEKF the update step 
requires 0.1M instructions. Standard MEKF processing 

includes state propagation and measurement processing, 
which are assumed to be of similar complexity to the 
update (but can occur at different rates). Table 2 shows 
the total MIPS required for each of the optimal and sub-
optimal MEKFs presented at the given rates. 

Table 2: MEKF estimated processing requirements 

Step Instructions (M) Rate (Hz) MIPS 

Optimal 

Update 0.4 5 2.0 

Propagate 0.4 50 20.0 

Measurements 0.2 15 3.0 

   25.0 

Sub-optimal 

Update 0.1 5 0.5 

Propagate 0.1 50 5.0 

Measurements 0.05 15 0.75 

   6.25 

Running the optimal MEKF on low-cost 
microcontrollers such as the MSP430 is not feasible in 
real-time due to raw instructions per second processing 
requirements. The optimal MEKF might run in real time 
on the ARM Cortex-M3 and Cortex-M4F. The estimates 
in Table 2 show a 75% reduction in estimated 
instructions per second of the sub-optimal MEKF over 
the optimal MEKF. Based on this estimate of required 
compute power, it could be feasible to use the ultra-low 
power MSP430 to run the sub-optimal filter, or to use the 
more powerful processors in a reduced-power state. 

It is important to note that the word size of instructions 
and data processing capabilities was not taken into 
account when comparing the processors. It may be 
feasible on an instructions-per-second metric to run the 
sub-optimal MEKF on the MSP430, but it may not yield 
useful results due to the 16-bit nature of the device. 
Comparing N-bit floating point accuracy is outside the 
scope of this work. 

The lowest-power device, the ATmega328, offered 
sufficient compute performance to implement the sub-
optimal MEKF, although other factors, mainly the 8-bit 
word size, make it a poor choice for the application. The 
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other low-power processors could support an embedded 
MEKF, although the optimal filter would likely stress the 
limits of these low power devices. The ARM Cortex-A8, 
Cortex-A53, and Cortex-A9 are included for comparison 
because these are commonly used in single-board 
computers often used for hobbyist and educational 
projects. They are all overpowered for the example 
problem of running an embedded MEKF. However, if 
the target spacecraft is to only have one computer, these 
are good choices due to the large amount of processing 
power yielding sufficient margin for other system 
requirements. The single-board computers are useful in 
the design and prototyping phases of system 
development as they often include general purpose 
input/output (GPIO) headers for connecting peripheral 
devices. Any of these choices would handle the 
workload from the optimal MEKF, although it is still of 
interest to optimize the filter and implement the sub-
optimal MEKF to reduce power consumption and 
thermal waste energy generation. 

SIMULATION AND RESULTS 
For low Earth orbit navigation, typical spacecraft are 
size, weight, and power constrained. Selecting a low-
power CPU has system-wide benefits in terms of power 
and thermal management. It is also interesting to 
consider a self-contained guidance, navigation, and 
control subsystem that fuses sensors and actuators as an 
off-the-shelf solution. Both scenarios require careful 
balancing of system resources, and minimizing the 
MEKF state space is done to reduce computation while 
maintaining state estimate accuracy. 

The optimal MEKF from the authors' previous work was 
reduced by 18 state variables into the sub-optimal MEKF 
for this study. Figure 2 through Figure 10 show Monte-
Carlo simulation results for position, velocity, and 
attitude error of the optimal and sub-optimal MEKFs. 
The Monte-Carlo results capture 500 individual 
simulation runs for both the optimal and sub-optimal 
MEKFs using the same random number generator seed 
to ensure equal comparison. The following figures show 
averages created from all Monte-Carlo runs. MATLAB 
R2019b Update 2 was used for the simulations. 

Figures Figure 11 through Figure 13 compare the error 
covariance for position, velocity, and attitude, showing 
the percent difference in error covariance estimate of the 
sub-optimal MEKF compared to the optimal MEKF. 

As can be seen, the sub-optimal MEKF performs within 
about 10% of the optimal MEKF, while the reduction in 
computation is about 75%. 

 

Figure 2: X position error and covariance 
comparison 

 

Figure 3: Y position error and covariance 
comparison 

 

Figure 4: Z position error and covariance 
comparison 
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Figure 5: X velocity error and covariance 

comparison 

 
Figure 6: Y velocity error and covariance 

comparison 

 
Figure 7: Z velocity error and covariance 

comparison 

 
Figure 8: X attitude error and covariance 

comparison 

 
Figure 9: Y attitude error and covariance 

comparison 

 
Figure 10: Z attitude error and covariance 

comparison 
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Figure 11: Position error covariance sub-optimal vs. 

optimal filter percent difference 

 
Figure 12: Velocity error covariance sub-optimal vs. 

optimal filter percent difference 

 
Figure 13: Attitude error covariance sub-optimal vs. 

optimal filter percent difference 

CONCLUSION 
The optimal MEKF system from authors' prior work was 
compared to a sub-optimal MEKF, where 18 state 
variables were removed based on sensitivity and error 
budget analyses. An estimated computational resource 
requirement analysis was presented, and several 
common low-power and higher-power processors 
compared. The low power options (MSP430, Cortex-
M3, Cortex-M4F) were deemed feasible for use as 
processors for an embedded MEKF, and the higher 
power options (Cortex-A8, Cortex-A53, Cortex-A9) 
were deemed feasible for supporting both the MEKF and 
other system processing requirements. 

Finally, the sub-optimal MEKF was compared to the 
optimal MEKF in position, velocity, and attitude 
estimation error. Results showed the state reduction of 
the sub-optimal filter succeeded in maintaining overall 
estimation error bounds: the error variance values were 
within about 10% of the optimal filter values. This 
minimal additional error came with a computational 
reduction of about 75%. For low power or embedded 
applications, this was deemed a reasonable trade-off. 

Extending this work might include investigating the 
observability of the removed states, since unobservable 
state variables might indicate incorrectly modeled or 
coupled effects. Also, hardware-specific 
characterization of low-cost sensors, like the simulated 
MEMS IMU, to measure actual noise and disturbance 
bounds, can be done to inform further development of 
realistic models. 
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