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Abstract

In this project, we introduce a visualization technique to analyze event
simulation data. In particular, we allow the user to discover families of
events based on the topological evolution of discrete events across simu-
lations. Discovering how events behave across runs of a simulation has
applications in financial market analysis, military simulations, physical
mechanics, and other settings. Our approach is to use established meth-
ods to produce a linearized tour through parameter space of arbitrary
dimension and visualize events of interest in two dimensions, where the
first dimension is the tour ordering and the second dimension is usually
time. This paper presents our approach and gives examples in the context
of a magnet dynamics simulation.

i



Contents

1 Introduction 1
1.1 Simulations With Discrete Events . . . . . . . . . . . . . . . . . . 1
1.2 Input Parameters and Event Families . . . . . . . . . . . . . . . . 1

2 Related work 3

3 Description of the visualization 3
3.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Conclusions 11

5 Reflections 12
5.1 Capstone Experience: . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Contribution to Overall Education and Future Goals: . . . . . . . 12
5.3 Relationship with a Mentor: . . . . . . . . . . . . . . . . . . . . . 12
5.4 Research Experience Within Computer Science: . . . . . . . . . . 13
5.5 Critical Thinking About Topics in Computer Science: . . . . . . 13
5.6 Experience Across Disciplines: . . . . . . . . . . . . . . . . . . . . 13
5.7 Impact of Work: . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.8 Key Transition Points During the Project: . . . . . . . . . . . . . 14
5.9 Lesson on Planning: . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Author Bio 15

ii



High Dimensional Event Exploration Over

Multiple Simulations

April 27, 2020

1 Introduction

1.1 Simulations With Discrete Events

Computer simulations are used in many contexts to model how a system will
act under a set of circumstances. For instance, climate simulations show how
earth systems might respond to increased levels of greenhouse gases. Stock mar-
ket simulations show how a particular trading algorithm would have performed
during a period of historical data. Over time, simulations have been increas-
ing in complexity, with more factors considered in the simulation, more runs
of each simulation, greater output resolution, and greater output complexity.
Throughout this project, we used a simulation of two magnets interacting in a
frictionless environment.

Different simulations will produce different types of output. Some simula-
tions will produce a system state - for instance, a climate model may show how
much sea ice remains under a certain warming scenario. Other simulations pro-
duce a series of discrete events occurring over time. For example, a stock market
trading simulation would likely produce a series of buy and sell events over the
course of a market simulation. Our visualization is designed to analyze sim-
ulations that produce discrete events, like a market trading algorithm. Other
applications include defense system analysis and physics simulations. Many
approaches exist for analyzing and visualizing data from scalar functions, but
we know of no existing approaches for exploring discrete event families across
simulations.

1.2 Input Parameters and Event Families

Comparing simulations is only useful if the simulations vary in some meaningful
way. This usually means that the input parameters vary, producing varied out-
put. These input parameters are application-specific – for a momentum-based
trading algorithm, an input parameter might be the percentage change in stock
price necessary to trigger a sell event. In our magnet simulation, which simu-
lates 2D interactions between a ”fixed magnet” and a magnet that is allowed
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to move, the input parameters are the initial polar coordinate (r, θ) of the mov-
able magnet relative to the fixed magnet, the starting rotational angle of the
movable magnet’s dipole axis (β), and the initial momentum for each of these
three dimensions. In this context, one example of an event is the free magnet
bouncing off the fixed magnet in an inelastic collision. Each simulation will have
a set of timestamped events. In the magnet simulation, small variations in the
input parameters will produce relatively small variations in the first few events
of the simulation. These variations are heteroskedastic: over increased amounts
of time, the small variations in input parameters can cause the simulation to
devolve into chaos or to enter a stable cycle of events.

Event families may be produced when small variations in inputs yield small
variations in outputs. An event family is an event that is produced in multiple
simulations. An event family death occurs when a threshold is crossed, causing
a previously existent event to stop appearing in later simulations. An event
family birth is the opposite - a previously unseen event begins appearing in later
simulations. Bifurcations occur when an event family splits into two separate
event families. A merger is the inverse, where two event families merge into one.

In this work, we explore high-dimensional event data across simulations. In
particular, we seek to create a visualization system where a user could explore
how changes to input parameters cause event family births, deaths, bifurcations,
and merges. Using our previous example, suppose a military analyst is consid-
ering how a series of missile strikes will affect key assets. Pursuant to this, they
run simulations of missiles launched toward various cities and explore which
simulations resulted in the missiles being detected by friendly assets. We cast
the problem of exploring this data in terms of visualizing the simulation runs
in series and discovering problem simulations where threats were not detected.
A second example relates to financial markets: while stock market trading al-
gorithms may use machine learning or some other technique to determine how
much weight is given to different events in determining whether to buy or sell,
it may be difficult for the analysts to explain why the algorithm chooses to buy
or sell at a certain time. By tweaking the input weights slightly for each simu-
lation of the algorithm, the analyst can gain a clearer understanding of which
thresholds and events are most impactful on the output set.

Using the taxonomy given in [12], our contribution is two-fold. The first
contribution is data transformational, using z-order linearization to provide a 1-
dimensional ordering of simulations. The second contribution, given an ordering
of simulations, is a visual mapping of events that allows the user to interactively
discover topological features of the events across simulations. After discussing
related work (Sec. 2), we describe our linearization approach (Sec. 3.1) followed
by our visualization technique with examples (Sec. 3.2). We conclude with
implications of our work and future directions (Sec. 4).

2



2 Related work

Simulation data is typically analyzed in terms of scalar functions in the spa-
tiotemporal domain and other temporally-driven domains across a single sim-
ulation. Dimension reduction techniques (e.g. PCA [11]) reduce the number
of attributes to a quantity that is easier to visualize. Clustering (e.g. k-means
clustering [1]) is an unsupervised learning technique that partitions samples
into meaningful groups. Subspace clustering (e.g. [3]) clusters dimensions, often
along with clustering of samples. Topological data analysis (TDA) [5, 12, 13, 16]
allows users to analyze data using topological constructions that both provide
compact descriptions of the data and reveal features. There is a body of work
that compares features across simulations, such as comparing clusterings [9] and
topological merge trees [2], but none to our knowledge that directly compares
discrete events.

Our goal is a level of abstraction away from typical methods. Rather than
analyzing scalar or multi-dimensional, quantitative output functions, we are
interested in families of discrete, temporal events across simulations. To our
knowledge, no visualization technique of this type of data has been published.
Approaches have been suggested for exploring and predicting single events such
as extinction and reignition in a combustion engine [10] and successful binding
of an antibody to a noxious molecule [14], but these approaches do not analyze
the topological structure of multiple events across time across simulations.

3 Description of the visualization

We describe our visualization approach to allow users to explore event fami-
lies in high-dimensional simulations. We demonstrate the techniques using the
MagPhyx simulation software [8]. MagPhyx is a software package that simulates
spatial interactions between pairs of spherical dipole magnets. In our examples
here, we vary combinations of three input parameters, β, θ, and r [8].

3.1 Linearization

One of the key challenges in exploring event families across simulations is placing
simulations in an order that allows the user to find patterns, points of interest,
or divergences. In order to visualize event families in a meaningful way, we need
a method of linearizing (i.e. reducing to a single-dimensional ordering) the simu-
lations. For input sets following a grid pattern, the ubiquitous and intuitive row-
and column-major orderings are simple but have poor spatial locality [4]. That
is, the average distance in parameter space between two consecutive simulations
is large compared to distances between consecutive points in other, better or-
derings. In order to traverse the data so as to minimize large jumps between
simulations that are displayed as consecutive, we use z-ordering as constructed
using a quadtree [15] . While this approach occasionally results in a large jump,
it usually will place simulations that are close together in input space next to
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(a) (b)

Figure 1: (a) A quadtree subdivides until there are one or zero points in each
cell. (b) Z-Order Traversal. The algorithm starts at the bottom-left leaf of every
node and continues to the bottom-right, top-left, and top-right leaves until every
point is visited.

each other in the simulation display. After recognizing some of the spatial lo-
cality problems with z-ordering, we began using Hilbert curves to reorder the
data. Hilbert curves did improve the spatial locality of the simulations.

Quadtrees (Fig. 1a) are data structures commonly used in collision detec-
tion and shape modeling. The structure is recursive, with each non-leaf cell
containing exactly four children. Leaf nodes contain exactly one or zero points.
In our implementation, a cell will subdivide if it already contains a point and a
new point is inserted into it.

Z-ordering is a graph traversal technique used to order data in arbitrary
dimensions into a one-dimensional ordering while preserving spatial locality.
While a z-order traversal can be calculated by interleaving binary coordinates
of the data, a depth-first traversal of a quadtree will produce the same output.
In our implementation, the traversal (Fig. 1b) starts at the bottom-left cell that
contains four sub-children and visits the bottom-left, bottom-right, top-left, and
top-right sub-children. It then moves up a level recursively and repeats itself
until every cell in the graph is visited.

This technique will produce a one-dimensional representation of all the
points on the graph. The benefit of linearized simulations is that we can see the
effects of many small changes in input parameters. This allows identification of
event births, deaths, merges, and bifurcations in multidimensional simulations.
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3.2 Visualization

Our visualization includes three charts: a scatter plot of input configurations
(Parameter Space chart), a scatter plot of all events, and timeline chart of
events. We describe each chart in detail.

1. Parameter Space chart (Fig. 2) - This first visualization accomplishes sev-
eral purposes. First, it allows the user to see the ordering of simulations
used in the Event Timeline chart. Second, in our MagPhyx setting, click-
ing any point in the Parameter Space chart will replay that simulation,
allowing the user to see detail on the simulation behavior. Finally, hover-
ing over a point will highlight all events in the other two charts that were
produced by that particular set of parameters, linking the charts together.
Note that this visualization only shows the variation in two dimensions.
This is not a problem if only two input dimensions are varied or if two
input dimensions are the primary focus; however, most applications will
vary many input dimensions, exceeding the capacity of this chart.

2. All Events chart (Fig. 3) - This visualization displays all output events
from all simulations, charted on a scatter plot of theta and phi. This allows
the user to see clusters of events or correlations in the data. Hovering over
any of these points will highlight the point in the Parameter Space chart.
Similar to the Parameter Space chart, the All Events Chart is limited to
displaying two dimensions.

3. Event Timeline chart (Figs. 4 - 6a) - This visualization allows the user
to explore patterns in the simulation data caused by variations in input
parameters. Each row of the chart corresponds to a single simulation. The
rows are ordered according to the order displayed in the parameter space
component.

Fig. 4 shows an example of the Event Timeline chart. This particular dataset
has some interesting periodicity in its output, as indicated by the arrows at X1,
X2, and X3. The periodicity is not an artifact of linearization in this case, but
rather, is inherent in the physical phenomenon [6, 7].

Fig. 5 displays several interesting phenomena. At (a), we can see an event
family death. At that point, a threshold of some point had been reached, causing
that event to stop occurring. At (b), we see an event family birth (in this case,
a re-birth). This is essentially the inverse of a death. At (c), we see examples
of bifurcations, where an event family divides into two distinct event families.

With this visualization, we can see the necessity of good linearization among
simulations. Consider Fig. 6a, which used column-major order to linearize its
simulations. Every 10 simulations, a shift occurs. These shifts draw the atten-
tion of the user but don’t correspond to any phenomena in the data. Instead,
these shifts are caused by large jumps in the parameter space. This is not ideal,
as the shifts distract from meaningful patterns in the data.

Contrast Fig. 6a with Fig. 6b. This figure uses the same data as Fig. 6a,
but uses z-ordering instead of column-major ordering. This change makes the
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(a) (b)

(c) (d)

Figure 2: These examples of a Parameter Space Chart show how the lineariza-
tion of simulations is displayed to the user. (a) Row Major Order. (b) Z-
Ordering. Note the decrease in large jumps from row-major order. (c) and
(d) Z-Ordering on randomly sampled parameter space. In both cases, the data
were produced by randomly varying θ and β from -0.05 through -0.06 and 0.05
through 0.06, respectively. (c) shows a potential limitation of z-ordering, as
several large jumps between consecutive simulations can be seen. (d) was cre-
ated through the same process, but has fewer large jumps between consecutive
simulations.
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Figure 3: All Events Chart

Figure 4: This Event Timeline shows periodicity in event families. The data
were produced by linearly varying the starting radius from 1 to 10 and keeping
beta and theta at 0. Each simulation is given a starting momentum angle of
80 degrees and a starting location, relative to the origin, of 80 degrees. The
simulations are ordered based on the starting radius. Collisions are shown.
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Figure 5: This Event Timeline displays several interesting phenomena, including
an event family death (a), an event family birth (b), and several bifurcations
(c). These simulations were produced by varying the starting radius from 1 to 2,
varying theta from 0.045 to 0.055, and varying beta from -0.045 to -0.055. As the
simulations were produced in a linear manner, no linearization was necessary.
Events are defined as zero crossings of the magnet’s angular moment.

output far more continuous, avoiding most of the unwanted shifts seen in Fig.
6a.

The structure of events as shown in the event timeline chart is highly depen-
dent on the presentation order of the simulations. As can be seen in Fig. 7a,
the first three events are consistent across all simulations and the fourth event
appears in many simulations, but once event times start to diverge and event
families are born or die based on their input parameters, the ordering becomes
vital to clustering like-simulations together in terms of their event similarities.
In Fig. 7b we see that using an ordering (z-ordering) with better spatial local-
ity results in events families that are easily parsed visually. We also see event
families much later in Fig. 7b than was possible to distinguish in Fig. 7a.

Because of the ease of visual parsing of event families in the timeline chart,
the analyst can identify thresholds causing births and deaths of events of inter-
est and therefore isolate dimensions (input attributes) causing the topological
changes of event families.
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(a) (b)

Figure 6: (a) This Event Timeline displays a problem arising from poor lineariza-
tion. The shifts occurring every 10 simulations are from the use of row-major
order, not from any phenomena in the data. The large jumps occur between the
simulation at the end of one row and the start of the next row. (b) This Event
Timeline uses the same data as is used in 6a, but uses z-ordering to improve the
linearization. This change to linearization removes the unwanted shifts. These
data were produced by varying theta from 0.045 to 0.055 and beta from -0.045
to -0.055, producing a grid pattern. Radius was set to 1.5, starting momentum
angle set to 80 degrees, and angle from the origin set to 80 degrees. The output
events are collisions between the magnets.
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(a) (b)

Figure 7: These two examples of the Event Timeline Chart show how z-ordering
can improve pattern recognition with randomly produced simulations. Both
show the same data, which are the same data seen in 2d, and show events
where the magnet’s momentum was zero. Fig. (a) shows the visualization with
z-ordering turned off. Fig. (b) shows the same data in z-order. Several event
families that were not clear in (a) can be seen in Fig. (b), including two at
(x). While both Event Timelines show the same first four event families, a
fifth event family emerges in Fig. (b) at (y). Thus, we see it is much easier to
find event families and patterns of events in Fig. (b). Note that the same set
of simulations was removed from both of these charts because the simulations’
input parameters were extremely close together.
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4 Conclusions

In this project, we created a novel visualization approach to discovering event
patterns across simulations and applied this visualization technique to data from
a magnet dynamic simulation. We found that, while z-ordering did provide bet-
ter linearization than row major order or unordered simulations, z-ordering cre-
ated large jumps that are problematic for the visualization. Hilbert curves offer
a potential improvement in linearization. This work serves as a starting point
for future efforts – we plan to explore additional methods of linearizing data,
use the visualization for additional data sets including stock market data, and
look for methods of evaluating the effectiveness of the visualization. Ideally, we
would compare a human-annotated gold standard dataset against future empir-
ical results. This will only be possible as we continue to refine the definition of
the problem. Needs in this area also relate to the visualization technique itself,
including providing user awareness of the distance between simulations in the
event timeline chart.
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5 Reflections

5.1 Capstone Experience:

This project was the capstone of my undergraduate education because it com-
bined concepts from my majors in Computer Science and Economics and my
minors in Mathematics and Anticipatory Intelligence. The project mainly fo-
cused on computer science, as did my class load and work experience during my
undergraduate degree.

In particular, this project drew heavily from CS 5890 Data Science and Data
Visualization. We used the visualization library d3, as taught in CS 5890, to
display our visualization. Since Dr. Edwards, Jaxon, and I all worked on the
code, we used practices learned in CS 3450 Software Engineering - particularly
the use of the version control system Git. Here are several other classes and the
skills that were applied to this project:

• HTML, CSS, and JavaScript - Intro to Web Development (CS 2610)

• Advanced JavaScript techniques and debugging - Game Development (CS
5410)

• Event handling and User Interface design - Intro to Event-Driven Pro-
gramming and GUIs (CS 2410)

• End-user considerations and project importance - The Art and Science of
Anticipation (CAI 5300)

• Statistical methods - Intro to Probability (Math 5710), Intro to Econo-
metrics (ECN 4330)

5.2 Contribution to Overall Education and Future Goals:

The project provided me with an excellent opportunity to prepare for graduate
school, one of my future goals. The skills needed to prepare an academic paper,
submit for peer review, and present research are foundational for success in
graduate school.

5.3 Relationship with a Mentor:

Dr. Edwards has been a fantastic mentor for this project. He has done a great
job of helping Jaxon and I explore intriguing concepts and find ways to quickly
implement those ideas into the visualization. When we would get stuck on a
task, he would help us resolve it; otherwise, he would focus his attention on the
big-picture of the project. Additionally, Dr. Edwards has encouraged me to
continue my education by attending graduate school and offered advice on how
to navigate that process.
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5.4 Research Experience Within Computer Science:

As a sophomore, I worked as a research assistant for Dr. Chad Albretch. Our
research primarily focused on business strategy and corporate fraud. We pub-
lished an article in the Journal of Financial Crime and I helped review several
academic papers. While this work was deeply interesting, it was not related to
computer science or closely related to economics. This capstone project helped
take some of the lessons learned from that work and apply them more directly
to my computer science major.

5.5 Critical Thinking About Topics in Computer Science:

As this project continued, refactoring and refinement became increasingly im-
portant for adapting the code to our new ideas and new features. This aspect
of the project was more similar to my experience working at Space Dynamics
Lab than my experience completing projects for classes. Projects for computer
science classes tend to be relatively short, lasting a couple of weeks at most.
Having a much longer-term project highlighted the importance of making code
reusable and maintainable. For most commercial software, reusability and main-
tainability are absolutely crucial.

5.6 Experience Across Disciplines:

While this capstone project was primarily related to computer science, the
applied nature of the visualization lent itself to ideas from other disciplines.
Thanks to my second major in Economics and my minors in Mathematics and
Anticipatory Intelligence, I was able to utilize my strengths in other disciplines
to improve this project.

Economics and Mathematics helped both develop the visualization and find
applications for the technique. We standardized the parameter data to make
it comparable across dimensions - a common practice in statistics and econo-
metrics. We considered several different distance algorithms from mathematics
to judge how similar simulations are, including Euclidian distance, Manhattan
distance, and Hausdorff distance. Near the end of the project, we began work-
ing on expanding to data sets beyond our magnet simulation data. Using my
background in Economics, I reached out to a master’s student in the Finance
department with an idea about creating simulations for our visualization based
on stock market trading algorithms.

Anticipatory intelligence mainly highlighted the need for good visualization
techniques. In CAI 5300, the Art and Science of Anticipating the Future, we
frequently talked about how complex problems are difficult to reason about, in
part because they are difficult to visualize. This provided an extra motivation
to work on the project - figuring out ways to visualize high-dimensional data
could provide extra insight into complex problem sets.
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5.7 Impact of Work:

Dr. Edwards has talked several times about the potential for this project, after
some more work, to make it into the VIS conference - the premiere conference
in data visualization. This is an exciting prospect, both because of the chance
to show our work more broadly and the prestige of presenting at the VIS con-
ference.

5.8 Key Transition Points During the Project:

When we began this project, we were focused on applying for an STR grant
from the Missile Defense Agency (MDA). Due to insufficient communication
with our partner company, we had to scramble to be ready to present for the
grant consideration. After the presentation, it took us a few weeks to figure out
how to proceed while we waited to hear back. During this period, the project
began to evolve significantly. We began generating data from MagPhyx magnet
simulation and Jaxon Willard joined the project.

Once we implemented a few initial ideas using the MagPhyx data, the project
became more general and more interesting. Instead of focusing on how the
sample data from the MDA could be visualized, we began trying to visualize any
type of high-dimensional data from contrasting simulations. Furthermore, we
recognized linearization as a key challenge in this capstone project. Depending
on how well the simulations are put in order, patterns either appear or disappear.

During this phase, the project became more intriguing and meaningful for
me. Instead of just applying past ideas to the new problem or speculating on
theoretical solutions, we were exploring new ideas and successfully implementing
those ideas. We frequently ran into truly hard problems and sometimes found
a way around them.

We did not receive the grant from the MDA; however, since the project was
going well, we decided to continue work on the project.

5.9 Lesson on Planning:

Throughout this project, we made many plans that did not end up working out.
The grant did not work out, various timelines had to be changed, and the scope
and comprisal of the project changed over time. By the end of the project,
the continual adaptation became the normal mode of research. I enjoyed the
flexibility, although it was sometimes difficult to communicate the overall plan
for the project.

14



6 Author Bio

Steven Deron Scott is an undergraduate student at Utah State University. He is
a dual major in Computer Science and Economics, with minors in Mathematics
and Anticipatory Intelligence. During his time at USU, he participated in the
Huntsman Scholar Program, Go Global Program, Society for the Advancement
of Ethical Leadership, and Anticipatory Intelligence Program. With Huntsman
Scholars, Steven traveled throughout Western Europe studying international
business, ethics, and the politics of the European Union. During the Go Global
Program, Steven studied international business and entrepreneurship in Chile
and Peru. In the Anticipatory Intelligence Program, Steven worked with stu-
dents from various majors across campus to research local, national, and global
security concerns. As a member of the leadership council for the Society for
the Advancement of Ethical Leadership, Steven selected ethics-themed books
for club members to read and discuss. In 2019, Steven received the USU Out-
standing Junior in Computer Science award. After graduation, Steven plans to
work in software engineering and eventually attend graduate school.

15



References

[1] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. An efficient k-means
clustering algorithm. 1997.

[2] Kenes Beketayev, Damir Yeliussizov, Dmitriy Morozov, Gunther H Weber,
and Bernd Hamann. Measuring the distance between merge trees. In
Topological Methods in Data Analysis and Visualization III, pages 151–165.
Springer, 2014.

[3] Chun-Hung Cheng, Ada Waichee Fu, and Yi Zhang. Entropy-based subspace
clustering for mining numerical data. PhD thesis, Citeseer, 1999.

[4] Peter J. Denning. The locality principle. Communications of the ACM,
2005.

[5] Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio Pascucci.
Morse-smale complexes for piecewise linear 3-manifolds . 2003.

[6] B. F. Edwards and J. M. Edwards. Periodic nonlinear sliding modes for
two uniformly magnetized spheres. Chaos, 27(5), 2017.

[7] B. F. Edwards, B. A. Johnson, and J. M. Edwards. Periodic bouncing
modes for two uniformly magnetized spheres I: Trajectories. Chaos, in
press.

[8] Boyd F Edwards and John M Edwards. Dynamical interactions be-
tween two uniformly magnetized spheres. European Journal of Physics,
38(1):015205, 2016.

[9] Chris Fraley and Adrian E Raftery. How many clusters? which clustering
method? answers via model-based cluster analysis. The computer journal,
41(8):578–588, 1998.

[10] Samuel Gerber, Peer-Timo Bremer, Valerio Pascucci, and Ross Whitaker.
Visual exploration of high dimensional scalar functions. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1271–1280, 2010.

[11] Ian Jolliffe. Principal component analysis. Springer, 2011.

[12] Shusen Liu, Dan Maljovec, Bei Wang, Peer-Timo Bremer, and Valerio Pas-
cucci. Visualizing high-dimensional data: Advances in the past decade.
IEEE transactions on visualization and computer graphics, 23(3):1249–
1268, 2016.

[13] Monica Nicolau, Arnold J Levine, and Gunnar Carlsson. Topology based
data analysis identifies a subgroup of breast cancers with a unique muta-
tional profile and excellent survival. Proceedings of the National Academy
of Sciences, 108(17):7265–7270, 2011.

16



[14] Richard A Norman, Francesco Ambrosetti, Alexandre MJJ Bonvin, Lucy J
Colwell, Sebastian Kelm, Sandeep Kumar, and Konrad Krawczyk. Compu-
tational approaches to therapeutic antibody design: established methods
and emerging trends. Briefings in Bioinformatics, 2019.

[15] Hanan Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys (CSUR), 16(2):187–260, 1984.

[16] Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson. Topological
methods for the analysis of high dimensional data sets and 3d object recog-
nition. In SPBG, pages 91–100, 2007.

17


	High Dimensional Event Exploration Over Multiple Simulations
	Recommended Citation

	tmp.1596137946.pdf.GPCfG

	[Semester & year of graduation]: Spring 2020
	University Honors Program Director_2: 
	Dr: 
	 [Type committee member’s name]: N/A

	Committee Member optional: 
	Departmental Honors Advisor Name Typed: Dr. Dan Watson
	Departmental Honors Advisor_2: 
	[Type mentor’s name]: Dr. John Edwards
	Capstone Mentor_2: 
	in the Department of [your department]: in the Department of Computer Science 
	[Enter your major ]: Computer Science 
	[Your Full Name ]: Steven Deron Scott
	[TITLE OF YOUR CAPSTONE – PLEASE USE CAPS]: HIGH DIMENSIONAL EVENT EXPLORATION OVER MULTIPLE SIMULATIONS


