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Demystification of Graph and Information
Entropy

Bryce Frederickson

May 5, 2020

Abstract

Shannon entropy is an information-theoretic measure of unpredictabil-
ity in probabilistic models. Recently, it has been used to form a tool,
called the von Neumann entropy, to study quantum mechanics and net-
work flows by appealing to algebraic properties of graph matrices. But
still, little is known about what the von Neumann entropy says about the
combinatorial structure of the graphs themselves. This paper gives a new
formulation of the von Neumann entropy that describes it as a rate at
which random movement settles down in a graph. At the same time, this
new perspective gives rise to a generalization of von Neumann entropy
to directed graphs, thus opening a new branch of research. Finally, it
is conjectured that a directed cycle maximizes von Neumann entropy for
directed graphs on a fixed number of vertices.

Introduction

A thief is loose in a building. From what we can tell, her movement is random,
with the caveat that the more accessible places there are from where she is, the
more likely she is to quickly move on to a new place, but she may return at
some point. The thief was last seen at position x a short time ago. What is
the probability that she’s still there now? Are there structural properties of the
building layout that would make this probability greater? In other words, do
some building structures lend themselves to predictability of the thief’s move-
ment than others?

Consider the following two floor plan structures for buildings with nine
rooms. The first consists of all nine rooms stacked on top of each other with an
elevator making each room accessible from any other room. The second has four
rooms stacked in the same way with an elevator, and on the bottom floor there’s
a door leading to another room, which has a door leading to another, and so
on until the last of the nine rooms is reached. Figure 1 shows these connections
graphically. Later on in this paper, we will develop a tool for quantifying the
unpredictability of these graphs in the sense described, called the von Neumann
entropy. The first building has a von Neumann entropy of 3, while the second
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has a von Neumann entropy of about 2.68, indicating that the structure of the
first floor plan is less predictable than the second. The higher the entropy, the
more unpredictable.

H(G1) = 3.00 H(G2) = 2.68

Figure 1: A graphical depiction of two building floor plans. Rooms are rep-
resented by dots, and a line is drawn between two dots if there is a direct
connection between the corresponding rooms by a door or elevator. By our
analysis, the first floor plan has higher entropy and is less predictable.

We will build our discussion from the Shannon entropy of a probability
distribution as a measure of unpredictability. To illustrate what we mean, let
us compare the weather patterns in two imaginary locations. In these locations,
there are only three types of weather: sunny, cloudy, and rainy. In the first
location, any of the three weather types is equally likely to occur on any given
day, independently of the days surrounding it. In the second location, 98% of the
days are sunny, 1% are cloudy, and 1% are rainy, again, with weather between
days completely independent of other days. You might think that weather in
the second location is more predictable, and if so, then Shannon entropy would
agree. We will come back to this example later in more detail.

The rest of this paper will be a rigorous mathematical development of
Shannon and von Neumann entropy in the context of probability distributions,
graphs, and directed graphs.

What is entropy anyway?

To begin, let p = (p1, p2, . . . , pn) be a discrete probability distribution; that is,
each pi � 0, and

nX

i=1

pn = 1.

The Shannon entropy of p is given by

H(p) =
nX

i=1

�pi log2 pi,
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where 0 log2 0 is defined to be 0 since

lim
x!0

x log2 x = 0.

A probability distribution, such as p, should be thought of in the context of
disjoint events X1, . . . Xn (events that have no e↵ect on one another) that occur
with probability p1, . . . , pn, respectively. The surprisal of Xi is given by

� log2 pi, or log2
1

pi
.

The surprisal is an attempt to quantify the amount of surprise felt upon ex-
periencing event Xi So, for example, the surprisal of rolling a 1 on a standard
die (probability 1/6) is about 2.6, while the probability of rolling two 1’s from
two dice (probability 1/36) is twice that: about 5.2. Similarly, if you win a
1,000,000:1 lottery, the surprisal of your win is about 20, while if you win a
2,000,000:1 lottery, the surprisal is about 21. (Really, is it that much more
surprising?)

The expected, or average, surprisal is precisely the Shannon entropy. There-
fore, the Shannon entropy measures how unpredictable a system or collection
of events, such as X1, . . . , Xn, is.

Let’s see the computations from our weather example. The weather in the
first location can be modeled by the discrete probability distribution p1 =
(1/3, 1/3, 1/3), where sunny, cloudy, and rainy weather each have probability
1/3. Then no matter what the weather, the surprisal is log2 3 ⇡ 1.585, so the
Shannon entropy is

H(p1) ⇡ 1.585

as well. The weather in the second location can be modeled by p2 = (.98, .01, .01).
Then with 98% probability, the weather is sunny and the surprisal is only
� log2 .98 ⇡ 0.0291. On the other hand, 2% of the days are much more “surpris-
ing”, and the surprisal is log2 100 ⇡ 6.644. But in the end, these more surprising
days are so few and far between, the expected surprisal is merely

H(p2) ⇡ .98(0.0291) + .02(6.644) ⇡ 0.161.

Where the weather is described by p2 = (0.98, 0.01, 0.01), a cloudy or rainy
day is quite surprising, but in general, one is not surprised by the weather.

We now establish some characterizing properties of the Shannon entropy
function H : Pn ! R, where Pn ⇢ Rn is the set of all discrete probability
distributions of the form (p1, . . . , pn), see [13].

Proposition 1. The Shannon entropy H is the unique function that satisfies
the following properties:

1. For each n, H is continuous.

2. For each n, H(1/n, 1/n, . . . , 1/n) = log2 n.
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3. If q = (q1, . . . q`), p1 = (p1,1, . . . , p1,k1), . . . ,p` = (p`,1, . . . , p`,k`) are dis-
crete probability distributions, then so is (q1p1, . . . , q`p`), and

H(q1p1, . . . , q`p`) = H(q) +
`X

i=1

qiH(pi).

Proof. We first show that H indeed satisfies those properties. It is clear that H
is continuous, and we can simply evaluate, for any n,

H

✓
1

n
,
1

n
, . . . ,

1

n

◆
=

nX

i=1

� 1

n
log2

1

n

= n

✓
� 1

n
log2

1

n

◆

= � log2
1

n

= log2 n.

Now we verify the third property. Note first that qipi,j � 0 for all i, j, and

`X

i=1

kiX

j=1

qipi,j =
nX

i=1

qi

kiX

j=1

pi,j

=
nX

i=1

qi

= 1,

so (q1p1, . . . , q`p`) is a discrete probability distribution, as claimed. Further-
more,

H(q1p1, . . . , q`p`) =
`X

i=1

kiX

j=1

�qipi,j log2 qipi,j

=
`X

i=1

kiX

j=1

(�qipi,j log2 qi � qipi,j log2 pi,j)

=
`X

i=1

�qi log2 qi

kiX

j=1

pi,j +
`X

i=1

qi

kiX

j=1

�pi,j log2 pi,j

=
`X

i=1

�qi log2 qi · 1 +
`X

i=1

qi

kiX

j=1

�pi,j log2 pi,j

= H(q) +
`X

i=1

qiH(pi).
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Now we show that no other functional has these properties. Suppose that F
is a functional satisfying all three properties. Then for every p 2 Pn \ Qn, we
can write p =

�
a1
b
, . . . ,

an
b

�
, where a1, . . . , an are nonnegative integers adding

to b > 0. Then by the second and third properties,

log2 b = F

✓
1

b
, . . . ,

1

b

◆

= F

⇣
a1

b
, . . . ,

an

b

⌘
+

nX

i=1

ai

b
F

✓
1

ai
, . . . ,

1

ai

◆

= F

⇣
a1

b
, . . . ,

an

b

⌘
+

nX

i=1

ai

b
log2 ai,

so

F

⇣
a1

b
, . . . ,

an

b

⌘
= log2 b�

nX

i=1

ai

b
log2 ai

=
nX

i=1

ai

b
log2 b�

nX

i=1

ai

b
log2 ai

=
nX

i=1

�ai

b
(log2 ai � log2 b)

=
nX

i=1

�ai

b
log2

ai

b

= H

⇣
a1

b
, . . . ,

an

b

⌘
.

Finally, since for each n, F and H are continuous functions that agree on Pn \
Qn, and since Pn \Qn is dense in Pn, it follows that F = H.

In [13], Alfréd Rényi generalized the Shannon entropy by weakening condi-
tion 3 of Proposition 1. The Rényi ↵-entropy is given by

H↵(p1, . . . , pn) =
1

1� ↵
log2

nX

i=1

p
↵

i

for any ↵ > 1.

Proposition 2. The functional H↵ satisfies the following properties:

1. For each n, H↵ is continuous.

2. For each n, H↵(1/n, . . . , 1/n) = log2 n.

3. If q = (q1, . . . , q`) and p = (p1, . . . , pk) are discrete probability distribu-
tions, then so is qp := (q1p, . . . , q`p), and

H(qp) = H(q) +H(p).
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Proof. It is clear that H↵ is continuous, and we can compute

H↵(1/n, . . . , 1/n) =
1

1� ↵
log2

nX

i=1

1

n↵

=
1

1� ↵
log2

n

n↵

=
1

1� ↵
log2 n

1�↵

= log2 n.

That qp is a discrete probability distribution follows from property 3 of Propo-
sition 1, so we just need to show H(qp) = H(q) + H(p). To this end, we
compute:

H(qp) =
1

1� ↵
log2

`X

i=1

kX

j=1

(qipj)
↵

=
1

1� ↵
log2

 
`X

i=1

q
↵

i

!0

@
kX

j=1

p
↵

j

1

A

=
1

1� ↵

0

@log2

`X

i=1

q
↵

i
+ log2

kX

j=1

p
↵

j

1

A

=
1

1� ↵
log2

`X

i=1

q
↵

i
+

1

1� ↵
log2

kX

j=1

p
↵

j

= H(q) +H(p).

The next relationship connects the Shannon and Rényi entropy functionals,
and shows that the Shannon entropy H(p) is a special limiting case of the Rényi
entropy H↵(p).

Proposition 3. For any discrete probability distribution p,

lim
↵!1

H↵(p) = H(p).

Proof. Let p 2 Pn. Then because

log2

nX

i=1

p
↵

i

����
↵=1

= 0
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and

@

@↵
log2

nX

i=1

p
↵

i

����
↵=1

=
1

log 2

1P
n

i=1 p
↵

i

nX

i=1

p
↵

i
log pi

����
↵=1

=
nX

i=1

pi log2 pi

= �H↵(p),

we have that

log2

nX

i=1

p
↵

i
= �H(p)(↵� 1) + g(↵),

where

lim
↵!1

g(↵)

↵� 1
= 0.

Therefore,

H↵(p) =
�H(p)(↵� 1) + g(↵)

1� ↵
! H(p) as ↵ ! 1.

In this paper, we will explore objects, like the graphs that represented the
buildings in the introduction, and determine what properties of those objects
maximize and minimize entropies derived from the Shannon and Rényi entropies
we have discussed. To these ends the following proposition will be helpful.

Proposition 4. For any p 2 Pn,

0  H(p)  log2 n,

and for any ↵ > 1,
0  H↵(p)  log2 n.

Furthermore, H(p) = 0 i↵ H↵(p) = 0 i↵ p is a permutation of (1, 0, . . . , 0),
and H(p) = log2 n i↵ H↵(p) = log2 n i↵ p = (1/n, . . . , 1/n).

Before we prove this proposition, recall that a function f : [a, b] ! R is
strictly convex if for all x, y 2 [a, b] with x 6= y and for all t 2 (0, 1),

tf(x) + (1� t)f(y) > f(tx+ (1� t)y).

Informally speaking, f is strictly convex if every secant line stays above the
curve. It follows from the Mean Value Theorem that if f 00(x) > 0 for all x 2
(a, b), then f is strictly convex.
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Lemma 1. If g : Pn ! R is a function of the form

g(p1, . . . , pn) =
nX

i=1

f(pi),

where f : [0, 1] ! R is a strictly convex function, then g is minimized i↵ p1 =
· · · = pn = 1/n.

Proof. Note that because f is strictly convex, for all p = (p1, . . . , pn) 2 Pn with
pi 6= pj for some 1  i < j  n, we have for any t 2 (0, 1) that

g(p1, . . . , pi, . . . , pj , . . . , pn)

= (1� t+ t)f(pi) + (1� t+ t)f(pj) +
nX

k=1
k 6=i,j

f(pk)

= (tf(pi) + (1� t)f(pj)) + ((1� t)f(pi) + tf(pj)) +
nX

k=1
k 6=i,j

f(pk)

> f(tpi + (1� t)pj) + f((1� t)pi + tpj) +
nX

k=1
k 6=i,j

f(pk)

= g(p1, . . . , tpi + (1� t)pj , . . . , (1� t)pi + tpj , . . . , pn).

Now consider the following algorithm. Let p = (p1, . . . , pn) 2 Pn.

1. If p1 = · · · pn = 1/n, terminate the algorithm.

2. Otherwise, let i = min{k | pk 6= 1/n}.

3. If pi < 1/n, there must exist j > i such that pj > 1/n. Similarly, if
pi > 1/n, there must exist j > i such that pj < 1/n. In either case, there
exists t 2 (0, 1) such that tpi + (1� t)pj = 1/n.

4. Replace pi with 1/n and pj with (1� t)pi + tpj so that the value of g(p)
decreases and p is still in Pn.

5. Go back to step 1.

It is clear that this algorithm terminates in at most n � 1 iterations with p =
(1/n, . . . , 1/n). Thus p minimizes g on Pn i↵ p = (1/n, . . . , 1/n).

Now we are in a position to give a simple proof of Proposition 4.

Proof. Let p 2 Pn. First note that �x log2 x � 0 for all x 2 [0, 1] with equality
i↵ x 2 {0, 1}. Thus

H(p) � 0,

with equality i↵ p 2 {0, 1}n, which in Pn means p is a permutation of (1, 0, . . . , 0).
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Similarly, we know that for ↵ > 1

0 <

nX

i=1

p
↵

i


nX

i=1

pi = 1,

where the inequality is equality i↵ p 2 {0, 1}n. Then since log2 is a strictly
increasing function and 1� ↵ < 0, we have

H↵(p) �
1

1� ↵
log2 1 = 0,

with equality i↵ p is a permutation of (1, 0, . . . , 0).
Next, we note that the functions f1, f2 : [0, 1] ! R given by

f1(x) =

⇢
x log2 x if x > 0,
0 if x = 0

and f2(x) = x
↵
, ↵ > 0

are strictly convex since

f
00
1 (x) =

1

x log 2
> 0

and
f
00
2 (x) = ↵(↵� 1)x↵�2

> 0.

Therefore, by Lemma 1

nX

i=1

pi log2 pi and
nX

i=1

p
↵

i

are minimized i↵ p = (1/n, . . . , 1/n). Taking this one step further,

H(p) = �
nX

i=1

pi log2 pi and H↵(p) =
1

1� ↵
log2

nX

i=1

p
↵

i

are maximized i↵ p = (1/n, . . . , 1/n), since log2 is a strictly increasing function
and 1� ↵ < 0. Finally, we note that indeed

H(1/n, . . . , 1/n) = H↵(1/n, . . . , 1/n) = log2 n,

as we’ve seen in Propositions 1 and 2.

Graph Preliminaries

The focus of our study is to use entropy somehow to quantify unpredictability
in other types of systems. We start with combinatorial objects called graphs.

A graph consists of a set V of vertices and a set E of pairs of vertices, called
edges. We typically write the edge {u, v} simply as uv. If uv 2 E, we say the
vertices u and v are adjacent, and that u is incident to uv. If vertex v is adjacent
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to k other vertices, we say the degree of vertex v is k, and we write d(v) = k.
We will typically refer to a specific graph (the vertices and edges that comprise
it) by a single capital letter, probably G.

We draw a graph by placing each vertex at a point in the plane, and we
draw a curve or line segment with endpoints at u and v whenever uv is an edge.
However, a graph has no geometric properties, so the physical distance between
vertices and the angles between edges, as well as the straightness of edges, are
irrelevant. What matters is which vertices are adjacent to which other vertices.
This information can be represented by other means, such as via a matrix.
For example, if we label the vertices so that V = {v1, v2, . . . , vn}, then we can
construct the adjacency matrix A = [aij ] of graph G by

aij =

⇢
1 if vivj 2 E

0 otherwise
.

We can take this a step further to construct the Laplacian matrix L of G in
the following way. Let D = [dij ] be the diagonal matrix such that dii = d(vi)
(and dij = 0 if i 6= j). Then define L = D � A. If the graph has at least one
edge, we can then construct the normalized Laplacian matrix L̄ of G by dividing
L by its trace (i.e. the sum of its diagonal entries).

v1 v2

v3 v4

A =

2

664

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

3

775

L =

2

664

3 �1 �1 �1
�1 2 0 �1
�1 0 2 �1
�1 �1 �1 3

3

775

L̄ =

2

664

3/10 �1/10 �1/10 �1/10
�1/10 2/10 0 �1/10
�1/10 0 2/10 �1/10
�1/10 �1/10 �1/10 3/10

3

775

Figure 2: A graph with its adjacency, Laplacian, and normalized Laplacian
matrices. The adjacency matrix has a 1 in row i column j when there’s an edge
between vi and vj . In the Laplacian matrix, those 1’s become �1’s, and the
degrees go on the diagonal. The Laplacian matrix is divided by 10 To obtain
the normalized Laplacian matrix so that its diagonal entries add to 1.

Now we move onto a slightly more general class of objects called directed
graphs. A directed graph, or digraph, consists of a set V of vertices and a set A
of ordered pairs of vertices, called arcs. If (u, v) 2 A, we write u ! v, which is

10



read u beats v. In our discussion, we will only consider loopless digraphs, where
there are no arcs of the form (v, v). The number of vertices beaten by vertex
v is called the out-degree of v, written d

+(v), and the number of vertices that
beat v is called the in-degree of v, written d

�(v). We will also refer to a digraph
(the vertices and arcs that comprise it) by a single letter, probably �.

We draw a digraph similar to how we draw a graph. The vertices are placed
at points in a plane, and an arrow is drawn from u to v whenever u ! v. After
giving the vertices a labeling v1, . . . , vn, we can also define the adjacency matrix
A = [aij ] of � by

aij =

⇢
1 if vi ! vj

0 otherwise
.

We can even discuss the Laplacian matrix L of � by defining the diagonal matrix
D = [dij ], where dii = d

+(vi), and taking L = D�A, similar to the graph case.
And again, dividing L by its trace gives the normalized Laplacian matrix L̄ of
�.

v1

v2

v3

v5

v4

A =

2

66664

0 1 1 1 0
0 0 0 1 1
0 0 0 1 1
0 0 0 0 1
1 0 0 0 0

3

77775

L =

2

66664

3 �1 �1 �1 0
0 2 0 �1 �1
0 0 2 �1 �1
0 0 0 1 �1
�1 0 0 0 1

3

77775

L̄ =

2

66664

3/9 �1/9 �1/9 �1/9 0
0 2/9 0 �1/9 �1/9
0 0 2/9 �1/9 �1/9
0 0 0 1/9 �1/9

�1/9 0 0 0 1/9

3

77775

Figure 3: A digraph with its adjacency, Laplacian, and normalized Laplacian
matrices. The adjacency matrix has a 1 in row i column j when vi ! vj .
In the Laplacian matrix, those 1’s become �1’s, and the out-degrees go on
the diagonal. The Laplacian matrix is divided by 9 To obtain the normalized
Laplacian matrix so that its diagonal entries add to 1.

In fact, these digraph constructions can be viewed as generalizations of the
graph constructions. If G is a graph with vertex set V and edge set E, then
consider � with vertex set V and arc set A such that for each edge uv of G, we
have u ! v and v ! u in �. Then G and � have the same adjacency matrix,
Laplacian matrix, and normalized Laplacian matrix, and for our purposes in
this paper, G and � may be considered the same object.
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Graph Entropy

The idea to use entropy to study graphs is not new, and its exact implementation
has varied to fit several contexts, see [7]. One use, from which we base our
discussion, arises from the field of quantum information theory, as in [11] and
[17]. A quantum state has an associated density matrix, which is Hermitian,
positive semi-definite, and has unit trace (trace equal to 1). This implies, by a
theorem in Linear Algebra and Matrix Theory, that the spectrum (the collection
of eigenvalues) of the density matrix can be treated as a discrete probability
distribution (‘Hermetian’ guarantess eigenvalues are real, ‘positive semi-definite’
means eigenvalues are nonnegative, ‘unit trace’ means the eigenvalues sum to
1). The von Neumann entropy of the state is obtained by applying the Shannon
entropy to that spectrum. The normalized Laplacian matrix of an undirected
graph has similar properties, so one may think of it as a density matrix of some
physical system, and it makes sense to define the von Neumann entropy of a
graph in this way. This concept has been widely studied in recent years, see
[2, 4, 5, 6, 18].

This paper will extend those ideas to the context of directed graphs, for which
a new approach is needed since the spectrum of the normalized Laplacian is
complex-valued and has little hope of being interpreted as a discrete probability
distribution. But before we get to that, we will highlight some observations
about the well-known undirected case.

If a graph G has at least one edge, we define the von Neumann entropy of
G by

H(G) =
X

�2⇤̄

�� log2 �,

where ⇤̄ is the spectrum of L̄; that is, the multiset of its eigenvalues (with
multiplicity).

The following proposition says that we can talk about H(G) without ambi-
guity or potential misunderstanding assuming calculations are done correctly.
In other terms, it is saying that if one person calculates H(G), their result will
be the same as someone else who calculates H(G), even if the names of vertices
or edges of G are labeled di↵erently.

Proposition 5. H(G) is well-defined.

Proof. There are two concerns here.
First, we note that the construction of L̄ is dependent on the labelling of the

vertices of G. However, we will show that ⇤̄ is the same regardless of the choice
of labelling. Second, we must show that L̄ is positive semi-definite; that is, all
its eigenvalues are nonnegative.

First, let (v1, . . . , vn) and (w1, . . . , wn) be labellings of V . Clearly, one may
be obtained from the other by permutation, so there exists a permutation matrix

12



P such that 0

B@
w1
...
wn

1

CA = P

0

B@
v1
...
vn

1

CA .

Now if L̄v is the normalized Laplacian matrix constructed from labelling (v1, . . . , vn),
and L̄w is the normalized Laplacian matrix constructed from labelling (w1, . . . , wn),
then

L̄w = PL̄vP
�1

.

Thus the matrices are similar and have the same spectrum, and our first concern
is resolved.

Now we use the labels v1, . . . , vn, and we also label the edges of G by
e1, . . . , em. We can now construct a signed incidence matrix B = [bik] of G
by taking

bik =

8
<

:

1 if ek = vivj for some j > i

�1 if ek = vivj for some j < i

0 otherwise

Now consider the n by n matrix C = BB
| = [cij ]. We know that cii = d(vi)

since row i of B has ±1 for each edge incident to vi. If i 6= j, then cij is the
dot product of rows i and j of B. Vertices vi and vj are not adjacent, then they
share no edge and cij = 0. Otherwise, they share exactly one edge, namely ek.
Because either i < j or j < k, we know that bik and bjk have opposite signs,
so cij = bikbjk = �1. Now we can see that L agrees with C at every entry, so
L = BB

| is positive semi-definite. Finally, we note that since G has at least
one edge, L has positive trace, so L̄ is also positive semi-definite.

We note that the von Neumann entropy formula is actually just an appli-
cation of the Shannon entropy to ⇤̄. As we’ve seen, L̄ is positive semi-definite,
and because it has trace 1, the eigenvalues are all nonnegative and add to 1, so
⇤̄ can be treated as a discrete probability distribution.

Furthermore, we note that 0 is always an eigenvalue of L̄ since the elements
in each row of L̄ add to 0. Therefore, if G has n vertices, it has at most n � 1
nonzero eigenvalues, so

H(G)  log2(n� 1)

by Proposition 4. Dairyko et al. showed in [5] that this bound is tight and that
it’s achieved only by Kn: the complete graph on n vertices, where every possible
edge is present. We give our own proof of that here. We use Gn to denote the
collection of all graphs on n vertices with at least one edge.

Theorem 1. The von Neumann entropy is maximized on Gn by Kn.

Proof. First suppose that H(G) = log2(n � 1) for some G 2 Gn. We will show
that G = Kn. By Proposition 4, L̄ has spectrum

⇤̄ =

(
1

n� 1

(n�1)

, 0(1)
)
,

13



where a superscript (m) denotes an algebraic multiplicity of m. Then L has
spectrum

⇤ =
n
t
(n�1)

, 0(1)
o
,

where t = trL/(n� 1) > 0.
Let xij denote the vector with 1 in the ith component, �1 in the jth compo-

nent, and 0 everywhere else. Since L is symmetric and ~1, the vector of all ones,
is an eigenvector of L corresponding to 0, the eigenspace corresponding to the
eigenvalue t contains all vectors orthogonal to ~1. In particular, each xij is an
eigenvector of L corresponding to t. Now let vi, vj , vk be three distinct vertices
of G. If we write L = [`ij ], the kth row of the computation Lxij = txij gives

`ki � `kj = 0.

Thus vivk 2 E i↵ vjvk 2 E. A similar computation reveals vivk 2 E i↵ vivj 2 E.
Therefore, vi, vj , and vk either have no edges between them or form a triangle.
Since this is true of any three vertices in G, and since G has at least one edge
by assumption, we conclude that G = Kn.

Now we verify that H(Kn) = log2(n � 1). We note that the normalized
Laplacian matrix of Kn is

L̄ =
1

n(n� 1)

0

BBB@

n� 1 �1 · · · �1
�1 n� 1 �1
...

. . .
...

�1 �1 · · · n� 1

1

CCCA
=

nI � J

n(n� 1)
,

where I is the n by n identity matrix, and J is the n by n all ones matrix.
The spectrum of J is easy to determine. First, J~1 = n~1, so n is an eigenvalue

of J . Also, since J has rank 1, 0 takes up the remaining n�1 eigenvalues. Thus
the spectrum of J is {0(n�1)

, n
(1)}. L̄ then has spectrum

⇤̄ =

(
n� 0

n(n� 1)

(n�1)

,
n� n

n(n� 1)

(1)
)

=

(
1

n� 1

(n�1)

, 0(1)
)
.

Thus

H(Kn) = H

✓
1

n� 1
, . . . ,

1

n� 1

◆
= log2(n� 1).

We note that H(G) is minimized on Gn by any graph with just one edge. It
is then of interest to look at the class CGn of connected graphs on n vertices,
i.e. those for which there is a finite sequence of edges

uw1, w1w2, w2w3, . . . , wk�1wk, wkv,

called a path, between any two vertices u and v. In [5], Dairyko et al. conjectured
that H(G) is minimized on CGn by the star graph K1,n�1, which consists of one
central vertex adjacent to all others, with no other edges present.
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An alternative approach to von Neumann entropy

Now that we’ve identified which graph has the highest von Neumann entropy, a
natural question arises: What does that even mean? It would appear that high
entropy seems to correlate with qualitative notions such as “connectedness” and
“regularity”, but can we make that more concrete? So far, we’ve looked at the
normalized eigenvalues as a discrete probability distribution, but what do those
probabilities correspond to? Well, at least for now, the answer is unclear.

However, we can give a reformulation of the von Neumann entropy that
not only has a meaningful probabilistic interpretation, but also has a natural
extension to directed graphs, whose Laplacian matrices may not even have real
eigenvalues.

For a directed graph � with at least one arc, we define the von Neumann
entropy of � to be

H(�) =
1

log 2

0

@tr(M)�
1X

j=2

tr(M j)

j(j � 1)

1

A ,

where M = (I � L̄)|.
To make sense of this, we first look at this new matrix M . Recall that

the diagonal entries of L̄ are nonnegative numbers that add to 1, and that the
o↵-diagonal entries of L̄ are nonpositive. Therefore, the entries of M are all
nonnegative. Furthermore, the entries of each row of L̄ add to 0, so the entries
of each column ofM add to 1. In fact, each column ofM is a discrete probability
distribution! A matrix with this property is called a Markov matrix, and much
is known about them.

Before we do more with this definition of von Neumann entropy for digraphs,
we need to ensure that it doesn’t conflict with the definition of von Neumann
entropy for graphs.

Suppose G is a graph with associated digraph �. Because M = (I � L̄)|, we
know that for every eigenvalue � of L̄, 1�� is an eigenvalue of M . Thus by our
new definition,

H(�) =
1

log 2

0

@tr(M)�
1X

j=2

tr(M j)

j(j � 1)

1

A

=
1

log 2

0

@
X

�2⇤̄

(1� �)�
1X

j=2

X

�2⇤̄

(1� �)j

j(j � 1)

1

A

=
1

log 2

X

�2⇤̄

0

@(1� �)�
1X

j=2

(1� �)j

j(j � 1)

1

A .

Now recall that �x log x has power series expansion

1� x�
1X

j=2

(1� x)j

j(j � 1)
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for |x � 1|  1. In our case, because M is a Markov matrix, |1� �|  1 for all
� 2 ⇤̄, so we can simplify what we have to

H(�) =
1

log 2

X

�2⇤

�� log �

=
X

�2⇤

�� log2 �

= H(G)

by our first definition, so we see that there’s no conflict.
Now we look deeper into the meaning of this new approach. The matrix M

describes a family of what are called random walks on �. A random walk starts
at some vertex vk, then at discrete time steps, it either moves to another vertex,
or it stays put, according to some probability distribution associated with the
current vertex. That probability distribution is given by the kth column of M .
In particular, if g = trL̄, then for each vertex v` such that vk ! v`, the walk has
a probability of 1/g of moving from vk to v`. The walk stays at vk otherwise,
with probability 1� d

+(vk)/g.
More generally, M j describes the random walk after j time steps. Let wj(vk)

denote a random walk of length j starting at vk. The k, ` entry of M j is the
probability that wj(vk) will end at v`. As j ! 1, the probability distribution
for each wj(vk) will converge to a stable state dictated by an eigenvector of M
corresponding to an eigenvalue of 1, (which is the same as a left eigenvector of
L̄ corresponding to an eigenvalue of 0.)

Now relating this to the von Neumann entropy, we have that

tr(M j) =
nX

k=1

P(wj(vk) ends at vk).

Therefore, the von Neumann entropy can be expressed as

H(�) =
1

log 2

0

@n� 1�
nX

k=1

1X

j=2

P (wj(vk) ends at vk)

j(j � 1)

1

A .

In this sense, the von Neumann entropy is a measure of how quickly a random
walk will move away from its initial state and settle in to its limiting state. The
more quickly it settles, the higher the entropy. Thus the entropy is, in fact, a
measure of how “unpredictable” a graph is. Recall the metaphor of the thief
moving randomly in the buildings described in the introduction.

This viewpoint also allows us to place general bounds on the von Neumann
entropy. Recall that g = trL̄.

Theorem 2. For any directed graph �, H(�)  H(d+), where

d+ = (d+(v1)/g, . . . , d
+(vn)/g)

is the distribution of out-degrees in �, and equality holds if and only if � has no
(directed) cycles.
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v1 : 1.00

v2 : 0.00

v3 : 0.00

v5 : 0.00

v4 : 0.00 v1 : 0.67

v2 : 0.11

v3 : 0.11

v5 : 0.00

v4 : 0.11

v1 : 0.44

v2 : 0.16

v3 : 0.16

v5 : 0.04

v4 : 0.20 v1 : 0.14

v2 : 0.07

v3 : 0.07

v5 : 0.43

v4 : 0.29

M
0 =

2

66664

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3

77775
M

1 =

2

66664

0.67 0 0 0 0.11
0.11 0.78 0 0 0
0.11 0 0.78 0 0
0.11 0.11 0.11 0.89 0
0 0.11 0.11 0.11 0.89

3

77775

M
2 =

2

66664

0.44 0.01 0.01 0.01 0.17
0.16 0.60 0 0 0.01
0.16 0 0.60 0 0.01
0.20 0.19 0.19 0.79 0.01
0.04 0.20 0.20 0.20 0.79

3

77775
M

50 =

2

66664

0.14 0.14 0.14 0.14 0.14
0.07 0.07 0.07 0.07 0.07
0.07 0.07 0.07 0.07 0.07
0.29 0.29 0.29 0.29 0.29
0.43 0.43 0.43 0.43 0.43

3

77775

Figure 4: Progression of wj(v1) for j = 0, 1, 2, 50 on a digraph. The number
next to vk is the probability that the walk ends at vk, taken from the (k, 1)
entry of M j .

Proof. Clearly,

P (wj(vk) ends at vk) � P (wj(vk) never leaves vk) = (1� d
+
k
/g)j ,
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with equality if and only if � has no directed cycles. Therefore,

H(�)  1

log 2

0

@n� 1�
nX

k=1

1X

j=2

(1� d
+(vk)/g)j

j(j � 1)

1

A

=
1

log 2

 
n� 1�

nX

k=1

✓
d
+(vk)

g
log

d
+(vk)

g
+ 1� d

+(vk)

g

◆!

= �
nX

k=1

d
+(vk)

g
log2

d
+(vk)

g

= H(d+).

Note that the condition for equality is equivalent to L̄ being permutation
equivalent to an upper-triangular matrix. This makes sense, since in that case
the eigenvalues of L� are the out-degrees of the vertices of �.

Corollary 1. For any directed graph � on n vertices, H(�) < log2 n.

Proof. Since the out-degrees are real-valued, we have H(�)  H(d+)  log2 n.
If H(d+) = log2 n, then d

+(v1) = . . . = d
+(vn) > 0, and � must have a directed

cycle, so H(�) < H(d+).

Maximizing von Neumann entropy for digraphs

Now that we’ve established that log2 n is an upper bound for the von Neumann
entropy of digraphs on n vertices, it’s natural to ask how good this bound is.
We’ve seen that the von Neumann entropy of a simple graph never exceeds
log2(n� 1). So, are there directed graphs with entropy between log2(n� 1) and
log2 n? The answer appears to be yes for n � 3.

Let’s consider the directed cycle on n vertices, which we will denote DCn.
With the vertex set of DCn labelled {v1, . . . , vn}, arcs in DCn are given by

vi ! vj i↵ j � i ⌘ 1 (mod n).

The Laplacian matrix of DCn is given by

L =

2

6664

1 �1 0 · · · 0
0 1 �1 0

...
. . .

...
�1 0 0 · · · 1

3

7775
.

Since L is a circulant matrix, its eigenvalues are known to be 1 � e
i2⇡j/n, for

j = 0, . . . , n� 1. Thus we can say

⇤̄ =

⇢
1

n

⇣
1� e

i2⇡j/n
⌘�n�1

j=0

.
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It’s not clear that this suggests high entropy, but we can employ the new per-
spective to make some sense of the von Neumann entropy of DCn. For each
vertex vk, we know that

P (wj(vk) ends at vk) = P (wj(vk) never leaves vk)

for all j < n because DCn has no directed cycles of length less than n. Thus
we have

H(DCn) = log2 n� 1

log 2

1X

j=n

tr(M j)� n
�
1� 1

n

�j

j(j � 1)
,

and we can see that H(DCn) isn’t much less than H(d+) = log2 n. In fact, here
are some values of H(DCn):

n H(DCn)
3 log2 2.34
4 log2 3.52
5 log2 4.63
6 log2 5.69
7 log2 6.74
8 log2 7.78
9 log2 8.80
10 log2 9.82
20 log2 19.91
50 log2 49.97
100 log2 99.98
200 log2 199.99

We now provide evidence for the following conjecture.

Conjecture 1. DCn has the highest von Neumann entropy of any directed
graph on n vertices.

First, because of Theorem 2, it makes sense that von Neumann entropy is
maximized by a graph with H(d+) = log2 n. Such graphs are regular, with
d
+(vk) constant for all vk. I randomly generated 10,000 regular digraphs for

each possible value of d = d
+(vk) and each number of vertices up to 8. To

randomly generate the digraph, I selected, for each vertex vk, a random subset
of size d of the remaining vertices for vk to beat, with all choices independent.
Here are the maximum values of 2H(�) for each:

n DCn d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7
3 2.343 2.343 2.000
4 3.522 3.522 3.101 3.000
5 4.627 4.627 4.398 4.048 4.000
6 5.695 5.695 5.484 5.222 5.032 5.000
7 6.742 6.742 6.514 6.353 6.117 6.021 6.000
8 7.776 7.776 7.608 7.359 7.207 7.078 7.014 7.000
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Conclusion

Now that we have a probabilistic and combinatorial interpretation of the von
Neumann entropy, we can see that it gives a good measure of how unpredictable
a system is in the sense of random movement in the direction of arcs. Further-
more, we can see at least a weak relation between high entropy and regularity
in a graph or directed graph since H(�)  H(d+).

There are many situations where a high-entropy structure is desirable. For
instance, in experimental design, the subjects of an experiment should be placed
on as equal footing as possible, though an asymetric relation between subjects
may make this di�cult.

Consider professional sports scheduling as an example, though I hope it’s
clear that the structure itself is not dependent on context. The National Bas-
ketball Association has 30 teams, and each team plays 82 games per season: 41
at home (in their own arena) and 41 away (at the other team’s arena). It is
generally accepted that the location of the game gives an advantage to the home
team, known as “home court advantage”, so each individual game presents a
strong bias. To minimize bias over the course of the season, a high-entropy
schedule is desired. Ignoring when the games take place, we can represent the
schedule as a directed multigraph with 30 vertices (one for each team), where
for each game, there is an arc going from the home team to the away team.
Then each vertex has in-degree 41 and out-degree 41. Additional restrictions
may be imposed as desired. If entropy really measures unpredictability for these
graphs in the sense we intend, the graphs with the highest entropy will provide
the fairest possible schedules.

There is more work to be done to justify the use of von Neumann entropy
for such purposes, but for now, we’ve at least given some meaning to entropy
in directed graphs.
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Reflection 

 I never applied to the Honors Program, but I ended up here anyway. Before my freshman 

year, I heard about the Undergraduate Research Fellowship program, and I understood that they 

would help me to work closely with the faculty, so I applied to that. After I was accepted, I was 

informed that the fellowship automatically inducted me in the Honors program, which I wasn’t 

excited about. I didn’t see a way out, so I just rolled with it for as long as I could. Honors wasn’t 

my goal, and that made it really hard for me to want to do a capstone project. 

 Nevertheless, I enrolled in the HONR 3900 capstone preparation course to keep my 

options open, and I submitted a proposal at the end of the semester related to some open 

questions I wanted to explore related to previous research I had done. My tentative plan was to 

keep researching with my mentor Dr. Brown in the same way that I always had and to see which 

of my questions I could make headway toward answering. However, Dr. Brown was promoted in 

the math department at the same time, and there was a long period of time where I didn’t 

research with him much at all, as he was busy with administrative business. I tried to keep 

looking into the entropy project on my own, but the results I came up with didn’t seem to relate 

much to my overall goal. I didn’t have a good direction, and progress was minimal. 

 Eventually, Dr. Brown had some time to do research again. I told him I just wanted to get 

back on the horse, and I would be okay meeting with a larger group. However, my time was soon 

running out to finish my project, and our group meetings started to move away from my capstone 

topic. 

 At this point, I was becoming increasingly undecided if I wanted to finish my capstone 

project at all. Honestly, Honors was never the goal I was working toward. I just wanted to learn 

as much math as I could, and Honors credit had always come along the way without me having 
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to do much more than fill out tedious paperwork for the work I was already doing, but I was 

never doing anything for honors credit, so what reason did I have to finish? I met with the 

Honors advisor to talk through my options, then I set up an appointment with Dr. Brown via 

email. I told him in my message that I wanted to talk, and that I was ready to give up on doing 

Honors. It was too late in the game, and anything I pulled together at this point would just make 

me a phony. 

 But before our meeting came around, I had a realization. I didn’t get this far by accident. 

I could have fallen by the wayside years ago, but I didn’t. People were working hard to ensure 

my success. Dr. Brown was one of them. God was another. Miracles had occurred all along the 

way, and now was my chance to show a bit of appreciation. Finally, I found my why. Really, I 

don’t care if my transcript says “University Honors” or not. I don’t care if my capstone is 

meaningful or not in a broader context. I’m just here to finish what others have helped me start. 

 When I got to Dr. Brown’s office, he started “So I guess I need to walk you off the 

cliff—”. “Nah,” I interrupted, “I’ve decided that I’m going to move forward with my capstone 

after all. It’s not going to be the best project I’ve ever done, but I’m going to finish.” That day, 

we sat down and made an actual plan. We were going to meet one-on-one every Wednesday, and 

we had deadlines for when everything needed to be done. It still seemed like a lot to do in not 

much time, but at least it seemed feasible for once. 

 And so I started to make progress for a little while. But then Spring Break came around, 

and Dr. Brown was away at a conference the week following. And to top it off, that was the 

week that the university announced that classes would be moving online due to the COVID-19 

pandemic. Face-to-face meetings would stop, and everybody with teaching responsibilities was 

scrambling to figure out how to run their class moving forward. I was a recitation leader for a 
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linear algebra class, and just figuring out where I could record myself every day was a huge 

challenge. My classroom was locked, the library study rooms were available, then not, and I 

didn’t have the technology at home to do things on my own. My capstone project suddenly 

dropped on the priority list, and even worse, I didn’t get back with Dr. Brown to set up a new 

regular meeting time. 

 More time passed with little progress, and as my capstone project started to creep back 

into my mind, I opened my work plan to see how my progress was coming along. Again, I 

needed to readjust my expectations for myself and make a new plan. I started by writing down 

everything I knew about my topic and fleshing out as many details as I could. Video calls with 

Dr. Brown helped me to steer the paper and stay motivated to keep working on it. Slowly, the 

paper started to gain more focus. Ironically, at the same time, my own focus was drawn to 

exploring the research questions I had never been able to fully answer. This really slowed things 

down, but in the end, my project was much more complete because of it. 

 At one point, I got an email from Honors with submission criteria for formatting and 

what I needed to include. I was too overwhelmed to worry about that right then, so I pushed it 

off. When I looked at it again the last week of school, it seemed like way too much for me to 

handle, and I had a little breakdown. Somehow, I finished anyway, and things seemed to turn out 

alright. 
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