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1 Abstract

2 Channels change in response to natural or anthropogenic fluctuations in streamflow 

3 and/or sediment supply and measurements of channel change are critical to many river 

4 management applications. Whereas repeated field surveys are costly and time 

5 consuming, remote sensing can be used to detect channel change at multiple temporal 

6 and spatial scales. Repeat images have been widely used to measure long-term 

7 channel change, but these measurements are only significant if the magnitude of 

8 change exceeds the uncertainty. Existing methods for characterizing uncertainty have 

9 two important limitations. First, while the use of a spatially variable image co-registration 

10 error avoids the assumption that errors are spatially uniform, this type of error, as 

11 originally formulated, can only be applied to linear channel adjustments, which provide 

12 less information on channel change than polygons of erosion and deposition. Second, 

13 previous methods use a level-of-detection (LoD) threshold to remove non-significant 

14 measurements, which is problematic because real changes that occurred but were 

15 smaller than the LoD threshold would be removed. In this study, we present a new 

16 method of quantifying uncertainty associated with channel change based on 

17 probabilistic, spatially varying estimates of co-registration error and digitization 

18 uncertainty that obviates a LoD threshold.  The spatially distributed probabilistic (SDP) 

19 method can be applied to both linear channel adjustments and polygons of erosion and 

20 deposition, making this the first uncertainty method generalizable to all metrics of 

21 channel change.  Using a case study from the Yampa River, Colorado, we show that 

22 the SDP method reduced the magnitude of uncertainty and enabled us to detect smaller 

23 channel changes as significant.  Additionally, the distributional information provided by 

24 the SDP method allowed us to report the magnitude of channel change with an 

25 appropriate level of confidence in cases where a simple LoD approach yielded an 

26 indeterminate result.   
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27 1. Introduction 

28 Despite recent advancements in remote sensing platforms, historic aerial images 

29 remain invaluable in the analysis of long-term channel change. These data are windows 

30 into the past, providing a rich, spatially robust history of channel change during the ~100 

31 years since the first air photos were taken (Rhoades et al., 2009; Comiti et al., 2011; 

32 Bollati et al., 2014). Programs like Google Earth are a powerful means to visualize 

33 channel evolution, because a sequence of aerial images can be easily compared.  

34 Although such programs facilitate the casual inspection of channel evolution, they 

35 cannot be used to make the precise measurements of channel change that are required 

36 for most management applications. Additionally, the aerial and/or satellite images 

37 available in these programs only date to the mid-1990s and thus provide only a limited 

38 window to the past. Thus, programs like Google Earth cannot entirely replace detailed 

39 analyses of channel change that involve geo-referencing and overlaying historic aerial 

40 images to quantify changes in channel location over time. 

41 Predicting channel change is a longstanding problem in the field of 

42 geomorphology. Since the mid-20th century, water resource development and climate 

43 change have significantly altered the flow and sediment supplied to most of the world’s 

44 rivers (Nilsson et al., 2005; Schmidt and Wilcock, 2008; Best, 2019), creating a societal 

45 need to understand how such disturbances affect flood risk, ecosystem management 

46 and rehabilitation, and land use planning. Case studies of channel change – how much, 

47 at what rate, and why – are the primary means of understanding the trajectory of 

48 channel adjustment after a disturbance. In many cases repeat aerial images are the 

49 only record of the pre-disturbed channel and thus provide the most complete record of 

Page 4 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

50 the channel’s response. Therefore, studies of channel change using historic aerial 

51 images remain of fundamental interest to geomorphologists and those tasked with 

52 effectively managing river systems.

53 Channel change measured from aerial images is only significant if the magnitude 

54 of bank erosion or floodplain formation exceeds the magnitude of uncertainty in the 

55 channel change analysis (Downward et al., 1994). The existing body of channel change 

56 literature includes numerous case studies that use a wide range of methods, which vary 

57 in rigor and complexity, to quantify this uncertainty. As a result and for a given case 

58 study, one might conclude that the channel changes identified are, or are not, significant 

59 depending on how the uncertainty of that analysis is quantified. The simplest methods 

60 assume that the magnitude of uncertainty is negligible compared to the magnitude of 

61 channel change and can be disregarded (e.g., Lyons et al., 1992; Merritt and Cooper, 

62 2000; Buckingham and Whitney, 2007; Magilligan et al., 2008; Cadol et al., 2011; Comiti 

63 et al., 2011; Schook et al., 2017; Wellmeyer et al., 2005), or assume that the 

64 uncertainties compensate for one another in the calculation of net channel change and 

65 can be disregarded (Gaeuman et al., 2003; Ham and Church, 2000).  A more complex 

66 approach to quantifying uncertainty is to establish a level-of-detection (LoD); 

67 measurements of channel change that are smaller in magnitude than this threshold 

68 cannot be distinguished from uncertainty and are removed from the analysis (Urban and 

69 Rhoads, 2003). In most studies, the LoD is specified as a spatially uniform threshold for 

70 designating measurements as non-significant and excludes these measurements from 

71 the analysis (Winterbottom and Gilvear, 2000; White et al., 2010; Martin and Pavlowsky, 

72 2011; Kessler et al., 2013). This approach causes a large number of small planform 
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73 changes to be removed from the analysis and introduces a bias by ignoring polygons of 

74 very small channel change, implying that the reach-scale average will be dominated by 

75 polygons of larger channel change. Lea and Legleiter (2016) partially overcame this 

76 limitation by allowing the LoD to vary spatially based on local estimates of image co-

77 registration error, which resulted in a larger proportion of measurements being retained 

78 as statistically significant and thus improved the ability to detect actual channel change.   

79 Despite an abundance of methods used to quantify the uncertainty in 

80 measurements of channel change from aerial images, a generalizable, robust 

81 methodology is lacking. Several metrics are used to measure channel change from 

82 repeat aerial images, and previous methods to quantify uncertainty have varied 

83 depending on the metric of channel change used in individual case studies. This 

84 situation has hindered the development of a generalizable uncertainty method and 

85 makes comparing case studies of channel change from image time series more difficult 

86 and imprecise than studies of repeat topography, for which generalizable methods for 

87 characterizing uncertainty have been developed  (Brasington et al., 2003; Wheaton et 

88 al., 2010). For example, although the method developed by Lea and Legleiter (2016) 

89 (hereafter referred to as the spatially variable registration error (SVRE) method) was a 

90 significant improvement upon spatially uniform methods of quantifying image co-

91 registration error, this method can only be applied to linear channel adjustments, such 

92 as comparison of channel centerlines for measuring rates of meander migration 

93 (Nanson and Hickin, 1983; Micheli and Kirchner, 2002; Schook et al., 2017; Donovan 

94 and Belmont, 2019) or bank lines for measuring rates of bank retreat (Urban and 

95 Rhoads, 2003; De Rose and Basher, 2011; Day et al., 2013; Kessler et al., 2013).  An 
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96 alternative to this simplified linear representation of channel form involves analyzing the 

97 area of bank erosion and/or floodplain formation by delineating polygons of erosion and 

98 deposition (Gaeuman et al., 2003; Grams and Schmidt, 2005; White et al., 2010; 

99 Swanson et al., 2011; Nelson et al., 2013; Nardi and Rinaldi, 2015). Polygons of erosion 

100 and deposition are often a more informative measure of channel change, because these 

101 polygons can be used to characterize fundamental attributes of channels (e.g., lateral 

102 channel stability) and evaluate the processes by which channels change size. An 

103 uncertainty method that allows for spatially varying image co-registration error and can 

104 be applied to both linear and areal metrics of channel change thus would be useful. 

105 Another significant limitation of the SVRE and other uncertainty methods is the 

106 removal of any channel change measurements smaller than a specific threshold. This 

107 LoD approach is problematic, because measured changes less than the specified 

108 threshold are assumed to not represent real change and are removed from the analysis.  

109 However, including as many measurements of channel change as possible, whether 

110 small or large, is important, because those data contribute to our understanding of the 

111 processes and mechanisms by which channels adjust. Additionally, the cumulative 

112 effect of many small measurements of change might be larger than the effect of a few 

113 measurements of large change; thus, excluding small measurements might give the 

114 false impression that the channel’s response is to adjust in a few areas dominated by 

115 large change. Also, preferentially removing small changes could lead to biased removal 

116 of erosional areas, because erosion tends to be more spatially focused than deposition 

117 (Brasington et al., 2003). Similar concerns with the LoD threshold also exist when 

118 estimating volumes of erosion and deposition from two topographic surfaces 
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119 (Brasington et al., 2003; Anderson and Pitlick, 2014; Leonard et al., 2017; Anderson, 

120 2019). In this case, the LoD threshold tends to preferentially remove polygons of 

121 deposition, because deposition occurs as relatively thin deposits over large areas (e.g., 

122 bars) whereas polygons of erosion are typically localized and thick (Brasington et al., 

123 2003). In some instances, the biased removal of deposition can cause the true value of 

124 volumetric change to fall outside the 95% confidence interval of the volumetric change 

125 obtained by removing measurements below the LoD threshold (Anderson, 2019). 

126 In this study, we introduce a generalizable method for quantifying the uncertainty 

127 associated with measurements of channel change from repeat aerial images based on 

128 spatially varying estimates of uncertainty; we call this the Spatially Distributed 

129 Probabilistic (SDP) method. The SDP method can be applied to all metrics of channel 

130 change calculated from the comparison of repeat aerial images, making this technique 

131 the first robust, generalizable method for quantifying uncertainty in measurements of 

132 channel change from an image time series. Moreover, the SDP approach provides a 

133 probability distribution of planform change as output, rather than a single value with an 

134 associated uncertainty, and thus allows the user to estimate the probability that net 

135 change was erosional, depositional, or within a specified tolerance of a net sediment 

136 balance (i.e., zero net flux).  

137 2. Spatially distributed probabilistic (SDP) method of quantifying the uncertainty 

138 associated with change detection from an image time series  

139 The purpose of this section is to provide a general overview of the SDP method. 

140 Step-by-step instructions for implementing the method can be found in the supplemental 

141 information, and both a standalone application and the corresponding MATLAB® source 
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142 code for performing an SDP uncertainty analysis are available at 

143 https://qcnr.usu.edu/coloradoriver/files/leonard_data.  

144 The SDP method considers one source of error - image co-registration - and two 

145 sources of uncertainty - digitization and interpretation - in measurements of channel 

146 change from repeat aerial images. We define a source of error as having a deviation 

147 from a known value and a source of uncertainty as having a range of values that 

148 encompass the true measurement. Unlike previous methods that consider multiple 

149 sources of error and uncertainty in channel change analysis, the SDP method does not 

150 use error propagation to derive a single value to summarize the uncertainty. Instead, 

151 each source of error and uncertainty is used to create a probabilistic delineation of the 

152 active channel boundary for each of the two images from which a distribution of channel 

153 change measurements can be derived.      

154 2.1. Image co-registration error

155 Image co-registration error is related to misalignment in image overlays that can 

156 mask real channel change or give a false impression of change when none has 

157 occurred (Gaeuman et al., 2005). Image misalignment originates from the need to 

158 transform the original row, column pixel coordinates of each digital image to a real-world 

159 coordinate system (e.g., a Universal Transverse Mercator (UTM) projection). This 

160 process is referred to as image warping and involves finding pairs of identifiable 

161 features on an image whose pixel coordinates are in a row, column, or arbitrary local 

162 system, referred to as the warp image, and an image that already has been geo-

163 referenced to the desired real-world coordinate system, referred to as the base image. 

164 These pairs of points are termed tie-points and are used to establish a spatial 
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165 transformation that relates pixel coordinates in the warp image to map coordinates in 

166 the base image.  

167 The SDP method uses a spatially distributed image co-registration error that is 

168 similar to that of the SVRE method, but we use independent test-points as 

169 recommended by Hughes et al. (2006) instead of using tie-points to generate the error 

170 surface. Test-points are identified by extracting the map coordinate of the same feature 

171 on the image that is being digitized and the most recent image in the time series (Figure 

172 1; step 1a). Test-points differ from tie-points in that test-points are extracted from two 

173 images that are geo-referenced to a common coordinate system, and thus directly 

174 measure image overlay error rather than the residual error in the transformation used 

175 for image warping. Test-points also can be used to quantify co-registration error in 

176 images that are already geo-referenced and thus do not require warping, such as data 

177 acquired through the National Agriculture Imagery Program (NAIP) or from various 

178 satellite platforms. The magnitude of each test-point error is calculated in the X and Y 

179 directions by subtracting the test-point coordinate in the image being used to delineate 

180 the channel boundary (xi
’, yi

’) from the same test-point coordinate in the most recent 

181 image (xi, yi) (Figure 1 step 1b; Figure 2 a,b;): 

182 𝜀𝑥𝑖 =  𝑥𝑖 ― 𝑥′𝑖 ; #(1)

183 𝜀𝑦𝑖 =  𝑦𝑖 ― 𝑦′𝑖 ;#(2)

184 where  is the magnitude of co-registration error in the X direction for the ith test-point 𝜀𝑥𝑖

185 and  is the magnitude of co-registration error in the Y direction for the ith test-point. A 𝜀𝑦𝑖

186 continuous surface of  and  is then created by triangulating between each  and  𝜀𝑥 𝜀𝑦 𝜀𝑥𝑖 𝜀𝑦𝑖
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187 point and using bi-linear interpolation within each triangle (Amidror, 2002; Figure 2 a,b). 

188 The triangulation is dependent on the spatial distribution of the test-points, however, 

189 and we account for this dependency by repeatedly withholding 10% of the test–points 

190 using a 10-fold cross-validation to generate 10  and  surfaces (Figure 1 step 1c-e). 𝜀𝑥 𝜀𝑦

191 2.2. Interpretation uncertainty 

192 Uncertainty in deciphering whether an alluvial surface is part of the active 

193 channel or part of the floodplain was originally discussed by Winterbottom and Gilvear 

194 (1997), but this aspect of uncertainty is rarely included in studies of channel change.  

195 Common indicators used to classify a surface as channel or floodplain include breaks in 

196 slope or the elevation of the surface relative to the surrounding floodplain. Such 

197 topographic features can only be identified in aerial images when viewed in stereo, but 

198 most studies of channel change delineate channel boundaries based on single images 

199 (i.e., not stereo pairs) examined within a geographic information system (GIS) software 

200 environment. Therefore, the location of the channel boundary is often inferred on the 

201 basis of vegetation density (Dean and Schmidt, 2011; Nelson et al., 2013) rather than 

202 topographic changes at the edge of the active channel. These delineations thus are 

203 subject to greater uncertainty than if image pairs were analyzed in stereo. Using 

204 vegetation density as a threshold for defining the edge of the channel is also 

205 problematic, because fast-growing perennial vegetation can encroach upon low 

206 elevation bars that are regularly inundated during the annual flood but exposed for long 

207 periods during base flow. 

208 The SDP method explicitly incorporates the uncertainty inherent to interpreting 

209 the edge of the channel by delineating minimum and maximum active channel 
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210 boundaries (Figure 1 step 2); Dean and Schmidt (2011, 2013) used a similar approach.  

211 We define the maximum active channel boundary (Amax) as the smallest extent of the 

212 vegetated islands and the largest extent of the active channel and the minimum active 

213 channel boundary (Amin) as the largest extent of the vegetated islands and the smallest 

214 extent of the active channel (Figure 3). Thus, Amax represents the maximum area of the 

215 active channel whereas Amin represents the minimum area of the active channel.     

216 2.3. Digitization uncertainty 

217 Uncertainty in digitizing the edge of the channel is the accuracy with which the 

218 same operator can repeatedly delineate the same boundary (Gurnell et al., 1994; 

219 Micheli and Kirchner, 2002; Donovan et al., 2019) and previously has been quantified 

220 using a single value, such as half the product of the width of a pencil line and the scale 

221 of the aerial image (Ham and Church, 2000; Gaeuman et al., 2003; Nelson et al., 2013). 

222 When digitizing the channel extent on an aerial image, the digitizing uncertainty is not 

223 uniform throughout the image and we account for this variability in the SDP method by 

224 characterizing the uncertainty probabilistically using a normal distribution with a mean of 

225 zero and a standard deviation assumed to be one-third of the maximum digitizing 

226 uncertainty. The maximum digitizing uncertainty can be estimated on a case-by-case 

227 basis by repeatedly delineating the same boundary or using the image scale and pencil 

228 width. Alternatively, the maximum digitizing uncertainty can be assumed to be similar to 

229 that of previous studies and taken to be a constant value, such as 2 m ( e.g., Legleiter, 

230 2014; Lea and Legleiter, 2016; Donovan et al, 2019).  

231 2.4. Implementation of the SDP method
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232 The SDP method creates a probabilistic delineation of the active channel 

233 boundary using information on all three sources of error and uncertainty described 

234 above: image co-registration, interpretation, and digitization. First, the method adjusts 

235 the Amax and Amin boundaries based on the local co-registration error by moving each 

236 vertex (xj, yj) along a vector whose magnitude and direction  (Figure 2c) are (‖𝜀𝑥𝑦
‖) (𝜃)

237 given by:

238 ‖𝜀𝑥𝑦
‖ =  (𝜀𝑥𝑗

2 + 𝜀𝑦𝑗
2)0.5;#(3)

239 𝜃 = 𝑡𝑎𝑛 ―1(𝜀𝑦𝑗

𝜀𝑥𝑗);#(4)

240 where  and  are the co-registration errors at point (xj, yj) extracted from the  and 𝜀𝑥𝑗 𝜀𝑦𝑗 𝜀𝑥

241  surfaces (Figure 4a). This procedure is repeated for each of the 10 co-registration 𝜀𝑦

242 error surfaces to create 10 Amax and Amin boundaries (Figure 1 step 3). Along each of the 

243 10 Amax and Amin boundaries, a band of delineations that represents digitizing 

244 uncertainty is generated by randomly sampling 100 digitization uncertainty values from 

245 the normal distribution and moving each vertex along a normal vector by the magnitude 

246 of the sampled uncertainty value (Figure 1 step 4; Figure 4b). The final probabilistic 

247 delineation for each Amax and Amin boundary consists of 1,000 delineations whose 

248 distribution represents co-registration and digitization uncertainty (Figure 4c). 

249 After the probabilistic delineations for Amax and Amin boundaries are created for 

250 two aerial images (Figure 1 step 5), probability distributions of channel change are 

251 calculated by randomly sampling, with replacement, 5,000 Amax or Amin delineations from 

252 both aerial images and overlaying each sampled boundary to create polygons of 
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253 erosion and deposition (Figure 1 step 6). This step is performed separately for each 

254 combination of Amax and Amin overlays, creating a total of 20,000 calculations of channel 

255 change (Figure 1 steps 7a-d): (a) minimum active channel boundary in both images 

256 (AMin(t1)&AMin(t2)); where the subscripts t1 and t2 denote the earlier and later images, 

257 respectively; (b) maximum active channel boundary in both images (AMax(t1)&AMax(t2)); (c) 

258 minimum active channel boundary in the earlier image and maximum active channel 

259 boundary in the later image (AMin(t1)&AMax(t2)); and (d) maximum active channel boundary 

260 in the earlier image and minimum active channel boundary in the later image 

261 (AMax(t1)&AMin(t2)). The distribution of areal changes for all combinations of overlays 

262 represents the combined uncertainty in co-registration, digitization, and interpretation. 

263 The same method can be used to create a probabilistic delineation of channel 

264 centerlines or bank lines to obtain a distribution of centerline migration or bank retreat 

265 rates. Here, we focus on applying the SDP method to polygons of erosion and 

266 deposition because, as discussed in section 1, these measurements yield more 

267 geomorphic information.     

268 3. Channel change case study 

269 To illustrate how the SDP method can be applied in a specific channel change 

270 analysis, we describe application of the SDP method to a 23-km alluvial segment of the 

271 Yampa and Little Snake Rivers in northwestern Colorado, USA. Here, we describe our 

272 analysis of channel change based on analysis of aerial images collected in 1954 and 

273 1961 (Figure 5). We demonstrate the advantages of the SDP method by comparing our 

274 results to those obtained using two methods that do not use a spatially variable image 

275 co-registration error and do not characterize uncertainty in a probabilistic manner. The 
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276 data used in this case study are available from the U.S. Geological Survey (USGS) 

277 ScienceBase (Legleiter and Leonard, 2020). Both historical images were collected from 

278 late August to early September at  base flow (i.e., 7.16 and 9.03 m3s-1 in 1954 and 

279 1961, respectively, estimated at the Deerlodge gage by summing the discharge at the 

280 Maybell (USGS station number: 09251000) and Lily (USGS station number: 09260000) 

281 gages); Figure 5). The flow regimes of the Yampa and Little Snake Rivers are largely 

282 unregulated and dominated by spring snowmelt floods. The mean annual flood at the 

283 Deerlodge gage is 408 m3s-1, and late summer is a time of low discharge (Manners et 

284 al., 2014; Topping et al., 2018). Both rivers in the study area have wide active channels 

285 with many active bars, as well as bars adjacent to the channel that were formed by 

286 floods of different magnitudes. The Little Snake River is the primary source of fine 

287 sediment to the Yampa River in Yampa Canyon in Dinosaur National Monument 

288 (Topping et al., 2018) and provides a disproportionately large supply of fine sediment 

289 relative to the river’s contribution of streamflow (Andrews, 1980). We selected this 

290 location for our channel change case study, because the National Park Service is 

291 concerned about the maintenance of valued park resources that might be affected by 

292 upstream water development and recognizes the need to distinguish natural patterns of 

293 channel change from changes associated with anthropogenic perturbations. 

294 3.1. Channel change case study methods

295 The 1954 and 1961 images were not geo-referenced to a projected coordinate 

296 system, so we warped both images to a common projected coordinate system using the 

297 2017 NAIP image as a base. The 1954 and 1961 images were downloaded from the 

298 USGS Earth Explorer website (USGS, 2019) as 24 single frame images. In Section 2, 
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299 we described the general process of image warping whereby tie-points are identified on 

300 an individual single frame image to develop a transformation equation for warping that 

301 particular image. In this case study, however, we used a Structure-from-Motion (SfM) 

302 software package (Agisoft LLC, 2016) to first align and merge the single frame images 

303 into a mosaic and then warp and rectify the mosaic by using 12 tie-points with 

304 elevations extracted from the National Elevation Dataset (USGS, 2012) to define a 7-

305 parameter similarity transformation with three parameters for translation, three for 

306 rotation, and one for scaling. Other studies have demonstrated the utility of using SfM to 

307 reconstruct elevation models of landforms from historic aerial images (Riquelme et al., 

308 2019), and we found that the same method was useful for geo-referencing a large 

309 number of historic aerial images; however, difficulties may arise when the overlap 

310 between adjoining images is small. Also, we avoided the misalignments that can occur 

311 at the seams of the images when they are individually geo-referenced and overlaid by 

312 using SfM to geo-reference the mosaic rather than the individual images (e.g., Donovan 

313 et al., 2019).

314 As described in Section 2, we used independent test-points to characterize co-

315 registration error in our case study. These test-points indicated how well the 1954 and 

316 1961 images overlaid on the 2017 NAIP image. In our case study, test-points were 

317 difficult to visually identify, because roads and buildings in the 2017 image were not 

318 present in the 1954 and 1961 images and “soft” tie-points were limited. Therefore, we 

319 used an area-based matching algorithm in the remote sensing software package ENVI® 

320 (L3Harris Geospatial) to automatically generate test-points (Figure 2a). The area-based 

321 matching algorithm compared grayscale values of each image within a moving search 
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322 window and identified similarities and patterns using normalized cross-correlation. We 

323 removed test-points with correlation coefficients of less than 0.8, and we manually 

324 inspected the remaining test-points with the lowest correlation coefficients to ensure 

325 test-point accuracy. The algorithm produced approximately 450 test-points in both 

326 images, but the points were predominantly located on adjacent hillslopes with high 

327 textural variability, because the landscape in our case study was rural with high 

328 topographic variability.  Therefore, we supplemented the ENVI-generated test-points 

329 with manually selected points along the valley bottom.  

330 We used the methodology described in Section 2 to create spatially distributed  𝜀𝑥

331 and  surfaces from the test-points generated above and calculate  and  at any xj, 𝜀𝑦 ‖𝜀𝑥𝑦
‖ 𝜃

332 yj point (Figure 1 steps 1 and 3). The spatially uniform root mean square error (RMSE) 

333 was calculated using a subset of test-points from our case study that were close to the 

334 active channel as: 𝑅𝑀𝑆𝐸 =  [∑𝑛
𝑗 = 1Ɛ2

𝑗

𝑛 ]
0.5

,#(5)

335 where n is the number of test-points and Ɛj is the linear distance between the jth  test-

336 point in the transformed warp image   and the base image , calculated as:(𝑥′𝑗, 𝑦′𝑗) (𝑥𝑗, 𝑦𝑗)

337 𝜀𝑗 =  [(𝑥𝑗 ― 𝑥′𝑗)2 + (𝑦𝑗 ― 𝑦′𝑗)2]0.5
.#(6)

338 We used a subset of test-points close to the active channel to eliminate the influence of 

339 unusually large test-point errors located on adjacent hillslopes that were automatically 

340 selected by the area-based matching algorithm and would not have affected channel 

341 change measurements. The RMSEs for 1954 and 1961 were 4.95 and 4.52 m, 

342 respectively. We assumed that the maximum digitizing uncertainty in our case study 
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343 was 2 m based on previous studies (Donovan et al, 2019) and defined the digitizing 

344 uncertainty using a normal distribution with a mean of zero and a standard deviation of 

345 2/3, as described in Section 2 (Figure 1 step 4). 

346 Interpretation uncertainty was estimated by separately digitizing the minimum and 

347 maximum extent of the active channel and vegetated islands (Figure 1 step 2). For our 

348 case study, we used an initial threshold of 10% vegetation density to classify surfaces 

349 as channel (<10% vegetation density) or floodplain (>10% vegetation density). 

350 However, we were uncertain in several locations whether a surface with >10% 

351 vegetation had aggraded to a height similar to that of the surrounding floodplain with 

352 denser, more mature vegetation because the images were not viewed in stereo. This 

353 sort of uncertainty is inevitable in any channel change study but the Amin and Amax 

354 boundaries described in Section 2 provided a means of classifying these uncertain 

355 surfaces as both active channel and floodplain.  

356 We also used a sequence of aerial images that were collected before and after the 

357 image being digitized to help us understand the evolution of alluvial surfaces with 

358 interpretation uncertainty through time. For example, if an ambiguous surface showed a 

359 clear evolution from an unambiguous active channel in the earlier image to 

360 unambiguous floodplain in the later image, we knew that during the image sequence the 

361 surface changed from channel to floodplain and assumed that the ambiguous surface in 

362 the intermediate image being digitized was within this gradual transition. In this 

363 instance, we would use the Amin and Amax bounds to classify the surface as both channel 

364 and floodplain. Conversely, if the surface was unambiguously active channel in both the 

365 earlier and later images, we would assume that the surface in the intermediate image 
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366 being digitized was also active channel and the increase in vegetation on that surface 

367 might have been caused by the proliferation of vegetation on bars during a period when 

368 the annual snowmelt floods were small. 

369 Figure 6 presents two examples from our case study where we used a sequence of 

370 aerial images to guide our interpretation of ambiguous alluvial surfaces. The partly 

371 vegetated surface in Figure 6 a,b is an example of a vegetated island where the 

372 secondary back channel was unambiguously part of the active channel in an image 

373 from 1938 and unambiguously part of the floodplain in an image from 1975, but in the 

374 1954 and 1961 images, there was ambiguity in whether the surface was the channel or 

375 floodplain.  This interpretation uncertainty implied that the surface could be classified as 

376 a vegetated island in Amax (Figure 6a) or as part of the floodplain in Amin (Figure 6b).  

377 Similarly, Figure 6c,d is an example of a vegetated bank-attached bar that was 

378 unambiguously active channel in the 1938 image and unambiguously floodplain in the 

379 1975 image, but there was ambiguity in whether the surface was floodplain or channel 

380 in the 1954 and 1961 images. Therefore, the surface was included as part of the active 

381 channel in the Amax delineation (Figure 6c) and part of the floodplain in the Amin 

382 delineation (Figure 6d).  

383 The net planform change was calculated as the amount of erosion subtracted from 

384 the amount of deposition, with positive values indicating net deposition and negative 

385 values indicating net erosion. The total net planform change using the SDP method, as 

386 evaluated in our case study, was calculated by overlaying the probabilistic delineations 

387 in 1954 and 1961 to create a distribution of erosion and deposition polygons for each 

388 AMax and AMin overlay and then merging the net planform change from all AMax and AMin 
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389 overlays (Figure 1 step 7) into a single probability distribution. This distribution 

390 represented the combined uncertainty associated with co-registration, digitization, and 

391 interpretation. We also normalized the distribution of net planform change by dividing 

392 the net areal change by the channel centerline length to facilitate interpretation and 

393 comparison among reaches. For example, if the magnitude of net change was 100 m2 

394 of erosion and the channel length was 10 m, the normalized net change would be 10 m 

395 of erosion for every downstream meter, which we would consider a large amount of 

396 erosion. Conversely, if this amount of areal change occurred over a channel length of 

397 10,000 m, the normalized net change would only be 0.1 m of erosion per a downstream 

398 meter, which we would consider a small amount of erosion. Additionally, normalizing the 

399 net planform change by the channel centerline length allowed us to interpret the results 

400 in terms of net changes in channel width.  In case studies where multiple sets of aerial 

401 images are used, the net planform change should also be normalized by the number of 

402 years between each set of aerial images so that the magnitude of change between 

403 image pairs is comparable; this form of standardization would also aid in comparing 

404 channel change case studies from the literature.  

405 3.2. Comparison of the SDP method with existing methods of characterizing channel 

406 change uncertainty 

407 The uncertainty inherent to measurements of channel change from aerial images 

408 implies that any channel change analysis must consider the impact of these 

409 uncertainties on the results. We evaluated whether the SDP method improved upon 

410 previous methods by comparing the results from our case study when the uncertainty 

411 was quantified using the SDP method and two existing methods that used a spatially 
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412 uniform image co-registration error and did not characterize the uncertainty 

413 probabilistically.  The first method ( ) was similar to that of Urban and Rhoads (2003) 𝜀1

414 and Micheli and Kirchner (2002) in that we created an uncertainty bound with a width of 

415 the propagated co-registration error and digitization uncertainty using:

416 𝜀1 = [𝑟𝑚𝑠𝑒𝑡1
2 + 𝑟𝑚𝑠𝑒𝑡2

2 + 𝜀𝑑𝑖𝑔𝑖𝑡𝑖𝑧𝑖𝑛𝑔
2]0.5;#(7)

417 where rmset1 and rmset2 were the spatially uniform co-registration errors for each image 

418 (i.e., 4.95 and 4.52 m for the 1954 and 1961 images, respectively) and Ɛdigitizing was the 

419 maximum digitization uncertainty, which we assumed to be 2 m. The maximum area for 

420 each erosional or depositional polygon was the area of the Ɛ1 uncertainty band added to 

421 the original polygon (Figure 7a-c), and the minimum area was the Ɛ1 uncertainty band 

422 subtracted from the original polygon (Figure 7d-f). The minimum net planform change 

423 was the sum of the maximum area of erosion for all polygons (Figure 7c) subtracted 

424 from the sum of the minimum area of deposition (Figure 7f). The maximum net planform 

425 change was the sum of the minimum area of erosion (Figure 7f) subtracted from the 

426 sum of the maximum area of deposition (Figure 7c).  

427 The second method ( ) was developed by Swanson et al. (2011) and involved 𝜀2

428 estimating uncertainty in the width of each polygon of erosion and deposition using 

429 equation 7 and converting the width uncertainty to an area by multiplying by the polygon 

430 length. The total magnitude of uncertainty in erosion or deposition was the sum of 

431 uncertainty across all erosional or depositional polygons, and the minimum and 

432 maximum bounds for net planform change were calculated in the same way as for  𝜀1.
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433 3.3. Results: Comparison of methods to quantify the uncertainty associated with 

434 channel change 

435 The output from the SDP method was a distribution of planform change that we used 

436 to calculate the probability that net change in our case study was erosional or 

437 depositional along with a 95% credible interval as a summary metric of uncertainty. The 

438 95% credible interval contained 95% of the most probable values and thus provided a 

439 measure of uncertainty comparable to the spatially uniform Ɛ1 and Ɛ2 methods. We 

440 suggest that the 95% credible interval could be a useful metric of uncertainty in other 

441 studies that are not necessarily focused on directly comparing uncertainty methods, as 

442 was the main objective of our case study.   

443 The SDP method, as implemented in our case study, significantly reduced the 

444 magnitude of uncertainty in measurements of areal channel change compared to the Ɛ1 

445 and Ɛ2 methods.  The maximum extents of erosion and deposition using the Ɛ1 method 

446 (Figure 8a) were greater than the maximum extents using the SDP method (Figure 8c) 

447 because the Ɛ1 uncertainty bound (Equation 7) was generally larger than the local 

448 probabilistic delineation of the channel extent generated by the SDP method.  

449 Conversely, the minimum extent of erosion and deposition using the Ɛ1 method (Figure 

450 8b) was much smaller than the SDP method (Figure 8d) because Ɛ1 uncertainty band 

451 was greater than the size of several polygons, which caused those polygons to be 

452 completely removed from the Ɛ1 minimum extent (Figure 8b). The combined effect of 

453 these differences was a reduction in the uncertainty of deposition by 72% and 78% 

454 relative to Ɛ1 and Ɛ2, respectively, and in erosion by 84% and 87% relative to Ɛ1 and Ɛ2, 

455 respectively (Figure 8c,d inset; Table 1). The negative minimum bound of erosion and 
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456 deposition in the Ɛ2 method (Table 1; inset Figure 8c,d) had no physical meaning 

457 because the amount of erosion and deposition could not be less than zero. This 

458 spurious result was caused by the uncertainty being greater than the planform change 

459 (e.g., AMax(t1)&AMin(t2) deposition was 6.5 ± 14.0; Table 1).    

460 In our case study, we could not conclude with confidence whether the channel 

461 margins or vegetated islands accumulated or evacuated sediment, nor the direction of 

462 the total net planform change, using the Ɛ1 and Ɛ2 methods, because the uncertainty 

463 band spanned zero (Figure 9). Although the SDP 95% credible interval also spanned 

464 zero, the results were more informative, because we could estimate the probability of 

465 change. More specifically, we found a 37% probability that the total net planform change 

466 was depositional (Figure 9a; Table 1), a 19% probability that the channel boundary 

467 accumulated sediment (Figure 9b; Table 1), and a 100% probability that vegetated 

468 islands accumulated sediment (Figure 9c; Table 1). Also, the magnitude of the 95% 

469 credible interval associated with the distribution generated by the SDP method was 80% 

470 and 78% smaller than the Ɛ1 and Ɛ2 uncertainty bounds, respectively (Table 1). Thus, 

471 the SDP method significantly reduced the bound of uncertainty compared to the Ɛ1 and 

472 Ɛ2 methods.

473 The distribution of change generated from the SDP method provided a 

474 quantitative basis for deciding whether the probability of change in our case study was 

475 large enough to support meaningful geomorphic conclusions. For the purposes of this 

476 case study, there was an inconsequential risk associated with accepting the channel 

477 change results as true change when the change might have been caused by co-

478 registration error or digitization and interpretation uncertainty, so we decided that a 19% 
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479 probability of deposition along the channel boundary was sufficient to justify the 

480 conclusion that the channel boundary evacuated sediment.  Similarly, we concluded 

481 that the vegetated islands accumulated sediment based on a 100% probability of 

482 vegetated island deposition. Overall, the net channel change was erosional rather than 

483 depositional based on a 37% probability that the net change was depositional. 

484 Conversely, the only conclusion that could be made for our case study based on the Ɛ1 

485 and Ɛ2 method was that the results implied an indeterminate net sediment balance.  

486 3.3.1. The relative magnitude of each type of error and uncertainty 

487  The SDP method processes each source of error and uncertainty individually, 

488 which avoids the requirement that errors and uncertainties be normally distributed with a 

489 mean of zero for error propagation. This is an important improvement to the Ɛ1 and Ɛ2 

490 methods that incorrectly assume that the RMSE has a mean error of zero. Additionally, 

491 processing uncertainties individually allowed us to assess the net effect of each type of 

492 uncertainty on channel change to identify the primary driver of uncertainty in our case 

493 study.  Such an analysis could not have been performed using traditional methods that 

494 rely on error propagation. 

495 The magnitude of the co-registration error in our case study was defined by 

496 extracting  from each Amax and Amin vertex for the 10 error surfaces.  The magnitude ‖𝜀𝑥𝑦
‖

497 of the digitization uncertainty was simply the normal distribution defined in Section 3.1 

498 as having a mean of zero and a standard deviation of 2/3. Interpretation uncertainty was 

499 calculated as the difference between the minimum and maximum active channel areas 

500 in our study reach calculated within 150 channel-spanning cells spaced at 150-m 
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501 streamwise intervals along the channel centerline.  The difference in area within each 

502 cell was normalized by the channel centerline length, which allowed us to express the 

503 interpretation uncertainty in units of length comparable to the co-registration error and 

504 digitization uncertainty.   

505 In our case study, co-registration was the largest source of error, followed by 

506 interpretation and digitization uncertainty (Figure 10). The median of the image co-

507 registration error was larger than the interpretation uncertainty (3.0 vs. 0.0 m), but the 

508 mean was comparable (3.7 vs. 3.3 m). By definition, the mean of the digitization 

509 uncertainty was 0 m and smaller than interpretation uncertainty and co-registration 

510 error. The median of the interpretation uncertainty was extremely small because in 56% 

511 of the study area the extent of the channel boundary was unambiguous. Conversely, the 

512 co-registration error was greater than zero throughout the entire study area. If we only 

513 considered cells where the interpretation uncertainty was greater than 0 m, the median 

514 interpretation uncertainty increased to 2.4 m and the mean increased to 7.4 m. The 

515 results of our case study suggest that interpretation uncertainty can be much larger than 

516 any other source of uncertainty, implying that interpretation uncertainty should be 

517 considered in all studies of channel change. However, we emphasize that the results 

518 presented here are unique to our case study and that the magnitude of each source of 

519 uncertainty could be different in other studies.

520 3.3.2. Net effect of interpretation uncertainty  

521 The overall effect of interpretation uncertainty in our case study was 

522 characterized by individually examining the net change in different Amax and Amin 

523 overlays and we found that different Amax and Amin overlays tended toward net erosion 
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524 or deposition (Figure 11). The difference was greatest when AMin and AMax were 

525 overlaid: AMax(t1)&AMin(t2) had a 90% probability of net deposition whereas AMin(t1)&AMax(t2) 

526 only had a 1% probability of net deposition (Figure 11a,b; Table 1). We attributed this 

527 result to the AMax(t1)&AMin(t2) overlay favoring net deposition along the channel margins 

528 and vegetated islands (Figure 12), which created a high probability that the net planform 

529 change was depositional (Figure 11a). The magnitude of vegetated island deposition 

530 was smaller for the AMin(t1)&AMax(t2) overlay (Figure 12a) and sediment was evacuated 

531 from the channel margin (Figure 12b),  decreasing the probability that net planform 

532 change was depositional for the AMin(t1)&AMax(t2) overlay (Figure 11b). The net planform 

533 change along the channel margins and vegetated islands differed little between the 

534 AMax(t1)&AMax(t2) and AMin(t1)&AMin(t2) overlays (Figure 12), and the probability that each 

535 overlay was depositional was similar (Figure 11c,d). Thus, the AMax(t1)&AMax(t2) and 

536 AMin(t1)&AMin(t2) overlays represented the most conservative amount of channel change 

537 and  the probability of this scenario occurring in the overall distribution of net change 

538 was 50%. Conversely, the AMin(t1)&AMax(t2) and AMax(t1)&AMin(t2) overlays represented the 

539 most extreme amount of deposition or erosion and each of these scenarios had a 25% 

540 chance of occurring in the overall distribution of net change.  

541 4. Discussion 

542 Numerous studies have analyzed repeat aerial images to detect channel change, 

543 but the lack of a consistent methodology to quantify and incorporate uncertainty has led 

544 to the use of many methods for estimating uncertainty in measurements of channel 

545 change with varying degrees of rigor and complexity (Gurnell et al., 1994; Winterbottom 

546 and Gilvear, 1997; Mount et al., 2003; Mount and Louis, 2005). Previous methods to 

Page 26 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

547 quantify uncertainty could only be applied to one type of channel change measurement 

548 (i.e., linear channel adjustments or polygons of change), which prevents these methods 

549 from being applicable to all channel change studies. The SDP method presented here is 

550 the first generalizable method for characterizing uncertainty associated with 

551 measurements of channel change that can be used with all forms (i.e., both linear and 

552 areal metrics) of channel change measurements from an image time series. 

553 The SDP method improves upon other methods of quantifying uncertainties by 

554 estimating planform change probabilistically, rather than specifying a LoD threshold and 

555 discarding measured changes less than this threshold (Winterbottom and Gilvear, 1997; 

556 Martin, 2003; Urban and Rhoads, 2003; Surian et al., 2009; White et al., 2010; De Rose 

557 and Basher, 2011; Kessler et al., 2013). By avoiding the use of a LoD threshold, the 

558 SDP method retains all polygons of channel change and calculates a distribution of 

559 each polygon’s area given the uncertainty. The retention of all channel change 

560 measurements is a significant improvement to previous methods that discard changes 

561 smaller than a threshold because all polygons of change, whether small or large, 

562 contribute to our understanding of the processes and mechanisms by which channels 

563 adjust. Additionally, eliminating the LoD threshold has the potential to significantly 

564 improve the accuracy of channel change studies that use bank line retreat to estimate 

565 volumes of bank erosion (Rhoades et al., 2009; De Rose and Basher, 2011; Day et al., 

566 2013; Kessler et al., 2013), because point bars are commonly constructed to a lower 

567 elevation than eroding cutbanks (Lauer and Parker, 2008) and slivers of bank retreat 

568 removed by the LoD threshold can sum to large volumes of erosion when they extend 

569 over a large area and are multiplied by the bank height. 
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570 The case study presented in this paper demonstrated that the SDP method can 

571 significantly reduce the uncertainty in measurements of channel change from repeat 

572 aerial images. While the SDP method is rigorous and robust, the technique is 

573 computationally intensive. For example, in our case study we sampled our probabilistic 

574 distributions 5,000 times to create a distribution of 20,000 channel change 

575 measurements and the runtime for this analysis was ~20 minutes on a computer with 32 

576 gigabytes of RAM and a 3.70 GHz processor. In comparison, the runtime for the Ɛ1 and 

577 Ɛ2 methods was less than 1 minute.  

578 One way to decrease the SDP processing time is to reduce the number of randomly 

579 sampled channel boundary delineations used to calculate the distribution of channel 

580 change measurements (Figure 1 step 6). To test the sensitivity of the distribution of 

581 channel change to sample size, we ran the SDP method using a range of sample sizes 

582 from 1,000 to 10,000. This sensitivity analysis showed that the distributions of channel 

583 change measurements were similar for all sample sizes (Figure 13), implying that we 

584 could have reduced the number of samples to 1,000 without significantly changing our 

585 results. If computation time is a concern in other studies, we suggest performing a 

586 similar sensitivity analysis on a subset of the study area to determine the optimal 

587 number of sampled boundary delineations used to create the distribution of channel 

588 change. 

589 4.1. When to use the SDP method

590  Not all channel change studies require a method as rigorous and robust as the SDP 

591 method to quantify uncertainty. We suggest that the level of complexity and rigor 

592 appropriate for any effort to detect channel change depends on three factors: the 
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593 magnitude of uncertainty compared to the magnitude of channel change, the objective 

594 of the study, and the amount of time between the aerial images used to detect change.  

595 In small rivers, the uncertainty can be a large proportion of the total channel area 

596 (Swanson et al., 2011) and channel change may need to be quite large (e.g., greater 

597 than 25% of the width of the channel) compared to the size of the river to overcome the 

598 geospatial uncertainty. In such instances, the smaller bound of uncertainty produced by 

599 the SDP method will increase the likelihood of detecting channel change. When the 

600 signal of channel change is extremely large, as in laterally unstable rivers, a less 

601 complex uncertainty characterization method might be suitable regardless of the 

602 channel size (e.g., Surian, 1999; Cadol et al., 2011; Ziliani and Surian, 2012; Moretto et 

603 al., 2014; Righini et al., 2017).  

604 We identified two sites of bank erosion from our channel change case study where 

605 channel change was large enough that a less robust uncertainty method could be used 

606 and where channel change was small and only detectable by the SDP method. Bank 

607 erosion at both sites was visible by comparing the 1954 to 1961 aerial images but the Ɛ1 

608 and Ɛ2 methods produced an indeterminate result when the magnitude of erosion was 

609 small, whereas the SDP method could detect this small erosional signal (Figure 14a,b). 

610 Conversely, the Ɛ1, Ɛ2, and SPD methods could all detect bank erosion when the signal 

611 was large (Figure 14c,d). This example from our case study highlights the benefit of 

612 using the SDP method when the signal of channel change is small compared to the 

613 uncertainty. 

614 When the study objective is to calculate the absolute magnitude of planform change, 

615 rather than the direction of change as erosional or depositional, the SDP method 
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616 significantly reduces the uncertainty bound (Table 1) and enables a more precise 

617 estimate of the magnitude of channel change. We demonstrate this capability using the 

618 two sites of bank erosion from our channel change case study discussed above (Figure 

619 14).  The Ɛ1 and Ɛ2 methods predicted anywhere from 0.65 m of deposition to 15 m of 

620 erosion at the site with a smaller amount of bank erosion, whereas the SDP method 

621 predicted 3.5 to 8 m of bank erosion (Figure 14a,b). At the site with a larger amount of 

622 bank erosion, there was anywhere from 2 to 28 m of erosion using the Ɛ1 and Ɛ2 

623 methods but that uncertainty bound was reduced to 13 to 18 m of erosion using the 

624 SDP method (Figure 14c,d). These examples demonstrate how well the SDP method 

625 can constrain the magnitude of channel change, and we suggest that this method be 

626 used when the study objective is to calculate the absolute magnitude of change. 

627 Lastly, the temporal interval between aerial images compared to the activity of the 

628 channel during that interval will govern the amount of channel change recorded and, 

629 therefore, the type of uncertainty analysis needed to detect significant channel change.  

630 When aerial images are acquired in closely spaced time intervals and channel change 

631 is small (e.g., Manners et al., 2014), the SDP method might facilitate channel change 

632 detection. Conversely, when channel changes are large, significant channel change 

633 might be detectable with a less robust form of uncertainty analysis, regardless of the 

634 time interval between aerial images. 

635 4.2. When does each type of error and uncertainty matter?

636 In the SDP method, we distinguish between error and uncertainty by defining error 

637 as a deviation from a known value and uncertainty as a range of values that 

638 encompasses the true measurement.  One advantage of the SDP method is that errors 
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639 and uncertainties are added individually rather than being propagated to a single value, 

640 and by doing so, the user can evaluate the relative magnitude of each source of error 

641 and uncertainty and assess the effects on the channel change analysis. In our case 

642 study, co-registration error was the greatest source of error, followed by interpretation 

643 and digitization uncertainty (Figure 10), but the significance of each type of uncertainty 

644 might be different in other study areas, or within the same study area when using 

645 different aerial images.  In the following sections, we describe scenarios when each 

646 source of uncertainty is significant and other scenarios when that type of uncertainty 

647 might be disregarded. Understanding which sources of uncertainty are important in a 

648 given study can help guide the selection of an appropriate uncertainty method.

649 4.2.1. Spatially distributed image co-registration error  

650 Image co-registration error is relevant when two images are overlaid to calculate 

651 planform change. When planform metrics are derived from a single image (e.g., width 

652 and active channel area), the co-registration error is irrelevant, because the images are 

653 not overlaid, although image distortion can still cause uncertainty in these planform 

654 metrics if the images are not orthorectified. The co-registration error can be quantified 

655 as uniform across the study area using the RMSE (Equation 5) of tie-points used to 

656 warp the image, the RMSE (Equation 5) of independent test-points, or the co-

657 registration error can be allowed to vary spatially, as done in the SDP method (Figure 1 

658 step1). When planform change is small (e.g., less than 25% of the width of the channel), 

659 a spatially variable co-registration error is necessary, because this error is often lower 

660 than the uniform RMSE near the channel, which allows smaller planform changes to be 

661 detected. In our case study, using a spatially variable co-registration error reduced the 
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662 error at ~83% of the Amin and Amax vertices in the 1954 and 1961 images (Figure 15) 

663 and shrunk the overall uncertainty bounds by 78-90% (Table 1). If the planform change 

664 is extremely large, the uniform RMSE might be small compared to the channel change 

665 signal and a spatially variable co-registration error would not be necessary. To decide 

666 whether the co-registration error should be allowed to vary spatially, the magnitude of 

667 uncertainty in the Ɛ1 method can be compared to estimated planform change when 

668 uncertainty is not considered. If the Ɛ1 uncertainty bound is greater than the magnitude 

669 of change, co-registration error should be allowed to vary spatially.  

670 The effectiveness of the spatially variable co-registration error in reducing 

671 uncertainty will depend on the number, distribution, and quality of test-points. We 

672 suggest using an automated procedure to generate test-points throughout the study 

673 area (e.g., Carbonneau et al., 2010) and supplementing those test-points with manually 

674 selected test-points near the channel. Additionally, the user could test the sensitivity of 

675 the SDP method to the number, density, and distribution of test-points in their study 

676 area. 

677 4.2.2. Digitization uncertainty

678 Digitization uncertainty is affected by the spatial and spectral resolution of the image. 

679 The spatial resolution determines the smallest object that can be observed in an image. 

680 The appropriate spatial resolution for a channel change analysis will depend on the 

681 channel dimensions and might vary within the study area. If the spatial resolution is low 

682 and the channel is narrow, a single pixel may contain a portion of the active channel 

683 and the channel boundary, introducing uncertainty as to where to place the boundary 

684 within the pixel. The greater the proportion of pixels that contain both the active channel 
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685 and the channel boundary, the larger the digitization uncertainty. Spectral resolution 

686 refers to the range of wavelengths within each one of the sensor’s spectral bands. 

687 Aerial images collected by sensors with a high spectral resolution are more likely to 

688 have a near-infrared wavelength band. This type of band is helpful, because the near-

689 infrared wavelength can be used to distinguish the boundary between vegetation, water, 

690 and bare channel bars, which reduces the digitization uncertainty.   

691 The crispness of the boundary can also affect digitizing uncertainty. Easily 

692 identifiable features with sharp boundaries, like roads or buildings, will have a smaller 

693 digitizing uncertainty than fuzzy boundaries that are less crisp, such as trees. Along 

694 rivers in arid regions with little vegetation, actively eroding banks create crisp 

695 boundaries and have low digitizing uncertainty. In humid or mountainous regions, 

696 vegetation along the channel boundary is denser and eroding banks cause trees to fall 

697 into the channel, making the boundary fuzzier and subject to larger digitizing 

698 uncertainty. Shadows can cause crisp boundaries to become fuzzy during certain times 

699 of the day; digitization uncertainty is thus sensitive to flight timing.  

700 Most study areas contain both crisp and fuzzy boundaries, which will cause the 

701 digitizing uncertainty to vary spatially. Currently, a spatially variable digitizing uncertainty 

702 has not been used in a channel change study; this is an area for future work. Although 

703 the SDP method does not directly incorporate a spatially variable digitizing uncertainty, 

704 the distribution used to describe the digitizing uncertainty can be adjusted to account for 

705 fuzzy and crisp boundaries by increasing the standard deviation or creating a mixed 

706 normal distribution. In this way, the SDP method is a significant improvement to 

707 previous methods that use a single value to define digitizing uncertainty.     
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708 4.2.3. Interpretation uncertainty

709 Interpretation uncertainty occurs when there are different plausible interpretations of 

710 the extent of the active channel. If the channel boundary can be identified based on 

711 breaks in topography from stereo images or digital elevation models, the interpretation 

712 uncertainty will tend to be smaller. However, freely available aerial images that are 

713 regularly acquired typically are not collected in stereo, and current practice involves 

714 delineating channel boundaries in GIS software without the aid of stereo images.

715 In our case study, interpretation uncertainty was a large source of uncertainty in 

716 some localized areas, but there was no uncertainty elsewhere. This caused the median 

717 of this uncertainty to be small (Figure 10; 0.00 m), because the uncertainty was not 

718 present in 56% of the study area. In other case studies, interpretation uncertainty might 

719 be small in localized areas or more pervasive throughout the study area. We suspect 

720 that interpretation uncertainty will be high in rivers that experience a large change in 

721 wetted channel area given a proportionately small change in discharge (e.g., braided 

722 rivers), because low-elevation bars are frequently wetted but not scoured, which allows 

723 fast-growing vegetation to encroach on these surfaces (Werbylo et al., 2017).  In such 

724 rivers, vegetation density is a poor proxy for the active channel, and the digitizer must 

725 use professional judgment in placing the active channel boundary. Similarly, vegetation 

726 might be a poor indication of the channel extent in rivers that experience flashy 

727 hydrology or that are subjected to large reset floods and very low base flows, because 

728 there might be a mosaic of bare alluvial surfaces at multiple elevations after a large 

729 flood that are hard to interpret (Dean and Schmidt, 2011, 2013; Thompson and Croke, 
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730 2013).  Additionally, in humid environments where plants grow quickly, vegetation 

731 growing in the active channel during base flow can introduce ambiguity. 

732 Interpretation uncertainty is likely to be larger for channels that are narrowing as 

733 compared to those that are widening.  Channels widen through bank erosion that 

734 removes an entire section of sediment and creates an abrupt, crisp contact between the 

735 channel and floodplain with minimal interpretation uncertainty. Conversely, channel 

736 narrowing occurs over a continuum as alluvial surfaces transition from active channel 

737 bars to floodplains by vertically aggrading sediment (Allred and Schmidt, 1999; Grams 

738 and Schmidt, 2002; Moody et al., 1999; Pizzuto, 1994). Determining when enough 

739 sediment has accumulated on an alluvial surface to form a stable floodplain that is 

740 inundated by floods of an annual or greater recurrence is highly uncertain and subject to 

741 large interpretation uncertainty.   

742 5. Conclusions

743 In this paper, we introduced a new method for quantifying uncertainty associated 

744 with channel change detection based on probabilistic, spatially varying estimates of co-

745 registration error and digitization uncertainty. We also presented a framework that can 

746 be used to incorporate interpretation uncertainty into the channel change analysis. The 

747 SDP method can be used to calculate uncertainty at specific locations of linear channel 

748 adjustment or polygons of erosion and deposition, while also estimating the central 

749 tendency of net planform change, making this the first generalizable method for 

750 quantifying uncertainty that can be applied to all metrics of channel change derived from 

751 aerial image overlays. Although the focus of this paper was the detection of channel 

752 change, the SDP method can be applied to other geomorphic and landscape change 
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753 detection analyses, such as glacial change (DeVisser and Fountain, 2015), shoreline or 

754 tidal wetland change (Del Río et al., 2013), and changes in water body surfaces 

755 (Necsoiu et al., 2013).   

756 The SDP method as applied to our case study reduced the magnitude of 

757 uncertainty by 83-87% compared to two existing methods that used a spatially uniform 

758 image co-registration error and did not characterize uncertainty probabilistically. By 

759 reducing the bounds of uncertainty, we were able to detect channel changes of a 

760 smaller magnitude. More importantly, the distribution information from the SDP method 

761 allowed us to report a magnitude of channel change in our case study with an 

762 appropriate level of confidence even though the uncertainty bound included zero. We 

763 could not make a similar inference using the existing methods, because their 

764 uncertainty bounds had no distribution information and included zero, making the results 

765 indeterminate.  

766  The SDP method was an improvement to existing methods that quantify 

767 uncertainty without distributional information, but the method was computationally 

768 intensive and might not be necessary for all change detection studies.  We suggest that 

769 the SDP method should be used in channel change studies where 1) the uncertainty is 

770 a large proportion of the total channel area, as in small rivers; 2) when the temporal 

771 spacing between aerial images is short and the channel change is expected to be small; 

772 and 3) when the purpose of the study is to calculate the absolute magnitude of change, 

773 such as studies that use bank retreat to calculate the volume of bank erosion.  

774 Acknowledgments

Page 36 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

775 The work by the first author was supported by the Colorado River Doctoral Scholar 

776 program of the Center for Colorado River Studies at Utah State University and by the 

777 Babbitt Center for Land and Water Policy. Any use of trade, firm, or product names is 

778 for descriptive purposes only and does not imply endorsement by the U.S. Government.

779 Data Availability

780 A MATLAB® script for performing an SDP uncertainty analysis is available at 

781 https://qcnr.usu.edu/coloradoriver/files/leonard_data.  The data used in this case study 

782 are available from the U.S. Geological Survey (USGS) ScienceBase at 

783 https://doi.org/10.5066/P9SEBJ3X  (Legleiter and Leonard, 2020).   

Page 37 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

784 References

785 Agisoft LLC. 2016. Agisoft Photoscan Professional edition 

786 Allred TM, Schmidt JC. 1999. Channel narrowing by vertical accretion along the Green River 
787 near Green River, Utah. GSA Bulletin 111 : 1757–1772. DOI: 10.1130/0016-
788 7606(1999)111<1757:CNBVAA>2.3.CO;2

789 Amidror I. 2002. Scattered Data Interpolation Methods for Electronic Imaging Systems: A 
790 Survey. Journal of Electronic Imaging 11 : 157–176. DOI: 10.1117/1.1455013

791 Anderson S, Pitlick J. 2014. Using repeat LiDAR to estimate sediment transport in a steep 
792 stream. Journal of Geophysical Research: Earth Surface 119 : 621–643. DOI: 
793 10.1002/2013JF002933

794 Anderson SW. 2019. Uncertainty in quantitative analyses of topographic change: error 
795 propagation and the role of thresholding. Earth Surface Processes and Landforms 44 : 1015–
796 1033. DOI: 10.1002/esp.4551

797 Andrews E. 1980. Effective and bankfull discharges of streams in the Yampa River basin, 
798 Colorado and Wyoming. Journal of Hydrology 46 : 311–330. DOI: 10.1016/0022-
799 1694(80)90084-0

800 Best J. 2019. Anthropogenic stresses on the world’s big rivers. Nature Geoscience 12 : 7–21. 
801 DOI: 10.1038/s41561-018-0262-x

802 Bollati IM, Pellegrini L, Rinaldi M, Duci G, Pelfini M. 2014. Reach-scale morphological 
803 adjustments and stages of channel evolution: The case of the Trebbia River (northern Italy). 
804 Geomorphology 221 : 176–186. DOI: 10.1016/j.geomorph.2014.06.007

805 Brasington J, Langham J, Rumsby B. 2003. Methodological sensitivity of morphometric 
806 estimates of coarse fluvial sediment transport. Geomorphology 53 : 299–316. DOI: 
807 10.1016/S0169-555X(02)00320-3

808 Buckingham SE, Whitney JW. 2007. GIS Methodology for Quantifying Channel Change in Las 
809 Vegas, Nevada. JAWRA Journal of the American Water Resources Association 43 : 888–898. 
810 DOI: 10.1111/j.1752-1688.2007.00073.x

811 Cadol D, Rathburn SL, Cooper DJ. 2011. Aerial photographic analysis of channel narrowing and 
812 vegetation expansion in Canyon De Chelly National Monument, Arizona, USA, 1935–2004. 
813 River Research and Applications 27 : 841–856. DOI: 10.1002/rra.1399

814 Carbonneau PE, Dugdale SJ, Clough S. 2010. An automated georeferencing tool for watershed 
815 scale fluvial remote sensing. River Research and Applications 26 : 650–658. DOI: 
816 10.1002/rra.1263

817 Comiti F, Da Canal M, Surian N, Mao L, Picco L, Lenzi MA. 2011. Channel adjustments and 
818 vegetation cover dynamics in a large gravel bed river over the last 200 years. Geomorphology 
819 125 : 147–159. DOI: 10.1016/j.geomorph.2010.09.011

Page 38 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

820 Day SS, Gran KB, Belmont P, Wawrzyniec T. 2013. Measuring bluff erosion part 2: pairing 
821 aerial photographs and terrestrial laser scanning to create a watershed scale sediment budget. 
822 Earth Surface Processes and Landforms 38 : 1068–1082. DOI: 10.1002/esp.3359

823 De Rose RC, Basher LR. 2011. Measurement of river bank and cliff erosion from sequential 
824 LIDAR and historical aerial photography. Geomorphology 126 : 132–147. DOI: 
825 10.1016/j.geomorph.2010.10.037

826 Dean DJ, Schmidt JC. 2011. The role of feedback mechanisms in historic channel changes of 
827 the lower Rio Grande in the Big Bend region. Geomorphology 126 : 333–349. DOI: 
828 10.1016/j.geomorph.2010.03.009

829 Dean DJ, Schmidt JC. 2013. The geomorphic effectiveness of a large flood on the Rio Grande 
830 in the Big Bend region: Insights on geomorphic controls and post-flood geomorphic response. 
831 Geomorphology 201 : 183–198. DOI: 10.1016/j.geomorph.2013.06.020

832 Del Río L, Gracia FJ, Benavente J. 2013. Shoreline change patterns in sandy coasts. A case 
833 study in SW Spain. Geomorphology 196 : 252–266. DOI: 10.1016/j.geomorph.2012.07.027

834 DeVisser MH, Fountain AG. 2015. A century of glacier change in the Wind River Range, WY. 
835 Geomorphology 232 : 103–116. DOI: 10.1016/j.geomorph.2014.10.017

836 Donovan M, Belmont P. 2019. Timescale dependence in river channel migration 
837 measurements. Earth Surface Processes and Landforms 44 : 1530–1541. DOI: 
838 10.1002/esp.4590

839 Donovan M, Belmont P, Notebaert B, Coombs T, Larson P, Souffront M. 2019. Accounting for 
840 uncertainty in remotely-sensed measurements of river planform change. Earth-Science Reviews 
841 193 : 220–236. DOI: 10.1016/j.earscirev.2019.04.009

842 Downward SR, Gurnell AM, Brookes A. 1994. A methodology for quantifying river channel 
843 planform change using GIS. IAHS Publications-Series of Proceedings and Reports-Intern Assoc 
844 Hydrological Sciences 224 : 449–456.

845 Gaeuman D, Symanzik J, Schmidt JC. 2005. A map overlay error model based on boundary 
846 geometry. Geographical Analysis 37 : 350–369. DOI: 10.1111/j.1538-4632.2005.00585.x

847 Gaeuman DA, Schmidt JC, Wilcock PR. 2003. Evaluation of in-channel gravel storage with 
848 morphology-based gravel budgets developed from planimetric data. Journal of Geophysical 
849 Research: Earth Surface 108 : 6001. DOI: 10.1029/2002JF000002

850 Grams PE, Schmidt JC. 2002. Streamflow regulation and multi-level flood plain formation: 
851 channel narrowing on the aggrading Green River in the eastern Uinta Mountains, Colorado and 
852 Utah. Geomorphology 44 : 337–360. DOI: 10.1016/S0169-555X(01)00182-9

853 Grams PE, Schmidt JC. 2005. Equilibrium or indeterminate? Where sediment budgets fail: 
854 Sediment mass balance and adjustment of channel form, Green River downstream from 
855 Flaming Gorge Dam, Utah and Colorado. Geomorphology 71 : 156–181. DOI: 
856 10.1016/j.geomorph.2004.10.012

Page 39 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

857 Gurnell AM, Downward SR, Jones R. 1994. Channel planform change on the River Dee 
858 meanders, 1876–1992. Regulated Rivers: Research & Management 9 : 187–204. DOI: 
859 10.1002/rrr.3450090402

860 Ham DG, Church M. 2000. Bed-material transport estimated from channel morphodynamics: 
861 Chilliwack River, British Columbia. Earth Surface Processes and Landforms 25 : 1123–1142. 
862 DOI: 10.1002/1096-9837(200009)25:10<1123::AID-ESP122>3.0.CO;2-9

863 Hughes ML, McDowell PF, Marcus WA. 2006. Accuracy assessment of georectified aerial 
864 photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74 
865 : 1–16. DOI: 10.1016/j.geomorph.2005.07.001

866 Kessler AC, Gupta SC, Brown MK. 2013. Assessment of river bank erosion in Southern 
867 Minnesota rivers post European settlement. Geomorphology 201 : 312–322. DOI: 
868 10.1016/j.geomorph.2013.07.006

869 Lauer JW, Parker G. 2008. Net local removal of floodplain sediment by river meander migration. 
870 Geomorphology 96 : 123–149. DOI: 10.1016/j.geomorph.2007.08.003

871 Lea DM, Legleiter CJ. 2016. Refining measurements of lateral channel movement from image 
872 time series by quantifying spatial variations in registration error. Geomorphology 258 : 11–20. 
873 DOI: 10.1016/j.geomorph.2016.01.009

874 Legleiter CJ. 2014. Downstream Effects of Recent Reservoir Development on the 
875 Morphodynamics of a Meandering Channel: Savery Creek, Wyoming, Usa. River Research and 
876 Applications : 1328–1343. DOI: 10.1002/rra.2824

877 Legleiter CJ, Leonard CM. 2020. Aerial photographs from the Yampa and Little Snake Rivers in 
878 northwest Colorado used to characterize channel changes occuring between 1954 and 1961. 
879 U.S. Geological Survey data release [online] Available from: https://doi.org/10.5066/P9SEBJ3X

880 Leonard C, Legleiter C, Overstreet B. 2017. Effects of lateral confinement in natural and leveed 
881 reaches of a gravel-bed river: Snake River, Wyoming, USA. Earth Surface Processes and 
882 Landforms 42 : 2119–2138. DOI: 10.1002/esp.4157

883 Lyons JK, Pucherelli MJ, Clark RC. 1992. Sediment transport and channel characteristics of a 
884 sand-bed portion of the Green River below Flaming Gorge Dam, Utah, USA. Regulated Rivers: 
885 Research & Management 7 : 219–232. DOI: 10.1002/rrr.3450070302

886 Magilligan FJ, Haynie HJ, Nislow KH. 2008. Channel Adjustments to Dams in the Connecticut 
887 River Basin: Implications for Forested Mesic Watersheds. Annals of the Association of American 
888 Geographers 98 : 267–284. DOI: 10.1080/00045600801944160

889 Manners RB, Schmidt JC, Scott ML. 2014. Mechanisms of vegetation-induced channel 
890 narrowing of an unregulated canyon river: Results from a natural field-scale experiment. 
891 Geomorphology 211 : 100–115. DOI: 10.1016/j.geomorph.2013.12.033

892 Martin DJ, Pavlowsky RT. 2011. Spatial Patterns of Channel Instability Along an Ozark River, 
893 Southwest Missouri. Physical Geography 32 : 445–468. DOI: 10.2747/0272-3646.32.5.445

Page 40 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

894 Martin Y. 2003. Evaluation of bed load transport formulae using field evidence from the Vedder 
895 River, British Columbia. Geomorphology 53 : 75–95. DOI: 10.1016/S0169-555X(02)00348-3

896 Merritt DM, Cooper DJ. 2000. Riparian vegetation and channel change in response to river 
897 regulation: a comparative study of regulated and unregulated streams in the Green River Basin, 
898 USA. Regulated Rivers: Research & Management 16 : 543–564. DOI: 10.1002/1099-
899 1646(200011/12)16:6<543::AID-RRR590>3.0.CO;2-N

900 Micheli ER, Kirchner JW. 2002. Effects of wet meadow riparian vegetation on streambank 
901 erosion. 1. Remote sensing measurements of streambank migration and erodibility. Earth 
902 Surface Processes and Landforms 27 : 627–639. DOI: 10.1002/esp.338

903 Moody JA, Pizzuto JE, Meade RH. 1999. Ontogeny of a flood plain. GSA Bulletin 111 : 291–
904 303. DOI: 10.1130/0016-7606(1999)111<0291:OOAFP>2.3.CO;2

905 Moretto J, Rigon E, Mao L, Picco L, Delai F, Lenzi MA. 2014. Channel Adjustments and Island 
906 Dynamics in the Brenta River (Italy) Over the Last 30 Years. River Research and Applications 
907 30 : 719–732. DOI: 10.1002/rra.2676

908 Mount N, Louis J. 2005. Estimation and propagation of error in measurements of river channel 
909 movement from aerial imagery. Earth Surface Processes and Landforms 30 : 635–643. DOI: 
910 10.1002/esp.1172

911 Mount NJ, Louis J, Teeuw RM, Zukowskyj PM, Stott T. 2003. Estimation of error in bankfull 
912 width comparisons from temporally sequenced raw and corrected aerial photographs. 
913 Geomorphology 56 : 65–77. DOI: 10.1016/S0169-555X(03)00046-1

914 Nanson GC, Hickin EJ. 1983. Channel migration and incision on the Beatton River. Journal of 
915 Hydraulic Engineering 109 : 327–337.

916 Nardi L, Rinaldi M. 2015. Spatio-temporal patterns of channel changes in response to a major 
917 flood event: the case of the Magra River (central–northern Italy). Earth Surface Processes and 
918 Landforms 40 : 326–339. DOI: 10.1002/esp.3636

919 Necsoiu M, Dinwiddie CL, Walter GR, Larsen A, Stothoff SA. 2013. Multi-temporal image 
920 analysis of historical aerial photographs and recent satellite imagery reveals evolution of water 
921 body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska. 
922 Environmental Research Letters 8 : 025007. DOI: 10.1088/1748-9326/8/2/025007

923 Nelson NC, Erwin SO, Schmidt JC. 2013. Spatial and temporal patterns in channel change on 
924 the Snake River downstream from Jackson Lake dam, Wyoming. Geomorphology 200 : 132–
925 142. DOI: 10.1016/j.geomorph.2013.03.019

926 Nilsson C, Reidy CA, Dynesius M, Revenga C. 2005. Fragmentation and Flow Regulation of the 
927 World’s Large River Systems. Science 308 : 405–408. DOI: 10.1126/science.1107887

928 Pizzuto JE. 1994. Channel adjustments to changing discharges, Powder River, Montana. GSA 
929 Bulletin 106 : 1494–1501. DOI: 10.1130/0016-7606(1994)106<1494:CATCDP>2.3.CO;2

Page 41 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

930 Rhoades EL, O’Neal MA, Pizzuto JE. 2009. Quantifying bank erosion on the South River from 
931 1937 to 2005, and its importance in assessing Hg contamination. Applied Geography 29 : 125–
932 134. DOI: 10.1016/j.apgeog.2008.08.005

933 Righini M, Surian N, Wohl E, Marchi L, Comiti F, Amponsah W, Borga M. 2017. Geomorphic 
934 response to an extreme flood in two Mediterranean rivers (northeastern Sardinia, Italy): Analysis 
935 of controlling factors. Geomorphology 290 : 184–199. DOI: 10.1016/j.geomorph.2017.04.014

936 Riquelme A, Del Soldato M, Tomás R, Cano M, Jordá Bordehore L, Moretti S. 2019. Digital 
937 landform reconstruction using old and recent open access digital aerial photos. Geomorphology 
938 329 : 206–223. DOI: 10.1016/j.geomorph.2019.01.003

939 Schmidt JC, Wilcock PR. 2008. Metrics for assessing the downstream effects of dams. Water 
940 Resources Research 44 : W04404. DOI: 10.1029/2006WR005092

941 Schook DM, Rathburn SL, Friedman JM, Wolf JM. 2017. A 184-year record of river meander 
942 migration from tree rings, aerial imagery, and cross sections. Geomorphology 293 : 227–239. 
943 DOI: 10.1016/j.geomorph.2017.06.001

944 Surian N. 1999. Channel changes due to river regulation: the case of the Piave River, Italy. 
945 Earth Surface Processes and Landforms 24 : 1135–1151. DOI: 10.1002/(SICI)1096-
946 9837(199911)24:12<1135::AID-ESP40>3.0.CO;2-F

947 Surian N, Mao L, Giacomin M, Ziliani L. 2009. Morphological effects of different channel-forming 
948 discharges in a gravel-bed river. Earth Surface Processes and Landforms 34 : 1093–1107. DOI: 
949 10.1002/esp.1798

950 Swanson BJ, Meyer GA, Coonrod JE. 2011. Historical channel narrowing along the Rio Grande 
951 near Albuquerque, New Mexico in response to peak discharge reductions and engineering: 
952 magnitude and uncertainty of change from air photo measurements. Earth Surface Processes 
953 and Landforms 36 : 885–900. DOI: 10.1002/esp.2119

954 Thompson C, Croke J. 2013. Geomorphic effects, flood power, and channel competence of a 
955 catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast 
956 Queensland, Australia. Geomorphology 197 : 156–169. DOI: 10.1016/j.geomorph.2013.05.006

957 Topping DJ, Mueller ER, Schmidt JC, Griffiths RE, Dean DJ, Grams PE. 2018. Long-Term 
958 Evolution of Sand Transport Through a River Network: Relative Influences of a Dam Versus 
959 Natural Changes in Grain Size From Sand Waves. Journal of Geophysical Research: Earth 
960 Surface 123 : 1879–1909. DOI: 10.1029/2017JF004534

961 Urban MA, Rhoads BL. 2003. Catastrophic human-induced change in stream-channel planform 
962 and geometry in an agricultural watershed, Illinois, USA. Annals of the Association of American 
963 Geographers 93 : 783–796. DOI: 10.1111/j.1467-8306.2003.09304001.x

964 USGS. 2012. United States Geological Survey National Elevation Dataset [online] Available 
965 from: https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map

966 USGS. 2019. United States Geological Survey Earth Explorer [online] Available from: 
967 https://earthexplorer.usgs.gov/

Page 42 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

968 Wellmeyer JL, Slattery MC, Phillips JD. 2005. Quantifying downstream impacts of impoundment 
969 on flow regime and channel planform, lower Trinity River, Texas. Geomorphology 69 : 1–13. 
970 DOI: 10.1016/j.geomorph.2004.09.034

971 Werbylo KL, Farnsworth JM, Baasch DM, Farrell PD. 2017. Investigating the accuracy of 
972 photointerpreted unvegetated channel widths in a braided river system: a Platte River case 
973 study. Geomorphology 278 : 163–170. DOI: 10.1016/j.geomorph.2016.11.003

974 Wheaton JM, Brasington J, Darby SE, Sear DA. 2010. Accounting for uncertainty in DEMs from 
975 repeat topographic surveys: improved sediment budgets. Earth Surface Processes and 
976 Landforms 35 : 136–156. DOI: 10.1002/esp.1886

977 White JQ, Pasternack GB, Moir HJ. 2010. Valley width variation influences riffle–pool location 
978 and persistence on a rapidly incising gravel-bed river. Geomorphology 121 : 206–221. DOI: 
979 10.1016/j.geomorph.2010.04.012

980 Winterbottom SJ, Gilvear DJ. 1997. Quantification of channel bed morphology in gravel-bed 
981 rivers using airborne multispectral imagery and aerial photography. Regulated Rivers: Research 
982 & Management 13 : 489–499. DOI: 10.1002/(SICI)1099-1646(199711/12)13:6<489::AID-
983 RRR471>3.0.CO;2-X

984 Winterbottom SJ, Gilvear DJ. 2000. A GIS‐based approach to mapping probabilities of river 
985 bank erosion: regulated River Tummel, Scotland. Regulated Rivers: Research & Management: 
986 An International Journal Devoted to River Research and Management 16 : 127–140. DOI: 
987 10.1002/(SICI)1099-1646(200003/04)16:2<127::AID-RRR573>3.0.CO;2-Q

988 Ziliani L, Surian N. 2012. Evolutionary trajectory of channel morphology and controlling factors 
989 in a large gravel-bed river. Geomorphology 173–174 : 104–117. DOI: 
990 10.1016/j.geomorph.2012.06.001

Page 43 of 112

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms



For Peer Review

992 Table and figure captions: 

993

994 Table 1: Uncertainty bounds for the Ɛ1 and Ɛ2 methods and the 95% credible intervals 
995 for the SDP method. All values are normalized by the channel centerline length.  Also 
996 included are the percent change between the Ɛ1 and SDP method (%ΔSDPƐ1) and 
997 between the Ɛ2 and SDP method (%ΔSDPƐ2). 

998 Figure 1: SDP algorithm flow chart. 

999 Figure 2: Spatially distributed image co-registration error surface. (A) Image co-
1000 registration error in the X direction (Ɛx). (B) Image co-registration error in the Y direction 
1001 (Ɛy). Positive Ɛx and Ɛy values point east and north, respectively.  Ɛx and Ɛy were 
1002 calculated by equations 3 and 4. (C) Resultant vectors of Ɛx and Ɛy calculated by 
1003 equations 5 and 6.  

1004 Figure 3: Schematic showing minimum and maximum active channel delineations for 
1005 interpretation uncertainty.  (A) Minimum and maximum extent of the active channel and 
1006 vegetated islands. These extents represent uncertainty in interpreting the channel and 
1007 vegetated island boundaries. (B) Maximum area of the active channel (Amax) is the 
1008 minimum extent of the vegetated islands subtracted from the maximum extent of the 
1009 active channel.  (C) Minimum area of the active channel (Amin) is the maximum extent of 
1010 the vegetated islands subtracted from the minimum extent of the active channel.

1011 Figure 4: Steps used to create a probabilistic boundary delineation. (A) Original 
1012 boundary delineation in green and boundary delineation adjusted for co-registration 
1013 error in red.  The red line was created by moving each vertex of the green line by a 
1014 distance of  in the direction  (Figure 1c). (B) Subset of A.  Blue lines represent the ‖𝜀𝑥𝑦

‖ 𝜃
1015 distribution of probable channel delineations around the adjusted red boundary.  The 
1016 distribution of blue lines was populated by randomly sampling a digitizing uncertainty 
1017 from a normal distribution with a mean (μ) of zero and standard deviation (σ) of one-
1018 third the maximum digitizing uncertainty (inset).  Each vertex on the red line was moved 
1019 along a normal vector with a magnitude equal to the sampled value. This was repeated 
1020 100 times. (C) Same location as B showing the full probabilistic boundary delineation. 
1021 Each red line was adjusted from the original green boundary using one of the 10 co-
1022 registration error surfaces. The blue lines represent the digitization uncertainty around 
1023 each of the 10 red lines. 

1024

1025 Figure 5: Study area used to illustrate the SDP method.  The study area is located in 
1026 northwestern Colorado along a 17 km alluvial section of the Yampa River spanning the 
1027 Little Snake confluence and a 7 km reach of the Little Snake River directly upstream 
1028 from the confluence. The Deerlodge gage (USGS station #: 09260050) is located at the 
1029 downstream end of the study area. The direction of flow is from right to left. Base aerial 
1030 image is from the 2017 NAIP.
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1031

1032 Figure 6:  Interpretation uncertainty characterized by minimum and maximum channel 
1033 boundary delineations. (A) Partly vegetated surface on the left bank was classified as a 
1034 vegetated island and a secondary channel using the Amax delineation. (B) Same 
1035 vegetated surface as A was classified as floodplain in the Amin delineation. (C) 
1036 Vegetated bank-attached bar on the right bank was classified as active channel in the 
1037 Amax delineation. (D) Same bank-attached bar as C was classified as floodplain in the 
1038 Amin delineation. Direction of flow is from top to bottom in all images and minimum and 
1039 maximum boundaries were delineated from the 1954 aerial image.

1040 Figure 7: Minimum and maximum extent of erosion and deposition was calculated by 
1041 adding or subtracting a spatially uniform uncertainty bound around each polygon of 
1042 erosion and deposition.  Flow is from right to left and the 1954 image was used as the 
1043 base image. The maximum area of erosion or deposition is the uncertainty bound added 
1044 to each polygon (A, B, C) and the minimum area of erosion or deposition is the 
1045 uncertainty bound subtracted from each polygon (D, E, F).  The minimum bound of net 
1046 planform change was the sum of erosional polygons in C subtracted from the sum of 
1047 depositional polygons in F, and the maximum bound of net planform change was the 
1048 sum of erosional polygons in F subtracted from the sum of depositional polygons in C. 

1049 Figure 8: Minimum and maximum extent of erosion and deposition using the 
1050 Amax(t1)&Amax(t2) overlay. Flow is from right to left and the 1954 image was used as the 
1051 base image.  (A) Maximum extent of deposition and erosion using the Ɛ1 method. (B) 
1052 Minimum extent of deposition and erosion using the Ɛ1 method.  (C) Maximum extent of 
1053 erosion and deposition using the SDP method.  Inset shows the estimate for the 
1054 normalized area of deposition and minimum and maximum bound of uncertainty using 
1055 the Ɛ1 and Ɛ2 methods overlaid on the SDP distribution.  (D) Minimum extent of erosion 
1056 and deposition using the SDP method.  Inset shows the estimate for the normalized 
1057 area of erosion and minimum and maximum bound of uncertainty using the Ɛ1 and Ɛ2 
1058 methods overlaid on the SDP distribution.  The maximum and minimum extent of 
1059 erosion and deposition using the Ɛ2 method was not overlaid on the images because 
1060 the Ɛ2 method calculated the magnitude of uncertainty, not the spatial extent. The SDP 
1061 method reduced the magnitude of uncertainty by 72-78% for deposition and 84-87% for 
1062 erosion (Table 1).  

1063 Figure 9: (A) All Amax and Amin overlay solutions merged into a single histogram fit with a 
1064 probability density function which represents uncertainty in the normalized net change in 
1065 area caused by co-registration, digitization, and interpretation uncertainty. The minimum 
1066 and maximum bounds of uncertainty for the Ɛ1 and Ɛ2 methods are also shown.  (B) Net 
1067 areal change in A for changes that occurred along the channel margin. (C) Net areal 
1068 change in A for changes that occurred along vegetated islands. 
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1069 Figure 10: Box and whisker plot for each error and uncertainty type showing the median 
1070 and interquartile range within the box, values ±2.7σ within the whiskers, and values < 
1071 ±2.7σ as outliers. 

1072 Figure 11: Net planform change using each Amin and Amax overlay. Each panel shows 
1073 the estimate for the normalized net change in area, the minimum and maximum bound 
1074 of uncertainty using the Ɛ1 and Ɛ2 methods, and a histogram of the SDP solutions fit with 
1075 a probability density function. (A) Amax(t1)&Amin(t2) overlay.  (B) Amin(t1)&Amax(t2) overlay.  
1076 (C) Amax(t1)&Amax(t2) overlay.  (D) Amin(t1)&Amin(t2) overlay. 

1077 Figure 12:  Probability density functions fit to the Amin and Amax overlay distributions 
1078 partitioned by change along the channel margins and vegetated islands.  (A) 
1079 Normalized area of deposition along the channel margins. (B) Normalized net change 
1080 along the channel margins.   

1081 Figure 13: Violin plots showing the distribution of net planform change calculated by the 
1082 SDP method using 1,000 to 10,000 randomly sampled channel boundary delineations 
1083 indicated by the number of bootstrap iterations. Insets show the mean and standard 
1084 deviation for each violin plot.    

1085 Figure 14: Example of the Ɛ1 and Ɛ2 methods and SDP method applied to two locations 
1086 of bank retreat in our study area. (A) Location of small bank retreat. (B) Magnitude of 
1087 channel change at the site in A calculated by the Ɛ1 and Ɛ2 methods and SDP method.  
1088 (C) Location of large bank retreat.  (D) Magnitude of channel change at the site in C 
1089 calculated by the Ɛ1 and Ɛ2 methods and SDP method.   

1090 Figure 15: Distribution of co-registration errors extracted from each vertex along the 
1091 Amax and Amin boundaries in 1954 and 1961.  These data are displayed as a cumulative 
1092 density function estimate and a histogram. The blue portion of these distributions have a 
1093 co-registration error that is lower than the uniform RMSE and the green portion have a 
1094 co-registration error that is above the uniform RMSE. 82% of the co-registration errors 
1095 were above the uniform RMSE in 1954 and 84% in 1961. 
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Ɛ1 (m) Ɛ2 (m) SDP (m) %ΔSDPƐ1 %ΔSDPƐ2

Deposition

         AMax(t1)&AMin(t2) 2.6 – 26.9 -7.6 – 20.5 8.4 – 11.2 89% 90%
         AMin(t1)&AMax(t2) 0.6 – 20.5 -3.7 – 20.7 4.12 – 6.7 87% 89%
         AMax(t1)&AMax(t2) 1.1 – 23.1 -6.2 – 20.0 5.5 – 8.1 88% 90%
         AMin(t1)&AMin(t2) 1.3 – 23.4 -6.3 – 19.9 5.9 - 8.7 87% 89%
         TOTAL 0.6 – 23.4 -7.6 – 20.7 4.4 – 10.6 72% 78%
Erosion

         AMax(t1)&AMin(t2) 0.4 – 26.4 -10.5 – 23.4 5.6 – 9.6 85% 88%
         AMin(t1)&AMax(t2) 0.9 - 31.2 -10.3 – 27.3 7.5 – 11.6 86% 89%
         AMax(t1)&AMax(t2) 0.4 – 28.8 -11.6 – 25.4 6.1 – 10.1 86% 89%
         AMin(t1)&AMin(t2) 0.4 – 27.5 -10.6 – 24.2 5.8 – 10.0 85% 88%
         TOTAL 0.4 – 31.2 -11.6 – 27.3 5.92 – 10.8 84% 87%
Δ Planform Change

         AMax(t1)&AMin(t2) -23.8 – 26.6 -28.7 – 13.8 -1.1 - 5.5 87% 84%
         AMin(t1)&AMax(t2) -30.5 – 19.6 -35.2 – 7.6 -7.4 – 0.8 87% 84%
         AMax(t1)&AMax(t2) -27.8 – 22.7 -32.9 – 9.4 -4.6 – 1.9 87% 85%
         AMin(t1)&AMin(t2) -26.2 – 23.0 -31.1 – 10.0 -4.1 – 2.8 83% 83%
         TOTAL -27.4 – 26.6 -35.2 – 13.8 -6.3 – 4.5 80% 78%

Table 1
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Figure 1

SDP Algorithm

1) Generate co-registration error surfaces 2) Interpretation error

1a) Generate independent test-points
2a) Digitize maximum (Amax) and 
minimum (Amin) extents of active 
channel and vegetated islands1b) Calculate error for each test-point

1d) Create spatially continuous Ɛx and Ɛy surfaces (Figure 2) 

1c) Withhold 10% of test-points

4) Randomly sample 100 digitizing uncertainties from a normal distribution and move 
the adjusted boundaries in step 3 along a normal vector with a magnitude given by the 
sampled digitizing uncertainty (Figure 4b)

5) Repeat steps 1-4 for the second image date

6) Generate probability distributions of channel change by randomly sampling a 
delineation from step 4 for both time periods and overlaying these delineations to 
create polygons of erosion and deposition; repeat using different Amax &A min  overlays

7b) Amax(t1)&Amax(t2) 7c) Amin(t1)&Amax(t2) 7d) Amax(t1)&Amin(t2)7a) Amin(t1)&Amin(t2)

1e) Repeat 1c-d to create 10 co-registration error surfaces

3) Move each vertex of Amax  & Amin boundaries by the magnitude and direction of the co-
registration error for each of the 10 error surfaces (Figure 4a)
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Figure 2
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Figure 3

Maximum extent of active channel and vegetated islands

Minimum extent of active channel and vegetated islands

A. B. C. 
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Figure 4

A. B. C.
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Figure 6

A. B.

C. D.
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Figure 7
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A. B. C.

D. E. F.
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Figure 8

A. B.

C. D.
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Figure 9

A. B. C.
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Figure 11

A. B.

C. D.
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Figure 12

A.

B.
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Figure 14

A. B.

C. D.
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Supplemental Information: 
Step-by-step instructions for SDP Algorithm  

1) Image Warping: If the aerial images are not in a real world coordinate system, they 

must be geo-referenced using image warping.  All unregistered images should be 

warped to the same base image.  We refer the reader to Gilvear and Bryant (2003), 

Mount et al. (2003), and Hughes et al. (2006) for background on image warping.    

2) Image co-registration: The image co-registration error can be quantified after the 

images are in the same coordinate system.  We define co-registration error as the 

misalignment between the image being digitized and the most recent image in the 

time series (Figure 1 step 1). 

a. Independent test-point: Identify test-points by extracting the map 

coordinate of the same feature on the image that is being digitized and the 

most recent image in the time series (Figure 1 step 1a).  Note that the 

image co-registration error will be zero when the channel boundary is 

being delineated from the most recent image. 

b. Magnitude of co-registration error: The magnitude of each test-point error 

is calculated in the X and Y directions by subtracting the test-point 

coordinate in the image being used to delineate the channel boundary  (xi’, 

yi’) from the same test-point coordinate in the most recent image (xi, yi) 

(Figure step 1b):  

𝜀𝜀𝑥𝑥𝑥𝑥 =  𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥′ ;  (3) 

𝜀𝜀𝑦𝑦𝑥𝑥 =  𝑦𝑦𝑥𝑥 − 𝑦𝑦𝑥𝑥′ ; (4) 

where 𝜀𝜀𝑥𝑥𝑥𝑥 is the magnitude of co-registration error in the X direction for the 

ith test point and 𝜀𝜀𝑦𝑦𝑥𝑥 is the magnitude of co-registration error in the Y 

direction for the ith test point.  Positive errors in 𝜀𝜀𝑥𝑥 and 𝜀𝜀𝑦𝑦 are in the east 

and north directions.  

c. Create an 𝜀𝜀𝑥𝑥 and 𝜀𝜀𝑦𝑦 surface:  Use bi-linear interpolation between 𝜀𝜀𝑥𝑥𝑥𝑥 and 

𝜀𝜀𝑦𝑦𝑥𝑥 to create a continuous surface of 𝜀𝜀𝑥𝑥 and 𝜀𝜀𝑦𝑦 over the entire study area 

(Figure step 1d). 
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d. Calculate the magnitude and direction of co-registration error: Using the 

interpolated surface in step 2c, the magnitude ��
𝜀𝜀𝑥𝑥𝑥𝑥
���� and direction (𝜃𝜃) of 

co-registration error can be calculated for any coordinate pair (xj, yj):  

�
𝜀𝜀𝑥𝑥𝑥𝑥
��� =  �𝜀𝜀𝑥𝑥𝑥𝑥2 + 𝜀𝜀𝑦𝑦𝑥𝑥2�

0.5
; (5) 

𝜃𝜃 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝜀𝜀𝑦𝑦𝑥𝑥
𝜀𝜀𝑥𝑥𝑥𝑥

� ; (6) 

where 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑦𝑦𝑥𝑥 are the co-registration errors in the X and Y directions at 

point (xj, yj) extracted from the 𝜀𝜀𝑥𝑥 and 𝜀𝜀𝑦𝑦 surface in step 2c. 

e. Account for the spatial distribution of test-points: The spatial distribution of 

test-points will affect the interpolation of 𝜀𝜀𝑥𝑥 and 𝜀𝜀𝑦𝑦.  Therefore, repeatedly 

withhold 10% of the test-points using a 10-fold cross-validation to 

generate ten 𝜀𝜀𝑥𝑥 and 𝜀𝜀𝑦𝑦 surfaces.  Using each of the ten interpolated 

surfaces, repeat steps 2a-d to calculate  �
𝜀𝜀𝑥𝑥𝑥𝑥
��� and 𝜃𝜃 at any xj, yj point 

(Figure 1 step 1e). 

3) Interpretation uncertainty: Digitize the maximum and minimum active channel 

and vegetated island boundaries, thereby accounting for uncertainty in 

interpretation (Figure 1 step 2). 

4) Calculate  �
𝜀𝜀𝑥𝑥𝑥𝑥
��� and 𝜃𝜃 along the boundary delineation:  Densify the vertices 

along the Amax and Amin boundaries from step 3 using an interval that is small 

enough as to not simplify the Amax and Amin boundaries (e.g., 1/10 the mean 

channel width) and calculate �
𝜀𝜀𝑥𝑥𝑥𝑥
��� and 𝜃𝜃 at each vertex using one of the ten 𝜀𝜀𝑥𝑥 

and 𝜀𝜀𝑦𝑦 surfaces from step 2e.  

5) Adjust each vertex by the co-registration error:  Move each vertex in step 4 by 

the magnitude of �
𝜀𝜀𝑥𝑥𝑥𝑥
��� in the direction of 𝜃𝜃. This step creates a new active 

channel delineation that is adjusted by the co-registration error in one of the 10 𝜀𝜀𝑥𝑥 

and 𝜀𝜀𝑦𝑦 surfaces from step 2e (Figure 1 step 3).  
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6) Digitization uncertainty: Digitization uncertainty is estimated probabilistically by 

randomly sampling 100 values from a normal distribution with a mean of zero 

and a standard deviation of one third the maximum digitizing uncertainty.  The 

method also includes an option to define the maximum digitizing uncertainty as 

the number of pixels multiplied by the pixel resolution.  For each randomly 

sampled uncertainty value, the vertices in step 5 are moved along a normal 

vector with a magnitude given by the uncertainty value (Figure 1 step 4).  This 

process generates 100 delineations of the channel boundary.  

7) Repeat for all co-registration error surfaces: Repeat steps 4-6 for each co-

registration error surface in step 2e. This produces m X n delineations for each 

maximum and minimum active channel boundary, where m is the number of error 

surfaces generated in step 2e and n is the number of times that the digitization 

error is sampled in step 6.  In the manuscript example, m is 10 and n is 100, 

which generates 1000 delineations of the channel boundary.  The m X n 

delineations represent a probabilistic boundary delineation for Amax and Amin.   

8) Create probabilistic boundary delineations for a second aerial image: Repeat 

steps 2-7 for a second image that will be compared to the first to quantify channel 

change (Figure 1 step 5).   

9) Generate probability distributions of channel change: Randomly sample, with 

replacement, 5000 probabilistic boundary delineations from both aerial images, 

overlay each sampled boundary to create polygons of erosion and deposition, 

and repeat using different Amax and Amin overlays (Figure 1 step 6).  The 

distribution of areal changes represents the combined uncertainty in co-

registration, digitization, and interpretation.  Amax and Amin overlays include: 

a. Minimum active channel boundary in both images (AMin(t1)&AMin(t2)); where 

the subscripts t1 and t2 denote the earlier and later images, respectively 

(Figure 1 step 7a).  

b. Maximum active channel boundary in both images (AMax(t1)&AMax(t2); Figure 

1 step 7b). 
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c. Minimum active channel boundary in the earlier image and maximum 

active channel boundary in the later image (AMin(t1)&AMax(t2); Figure 1 step 

7c).  

d. Maximum active channel boundary in the earlier image and minimum 

active channel boundary in the later image (AMax(t1)&AMin(t2); Figure 1 step 

7d). 
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