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STABLE SCHEMES FOR THERMODYNAMICALLY CONSISTENT

GRADIENT FLOW MODELS\ast 
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Abstract. We present a systematic approach to developing arbitrarily high-order, uncondition-
ally energy stable numerical schemes for thermodynamically consistent gradient flow models that
satisfy energy dissipation laws. Utilizing the energy quadratization method, we formulate the gradi-
ent flow model into an equivalent form with a corresponding quadratic free energy functional. Based
on the equivalent form with a quadratic energy, we propose two classes of energy stable numerical ap-
proximations. In the first approach, we use a prediction-correction strategy to improve the accuracy
of linear numerical schemes. In the second approach, we adopt the Gaussian collocation method to
discretize the equivalent form with a quadratic energy, arriving at an arbitrarily high-order scheme
for gradient flow models. Schemes derived using both approaches are proved rigorously to be uncon-
ditionally energy stable. The proposed schemes are then implemented in four gradient flow models
numerically to demonstrate their accuracy and effectiveness. Detailed numerical comparisons among
these schemes are carried out as well. These numerical strategies are rather general so that they can
be readily generalized to solve any thermodynamically consistent PDE models.

Key words. high-order, gradient flow, energy stable, phase field, thermodynamically consistent

AMS subject classifications. 65Mxx, 65Zxx

DOI. 10.1137/18M1213579

1. Introduction. In nonequilibrium thermodynamics, transient dynamics is stip-
ulated primarily following the ``linear response theory,"" collectively known as the On-
sager principle, or equivalently the second law of thermodynamics [34, 36, 51]. The
second law of thermodynamics has been used to develop nonequilibrium models for a
wide range of material systems, ranging from life science, materials science, industrial
processing, and engineering. The gradient flow model describing relaxation dynamics
is one of the well-known examples, and other examples include most differential con-
stitutive laws for complex fluid flows [2]. The models derived from the second law of
thermodynamics are referred to as the thermodynamically consistent models.

For a given thermodynamically consistent, gradient flow model in the form of par-
tial differential equations (PDEs), a computationally efficient, energy-dissipation-rate
preserving, and high-order numerical approximation is always desired. In the litera-
ture, the numerical scheme that preserves the energy dissipation property is known
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B136 YUEZHENG GONG, JIA ZHAO, AND QI WANG

as a part of the energy stable schemes [12]. In fact, energy stability only refers to
the schemes that preserve the energy decay property and many energy stable schemes
do not preserve the actual energy dissipation rate. So, the energy-dissipation-rate
preserving scheme enhances the energy stable schemes by preserving the energy dis-
sipation rate and is therefore more accurately reflects the dynamics in the continuum
models. If the energy-dissipation-rate preserving property does not depend on the
time step size, the schemes are called unconditionally energy stable.

In the past, two widely used, distinct strategies for developing (unconditionally)
energy stable schemes have been proposed, which are the convex splitting method
[6, 12, 29, 37, 46, 47] and the stabilizing method [15, 33, 41, 42, 43, 55, 56]. The
convex-splitting strategy relies on the existence of a pair of convex components that
give rise to the free energy functional as a difference of the two convex functionals. If
such a splitting exists in the free energy functional, a nonlinear scheme can be devised
to render an unconditionally energy stable scheme. The convex splitting schemes have
been widely applied to the gradient flow models [5, 7, 12, 13, 14, 26, 29, 37, 46, 48, 49].
The stabilizing approach augments discretized equations by high-order terms to turn
the scheme into an energy stable scheme. Usually, this is accomplished by adding
additional dissipation to the numerical scheme. Both strategies can yield a dissipative
scheme, but do not guarantee to preserve the energy dissipation rate. Some other
related work includes [14, 17, 18, 24, 25, 27, 29, 30].

Recently, Badia, Guillen-Gonzales, and Gutierres-Santacreu [1] and Guillen-
Gonzales and Tierra [25] pioneered a new idea of transforming the free energy into
a quadratic functional to derive energy stable schemes. This is amplified and sys-
tematically applied to many specific thermodynamic and hydrodynamic models by
Yang and others [21, 23, 50, 52, 54, 56, 57]. Yang, Zhao, and Wang coined the name
invariant energy quadratization (IEQ) method for this class of methods. Later, we
abbreviated the name to simply the energy quadratization (EQ) method, which is
more appropriate. This strategy bypasses the complications in the other methods to
derive linear, second-order energy stable schemes in time readily. It is so general that
the EQ approach has little restriction on the specific expression of the free energy
functional. Recently, Shen, Xu, and Yang [39, 40] implemented the idea of EQ using
a scalar auxiliary variable and called it the SAV method. However, using either the
EQ or SAV strategy, one has only designed and proved rigorously unconditionally
energy stable numerical approximations up to second-order in time so far. This may
not be sufficient for some gradient flow problems with long time simulations or sharp
transition dynamics. Recently in [44], the authors propose a high-order Runge--Kutta
(RK) method for gradient flow problems based on convex splitting methods, but it
requires too many stages even to reach third-order accuracy, and it does not work for
gradient flows with variable mobilities.

In this paper, we develop systematically two classes of numerical approximations
exploiting the EQ approach for thermodynamically consistent gradient flow models.
In the first strategy, we introduce a prediction step to correct the extrapolation values
(in the explicit terms of the linear schemes resulted from the EQ approach). Specif-
ically, instead of using extrapolations to obtain explicit terms at the desired time
level [21, 23, 52, 54, 56, 57], we use a fixed-point iteration to predict and correct the
terms using values from previous iteration steps. In numerical experiments, we show
that this strategy can improve the accuracy of numerical schemes significantly. In
the second strategy, we extend the second-order EQ method [21, 23, 52, 54, 56, 57]
into an arbitrarily high-order energy quadratization (HEQ) method. The HEQ strat-
egy consists of two parts. First, by introducing auxiliary variables, we transform the
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ENERGY STABLE SCHEMES FOR GRADIENT FLOW MODELS B137

original gradient flow model into a gradient flow model with an energy functional
consisting of only quadratic terms of the unknown variables. The resulting model is
referred to as the quadratized gradient flow model. Second, we apply the Gaussian
collocation method to the quadratized gradient flow model to produce unconditionally
energy stable numerical schemes. It turns out that the classical Crank--Nicolson (CN)
and backward differential formula schemes are special cases of the newly proposed
general scheme. Our new numerical strategy provides an elegant solution for devel-
oping arbitrarily high-order and unconditionally energy stable numerical schemes for
gradient flow models. Moreover, the schemes preserve the energy dissipation rate in
the transformed variables accurately. Due to their high-order accuracy and uncondi-
tional energy stability, these schemes can allow large time steps, making the numerical
approximations especially appealing for long time computations.

We organize the rest of the paper as follows. In section 2, we reformulate gradient
flow models by using the EQ method. In section 3, we present two classes of uncondi-
tionally energy stable, numerical approximations for the reformulated EQ model. In
section 4, the Fourier pseudospectral method is employed to give rise to the spatial
discretization. Then four numerical examples of gradient flow models are shown to
validate the efficiency and accuracy of our proposed schemes in section 5. Finally, we
give a concluding remark in the last section.

2. Gradient flow models and their EQ reformulation. We present the gen-
eral thermodynamically consistent, gradient flow model first. Then, we reformulate
the general gradient flow system into an equivalent form with a quadratic energy func-
tional using the energy quadratization technique, called EQ reformulation. The EQ
reformulation for this class of gradient flow models provides an elegant platform for de-
veloping arbitrarily high-order unconditionally energy stable schemes. In this paper,
we adopt periodic boundary conditions for simplicity. The results can be readily ap-
plied to gradient flow problems with physical boundary conditions as long as the spa-
tial discretization respects the integration-by-parts or summation-by-parts formula.

2.1. Gradient flow models. Mathematically, the general form of the governing
system of equations of a gradient flow model is given by [39, 58]

(2.1)
\partial 

\partial t
\Phi = \scrG \delta F

\delta \Phi 
,

where \Phi = (\phi 1, . . . , \phi s)
T are the state variables, and \scrG is an s-by-s mobility matrix

operator which is negative semidefinite and may depend on \Phi . Here F is the effective
free energy of the material system, and \delta F

\delta \Phi is the variational derivative of the free
energy functional with respect to the state variables, known as the chemical poten-
tial. Then, the triple (\Phi ,\scrG , F ) uniquely defines a gradient flow model. One intrinsic
property of (2.1) is the energy dissipation law

(2.2)
dF

dt
=

\biggl( 
\delta F

\delta \Phi 
,
\partial \Phi 

\partial t

\biggr) 
=

\biggl( 
\delta F

\delta \Phi 
,\scrG \delta F

\delta \Phi 

\biggr) 
\leq 0,

where the inner product is defined by (f ,g) =
\sum s

i=1

\int 
\Omega 
figidx \forall f ,g \in (L2(\Omega ))s, and

\Omega is the material domain. Note that the energy dissipation law (2.2) holds only
for suitable boundary conditions. These boundary conditions include the periodic
boundary conditions and the boundary conditions that make the boundary integrals
that resulted during the integration-by-parts vanish.
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B138 YUEZHENG GONG, JIA ZHAO, AND QI WANG

2.2. Model reformulation using the EQ approach. We reformulate the
general gradient flow model (2.1) by first transforming the free energy into a quadratic
form. We illustrate the idea using a simple case, where the free energy is given by

(2.3) F =
1

2
(\Phi ,\scrL \Phi ) +

\bigl( 
f(\Phi ), 1

\bigr) 
.

Here \scrL is a linear, self-adjoint, positive definite operator and f is the bulk part of the
free energy density, which is bounded from below for a physically accessible state of
\Phi . Then the free energy F can be rewritten into

(2.4) \scrF =
1

2
(\Phi ,\scrL \Phi ) + 1

2
\| q\| 2  - A,

where q =
\sqrt{} 
2(f(\Phi ) + A

| \Omega | ), and A is a constant large enough to make q well-defined.

Here \| \bullet \| represents the L2 norm, i.e., \| f\| =
\sqrt{} \int 

\Omega 
f2dx \forall f \in L2(\Omega ).

For instance, given a Ginzburg--Landau free energy

(2.5) F =
\varepsilon 2

2
\| \nabla \phi \| 2 + 1

4
\| \phi 2  - 1\| 2,

if we conduct an integration-by-parts once, it converts to

(2.6) F =
1

2

\Bigl( 
 - \varepsilon 2\Delta \phi +\gamma 0\phi , \phi 

\Bigr) 
+
1

4
\| \phi 2 - 1 - \gamma 0\| 2+

\varepsilon 2

2

\int 
\partial \Omega 

\phi \nabla \phi \cdot ndS - 
\biggl( 
\gamma 0
2

+
\gamma 2
0

4

\biggr) 
| \Omega | ,

and we identify \scrL =  - \varepsilon 2\Delta + \gamma 0 and q = 1\surd 
2
(\phi 2  - 1  - \gamma 0), assuming the boundary

integral term vanishes.

Denote g(\Phi ) =
\sqrt{} 
2(f(\Phi ) + A

| \Omega | ). Then we reformulate model (2.1) to an equiva-

lent form

(2.7)

\Biggl\{ 
\partial 
\partial t\Phi = \scrG 

\Bigl( 
\scrL \Phi + q \partial g

\partial \Phi 

\Bigr) 
,

\partial 
\partial tq = \partial g

\partial \Phi \cdot \partial \Phi 
\partial t ,

where a \cdot b =
\sum s

i=1 aibi. Letting \Psi = (\Phi q ), system (2.7) can be written in the following

compact form:

(2.8)
\partial 

\partial t
\Psi = \scrN (\Psi )\scrB \Psi ,

where \scrN (\Psi ) = \scrA \ast \scrG \scrA is an (s+ 1)\times (s+ 1) matrix operator depending on \Psi , \scrA \ast is
the adjoint operator of \scrA , and

\scrA =

\biggl( 
Is

\partial g

\partial \Phi 

\biggr) 
s\times (s+1)

, \scrB = diag(\scrL , 1)(s+1)\times (s+1).

In this case, we have \scrA \ast = \scrA T . Since \scrG is negative semidefinite, it can be shown
easily that \scrN (\Psi ) is also negative semidefinite for any \Psi . In addition, \scrB is a linear,
self-adjoint, positive definite operator thanks to the property of \scrL . Define the \scrB -norm
as

(2.9) \| \Psi \| \scrB =
\sqrt{} 
(\Psi ,\scrB \Psi ),

and then the free energy (2.4) is rewritten as \scrF = 1
2\| \Psi \| 2\scrB  - A. System (2.8) preserves

the following energy dissipation law:

(2.10)
d\scrF 
dt

=

\biggl( 
\delta \scrF 
\delta \Psi 

,
\partial \Psi 

\partial t

\biggr) 
= (\scrB \Psi ,\scrN (\Psi )\scrB \Psi ) \leq 0.
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ENERGY STABLE SCHEMES FOR GRADIENT FLOW MODELS B139

The original gradient flow system defined by (\Phi ,\scrG , F ) is transformed into a new
system (\Psi ,\scrN ,\scrF ), where the free energy \scrF in the new system is regarded as a quadratic
functional of \Psi . Therefore, this process is called energy quadratization reformulation.

Remark 2.1. More generally, if q = g(\Phi ,\nabla \Phi ) =
\sqrt{} 

2(f(\Phi ,\nabla \Phi ) + A
| \Omega | ), then the

equivalent EQ form is given by

(2.11)

\Biggl\{ 
\partial 
\partial t\Phi = \scrG 

\Bigl( 
\scrL \Phi + q \partial g

\partial \Phi  - \nabla \cdot (q \partial g
\partial \nabla \Phi )

\Bigr) 
,

\partial 
\partial tq = \partial g

\partial \Phi \cdot \partial \Phi 
\partial t + \partial g

\partial \nabla \Phi \cdot \nabla \partial \Phi 
\partial t .

The system can again be written in the form (2.8) with the operators \scrA and \scrA \ast given
by

(2.12) \scrA =

\biggl( 
Is

\partial g

\partial \Phi 
 - \nabla \cdot \partial g

\partial \nabla \Phi 

\biggr) 
, \scrA \ast =

\Biggl( 
Is\Bigl( 

\partial g
\partial \Phi + \partial g

\partial \nabla \Phi \cdot \nabla 
\Bigr) T \Biggr) 

.

Remark 2.2. In general, the EQ reformulation approach can be applied to any
gradient flow models with free energies of high-order spatial derivatives as long as
they are thermodynamically consistent and energy dissipative.

We next discuss how to design accurate and energy stable schemes for gradient
flow models. We will demonstrate that the equivalent form in (2.8) can be handled
more easily than its original system given in (2.1).

3. Temporal discretization. In this section, a class of linear second-order
prediction-correction schemes and a class of arbitrarily high-order Gaussian collo-
cation schemes are proposed, respectively, where all the schemes are shown to be
unconditionally energy stable, i.e., the energy dissipation property is conserved for
any time step sizes at the semidiscrete level.

3.1. Linear energy stable schemes. As we know, the linear-implicit Crank--
Nicolson (LCN) scheme and the linear-implicit second-order backward differentia-
tion/extrapolation (LBDF2) method can be applied directly for discretizing the re-
formulated EQ system (2.8) in time to obtain linear unconditionally energy stable
schemes [21, 25, 53, 54]. Even though both schemes are second-order accurate, the rate
of convergence usually can be reached when the time step is small. Here, we propose
a new class of prediction-correction schemes motivated by the works in [16, 35, 38].
Employing the prediction-correction strategy for the CN scheme or the BDF2 scheme,
we obtain the following prediction-correction schemes.

Scheme 3.1 (linear prediction-correction scheme). Given \Psi n - 1 and \Psi n, \forall n \geq 1,
we obtain \Psi n+1 through the following two steps:

1. Prediction: predict \Psi n+1
\ast via some efficient and at least second-order accurate

numerical schemes.
2. CN correction:

(3.1)
\Psi n+1  - \Psi n

\Delta t
= \scrN 

\Bigl( \Psi n+1
\ast +\Psi n

2

\Bigr) 
\scrB \Psi n+1 +\Psi n

2
;

or BDF2 correction:

(3.2)
3\Psi n+1  - 4\Psi n +\Psi n - 1

2\Delta t
= \scrN (\Psi n+1

\ast )\scrB \Psi n+1.D
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B140 YUEZHENG GONG, JIA ZHAO, AND QI WANG

For each time step, several prediction strategies can be devised as long as the
predicted value \Psi n+1

\ast is at least second-order consistent in time. As an illustration,
we list some choices for the prediction step below.

Case 1. If we set

(3.3) \Psi n+1
\ast = 2\Psi n  - \Psi n - 1,

then schemes (3.1) and (3.2) reduce to the LCN and LBDF2 schemes studied in [21],
respectively.

Case 2. We set \Psi n+1
0 = 2\Psi n - \Psi n - 1. For i = 0 to N  - 1, we compute \Psi n+1

i+1 using

(3.4)
\Psi n+1

i+1  - \Psi n

\Delta t
= \scrN 

\Bigl( \Psi n+1
i +\Psi n

2

\Bigr) 
\scrB 
\Psi n+1

i+1 +\Psi n

2
;

or

(3.5)
3\Psi n+1

i+1  - 4\Psi n +\Psi n - 1

2\Delta t
= \scrN (\Psi n+1

i )\scrB \Psi n+1
i+1 .

If \| \Psi n+1
i+1  - \Psi n+1

i \| \infty < \varepsilon 0 and i+1 < N , we stop the iteration and set \Psi n+1
\ast = \Psi n+1

i+1 ;

otherwise, we set \Psi n+1
\ast = \Psi n+1

N .
Case 3. We rewrite \scrN (\Psi ) into the sum of \scrN 1, a linear operator of constant

coefficients and a nonlinear operator \scrN 2(\Psi ), \scrN (\Psi ) = \scrN 1 + \scrN 2(\Psi ). Set \Psi n+1
0 =

2\Psi n  - \Psi n - 1. For i = 0 to N  - 1, we compute \Psi n+1
i+1 by

(3.6)
\Psi n+1

i+1  - \Psi n

\Delta t
= \scrN 1\scrB 

\Psi n+1
i+1 +\Psi n

2
+\scrN 2

\Bigl( \Psi n+1
i +\Psi n

2

\Bigr) 
\scrB \Psi n+1

i +\Psi n

2
;

or

(3.7)
3\Psi n+1

i+1  - 4\Psi n +\Psi n - 1

2\Delta t
= \scrN 1\scrB \Psi n+1

i+1 +\scrN 2(\Psi 
n+1
i )\scrB \Psi n+1

i .

If \| \Psi n+1
i+1  - \Psi n+1

i \| \infty < \varepsilon 0 and i+1 < N , we stop the iteration and set \Psi n+1
\ast = \Psi n+1

i+1 ;

otherwise, we set \Psi n+1
\ast = \Psi n+1

N .

Remark 3.1. In some practical implementations, Case 3 is more efficient than
Case 2 because \scrN 1 is a linear operator of constant coefficients so that the fast Fourier
transform (FFT) can be readily applied to the linear part of the scheme.

Remark 3.2. If N is large enough, the prediction-correction scheme (3.1) with
(3.4) (or (3.6)) approximates to the fully implicit CN scheme while the prediction-
correction scheme (3.2) with (3.5) (or (3.7)) approximates to the traditional BDF2
scheme. There is no theoretical result on the choice of iteration step N . From our
numerical tests, several iteration steps N \leq 5 would improve the accuracy noticeably.

Remark 3.3. In Scheme 3.1, the initial second level datum \Psi 1 is computed by

(3.8)
\Psi 1  - \Psi 0

\Delta t
= \scrN 

\Bigl( \Psi 1
\ast +\Psi 0

2

\Bigr) 
\scrB \Psi 1 +\Psi 0

2
,

where \Psi 1
\ast is given by

(3.9)
\Psi 1

\ast  - \Psi 0

\Delta t
= \scrN 1\scrB 

\Psi 1
\ast +\Psi 0

2
+\scrN 2(\Psi 

0)\scrB \Psi 0.
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ENERGY STABLE SCHEMES FOR GRADIENT FLOW MODELS B141

Similar to the linear unconditionally energy stable schemes in [21], we have the
following theorems.

Theorem 3.1. Scheme (3.1) satisfies the following energy dissipation law:

(3.10)
Fn+1  - Fn

\Delta t
=

\biggl( 
\scrB \Psi n+ 1

2 ,\scrN 
\Bigl( \Psi n+1

\ast +\Psi n

2

\Bigr) 
\scrB \Psi n+ 1

2

\biggr) 
\leq 0, \forall n \geq 1,

with Fn = 1
2\| \Psi 

n\| 2\scrB  - A and \Psi n+ 1
2 = (\Psi n+1 +\Psi n)/2.

Theorem 3.2. Scheme (3.2) satisfies the following energy identity:

(3.11)
Fn+ 3

2  - Fn+ 1
2 + \widetilde Fn+1

\Delta t
=
\Bigl( 
\scrB \Psi n+1,\scrN (\Psi n+1

\ast )\scrB \Psi n+1
\Bigr) 
\leq 0, \forall n \geq 1,

with Fn+ 1
2 = 1

4

\Bigl( 
\| \Psi n\| 2\scrB +\| 2\Psi n - \Psi n - 1\| 2\scrB 

\Bigr) 
 - A and \widetilde Fn+1 = 1

4\| \Psi 
n+1 - 2\Psi n+\Psi n - 1\| 2\scrB .

Remark 3.4. Equations (3.10) and (3.11) imply that the two schemes given by
(3.1) and (3.2) are unconditionally energy stable, i.e., they possess the energy decay

property, respectively, Fn+1 \leq Fn \forall n \geq 1 and Fn+ 3
2 \leq Fn+ 1

2 , \forall n \geq 1. Therefore,
they are unconditionally energy stable. In addition, Scheme 3.1 preserves the energy
dissipation rate.

3.2. Arbitrarily high-order, unconditionally energy stable schemes. The
linear prediction-correction semidiscrete schemes discussed above are at most second-
order accurate in time. To derive arbitrarily high-order linear schemes, one can com-
bine the high-order backward differentiation formula with the matched extrapolation.
Define the backward difference operator for the kth-order derivative as follows:

(3.12) \Lambda k\Psi 
n+1 =

k\sum 
i=0

\lambda k
i\Psi 

n+1 - i,

where \Lambda 0\Psi 
n+1 := \Psi n+1. The values of \{ \lambda k

i \} could be found in [28]. Then, we propose
the linear-implicit BDF-k scheme (where k is the order of the scheme).

Scheme 3.2 (BDF-k scheme). Given \Psi n+1 - k,\Psi n+2 - k, . . . ,\Psi n, we obtain \Psi n+1

using

(3.13)
1

\Delta t
\Lambda k\Psi 

n+1 = \scrN (\Psi 
n+1

)\scrB \Psi n+1,

where (\bullet )
n+1

is a matched extrapolation with values from previous time steps.

Unfortunately, we are not able to prove energy stability for Scheme 3.2 presently,
although in practice, Scheme 3.2 is usually shown to deliver an energy decay numerical
result with reasonable time steps.

Given that we can't prove energy stability for the high-order schemes obtained
using the BDF method in time, we turn to another time discretization strategy for
developing energy stable schemes in time. Starting from the reformulated EQ system
(2.8), we apply the Gaussian collocation methods to construct arbitrarily high-order
schemes in time. Then, we can prove the obtained schemes are unconditionally energy
stable rigorously.

Recall the energy-quadratized system (2.8), reformulated from the general gradi-
ent flow model (2.1), as follows:

(3.14)
\partial 

\partial t
\Psi = \scrN (\Psi )\scrB \Psi .
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B142 YUEZHENG GONG, JIA ZHAO, AND QI WANG

First, we briefly recall the RK and collocation method (see Chapter II of [28] for
detailed discussions). Applying an s-stage RK method to solve equation (3.14), we
obtain the following HEQ scheme.

Scheme 3.3 (s-stage HEQ-RK method). Let bi, aij (i, j = 1, . . . , s) be real
numbers and let ci =

\sum s
j=1 aij. Given \Psi n, \Psi n+1 is calculated by

(3.15)
ki = \scrN 

\biggl( 
\Psi n +\Delta t

s\sum 
j=1

aijkj

\biggr) 
\scrB 
\biggl( 
\Psi n +\Delta t

s\sum 
j=1

aijkj

\biggr) 
, i = 1, . . . , s,

\Psi n+1 = \Psi n +\Delta t
s\sum 

i=1

biki.

The coefficients are given by a Butcher table

c A
bT =

c1 a11 \cdot \cdot \cdot a1s
...

...
...

cs as1 \cdot \cdot \cdot ass
b1 \cdot \cdot \cdot bs

,

where A \in \BbbR s,s, b \in \BbbR s, and c = Al with l = (1, 1, . . . , 1)T \in \BbbR s. Applying an
s-stage collocation method to (3.14), we obtain the following scheme.

Scheme 3.4 (s-stage HEQ collocation method). Let c1, . . . , cs be distinct real
numbers (0 \leq ci \leq 1). Given \Psi n, the collocation polynomial u(t) is a polynomial of
degree s satisfying

(3.16)
u(tn) = \Psi n,

\.u(tn + ci\Delta t) = \scrN 
\bigl( 
u(tn + ci\Delta t)

\bigr) 
\scrB 
\bigl( 
u(tn + ci\Delta t)

\bigr) 
, i = 1, . . . , s,

and the numerical solution is defined by \Psi n+1 = u(tn +\Delta t).

Theorem 1.4 on page 31 of [28] indicates that the collocation method yields a spe-
cial RK method. If the collocation points c1, . . . , cs are chosen as the Gaussian quad-
rature nodes, i.e., the zeros of the sth shifted Legendre polynomial ds

dxs (x
s(x  - 1)s),

Scheme 3.4 is called the Gaussian collocation method. Based on the Gaussian quad-
rature nodes, the interpolating quadrature formula has order 2s, and the Gaussian
collocation method shares the same order 2s. Collocation points for Gaussian collo-
cation methods of order 4 and 6 are given explicitly in [28].

For conservative systems with quadratic invariants, the Gaussian collocation meth-
ods have been proven to conserve the corresponding discrete quadratic invariants. For
more details, please refer to the book [28]. Applying the theory to our reformulated
EQ system (2.8), we have the following theorem.

Theorem 3.3. The s-stage HEQ Gaussian collocation Scheme 3.4 is uncondi-
tionally energy stable, i.e., it satisfies the following energy dissipation law:

(3.17) Fn+1  - Fn = \Delta t

s\sum 
i=1

bi

\Bigl( 
\scrB u(tn + ci\Delta t),\scrN 

\bigl( 
u(tn + ci\Delta t)

\bigr) 
\scrB u(tn + ci\Delta t)

\Bigr) 
\leq 0,

where Fn = 1
2\| \Psi 

n\| 2\scrB  - A, ci (i = 1, . . . , s) is the Gaussian quadrature nodes, bi \geq 0
(i = 1, . . . , s) are the Gauss--Legendre quadrature weights, and u(t) is the collocation
polynomial of the Gaussian collocation methods.
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Proof. Denoting \Psi n = u(tn) and \Psi n+1 = u(tn+1), we have

Fn+1  - Fn =
1

2
\| \Psi n+1\| 2\scrB  - 1

2
\| \Psi n\| 2\scrB =

1

2
\| u(tn+1)\| 2\scrB  - 1

2
\| u(tn)\| 2\scrB 

=

\int tn+1

tn

1

2

d

dt
\| u(t)\| 2\scrB dt =

\int tn+1

tn

\Bigl( 
\.u(t),\scrB u(t)

\Bigr) 
dt,(3.18)

where the self-adjoint property of \scrB was used. The integrand ( \.u(t),\scrB u(t)) is a poly-
nomial of degree 2s  - 1, which is integrated without error by the s-stage Gaussian
quadrature formula. It therefore follows from the collocation condition that
(3.19)\int tn+1

tn

\Bigl( 
\.u(t),\scrB u(t)

\Bigr) 
dt = \Delta t

s\sum 
i=1

bi

\Bigl( 
\scrB u(tn + ci\Delta t),\scrN 

\bigl( 
u(tn + ci\Delta t)

\bigr) 
\scrB u(tn + ci\Delta t)

\Bigr) 
,

which leads to (3.17). This completes the proof.

For general RK methods, we have the following theorem.

Theorem 3.4. If the coefficients of an HEQ-RK method satisfy

(3.20) biaij + bjaji = bibj , bi \geq 0, \forall i, j = 1, . . . , s,

then it is unconditionally energy stable, i.e., it satisfies the following energy dissipation
law:

(3.21) Fn+1  - Fn = \Delta t

s\sum 
i=1

bi

\Bigl( 
\scrB \Psi i,\scrN (\Psi i)\scrB \Psi i

\Bigr) 
\leq 0,

where Fn = 1
2\| \Psi 

n\| 2\scrB  - A, \Psi i = \Psi n +\Delta t
\sum s

j=1 aijkj .

Proof. Denoting \Psi n+1 = \Psi n+\Delta t
\sum s

i=1 biki and noticing that operator \scrB is linear
and self-adjoint, we have

(3.22)
1

2
\| \Psi n+1\| 2\scrB =

1

2
\| \Psi n\| 2\scrB +\Delta t

s\sum 
i=1

bi(ki,\scrB \Psi n) +
\Delta t2

2

s\sum 
i,j=1

bibj(ki,\scrB kj),

which implies

(3.23) Fn+1  - Fn = \Delta t

s\sum 
i=1

bi(ki,\scrB \Psi n) +
\Delta t2

2

s\sum 
i,j=1

bibj(ki,\scrB kj).

Applying \Psi n = \Psi i  - \Delta t
\sum s

j=1 aijkj to (3.23), we obtain

(3.24) Fn+1  - Fn = \Delta t

s\sum 
i=1

bi(ki,\scrB \Psi i) +
\Delta t2

2

s\sum 
i,j=1

(bibj  - biaij  - bjaji)(ki,\scrB kj).

Combining (3.20), (3.24), and ki = \scrN (\Psi i)\scrB \Psi i, we obtain (3.21). This completes the
proof.

Remark 3.5. Since the collocation method reduces to a special RK method, we
have to solve the nonlinear system (3.15), which will be implemented by using the
following simple fixed-point iteration method. Denote \scrN (\Psi ) = \scrN 1 + \scrN 2(\Psi ), where
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B144 YUEZHENG GONG, JIA ZHAO, AND QI WANG

\scrN 1 is a linear operator and \scrN 2(\Psi ) the remaining part of \scrN (\Psi ). At time step n, the
nonlinear system for ki in (3.15) is first computed by

kr+1
i = \scrN 1\scrB 

\biggl( 
\Psi n +\Delta t

s\sum 
j=1

aijk
r+1
j

\biggr) 
(3.25)

+ \scrN 2

\biggl( 
\Psi n +\Delta t

s\sum 
j=1

aijk
r
j

\biggr) 
\scrB 
\biggl( 
\Psi n +\Delta t

s\sum 
j=1

aijk
r
j

\biggr) 
, i = 1, . . . , s,

where we take the initial iteration k0i = 0 for simplicity. We iterate the solution until
the following criteria is satisfied:

(3.26) max
i

\| kr+1
i  - kri \| \infty < 10 - 12.

We note that the FFT algorithm is applied for solving the linear equation system
(3.25). Then we obtain \Psi n+1 by (3.15).

Remark 3.6. Though the energies (2.3) and (2.4) are equivalent in the continuum
form, the proposed schemes only satisfy a discrete energy dissipation law in terms
of the reformulated energy (2.4), instead of the original energy (2.3). However, we
point out the discrete version of (2.4) is a high-order approximation of (2.4), i.e.,
(2.3). In addition, the stabilization technique is introduced to inherit the stability
of the original energy as much as possible. For instance, in the Ginzburg--Landau

free energy (2.5), the modified energy is F = \varepsilon 2

2 \| \nabla \phi \| 2 + \gamma 0

2 \| \phi \| 2 + 1
2\| q\| 

2  - A, which
implies H1 boundedness of phase variable \phi . For more details, please refer to [3, 39].

Remark 3.7. We note that the EQ approach is employed for developing second-
order linear or arbitrarily high-order schemes in this paper, for respecting the energy-
dissipation law. For the gradient flow models equipped with singular energy poten-
tials, such as the Cahn--Hilliard equation with the Flory--Huggins free energy, we can't
prove that the proposed methods preserve the positivity. For some seminal work on
the positive-preserving algorithms for gradient flow models, please refer to [5].

Remark 3.8. For gradient flow models, a class of high-order convex splitting RK
schemes has been developed recently [44]. However, these schemes only work when
one can find a convex splitting of the free energy, which may not always be true. Be-
sides, they require too many multistages to reach even the third-order accuracy. The
existence of higher-order convex splitting RK coefficients is not guaranteed. More-
over, they do not work for the case where the mobility is variable. The HEQ schemes
introduced in this paper do not have these constraints so that they can be applied to
a much broader class of problems.

4. Spatial discretization. Next, we present structure-preserving spatial dis-
cretizations for the quadratized gradient flow models. For the spatial discretization,
one idea inspired by [8] is to preserve the negative semidefinite property of operator
\scrN (\Psi ) and the self-adjoint, positive definite property of operator \scrB . Another idea is to
develop spatial discretization methods that preserve the discrete integration-by-parts
formulae (please see [19, 20, 21, 22, 23, 57] for details). Based on these ideas, we apply
the Fourier pseudospectral method in space to (2.8), which leads to an ODE system
that preserves the spatial semidiscrete energy dissipation law. Then we apply the
methods discussed in the previous section to the ODE system to obtain fully discrete
energy stable schemes.
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Let Nx, Ny be two positive even integers. The spatial domain \Omega = [0, Lx]\times [0, Ly]
is uniformly partitioned with mesh size hx = Lx/Nx, hy = Ly/Ny and

\Omega h = \{ (xj , yk)| xj = jhx, yk = khy, 0 \leq j \leq Nx  - 1, 0 \leq k \leq Ny  - 1\} .

We define SN = span\{ Xj(x)Yk(y), j = 0, 1, . . . , Nx  - 1; k = 0, 1, . . . , Ny  - 1\} as the
interpolation space, where Xj(x) and Yk(y) are trigonometric polynomials of degree
Nx/2 and Ny/2, given, respectively, by

(4.1) Xj(x) =
1

Nx

Nx/2\sum 
m= - Nx/2

1

am
eim\mu x(x - xj), Yk(y) =

1

Ny

Ny/2\sum 
m= - Ny/2

1

bm
eim\mu y(y - yk),

where am =

\Biggl\{ 
1, | m| < Nx/2,

2, | m| = Nx/2,
\mu x = 2\pi /Lx, bm =

\Biggl\{ 
1, | m| < Ny/2,

2, | m| = Ny/2,
\mu y = 2\pi /Ly.

We define the interpolation operator IN : C(\Omega ) \rightarrow SN as follows:

(4.2) INu(x, y) =

Nx - 1\sum 
j=0

Ny - 1\sum 
k=0

uj,kXj(x)Yk(y),

where uj,k = u(xj , yk). The key to spatial Fourier pseudospectral discretization is to
obtain derivative \partial s1

x \partial s2
y INu(x, y) at collocation points. Then, we differentiate (4.2)

and evaluate the resulting expressions at point (xj , yk) as follows:

\partial s1
x \partial s2

y INu(xj , yk) =

Nx - 1\sum 
m1=0

Ny - 1\sum 
m2=0

um1,m2(D
x
s1)j,m1(D

y
s2)k,m2 ,

where Dx
s1 and Dy

s2 are Nx \times Nx and Ny \times Ny matrices, respectively, with elements
given by

(Dx
s1)j,m =

ds1Xm(xj)

dxs1
, (Dy

s2)k,m =
ds2Ym(yk)

dys2
.

Here we note that the Fourier pseudospectral method preserves discrete integration-
by-parts formulae. For more details, please refer to our previous work [21].

Applying the Fourier pseudospectral method to (2.8), we obtain

(4.3)
d

dt
\Psi = \scrN d(\Psi )\scrB d\Psi ,

where \scrN d(\Psi ) is a discrete negative semidefinite operator that approximates to \scrN (\Psi ),
and \scrB d is a constant self-adjoint, positive definite operator that approximates to \scrB . It
can be readily shown that the system (4.3) possesses the discrete energy dissipation
law

(4.4)
d

dt
Fh =

\biggl( 
\scrB d\Psi ,

d

dt
\Psi 

\biggr) 
h

=
\bigl( 
\scrB d\Psi ,\scrN d(\Psi )\scrB d\Psi 

\bigr) 
h
\leq 0,

where Fh = 1
2 (\Psi ,\scrB d\Psi )h - A, (\cdot , \cdot )h is the corresponding discrete inner product. Then

the linear prediction-correction schemes and Gaussian collocation methods proposed
in section 3 can be applied directly for (4.3) to obtain fully discrete energy stable
schemes.
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B146 YUEZHENG GONG, JIA ZHAO, AND QI WANG

Next, we specifically apply our spatial discretization method to two examples.
First, we consider the following Cahn--Hilliard equation:

(4.5) \partial t\phi = \lambda \Delta 
\delta F

\delta \phi 
,

where the free energy functional F is given by

(4.6) F =

\biggl( 
1

4
\phi 4  - a

2
\phi 2, 1

\biggr) 
+

b

2
\| \nabla \phi \| 2 + c

2

\bigl( 
\| \phi \| 2  - 2\| \nabla \phi \| 2 + \| \Delta \phi \| 2

\bigr) 
.

By introducing q = 1\surd 
2
(\phi 2  - a - \gamma 0), the free energy can be rewritten as

(4.7) F =
1

2

\Bigl( 
\phi ,\scrL \phi 

\Bigr) 
+

1

2
\| q\| 2  - A+ boundary terms,

where \scrL = \gamma 0  - b\Delta + c(1 + \Delta )2 and A = 1
4 (a + \gamma 0)

2| \Omega | . The boundary conditions
annihilate the boundary terms. Then (4.5) reduces to the following system:

(4.8)

\Biggl\{ 
\partial t\phi = \lambda \Delta (\scrL \phi +

\surd 
2\phi q),

\partial tq =
\surd 
2\phi \partial t\phi ,

which can be written in the compact form (2.8) with \Psi = (\phi , q)T , \scrN (\Psi ) =
(1,

\surd 
2\phi )T\lambda \Delta (1,

\surd 
2\phi ) and \scrB = diag(\scrL , 1). Following the notation of [21] and applying

the Fourier pseudospectral method to (4.8), we obtain

(4.9)

\Biggl\{ 
d
dt\phi = \lambda \Delta h(\scrL d\phi +

\surd 
2\phi \odot q),

d
dtq =

\surd 
2\phi \odot d

dt\phi ,

where \Delta h = Dx
2 x\bigcirc +Dy

2 y\bigcirc and \scrL d = \gamma 0 - b\Delta h+c(1+\Delta h)
2. System (4.9) can be written

in the form of (4.3) with discrete operators \scrN d(\Psi ) = (1,
\surd 
2\phi \odot )T\lambda \Delta h(1,

\surd 
2\phi \odot ) and

\scrB d = diag(\scrL d, 1).
Next we consider the molecular beam epitaxy model

(4.10) \partial t\phi =  - \lambda 
\delta F

\delta \phi 
,

where the free energy functional F is given by

(4.11) F =
\varepsilon 2

2
\| \Delta \phi \| 2 + 1

4

\bigm\| \bigm\| | \nabla \phi | 2  - 1
\bigm\| \bigm\| 2.

Letting q = 1\surd 
2

\bigl( 
| \nabla \phi | 2  - 1 - \gamma 0

\bigr) 
, we obtain the corresponding free energy

(4.12) F =
1

2

\Bigl( 
\phi ,\scrL \phi 

\Bigr) 
+

1

2
\| q\| 2  - A+ boundary terms,

where \scrL = \varepsilon 2\Delta 2  - \gamma 0\Delta and A = 1
4 (2\gamma 0 + \gamma 2

0)| \Omega | . The boundary conditions annihilate
the boundary terms. Then (4.10) is written equivalently as

(4.13)

\Biggl\{ 
\partial t\phi =  - \lambda 

\Bigl( 
\scrL \phi  - 

\surd 
2\nabla \cdot (q\nabla \phi )

\Bigr) 
,

\partial tq =
\surd 
2\nabla \phi \cdot \nabla \partial t\phi ,
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which can be written in the compact form of (2.8) with

\Psi = (\phi , q)T ,\scrN (\Psi ) =  - \lambda 

\biggl( 
1\surd 

2\nabla \phi \cdot \nabla 

\biggr) 
(1, - \nabla \cdot 

\surd 
2\nabla \phi )

and \scrB = diag(\scrL , 1). Applying the Fourier pseudospectral method for (4.13), we obtain

(4.14)

\Biggl\{ 
d
dt\phi =  - \lambda 

\Bigl( 
\scrL d\phi  - 

\surd 
2Dx

1 x\bigcirc 
\bigl( 
q \odot Dx

1 x\bigcirc \phi 
\bigr) 
 - 
\surd 
2Dy

1 y\bigcirc 
\bigl( 
q \odot Dy

1 y\bigcirc \phi 
\bigr) \Bigr) 

,

d
dtq =

\surd 
2(Dx

1 x\bigcirc \phi )\odot (Dx
1 x\bigcirc d

dt\phi ) +
\surd 
2(Dy

1 y\bigcirc \phi )\odot (Dy
1 y\bigcirc d

dt\phi ),

where \scrL d = \varepsilon 2\Delta 2
h  - \gamma 0\Delta h. System (4.14) can be written in the form of (4.3) with

discrete operators

\scrN d(\Psi ) =  - \lambda 

\biggl( 
1\surd 

2(Dx
1 x\bigcirc \phi )\odot Dx

1 x\bigcirc +
\surd 
2(Dy

1 y\bigcirc \phi )\odot Dy
1 y\bigcirc 

\biggr) 
\Bigl( 
1, - 

\surd 
2Dx

1 x\bigcirc 
\bigl( 
Dx

1 x\bigcirc \phi 
\bigr) 
\odot  - 

\surd 
2Dy

1 y\bigcirc 
\bigl( 
Dy

1 y\bigcirc \phi 
\bigr) 
\odot 
\Bigr) 

and \scrB d = diag(\scrL d, 1).

5. Numerical results. In this section, we apply the proposed numerical schemes
to several gradient flow problems. For simplicity, we assume periodic boundary con-
ditions in the numerical experiments. Note that our schemes can be easily applied
to gradient flow models with physical boundary conditions as long as they annihilate
the boundary terms in the energy dissipation rate formula. Systematical comparisons
among the prediction-correction scheme 3.1, the BDF-k scheme 3.2, and HEQ schemes
3.3 and 3.4 are presented below.

We fix the number of iteration N = 5 and \varepsilon 0 = 10 - 12 in the rest of this paper. In
addition, for easily referring the schemes, we name (3.1) with predictor (3.3) as the
LCN (linear CN) scheme; (3.1) with predictor (3.6) as the ICN (implicit CN) scheme;
(3.2) with predictor (3.3) as the LBDF2 scheme; and (3.2) with predictor (3.7) as the
IBDF2 scheme.

Example 1: Cahn--Hilliard equation. In the first example, we consider the
Cahn--Hilliard equation with the free energy functional containing a double-well bulk
term:

(5.1) F =
\varepsilon 2

2
\| \nabla \phi \| 2 + 1

4
\| \phi 2  - 1\| 2,

where \varepsilon is a small parameter. The Cahn--Hilliard equation is given as follows:

(5.2) \partial t\phi = \lambda \Delta 
\Bigl( 
 - \varepsilon 2\Delta \phi + \phi 3  - \phi 

\Bigr) 
,

where \lambda is the mobility parameter. If we introduce the auxiliary variable q =
1\surd 
2
(\phi 2  - 1 - \gamma 0), where \gamma 0 > 0 is a constant, we have

(5.3)

\biggl\{ 
\partial t\phi = \lambda \Delta ( - \varepsilon 2\Delta \phi + \gamma 0\phi + qg(\phi )),

\partial tq = g(\phi )\partial t\phi , g(\phi ) =
\surd 
2\phi .

Then we denote \Psi = (\phi , q)T and rewrite the Cahn--Hilliard equation into a prototyp-
ical form

(5.4) \partial t\Psi = \scrA T\scrG \scrA \scrB \Psi , \scrA =
\bigl( 
1, g(\phi )

\bigr) 
, \scrB = diag( - \varepsilon 2\Delta + \gamma 0, 1), \scrG = \lambda \Delta .
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(a) HEQ-RK schemes (b) CN schemes (c) BDF2 schemes (d) High-order BDF
schemes

Fig. 5.1. Rate of convergence in time. This figure shows some time step refinement tests. It
provides the log-log plots of numerical L2 errors with respect to different time steps using the RK
or Gaussian collocation method, CN, BDF2, BDF4, BDF6 schemes. Here we use spatial meshes
256\times 256 and the error is calculated at t = 1. It demonstrates that the proposed schemes reach their
expected order accuracy.

In the numerical experiment, we choose a square domain with \Omega = [0, 1]2, and
the parameters are chosen as \gamma 0 = 1, \varepsilon = 0.01, and \lambda = 10 - 3. Using initial condition
\phi (x, y) = sin(2\pi x) sin(2\pi y), we carry out time step refinement tests. By choosing
the numerical solution calculated by the sixth-order Gaussian collocation method
with time step \Delta t = 10 - 5 as the ``exact"" solution, the errors are calculated as the
differences between the numerical solutions at different time steps and the ``exact""
solution, respectively.

The log-log plots of L2 errors against time step \Delta t are depicted in Figure 5.1.
From Figure 5.1(a), we observe that the HEQ-RK scheme 3.3 with the fourth and
sixth-order Gaussian collocation points reaches the fourth- and sixth-order of accu-
racy, respectively. From Figure 5.1(b), we observe that both the LCN scheme and
the ICN scheme reach the second-order accuracy, while the ICN scheme reaches it at
a larger time step. The ICN scheme has a significantly smaller error than the LCN
scheme by comparing the errors of the two schemes at the same time step size, with
similar CPU time cost, since the ICN/IBDF2 schemes only require up to five itera-
tions, where each iteration is solved using an FFT solver. As shown in Figure 5.1(c),
the BDF schemes have similar results as the CN schemes do. Besides, the BDF-k
schemes also reach the expected order of convergence when the time step is small
enough, as shown in Figure 5.1(d). Comparing between Figure 5.1(a) and 5.1(d),
we observe that the HEQ schemes are more accurate than the BDF-k schemes when
using the same time steps.

Next, we study the coarsening dynamics and compare the accuracy of the pro-
posed schemes by comparing the numerically calculated energies using different
schemes with various time step sizes. To have a more detailed comparison, we con-
sider coarsening dynamics of a binary mixture (which demonstrates a dramatic energy
change when the system coarsens). We use 256\times 256 equal distanced meshes in space
to discretize the domain \Omega = [0 4\pi ]\times [0 4\pi ]. The parameters are chosen as \lambda = 0.1,
\epsilon = 0.05, \gamma 0 = 1, and initial condition is \phi (x, y) = 0.001

\bigl( 
2 rand(x, y) - 1

\bigr) 
.

In Figure 5.2(a)--(b), the energies computed using the CN schemes in time [0 2]
are plotted. We observe that for the LCN scheme, when \Delta t < 0.0125, the calculated
energy converges to the accurate energy. For the ICN scheme, it has a dramatic
improvement in accuracy, where the numerical energy calculated with \Delta t = 0.1 is
already very accurate, where the CPU time cost is negligible as only up to five times
of an FFT solver is applied to (3.6) in the computation in each step. As shown in
Figure 5.2(c)--(d), the BDF4 and BDF6 schemes provide accurate results given the
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(a) LCN scheme (b) ICN scheme (c) BDF4 scheme

(d) BDF6 scheme (e) fourth-order Gauss method (f) sixth-order Gauss method

Fig. 5.2. The energy calculated using various schemes in time period [0, 2]. The figures
show the energy predictions using (a) the LCN scheme; (b) ICN scheme; (c) fourth-order Gaussian
collocation method; and (d) sixth-order Gaussian collocation method. Except for the LCN method,
all other methods give a very good solution at large time step sizes.

time step is small enough. However, when the time step is large, it violates the
energy dissipation law. The results using the HEQ Gaussian collocation method of
order four and order six are summarized in Figure 5.2(e)--(f). We observe that the
HEQ Gaussian collocation scheme provides much better accuracy. Both fourth-order
and sixth-order schemes with a large time step size, such as \Delta t = 0.2, give very
accurate energy predictions, which are much larger than the proper time steps for the
BDF4 and BDF6 schemes, respectively.

One typical simulation using the sixth-order Gaussian collocation method with a
time step size \Delta t = 0.01 is depicted in Figure 5.3, where we observe fairly accurate
predictions of the coarsening dynamics in various times.

Example 2: Allen--Cahn equation. Here we test the proposed numerical
schemes on the Allen--Cahn equation

(5.5) \partial t\phi =  - \lambda 
\Bigl( 
 - \varepsilon 2\Delta \phi + \phi 3  - \phi 

\Bigr) 
.

Introducing the same auxiliary variable, q = 1\surd 
2
(\phi 2  - 1 - \gamma 0), we obtain the reformu-

lated EQ system

(5.6)

\biggl\{ 
\partial t\phi =  - \lambda ( - \varepsilon 2\Delta \phi + \gamma 0\phi + qg(\phi )),

\partial tq = g(\phi )\partial t\phi , g(\phi ) =
\surd 
2\phi ,

which can be written as
(5.7)
d

dt
\Psi = \scrA T\scrG \scrA \scrB \Psi , \Psi = (\phi , q)T , \scrA = (1, g(\phi )), \scrB = diag( - \varepsilon 2\Delta +\gamma 0, 1), \scrG =  - \lambda .
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Fig. 5.3. The profile of \phi during coarsening. Here red represents \phi = 1 and blue represents
\phi =  - 1. The profiles of \phi at time t = 10, 20, 50, 100, 200, 380 are shown, respectively.

Here we test the numerical schemes via a benchmark example used in [4]. We
choose the parameter values as \lambda = 1, \varepsilon = 1, Lx = Ly = 256. We use 256\times 256 mesh
points to reduce the spatial error. The initial condition is chosen as a disk,

(5.8) \phi (x, y, 0) =

\biggl\{ 
1, x2 + y2 < 1002,
 - 1, x2 + y2 \geq 1002.

It has been shown that the radius R of the disk at time t is given as R =
\sqrt{} 

R2
0  - 2t [4],

where R0 is the initial radius. In other words, the volume of the disk is given as
V = \pi R2

0  - 2\pi t. To test it, we implement and compare the proposed schemes with
different time steps. The calculated results using the second-order CN schemes are
summarized in Figure 5.4(a)--(b), where we observe that when \Delta t = 0.0125, the LCN
scheme can predict the correct  - 2\pi slope for the volume decreasing rate. For the
ICN scheme, even with \Delta t = 0.5, it predicts the correct volume decreasing rate. For
the BDF4 and BDF6 schemes, they require approximately \Delta t = 0.025 to predict
the volume decreasing rate accurately, as shown in Figure 5.4(c)--(d). The calculated
volumes using the HEQ schemes with different time step sizes are summarized in
Figure 5.4(e)--(f). It shows that the Gaussian collocation method is more accurate
such that even with time step size \Delta t = 5, it predicts a very accurate volume decaying
rate  - 2\pi .

In particular, the temporal evolution of the disk using the ICN scheme with time
step size \Delta t = 0.1 is plotted in Figure 5.5.

Example 3: Phase field crystal growth model. Next we solve the phase
field crystal growth model by the proposed schemes. The phase field crystal growth
model was introduced in [9, 10, 45] in the form of a Cahn--Hilliard equation (4.5) with
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(a) (b) (c)

(d) (e) (f)

Fig. 5.4. Allen--Cahn dynamics of a shrinking disk. The calculated volume using (a) the LCN
scheme; (b) the ICN scheme; (c) the BDF4 scheme; (d) the BDF6 scheme; (e) the fourth-order
HEQ Collocation scheme; and (f) the sixth-order HEQ collocation scheme.

Fig. 5.5. Time evolution of a disk driven by mean curvature. The profile of \phi at times t =
0, 1000, 2000, 3000 are depicted.

the free energy

(5.9) F =

\biggl( 
1

4
\phi 4  - a

2
\phi 2, 1

\biggr) 
+

c

2

\bigl( 
\| \phi \| 2  - 2\| \nabla \phi \| 2 + \| \Delta \phi \| 2

\bigr) 
.

We set the parameter values a = 0.325, c = 1.We use the initial conditions and param-
eter values given in [45], i.e., \phi 0(x) = \phi + \omega (x)(A\phi s(x)), \phi s(x) = cos( k\surd 

3
y) cos(kx) - 

1
2 cos(

2k\surd 
3
y), where k represents a wavelength related to the lattice constant, A rep-

resents an amplitude of the fluctuations in density, and the scaling function \omega (x) is
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Fig. 5.6. The phase field crystal growth dynamics at times t = 10, 20, 30, 50, 100, 1000.

defined as

(5.10) \omega (x) =

\Biggl\{ \Bigl( 
1 - (\| \bfx  - \bfx 0\| 

d0
)2
\Bigr) 2

if \| x - x0\| \leq d0,

0 otherwise,

where d0 is a prescribed parameter. In the simulation, we choose \Omega = [0, 150]2,

\varepsilon = 0.325, \phi =
\surd 
\varepsilon 
2 , A = 4

5 (\phi +

\surd 
15\varepsilon  - 36\phi 

2

3 ), d0 = 25, k =
\surd 
3
2 , and 512 \times 512

meshes. A numerical simulation with the fourth-order Gaussian collocation method
is summarized in Figure 5.6, where we observe qualitatively similar predictions as
reported in [11, 48, 50].

Example 4: Molecular beam epitaxy model. Next, we study the molecular
beam epitaxy (MBE) model (4.10). With \phi representing the scaled height function
of the thin film, the continuum MBE model reads as

(5.11) \partial t\phi =  - M
\Bigl( 
\varepsilon 2\Delta \phi +\nabla \cdot 

\Bigl( 
(1 - | \nabla \phi | 2)\nabla \phi )

\Bigr) 
, (x, t) \in \Omega \times (0, T ].

By introducing q = 1\surd 
2
(| \nabla \phi | 2  - 1  - \gamma 0), the schemes proposed in previous sections

could be readily applied to this model. Here we omit the details for simplicity.
To compare the schemes, we carry out a standard benchmark problem used in

[31, 32]. Assume the domain [0, 2\pi ]2 and parameter values \lambda = 1, \epsilon 2 = 0.1, and initial
profile \phi (x, y) = 0.1(sin(2x) sin(2y) + sin(5x) sin(5y)). We use 256 \times 256 meshes.
The comparisons are summarized in Figure 5.7. It shows that even though the LCN
scheme is unconditionally energy stable, it predicts erratic coarsening dynamics with
large time steps. Also, the BDF-6 scheme requires a relatively small time step to
predict the accurate energy curve. On the contrary, the ICN scheme and the HEQ
Gaussian collocation scheme can predict robust dynamics with larger time steps. As
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(a) LCN scheme (b) ICN scheme (c) BDF6 scheme (d) fourth-order Gauss
scheme

Fig. 5.7. A comparison of free energies in MBE using different schemes with respect to various
time steps. This figure shows that both the ICN scheme and the HEQ Gaussian collocation method
predict fairly accurate energy profiles with relative large time steps, while the LCN scheme and the
BDF6 scheme require finer time steps to reach the similar accuracy.

we have alluded to earlier, the ICN scheme only increases the CPU time slightly for
up to five times of an FFT solve in each predictor-corrector step (3.6).

6. Conclusion. In this paper, we have demonstrated two general strategies to
derive unconditionally energy stable numerical approximations for thermodynami-
cally consistent gradient flow models. In the first strategy, we present a prediction-
correction approach to derive effective, linear schemes to solve the nonlinear thermody-
namically consistent gradient flow models and in the meantime improve the accuracy
of the schemes. The new schemes remain second-order accurate in time, and their er-
rors are much smaller than those of the linear schemes however. Moreover, the second-
order convergence rate is attained even with a large time step. In the second strategy,
we propose a novel idea utilizing the quadratic-invariant preserving RK multistage
discretization, resulting in arbitrary order, unconditionally energy stable numerical
approximations for a general class of gradient flow models, which we named HEQ
schemes. Unconditional energy stability is established rigorously for the schemes.

Several numerical experiments for gradient flow problems are presented to illus-
trate the accuracy and efficiency of the numerical schemes. The gradient flow models
include the Cahn--Hilliard equation with the Ginzburg--Landau double-well free en-
ergy, the Allen--Cahn equation with the same energy functional, the crystal growth
model, and the MBE growth model. These models are solved with the proposed
schemes, and numerical comparisons are presented. Through numerical experiments,
it is clear that the prediction-correction CN scheme yields a significantly smaller error
than the linear CN scheme, while the prediction-correction BDF2 scheme demon-
strates similar improvement over the lower-order method at large time steps. This
newly proposed prediction-correction schemes and the high-order schemes based on
RK methods are rather general in that they can be readily applied to a large class of
thermodynamically consistent models. Also, instead of using the EQ approach, the
proposed numerical strategies here could easily be applied to the reformulated models
using the SAV approach to derive high-order, efficient energy stable schemes.
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